陳舒文,劉暉,2,李福海,張海,2
(1.南京航空航天大學(xué) 民航學(xué)院,江蘇 南京 211106; 2.南京航空航天大學(xué) 飛行模擬與先進(jìn)培訓(xùn)工程技術(shù)研究中心,江蘇 南京 211106)
含接觸碰撞的飛機(jī)地面牽引載荷分析
陳舒文1,劉暉1,2,李福海1,張海1,2
(1.南京航空航天大學(xué) 民航學(xué)院,江蘇 南京 211106; 2.南京航空航天大學(xué) 飛行模擬與先進(jìn)培訓(xùn)工程技術(shù)研究中心,江蘇 南京 211106)
由于受到操作失誤或作業(yè)環(huán)境的影響,飛機(jī)地面牽引過程可能會(huì)產(chǎn)生較大載荷,甚至危及飛機(jī)結(jié)構(gòu)安全。本文采用修正的非線性等效彈簧阻尼模型來描述飛機(jī)牽引系統(tǒng)連接間隙,以波音某機(jī)型為參考,建立了含接觸碰撞的飛機(jī)地面牽引系統(tǒng)的剛?cè)狁詈蟿?dòng)力學(xué)模型。對(duì)經(jīng)過加油管地溝的飛機(jī)牽引事故作為典型案例進(jìn)行分析,結(jié)果表明:牽引車與牽引桿的連接間隙對(duì)飛機(jī)的下阻力臂載荷影響較大,當(dāng)連接間隙過大或下阻力臂存在疲勞裂紋時(shí),受到較大的沖擊載荷,飛機(jī)牽引桿及前起落架可能發(fā)生損傷。
飛機(jī)牽引系統(tǒng); 牽引接頭載荷; 連接間隙; 接觸碰撞; 前起落架; 牽引桿; 牽引車
地面安全作為航空安全重要組成部分,始終是行業(yè)監(jiān)管的工作重點(diǎn)。飛機(jī)在地面牽引、停放過程中,由于天氣、環(huán)境、突發(fā)意外事件、人為失誤等因素可能會(huì)造成人員傷亡或財(cái)產(chǎn)損失的地面事故。這些事故雖不像空難事故那樣損失慘重、影響巨大,但其發(fā)生頻率極高。據(jù)統(tǒng)計(jì),2011年,機(jī)場(chǎng)責(zé)任地面保障原因中航空器牽引安全風(fēng)險(xiǎn)指數(shù)占到地面保障安全風(fēng)險(xiǎn)指數(shù)的28.1%[1]。2005年,Boeing737-300型飛機(jī)的牽引過程中,前起落架經(jīng)過加油管地溝,導(dǎo)致飛機(jī)前起落架折疊、機(jī)頭觸地等結(jié)構(gòu)件的嚴(yán)重?fù)p壞[2]。分析表明,兩起事故均由于飛機(jī)前起落架下阻力臂、鎖連桿等結(jié)構(gòu)件發(fā)生過載斷裂而引起。
目前,針對(duì)飛機(jī)牽引作業(yè)的研究主要分為兩個(gè)部分,即牽引作業(yè)規(guī)范的標(biāo)準(zhǔn)化[2-3],以及對(duì)牽引設(shè)備性能及牽引載荷變化的研究[4-10]。在以上研究中,對(duì)整個(gè)牽引系統(tǒng)的研究極少,且大多是以正常作業(yè),即在平直路面下牽引車推著飛機(jī)后退(倒車)作為典型工況進(jìn)行研究;在動(dòng)力學(xué)仿真分析中也未考慮牽引車-牽引桿-飛機(jī)三者連接處實(shí)際存在的間隙及其影響。本文以經(jīng)過加油管地溝的牽引作業(yè)事故為典型工況,結(jié)合波音某機(jī)型的基礎(chǔ)數(shù)據(jù),采用修正的L-N模型,分析了飛機(jī)牽引桿與牽引車之間不同的連接間隙值對(duì)飛機(jī)前起落架結(jié)構(gòu)部件的影響,并與下阻力臂的失穩(wěn)載荷進(jìn)行比較分析。
1.1牽引系統(tǒng)間隙的矢量描述
在飛機(jī)、牽引桿、牽引車本身存在較多可接受的裝配間隙,本文不考慮此類間隙,均視為理想運(yùn)動(dòng)副。對(duì)于飛機(jī)牽引系統(tǒng),通過測(cè)量可知:飛機(jī)與牽引桿、牽引桿與牽引車進(jìn)行連接時(shí)存在明顯間隙,這兩處間隙類型極為類似,其中牽引桿與牽引車連接間隙較大(如圖1)。為了簡化模型的復(fù)雜程度,本文僅對(duì)牽引桿與牽引車之間的連接進(jìn)行考慮,對(duì)前起落架牽引環(huán)銷軸與牽引環(huán)之間的連接間隙不進(jìn)行考慮。
圖1 牽引車-牽引桿連接Fig.1 The clearance between towing car and towbar
本文假設(shè)飛機(jī)、牽引桿、牽引車之間的間隙均為規(guī)則裝配間隙,不考慮由于磨損產(chǎn)生的非規(guī)則間隙。對(duì)于間隙1,假設(shè)桿件與牽引環(huán)連接的初始狀態(tài)均為同心連接,半徑間隙可表示為
C=d1/2-d2/2
式中:d1為牽引車-牽引桿中銷軸的直徑,d2為牽引車-牽引桿中牽引桿牽引環(huán)孔洞的直徑。
(1)
牽引車牽引環(huán)的上下?lián)醢鍖?duì)牽引桿起上下限制作用,將此處間隙簡化為線性彈簧阻尼器,如圖3。
1.2接觸碰撞力模型
連續(xù)接觸模型中認(rèn)為接觸碰撞力是由于碰撞物體發(fā)生局部變形產(chǎn)生的,Kelvin-Voigt彈性模型[14]中將接觸力情況等效為兩物體之間含有線性彈簧阻尼器。為分析飛機(jī)牽引系統(tǒng)中飛機(jī)與牽引桿、牽引車與牽引桿之間的連接間隙對(duì)飛機(jī)牽引接頭載荷的影響,需考慮機(jī)構(gòu)的材料特性、幾何形狀、物體的運(yùn)動(dòng)特性等,應(yīng)嵌入更精確的接觸碰撞力模型。Hertz接觸力模型[13]以純彈性理論為基礎(chǔ),未考慮鉸間接觸的能量損失,將接觸力假設(shè)為非線性彈簧:
FN=Kδn
(2)
式中:FN表示物體碰撞時(shí)法線方向的力,K為接觸剛度系數(shù),δ為接觸力法向穿透深度,n對(duì)于金屬一般取1.5,對(duì)于橡膠類材料一般取2.2[13-14]。剛度系數(shù)K取決于接觸物體的特性和幾何形狀,對(duì)于兩球體的接觸,K的表達(dá)式為
(3)
其中
(4)
式中:νk為兩接觸物體的泊松比,Ek為兩接觸物體的楊氏模量。
圖2 桿件和牽引環(huán)發(fā)生接觸時(shí)的間隙示意圖Fig.2 The status of joint gap while bar and towing lug contacting
圖3 牽引桿與牽引車接頭上下?lián)醢宓膹椈勺枘崮P虵ig.3 Spring-damp model within towbar and flappers of towing car
在Hertz接觸力模型的基礎(chǔ)上,Hunt等提出了非線性粘彈性模型[15];Lankarani等在其基礎(chǔ)上提出了非線性彈簧阻尼模型[16],模型將接觸力分為兩部分,一部分為彈性變形力,采用了Hertz理論的接觸力模型;另一部分為接觸過程中產(chǎn)生的阻尼力,采用滯后阻尼的方式進(jìn)行計(jì)算:
(5)
D=εδn
(6)
其中
(7)
(8)
Lankarani-Nikravesh接觸模型中考慮了結(jié)構(gòu)材料、物體形狀對(duì)接觸力的影響,在機(jī)械接觸中大量使用,且適用于較大間隙接觸碰撞力的計(jì)算。但Hertz接觸力模型適用于橢圓形或圓形接觸表面,因此,在圓柱表面之間的接觸碰撞力計(jì)算中須對(duì)L-N模型進(jìn)行修正。當(dāng)n在1~1.5時(shí),可將L-N模型直接應(yīng)用于軸承和軸的接觸碰撞,而L-N模型在阻尼力的恢復(fù)系數(shù)接近1時(shí)計(jì)算得到的接觸碰撞力精度較高,在表示較小的恢復(fù)系數(shù)中無法達(dá)到相應(yīng)精度,對(duì)L-N模型進(jìn)行修正(式(8))。本文采用修正后的模
型作為飛機(jī)前起落架和牽引桿連接處間隙的接觸力模型[17]。由于不能得到詳細(xì)的飛機(jī)前起落架牽引環(huán)與牽引桿接觸處的摩擦相關(guān)系數(shù),在牽引系統(tǒng)仿真模型中不考慮摩擦對(duì)牽引接頭載荷及下阻力受力的影響:
(9)
2.1飛機(jī)牽引系統(tǒng)模型建立
飛機(jī)牽引系統(tǒng)模型可分為整機(jī)模型、牽引桿模型、牽引車模型以及輪胎和路面模型四部分。在飛機(jī)地面牽引的過程中,起落架除了承受飛機(jī)重力、輪胎與路面的支持力和摩擦力,主要受到牽引車牽引飛機(jī)的推力。對(duì)于整機(jī)模型,將針對(duì)起落架進(jìn)行剛?cè)狁詈辖?。首先,采用CATIA對(duì)飛機(jī)起落架進(jìn)行零件的建模以及裝配,如圖4(a);并采用MSC.SimDesigner for CATIA V5實(shí)現(xiàn)CATIA與ADAMS之間的模型轉(zhuǎn)換,得到起落架在ADAMS中的剛性結(jié)構(gòu)模型。由于飛機(jī)前起落架部件中外筒和內(nèi)筒可看作較長桿部件,桿件在受到垂直于軸線方向力時(shí)會(huì)產(chǎn)生較大的彎曲變形,因此將CATIA中建立的外筒和內(nèi)筒模型導(dǎo)入PATRAN中建立有限元模型,如圖4(b)、(c)。 最后,通過NASTRAN得到MNF模態(tài)中性文件。
圖4 起落架剛?cè)狁詈辖ig.4 Rigid-flexible coupling modeling of landing gear
在多體動(dòng)力學(xué)軟件ADAMS中對(duì)飛機(jī)起落架內(nèi)外筒進(jìn)行柔性體替換。在完成其他3部分建模的基礎(chǔ)上,利用Merge Two Models功能對(duì)模型進(jìn)行合并,建立完整的飛機(jī)地面牽引系統(tǒng)模型,如圖5。
圖5 飛機(jī)地面牽引系統(tǒng)模型Fig.5 The model of aircraft towing system
2.2經(jīng)過凹坑路面的載荷比較分析
國內(nèi)某航空分公司曾發(fā)生過飛機(jī)準(zhǔn)備執(zhí)行航班,旅客登機(jī)完畢后,當(dāng)飛機(jī)由牽引車向后推行過程中,經(jīng)過一加油管地溝(如圖6),牽引桿上剪切銷斷裂及前起落架下阻力臂斷裂,前起落架向前折起,飛機(jī)頭部下沉,兩扇前起落架艙門觸地的事故。本文以此次事故的作為一典型事故工況進(jìn)行仿真分析。此次事故是由牽引接頭載荷過大導(dǎo)致飛機(jī)前起落架的下阻力臂斷裂造成,可見下阻力臂是起落架結(jié)構(gòu)部件受牽引接頭載荷影響較大的部件之一,因此本文主要探討牽引接頭載荷對(duì)飛機(jī)前起落架下阻力臂的影響。
對(duì)機(jī)場(chǎng)的加油管地溝進(jìn)行實(shí)地測(cè)量,該地溝寬約1 520 mm,溝蓋下沉,最大下沉量約30~40 mm,取凹坑深度40 mm,寬度1 520 mm作為基準(zhǔn)路面。對(duì)Boeing737-800的常用牽引桿接頭進(jìn)行測(cè)量,牽引桿與飛機(jī)前起落架牽引環(huán)連接部件的數(shù)據(jù)分別為:銷軸直徑d1為73.8 mm, 牽引桿孔直徑d2為75.2 mm,上下?lián)醢彘g隔h1為40 mm,牽引桿厚度h2為30 mm。牽引桿所用材料為30CrMnSiA,因缺乏牽引車銷孔座所用材料的相關(guān)說明,這里假設(shè)其與牽引桿材質(zhì)相同。30CrMnSiA楊氏模量為1.96×105N/mm2,泊松比為0.26,另取指數(shù)n為1.5,恢復(fù)系數(shù)ce為0.9。
圖6 加油管地溝Fig.6 Gas pipe gutte
飛機(jī)牽引速度一般限制在5 km/h以內(nèi),但受到環(huán)境影響或駕駛員的疏忽,實(shí)際牽引速度可能超出這一范圍。此外,實(shí)際牽引過程,工作人員可能會(huì)為簡便而采用不匹配的牽引車、牽引桿進(jìn)行飛機(jī)的牽引作業(yè),導(dǎo)致牽引桿與牽引車連接部位出現(xiàn)較大間隙,前述事件中就出現(xiàn)這種情況,經(jīng)測(cè)量可知,使用不相匹配的牽引桿與牽引車,其連接處的最大間隙可達(dá)12 mm。因此本文選取牽引速度為5 km/h與7 km/h,針對(duì)牽引桿與牽引車連接處間隙0.5,1.25,2.5,…,12.5 mm等11種間隙值,以上述牽引設(shè)備的數(shù)據(jù)為基準(zhǔn),對(duì)牽引桿與牽引車連接處接觸力以及下阻力臂的牽引載荷進(jìn)行比較分析。
經(jīng)過仿真發(fā)現(xiàn),飛機(jī)下阻力臂牽引力的變化趨勢(shì)與牽引桿-牽引車的接觸力的變化趨勢(shì)大致相同,飛機(jī)下阻力臂受力大致為牽引桿-牽引車接觸力的3.7~3.8倍。牽引速度為5 km/h,對(duì)于不同的牽引桿-牽引車連接間隙值,飛機(jī)牽引系統(tǒng)主起落架及前起落架先后經(jīng)過凹坑路面時(shí),下阻力臂的受力如圖7(a);僅飛機(jī)前起落架經(jīng)過凹坑路面時(shí),下阻力臂所受載荷如圖7(b)。
圖7 過凹坑時(shí)下阻力臂受力Fig.7 The load of down drug during aircraft passing the pit
由圖7可以看出,當(dāng)飛機(jī)牽引系統(tǒng)主起落架和前起落架經(jīng)過凹坑時(shí),下阻力臂載荷出現(xiàn)了極大值;且當(dāng)主起和前起先后經(jīng)過凹坑時(shí),隨著牽引桿與牽引車之間間隙的增大,下阻力臂載荷出現(xiàn)了明顯的振動(dòng),且振幅增大。通過比較發(fā)現(xiàn),主起是否經(jīng)過凹坑,對(duì)整個(gè)過程中下阻力臂峰值載荷的影響不大,則在不同牽引桿與牽引車連接間隙值的情況下,下阻力臂峰值載荷的變化趨勢(shì)如圖8所示。
圖8 下阻力臂峰值載荷變化Fig.8 The peak load of down drug chang with clearance
對(duì)下阻力臂進(jìn)行失效分析,其橫截面為“工”字形狀,截面主要尺寸如圖9。
計(jì)算壓桿柔度系數(shù):
(10)
式中:μ為約束條件,下阻力臂看作兩端鉸支,取值1;l為下阻力臂長度,為558.8 mm,i為慣性半徑,計(jì)算公式為
(11)
式中:Jmin為下阻力臂截面對(duì)中性軸的最小慣性矩,AJ為截面面積。經(jīng)過計(jì)算,圖9中對(duì)應(yīng)的下阻力臂左右方向慣性矩Jxmin=6.099×105mm4,下阻力臂前后方向的慣性矩Jymin=4.46×105mm4,AJ=1 339.7 mm2。由式(11)可得,ix=21.33,iy=18.24;由式(10)可得,下阻力臂在左右和前后兩個(gè)方向的柔度系數(shù)分別為λx=26.2,λy=30.6。
圖9 下阻力臂截面尺寸Fig.9 The section size of down drag
下阻力臂材料為4340鋼,屬超高強(qiáng)度鋼,對(duì)應(yīng)我國鋼材牌號(hào)為40CrNiMoA,材料規(guī)范中規(guī)定抗拉強(qiáng)度為σb為220~240 Ksi,這里取中間值230 Ksi,即1 586 MPa,其名義屈服強(qiáng)度σ0.2約為1 305 MPa[18]。準(zhǔn)確的材料比例極限難以查到,但借鑒同屬超高強(qiáng)度鋼、合金成分相近的4140鋼,其比例極限σp和名義屈服強(qiáng)度σ0.2的比值約為0.88~0.95[19],這里取0.88,即4340的比例極限σp為1 148.4 MPa。根據(jù)臨界柔度計(jì)算公式:
(12)
可得λb=35.2,λs=38.9和λp=41.45。因此只有當(dāng)下阻力臂柔度大于41.45時(shí),才可使用歐拉公式計(jì)算失穩(wěn)臨界載荷。然而前面計(jì)算結(jié)果表明下阻力臂在左右和前后兩個(gè)方向的柔度系數(shù)均遠(yuǎn)小于λs和λp,該飛機(jī)前起落架下阻力臂屬于小柔度壓桿,因此可以判定其失效型式應(yīng)為拉、壓應(yīng)力超出屈服極限(塑性材料)或強(qiáng)度極限(脆性材料),產(chǎn)生強(qiáng)度失效。
根據(jù)下阻力臂材料屈服極限確定其失效臨界載荷:
Flj=σ0.2AJ
(13)
可得Flj=1.75×106N。因此,對(duì)于Boeing737-800型飛機(jī),一般不會(huì)發(fā)生下阻力臂直接斷裂失效。但當(dāng)下阻力臂由于長期受載而產(chǎn)生疲勞,或由于牽引桿剪切銷過載斷裂后,牽引系統(tǒng)無法快速脫開,造成牽引桿與前起落架發(fā)生碰撞,下阻力臂均有可能發(fā)生斷裂。另外,發(fā)生事故機(jī)型均為Boeing737-300,Boeing737-300型飛機(jī)的重量約為Boeing737-800型飛機(jī)的80%,下阻力臂截面面積為604.6 mm2,約為Boeing737-800的45%。通過計(jì)算,B737-300型飛機(jī)前起落架下阻力臂在左右和前后兩個(gè)方向的柔度系數(shù)分別為37.7和38.4,大于λb,且非常接近λs,在壓應(yīng)力作用下有發(fā)生失穩(wěn)的趨向。
1)當(dāng)飛機(jī)前起落架經(jīng)過加油管地溝時(shí),牽引桿-牽引車連接處的間隙對(duì)飛機(jī)牽引系統(tǒng)的影響較大,下阻力臂受到了較大的沖擊載荷,并隨著間隙大小的增大而增加;
2)仿真研究的機(jī)型發(fā)生下阻力臂直接斷裂失穩(wěn)的概率較小,而事故機(jī)型發(fā)生下阻力臂直接斷裂失穩(wěn)的概率較大;
3)飛機(jī)前起落架與牽引桿連接處以及牽引桿與牽引車連接處的間隙較大,極有可能是導(dǎo)致2004年及2005年兩起牽引事故發(fā)生的原因之一。
為了飛機(jī)牽引作業(yè)的安全,提出了以下建議:
1)針對(duì)不同天氣、路況情況給出更加詳細(xì)的牽引速度、制動(dòng)力等方面的規(guī)定,并盡量避免牽引飛機(jī)經(jīng)過不平整路面;
2)應(yīng)按照相關(guān)規(guī)定選用與飛機(jī)相匹配的牽引車、牽引桿,避免出現(xiàn)“大馬拉小車”的現(xiàn)象;
3)可針對(duì)牽引設(shè)備進(jìn)行相應(yīng)改進(jìn),例如,改變牽引桿接頭方式或在牽引桿內(nèi)部添加簡易的緩沖裝置,對(duì)沖擊載荷進(jìn)行緩沖,實(shí)現(xiàn)牽引載荷的可控,并在一定程度上避免事故的發(fā)生。
[1] 中國民航不安全事件統(tǒng)計(jì)分析報(bào)告(2011)[R].北京:中國民航科學(xué)技術(shù)研究院, 2011.
[2] Civil Aviation Authority of Macao, China. Accident investigation report, Aircraft accident no.Accid01/06[R]. 2008.
[3] 張宏. 民用飛機(jī)地面支援設(shè)備研制規(guī)范體系的研究[J].民用飛機(jī)設(shè)計(jì)與研究, 2010(1): 61-62.
ZHANG Hong. Research on the specification system of civil aircraft ground support equipment development [J]. Civil aircraft design and research, 2010(1): 61-62.
[4] 曹大樹,姚紅宇,薛彩軍,等.某型飛機(jī)前起落架斷裂損傷分析[J].材料工程, 2008(6): 36-39.
CAO Dashu, YAO Hongyu, XUE Caijun, et al. Fracture damage analysis of a nose landing gear[J]. Journal of materials engineering, 2008(6): 36-39.
[5] 閆岷,趙立軍,姜繼海.飛機(jī)牽引車結(jié)構(gòu)及動(dòng)力傳動(dòng)系統(tǒng)的發(fā)展[J].液壓與氣動(dòng), 2009(12): 1-4.
YAN Min, ZHAO Lijun, JIANG Jihai. Development of structure and power transmission system in aircraft towing tract[J]. Chinese hydraulics & pneumatics,2009,12: 1-4.
[6] 田普躍,于英.飛機(jī)牽引車制動(dòng)特性的分析與計(jì)算[J].車輛與動(dòng)力技術(shù), 2002(2): 34-38.
TIAN Jinyue, YU Ying. Analysis and calculation of braking performance on airplane towing tractor [J]. Vehicle & power technology,2002(2): 34-38.
[7] 包繼華,孫承順,張建武,等. 某牽引車多體系統(tǒng)動(dòng)力學(xué)建模與仿真[J].上海交通大學(xué)學(xué)報(bào), 2003, 37(11): 1767-1771.
BAO Jihua, SUN Chengshun, ZHANG Jianwu, et al. Dynamic modeling and simulation for a towing tractor based on the multi-body theory [J]. Journal of Shanghai Jiao Tong University, 2003, 37(11): 1767-1771.
[8] 苑紹志,李幼德,李靜. 基于多領(lǐng)域協(xié)同車輛建模仿真平臺(tái)的牽引力控制系統(tǒng)研究[J].中國機(jī)械工程, 2007,18(12): 1487-1490.
YUAN Shaozhi, LI Youde, LI Jing. Study on TCS based on vehicle collaborative modeling & simulation platform [J]. China mechanical engineering, 2007, 18(12): 1487-1490.
[9] INFANTE V, REIS L, FREITAS M D. Failure analysis of landing gears trunnions due to service [J]. Engineering failure analysis, 2014, 41(3): 118-123.
[10] ASI O, ?NDER Y. Failure analysis of an aircraft nose landing gear piston rod end [J]. Engineering failure analysis, 2013, 32(3): 283-291.
[11] FLORES P, AMBROSIO J. Revolute joints with clearance in multibody systems [J]. Computers & structures, 2004, 3: 1359-1369.
[12] KHULIEF Y A. Modeling of impact in multibody systems: an overview [J]. Journal of computational and nonlinear dynamics, 2013(8): 021012-1-15.
[13] FLORES P, SIO J, CLARO J, et al. Influence of the contact-impact force model on the dynamic response of multi-body systems[J]. Proceedings of the institution of mechanical engineers Part K: journal of multi-body dynamics, 2006, 220(1): 21-34.
[14] 秦志英,陸啟韶. 基于恢復(fù)系數(shù)的碰撞過程分析[J].動(dòng)力學(xué)和控制學(xué)報(bào),2006,12(4): 294-298.
QIN Zhiying, LU Qishao. Analysis of impact process model based on restitution coefficient[J]. Journal of dynamics and control, 2006, 12(4): 294-298.
[15] HUNT K H, CROSSLEY F R E. Coefficient of Restitution Interpreted as Damping in Vibroimpact[J]. Journal of Applied Mechanics, 1975, 42(2): 440-445.
[16] LANKARANI H M, NIKRAVESH P E. A contact force model with hysteresis damping for impact analysis of multi-body systems[J]. J Mech Des, 1990, 112: 369-376.
[17] QIN Zhiying, LU Qishao, Analysis of impact process model based on restitution coefficient [J]. Journal of dynamics and control, 2006, 12(4): 294-298.
[18] YOSHIYWKI T. 提高超高強(qiáng)度4340鋼低溫?cái)嗔秧g性的熱處理技術(shù)[J]. 兵器材料科學(xué)與工程, 1988(11): 70-74.
YOSHIYWKI T. Improve the heat treatment technology of high strength steel 4340 fracture toughness at low temperature [J]. Ordnance material science and engineering, 1988(11): 70-74.
[19] 劉文禮. 反坦克火箭彈用4140超高強(qiáng)度鋼的研究[J]. 兵器材料科學(xué)與工程, 1986(4): 11-17.
LIU Wenli. Research of anti-tank rockets with high strength steel 4140 [J]. Ordnance material science and engineering, 1986(4): 11-17.
本文引用格式:
陳舒文,劉暉,李福海,等. 含接觸碰撞的飛機(jī)地面牽引載荷分析[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2017, 38(11): 1794-1799.
CHEN Shuwen, LIU Hui, LI Fuhai, et al. Research on aircraft towing load with contact-impact effects[J]. Journal of Harbin Engineering University, 2017, 38(11): 1794-1799.
Researchonaircrafttowingloadwithcontact-impacteffects
CHEN Shuwen1, LIU Hui1,2, LI Fuhai1, ZHANG Hai1,2
(1.School of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 2.Institute Center of Flight Simulation and Advanced Engineering Technology Training, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
Due to misoperation or the influence of working environment, it could generate overload during aircraft towing, which would even endanger the safety of aircraft structure. A modified nonlinear equivalent spring-damp model was used to describe joint gaps of the aircraft towing system in this paper. A rigid-flexible coupling aircraft towing model with contact-impact effects was established based on Boeing aircraft. Furthermore, a towing accident which the aircraft was towed passing the trench of oil filler pipes was taken as the simulation model. The results indicated that the joint gap between towbar and tractor was extremely influential to the towing system load, while the clearance was oversize or the down drag had fatigue crack, the towbar and the nose gear may be damaged under impact load.
aircraft towing system; towing load; joint gap; contact impact; nose landing gear; towbar; tractor
10.11990/jheu.201606075
http://www.cnki.net/kcms/detail/23.1390.u.23.1390.U.20170427.1511.098.html
V214
A
1006-7043(2017)11-1794-06
2016-06-24.
網(wǎng)絡(luò)出版日期:2017-04-27.
國家自然科學(xué)基金項(xiàng)目(U1233104).
陳舒文(1990-), 女, 博士研究生;
劉暉(1970-), 男, 副教授.
陳舒文,E-mail:csw_nuaa@126.com.