• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚苯胺-還原氧化石墨烯復(fù)合材料的比電容及超級電容性能

    2017-11-01 18:11:07曾向東趙曉昱韋會(huì)鴿王彥飛沙作良
    物理化學(xué)學(xué)報(bào) 2017年10期
    關(guān)鍵詞:聚苯胺物理化學(xué)電容

    曾向東 趙曉昱 韋會(huì)鴿 王彥飛 唐 娜 沙作良

    (天津科技大學(xué)化工與材料學(xué)院,天津 300457)

    聚苯胺-還原氧化石墨烯復(fù)合材料的比電容及超級電容性能

    曾向東 趙曉昱*韋會(huì)鴿 王彥飛 唐 娜 沙作良

    (天津科技大學(xué)化工與材料學(xué)院,天津 300457)

    通過同步還原聚苯胺(PANI)-氧化石墨烯(GO)復(fù)合物制備得到了聚苯胺-還原氧化石墨烯(PANI-rGO)。由于復(fù)合材料中PANI提供了氧化還原反應(yīng)的電荷,使得PANI-rGO復(fù)合材料具有較大的比電容。通過掃描電子顯微鏡(SEM),紫外-可見光譜和熱重量分析法(TGA)對復(fù)合物進(jìn)行了結(jié)構(gòu)和形態(tài)的分析。復(fù)合材料的形態(tài)呈薄片狀,聚苯胺是均勻地包裹在氧化石墨烯上的。當(dāng)電流密度為20 A?g?1時(shí),PANI-rGO復(fù)合材料的比電容可高達(dá)1069 F?g?1(1.71 F?cm?2),是PANI-GO復(fù)合材料的五倍,這是因?yàn)閺?fù)合材料中還原氧化化石墨烯的大比表面和高電導(dǎo)性所引起的。

    聚苯胺-還原氧化石墨烯;聚苯胺-氧化石墨烯;比電容;操作電壓

    1 Introduction

    Graphene (GN), one kind of two-dimensional sp2-hybridized carbon material which has semimetal high crystal structure1,2,high specific area and good conductivity, shows potential in supercapacitor materials. GN based materials attracted many researchers developing supercapacitors3?7, aimed at increase power and energy density as well as lowering fabrication costs while using environmentally friendly materials.

    Based on the reports by researchers, using GN has specific surface area of 2000 m2?g?1, the electric double-layercapacitance (EDLC) was about 20 μF?cm?28. Introducing pseudocapacitance, accumulates charges at the electrode/electrolyte interface, accompanying with the surface redox reaction at high surface area electrode, can increase the energy density to 10 times larger than EDLC9. PANI contained pseudocapacitive materials of the redox species, extend the application in supercapacitors10,11.

    It was reported that transition metal oxides and conducting polymers have been used as electrodes in pseuodocapacitors12,13. Polyaniline-reduced graphene oxide(PANI-rGO) has been considered as one of the rGO based materials for supercapacitors14?17, which is one of the common conductive polymers known as reproducible control of the macromolecule via a simple synthesis method. Moreover, the ability of protonation-deprotonation of PANI make the protons having a significant role in the charge compensation process,which is suitable to use as an energy storing material18.

    The PANI-rGO composite material has recently been used for electric double-layered capacitors of high capacitance. Such hybrid of PANI and rGO, enhanced electrical conductivity,electroactivity and electrochemical stability19?22, prospectively could be used as supercapacitors.

    The composite of PANI-rGO can be obtained by simultaneous reducing PANI-graphene oxide (GO) particles,which was synthesized via in situ oxidation polymerization in the presence of GO23,24. However, PANI-GO was also considered as exhibiting high capacitance25?27. It is difficult to be understood that the insulating GO in PANI-GO can show high capacitance. On the other hand, to prepare PANI-rGO, different researchers use different molar ratio of aniline to ammonium peroxydisulfate (APS) e.g. 4 : 120, 3 : 128, 3 : 229,30. This means that PANI was in different oxidation state and was not the emeraldine oxidation state of PANI which has the highest level of conductivity31. When synthesizing PANI, in order to obtain the high conductive PANI, the researchers usually control the molar ratio of anline to APS at 4 : 5 in early years32?37.

    So, we prepared PANI-rGO, using the method mentioned above, with the molar ratio of anline to APS at 4 : 5. The capacitance of PANI-rGO reduced by hydrazine was estimated by electrochemical technique. The capacitance of PANI-rGO is compared with that of PANI-GO.

    2 Experimental mehthods

    2.1 Synthesis of the composites

    Graphene oxide, PANI and PANI-GO were obtained basically according to the reported processes38. The oxidant,ammonium peroxydisulfate (APS) (Wako, Japan), with molar ratio of aniline hydrochloride to APS of 1 : 1.25 was added to the mixture slowly. The composite of PANI-GO was washed repetitively with distilled water and centrifuged. The sediment was dried under vacuum at 40 °C. 0.1 mL hydrazine monohydrate was added to 50 mL PANI-GO suspension with concentration of 2 g?L?1. The as reduced mixture was put in oil bath at 95 °C for 1 h20,39,40. The product was oxidized by adding 0.0600 g APS20, followed by centrifuged -wash process repetitively with 1 mol?L?1HCl. The dispersion-centrifugation process was iterated until the supernatant showed no absorbance band of PANI. The iteration was normally three or four times. In order to know the amount of PANI-rGO particles with rectangular size of 1.0?1.5 μm38in the acid solution, 5 mg of PANI-rGO suspension was filtered by the PTFE filter paper (JGWP04700, Omnipore Membrane Filter: φ 47 mm,pore size: 0.2 μm) and washed by ion-exchanged distilled water.The mass of the PANI-rGO in the suspension can be obtained after drying under vacuum at 60 °C for 8 h.

    2.2 Characterization

    SEM photographs were taken with JSM-6701F (JEOL,Tokyo, Japan). UV-Vis absorption spectra were measured by V-670 spectrophotometer (Jasco, Japan). Thermogravimetric analyses (TGA) was carried out with Thermo Plus, TG8120(Rigaku, Tokyo, Japan).

    2.3 Fabrication of electrode

    The working electrode was prepared by casting the PANI-rGO or PANI-GO suspension onto a platinum electrode with a diameter of 1.6 mm. Typically, 3.55 mg of PANI-rGO composite was dispersed in 1.000 g of 1 mol?L?1HCl solution,forming the PANI-rGO suspension. And 15.50 mg of the suspension was then dropped onto the platinum electrode and dried in an oven before the electrochemical test.

    2.4 Electrochemical measurements

    A three-electrode cell system was used to evaluate the electrochemical performance in 1 mol?L?1HCl solution. The reference electrode was Ag/AgCl in saturated KCl. The counter electrode was a platinum coil wire. Cyclic voltammetry (CV)and galvanostatic charge-discharge process were carried out with an electrochemical workstation (Ivium compact stat.Netherlands). The electrochemical impedance spectroscopy(EIS) carried out with the above workstation, equipped with a lock-in amplifier. Applied alternating voltage was 10 mV in amplitude. The applied frequency was from 10 kHz to 0.1 Hz.

    3 Results and discussion

    3.1 Characterization of composites

    GO dispersed in water shows color of yellow-brown. When GO was chemically reduced, its color would change to black,standing for that the rGO is obtained. Fig.1 shows the UV-Vis spectra of GO, rGO, PANI, PANI-GO and PANI-rGO. The UV-spectrum of GO shows the absorption band at 231 nm and a second absorption peak around 300 nm,which is agreed with other research reports41. After reduced by hydrazine, the C/O atomic ratio become larger than that in GO. Agglomerative black material was obtained which indicating that the conjugated carbon atoms are restored and the oxygenfunctionalities are removed42. As shown in Fig.1, there is only one shifted adsorption band of rGO around 260nm. In addition,GO shows suddenly weight loss around 170?200 °C from the result of TGA (in Fig.2), ascribe to the decomposition of oxygen function groups on GO into H2O, CO and CO243. And there is no weight loss in the domain 170?200 °C for rGO,suggesting that the thermally labile oxygen-functionalities in GO was removed by hydrazine treatment. There is fast weight loss of graphite in the range of 600?700 °C, which is almost the same as the behavior of reduced GO. The weight loss of GO around 600?700 °C caused by the oxidation of graphene in GO with air. In the large temperature range of 200?600 °C, the weight loss may be related to not decomposition completely of oxygen-containing groups in the range of 170?200 °C and some of the GN in GO oxidized by air44.

    As seen in Fig.1, there are two absorption peaks for PANI in 1 mol?L?1HCl acid solution. The peak around 430 nm is the characteristic of oxidized polyaniline, corresponds to significant protonated polymer molecular chain. Absorption peak of 780 nm is caused by polaronic and bipolaronic band structures31,45. These peaks suggest that PANI is in the emeraldine oxidation state of PANI.

    PANI-GO curve in Fig.1 shows absorption bands containing the GO absorption spectrum near 270 nm and that of PANI around 420 nm and 780 nm. The TGA results in Fig.2 show weight loss of GO in the composite of PANI-GO, which is different from the weight loss behavior of pure PANI,indicating that the composite of PANI-GO is formed. However,PANI-GO shows clearer absorption spectrum at 780 nm and more green color than pure PANI and PANI-rGO in the suspension, caused by the increasing of the two polaron bands at such wavelengths39.

    Fig.1 UV-Vis spectra of (a) PANI-rGO, (b) PANI-GO, (c) PANI,(d) GO and (e) rGO obtained in 1 mol?L?1 aqueous acid dispersions.

    Fig.2 TGA curves of (a) GO, (b) PANI-GO, (c) PANI-rGO,(d) PANI and (e) rGO.

    Fig.3 SEM images of (A) PANI-rGO, (B) PANI-GO and (C) PANI; (D) AFM image of the cross section of PANI-rGO film.

    The thick films will be formed after a few drops of the suspensions dried on a carbon tape. As shown in Fig.3, SEM results of PANI-GO and PANI-rGO films show shape of flaky morphology. This is the evidence of successfully uniformly coating PANI on rGO, when comparing with that pure PANI(Fig.3(C)) presented the granular morphology. This is mainly corresponding to the polymerization of PANI46?48. The result is in agreement with other research that the polymerization process has no effect on the shape of GO and PANI can uniformly cover the rGO surface49. The cross section of the film by AFM is obtained, showing layered structure (Fig.3(D)).

    3.2 Electrochemical Characterizations

    The supercapacitance of the composites is expressed by specific capacitance, CSwhich could be calculated from charge capability tested by CV and galvanostatic charge-discharge technique50. For cyclic voltammograms, the specific capacitance was calculated by:

    where I is the instantaneous current, v is the scan rate, m is the mass of the active materials on the working electrode with unit of μg. E1, E2are the switching potential range. For galvanostatic charge-discharge curve, the average specific capacitance can be simply calculated by:

    where i is charge-discharge constant current, ?t is the time for the overall potential decrease (ΔE) during discharge. In addition, the energy density ESand power density PSof the electrodes were determined by equation. (3) and (4):

    Fig.4 Cyclic voltammograms of (a) PANI, (b) rGO,(c) PANI-rGO and (d) PANI-GO casted on electrode as workingelectrode for v = 10 mV?s?1.The current values were specific current per unit of mass.

    The CV results of PANI-rGO and PANI-GO pasted on electrode are shown in Fig.4 with the potential range from ?0.1 to 0.6 V (vs Ag/AgCl) at scan rate of 10 mV?s?1. It shows a pair of redox peaks for both the PANI-rGO and PANI-GO, relating to the redox transforming of PANI between the leucoemeraldine salt and conductive emeraldine salt, which faradic current involving redox reaction offers high energy density. From the CV results, the capacitance of PANI-rGO and PANI-GO are calculated as 1200 F?g?1(1.91 F?cm?2) and 208 F?g?1(0.33 F?cm?2), respectively. The small capacitance of PANI-GO possibly attributes by the intrinsic surface nature of GO playing a blocking effect and inhibit the charge transformation51,52. PANI-rGO also shows larger capacitance than that of the simple summation of pure PANI and rGO at the potential range from 0.4 to 0.6 V (vs Ag/AgCl). That can be explained as PANI decreased the agglomeration of rGO, so that the surface area of rGO in the composite is enhanced.

    PANI is considered as supercapacitor material mainly because of its faradaic pseudocapacitance. There are two oxidation processes: the initial oxidation and the second oxidation. In the initial oxidation process, as seen in Fig.4,partial protonated amines of PANI in the reduced form are expulsed protons following anions insertion to compensation the charge, resulting in a little solvent transport and forming charged sites of protonated imines. Thereby, large power densities could be obtained, caused by the faster protons expulsion rather than the diffusion of the anions18.

    As the energy density is proportional to the square of the voltage, large operating voltage is wanted. When high potential is applied, the second oxidation of PANI can happen, which makes the theoretical specific capacitance of PANI up to 2000 F?g?150. However, when applied potential larger than 0.6 V, the imine will be hydrolyzed to form benzoquinone18,53. As seen in Fig.5, after the scanning of PANI-rGO going around in circular manner for 20 times from ?0.1 to 1 V, PANI is hydrolyzed,even the incorporation of rGO in PANI is regarded as enhancing electrochemical stability of PANI19?22.

    Fig.5 Cyclic voltammograms of PANI-rGO casted on electrode as working electrode for 20 scans at v = 10 mV?s?1.

    The CV curve of GO modified electrode in Fig.6, shows almost the same behavior as the bare electrode in 1 mol?L?1acid solution. Redox of protons in low potential which caused by the hydrogen ions interacting with GO or rGO, indicates that GO does not contribute to the current without any effect on the redox reaction of PANI, because the reduction potential of GO is smaller than ?0.2 V (vs SCE) in aqueous solution54. The CV curve of rGO shows constant current with linearly increase of potential, indicating rGO recovered the electric conductivity and have good charge transfer between the material and the electrode. The specific capacitance of rGO, calculated from CV measurement (in Fig.4) is smaller than the theoretical value of 400 F?g?18for the highest specific-area single layer rGO.Because rGO in water suspension undergoes aggregation randomly55; even through rGO dispersed in organic solvent with concentration of 0.2?1.0 g?L?156. In addition, rGO has very low apparent density, which limit the capacitance increasing with the mass of rGO57.

    Fig.7 shows the galvanostatic symmetric charge-discharge curves of PANI-rGO and PANI-GO at the current densities range of 20 A?g?1, from which specific capacities, CSare calculated as 1069 and 210 F?g?1(1.71 and 0.34 F?cm?2) for PANI-rGO and PANI-GO respectively. The average energy density and power density were 91.7 Wh?kg?1and 1.8 kW?kg?1for PANI-rGO, 25.4 Wh?kg?1and 1.3 kW?kg?1for PANI-GO electrode. The charge- discharge curves do not show linear relationship of ideal double layer capacitance, caused by the faradic process of PANI providing pseudocapacitance.

    It is calculated that the specific capacitance values of charging-discharging at different current densities, as shown in Fig.8. PANI-rGO shows an enhancement of specific capacitance compared with PANI-GO even through there is no difference in the morphology from the SEM results and the flexible film resistance, which was measured by two needle-like terminal pins of a resistance meter. This may be caused by combination of rGO, increased the surface area and improved the charge transfer. We also take the cycle performance for 2000 cycles at the scan rate of 100 mV?s?1from ?0.1 to 0.6 V (vs Ag/AgCl) (Fig.8 inset), showing 95%and 85% specific capacitance retention after 2000 cycles for PANI-rGO and PANI-GO. The lower retention of PANI-GO may be caused by the insulating GO in PANI-GO making some of the PANI in the film inactive.

    Fig.6 CV curve of GO and rGO casted on electrode compared with the bare electrode in 1 mol?L?1 HCl.

    Fig.7 Charge-discharge cycling curves of PANI-GO and PANI-rGO electrodes at a current density of 20 A?g?1.

    Fig.8 Specific capacitance measured at different charging current, based on their total mass of composites on electrode.Inset is the cyclic performance of the electrode at the scan rate 100 mV?s?1.

    Fig.9 (a) Nyquist plots of PANI-rGO and PANI-GO, with DC potential under 0 V vs Ag/AgCl;Inset shows magnified view at high frequency range.(b) Equivalent circuit model for the EIS analysis.

    The electrochemical impedance spectroscopy (EIS) was carried out, which is used to research the resistance of redox reaction and intra- and inter-surface. The Nyquist plots of PANI-rGO and PANI-GO are shown in Fig.9(a), with frequency range of 0.1 Hz~10 kHz. By applying potential of 0 V vs Ag/AgCl, PANI could be reduced without reduction of GO.The equivalent circuit model shows in Fig.9(b), which comprised of series resistance (Rs), electrical double layer capacitance (Cd), charge-transfer resistance (Rct) and War-burg impedance (W). At high frequency, there is a circular arc appear for PANI-GO, relating to the low electron conductivity of the film20,58. The intercept on the real axis correspond to the solution resistance, Rs, relating to electrolyte, electrode and the interface of electrolyte and electrode. As shown in inset of Fig.9, the diameter of the arc for PANI-GO is larger than PANI-rGO, which demonstrates that PANI-GO film on the electrode has charge transfer resistance Rct. The poor ability of charge transfer of PANI-GO imply the incompleteness of the electrochemical reduction of PANI59,60in the PANI-GO film when taking CV measurements. Some parts of oxidized PANI are much easier left behind from the electrochemical reduction because of cut-off of the electric percolation during the reduction. For PANI-GO, with the reducing of PANI, the conductivity of the film decreased, causing uncompleted reducing of the PANI in the composite by electrochemical measurements. So, PANI-rGO exhibited larger specific capacitance than PANI-GO. However, considering the hydrolysis of pernigraniline in acid, PANI-rGO, bear the limit of energy density because of the short operating voltage.

    4 Conclusions

    PANI-rGO is obtained by simultaneous reducing of PANI-GO, which is synthesized via in situ oxidation polymerization in the presence of GO. PANI is uniformly coated on GO with half oxidation state. The morphology of the composite is rectangular flakes shape. PANI-rGO has the high specific capacitance than PANI-GO, contributed by significantly increased surface area and conductivity of rGO with synergistic effect. When PANI is considered as a supercapacitor material, the high potential should be avoided,since the second oxidation of PANI is undesired. PANI-rGO composite, used as supercapacitor, has specific capacitance of 1069 F?g?1(1.71 F?cm?2) at a current density of 20 A?g?1. The operating voltage, however, need more attentions and will be a critical point to real application in the future.

    (1) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183.doi: 10.1038/Nmat1849

    (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004,306, 666. doi: 10.1126/science.1102896

    (3) Ghosh, D.; Giri, S.; Dhibar, S.; Das, C. K. Electrochim. Acta 2014,147, 557. doi: 10.1016/j.electacta.2014.09.130

    (4) Mishra, A. K.; Ramaprabhu, S. J. Phys. Chem. C 2011, 115, 14006.doi: 10.1021/jp201673e

    (5) Yan, J.; Wei, T.; Shao, B.; Fan, Z. J.; Qian, W. Z.; Zhang, M. L.;Wei, F. Carbon 2010, 48, 487. doi: 10.1016/j.carbon.2009.09.066

    (6) Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Carbon 2015, 81, 552.doi: 10.1016/j.carbon.2014.09.090

    (7) Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Nanoscale 2010, 2,2164. doi: 10.1039/c0nr00224k

    (8) Conway, B. E.; Pell, W. G. J. Solid State Electrochem. 2003, 7,637. doi: 10.1007/s10008-003-0395-7

    (9) Rauda, I. E.; Augustyn, V.; Dunn, B.; Tolbert, S. H. Acc. Chem.Res. 2013, 46, 1113. doi: 10.1021/ar300167h

    (10) Wang, Z. L.; He, X. J.; Ye, S. H.; Tong, Y. X.; Li, G. R. ACS Appl. Mater. Interfaces 2014, 6, 642. doi: 10.1021/am404751k

    (11) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. ACS Appl. Mater. Interfaces 2015, 7, 14843.doi: 10.1021/acsami.5b03126

    (12) Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210.doi: 10.1126/science.1249625

    (13) Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014,7, 1597. doi: 10.1039/C3EE44164D

    (14) Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4,1963. doi: 10.1021/nn1000035

    (15) Tan, Y. T.; Ran, F.; Kong, L. B.; Liu, J.; Kang, L. Synth. Met.2012, 162, 114. doi: 10.1016/j.synthmet.2011.11.020

    (16) Wang, H. Z.; Gao, C. X.; Zhang, P.; Yao, S. W.; Zhang, W. G.Acta Phys. -Chim. Sin. 2013, 29, 117. [王宏智, 高翠俠, 張鵬, 姚素薇, 張衛(wèi)國. 物理化學(xué)學(xué)報(bào), 2013, 29, 117.]doi: 10.3866/PKU.WHXB201210234

    (17) Wang, L. L.; Xing, R. G.; Zhang, B. W.; Hou, Y. Acta Phys. -Chim. Sin. 2014, 30, 1659. [汪麗麗, 邢瑞光, 張邦文,侯 淵. 物理化學(xué)學(xué)報(bào), 2014, 30, 1659.]doi: 10.3 866/PKU.WHXB201406162

    (18) Orata, D.; Buttry, D. A. J. Am. Chem. Soc. 1987, 109, 3574.doi: 10.1021/ja00246a013

    (19) Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai,L.;Baek, J. B. ACS Nano 2012, 6, 1715.doi: 10.1021/nn204688c

    (20) Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Chem. Mater.2010, 22, 1392. doi: 10.1021/cm902876u

    (21) Lindfors, T.; Latonen, R. M. Carbon 2014, 69, 122.doi: 10.1016/j.carbon.2013.11.074

    (22) Co?kun, E.; Zaragoza-Contreras, E. A.; Salavagione, H. J.Carbon 2012, 50, 2235. doi: 10.1016/j.carbon.2012.01.041

    (23) Shulga, Y. M.; Baskakov, S. A.; Abalyaeva, V. V.; Efimov, O.N.; Shulga, N. Y.; Michtchenko, A.; Lartundo-Rojas, L.;Moreno, L. A.; Cabanas-Moreno, J. G.;Vasilets, V. N. J. Power Sources 2013, 224, 195. doi: 10.1016/j.jpowsour.2012.09.105

    (24) Zhang, W. L.; Park, B. J.; Choi, H. J. Chem. Commun. 2010,46, 5596. doi: 10.1039/c0cc00557f

    (25) Luo, Z. H.; Zhu, L. H.; Zhang, H. Y.; Tang, H. Q. Mater. Chem.Phys. 2013, 139, 572.doi: 10.1016/j.matchemphys.2013.01.059

    (26) Zhang, Q.; Li, Y.; Feng, Y.; Feng, W. Electrochim. Acta 2013,90, 95. doi: 10.1016/j.electacta.2012.11.035

    (27) Xu, G.; Wang, N.; Wei, J.; Lv, L.; Zhang, J.; Chen, Z.; Xu, Q.Ind. Eng. Chem. Res. 2012, 51, 14390. doi: 10.1021/ie301734f

    (28) Xu, D.; Xu, Q.; Wang, K.; Chen, J.; Chen, Z. ACS Appl. Mater.Interfaces 2013, 6, 200. doi: 10.1021/am404799a

    (29) Meng, Y.; Wang, K.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25,6985. doi: 10.1002/adma.201303529

    (30) Xu, J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. ACS Nano 2010, 4, 5019. doi: 10.1021/nn1006539

    (31) Huang, W. S.; MacDiarmid, A. G. Polymer 1993, 34, 1833.doi: 10.1016/0032-3861(93)90424-9

    (32) Blinova, N. V.; Sapurina, I.; Klimovi?, J.; Stejskal, J. Polym.Degrad. Stabil. 2005, 88, 428.doi: 10.1016/j.polymdegradstab.2004.11.014

    (33) Stejskal, J.; Kratochví l, P.; Helmstedt, M. Langmuir 1996, 12,3389. doi: 10.1021/la9506483

    (34) Ghosh, P.; Siddhanta, S. K.; Chakrabarti, A. Eur. Polym. J.1999, 35, 699. doi: 10.1016/S0014-3057(98)00157-8

    (35) Sulimenko, T.; Stejskal, J.; Krivka, I.; Prokes, J. Eur. Polym. J.2001, 37, 219. doi: 10.1016/S0014-3057(00)00104-X

    (36) Somani, P. R. Mater. Chem. Phys. 2003, 77, 81.doi: 10.1016/S0254-0584(01)00579-X

    (37) Abu, Y. M.; Aoki, K. Electrochim. Acta 2005, 50, 3634.doi: 10.1016/j.electacta.2005.01.004

    (38) Chen, J.; Zeng, X.; Aoki, K. J.; Nishiumi, T. International Journal of Chemistry 2015, 7, 1. doi: 10.5539/ijc.v7n21-11

    (39) Valls, C.; Jimnez, P.; Muoz, E.; Benito, A. M.;Maser, W. K.J. Phys. Chem. C 2011, 115, 10468. doi: 10.1021/jp201791h

    (40) Choi, E. Y.; Han, T. H.; Hong, J. H.; Kim, J. E.; Lee, S. H.;Kim, H. W.; Kim, S. O. J. Mater. Chem. 2010, 20, 1907.doi: 10.1039/b919074k

    (41) Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.;Martinez-Alonso, A.; Tascon, J. M. Langmuir 2009, 25, 5957.doi: 10.1021/la804216z

    (42) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.;Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S.Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034

    (43) McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.;Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car,R.; Prud'homme, R. K.; Aksay, I. A. Chem. Mater. 2007, 19,4396. doi: 10.1021/cm0630800

    (44) Zhang, H.; Yu, H. M.; Xu, C. H.; Zhang, M. H.; Pan, X. H.;Gao, Y. F. Acta Phys -Chim. Sin. 2016, 32, 1634. [張 恒, 于惠梅, 徐朝和, 張明輝, 潘秀紅, 高彥峰. 物理化學(xué)學(xué)報(bào),2016, 32, 1634.] doi: 10.3866/PKU.WHXB201605111

    (45) Stejskal, J.; Kratochví l, P.; Radhakrishnan, N. Synth. Met.1993, 61, 225. doi: 10.1016/0379-6779(93)91266-5

    (46) Stejskal, J.; Sapurina, I.; Trchová, M. Prog. Polym. Sci. 2010,35, 1420. doi: 10.1016/j.progpolymsci.2010.07.006

    (47) Wang, P. C.; Huang, Z.; MacDiarmid, A. G. Synth. Met. 1999,101, 852. doi: 10.1016/S0379-6779(98)01329-0

    (48) Mazur, M.; Predeep, P. Polymer 2005, 46, 1724.doi: 10.1016/j.polymer.2005.01.013

    (49) Tong, Z.; Yang, Y.; Wang, J.; Zhao, J.; Su, B. L.; Li, Y.J. Mater. Chem. A 2014, 2, 4642. doi: 10.1039/c3ta14671e

    (50) Li, H. L.; Wang, J. X.;Chu, Q. X.; Wang, Z.; Zhang, F. B.;Wang, S. C. J. Power Sources 2009, 190, 578.doi: 10.1016/j.jpowsour.2009.01.052

    (51) Zhu, C.; Guo, S.; Fang, Y.; Dong, S. ACS Nano 2010, 4, 2429.doi: 10.1021/nn1002387

    (52) Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H.ACS Nano 2009, 3, 2653. doi: 10.1021/nn900227d

    (53) Yang, X. H.; Xie, Q. J.; Yao, S. Z. Synth. Met. 2004, 143, 119.doi: 10.1016/j.synthmet.2003.10.027

    (54) O'Neil, G. D.; Weber, A. W.; Buiculescu, R.; Chaniotakis, N.A.; Kounaves, S. P. Langmuir 2014, 30, 9599.doi: 10.1021/la502053m

    (55) Yang, W. Z.; Widenkvist, E.; Jansson, U.; Grennberg, H. New J. Chem. 2011, 35, 780. doi: 10.1039/c0nj00968g

    (56) O’Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J.N. J. Phys. Chem. C 2011, 115, 5422. doi: 10.1021/jp110942e

    (57) Gogotsi, Y.; Simon, P. Science 2011, 334, 917.doi: 10.1126/science.1213003

    (58) Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T.ACS Appl. Mater. Interfaces 2013, 5, 3382.doi: 10.1021/am4003827

    (59) Aoki, K.; Cao, J. A.; Hoshino, Y. Electrochim. Acta 1993, 38,1711. doi: 10.1016/0013-4686(93)85066-8

    (60) Aoki, K.; Kawase, M. J. Electroanal. Chem. 1994, 377, 125.doi: 10.1016/0022-0728(94)03446-X

    Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite

    ZENG Xiang-Dong ZHAO Xiao-Yu*WEI Hui-Ge WANG Yan-Fei TANG Na SHA Zuo-Liang
    (College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China)

    Flaky polyaniline-reduced graphene oxide (PANI-rGO) composites have larger specific capacitance due to the improved redox charge of PANI in the composites, fabricated by simultaneous reduction of PANI-GO. The structural and morphological analyses were carried out using scanning electron microscopy, UV-Vis spectroscopy, and thermogravimetry. The results showed that the composites are flaky in shape. PANI is uniformly coated on GO, and PANI-rGO has specific capacitance as high as 1069 F?g?1(1.71 F?cm?2) at a current density of 20 A?g?1, 5 times higher than PANI-GO; this is caused by the large surface and conductivity of the rGO in the composite.

    Polyaniline-reduced graphene oxide; Polyaniline-graphene oxide; Specific capacitance;Operating voltage

    February 9, 2017; Revised: May 10, 2017; Published online: May 18, 2017.

    O646

    10.3866/PKU.WHXB201705182 www.whxb.pku.edu.cn

    *Corresponding author: Email: xyz@tust.edu.cn.

    The project was supported by the National Natural Science Foundation of China (21503146).

    國家自然科學(xué)基金(21503146)資助項(xiàng)目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    聚苯胺物理化學(xué)電容
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    三維鎳@聚苯胺復(fù)合電極的制備及其在超級電容器中的應(yīng)用
    聚苯胺導(dǎo)電復(fù)合材料研究進(jìn)展
    中國塑料(2015年7期)2015-10-14 01:02:34
    PWM Buck變換器電容引起的混沌及其控制
    一種降壓/升壓式開關(guān)電容AC-AC變換器設(shè)計(jì)
    聚苯胺復(fù)合材料研究進(jìn)展
    中國塑料(2014年11期)2014-10-17 03:07:18
    高電導(dǎo)率改性聚苯胺的合成新工藝
    投射式多點(diǎn)觸控電容觸摸屏
    河南科技(2014年12期)2014-02-27 14:10:32
    日本色播在线视频| 国产精品久久久久久精品古装| 我要看日韩黄色一级片| 免费播放大片免费观看视频在线观看| 午夜福利高清视频| 80岁老熟妇乱子伦牲交| 在线亚洲精品国产二区图片欧美 | 久久精品国产a三级三级三级| 日韩免费高清中文字幕av| 狂野欧美激情性xxxx在线观看| 日韩伦理黄色片| 欧美最新免费一区二区三区| 欧美97在线视频| 蜜桃亚洲精品一区二区三区| 97热精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美三级亚洲精品| 国产毛片在线视频| 丝袜喷水一区| 国产亚洲一区二区精品| 视频中文字幕在线观看| 爱豆传媒免费全集在线观看| 国内揄拍国产精品人妻在线| av在线观看视频网站免费| 国产av码专区亚洲av| 亚洲,欧美,日韩| 一级爰片在线观看| 蜜桃亚洲精品一区二区三区| 男人和女人高潮做爰伦理| 久久6这里有精品| 伦理电影免费视频| 亚洲综合色惰| 深夜a级毛片| 欧美亚洲 丝袜 人妻 在线| 国产有黄有色有爽视频| 国产精品99久久久久久久久| 久久久a久久爽久久v久久| 性色av一级| 久久久色成人| 一本色道久久久久久精品综合| 久久精品久久久久久噜噜老黄| 高清黄色对白视频在线免费看 | 少妇的逼水好多| 狠狠精品人妻久久久久久综合| 亚洲国产精品成人久久小说| 天天躁日日操中文字幕| 久久影院123| 国产男人的电影天堂91| 我的女老师完整版在线观看| 99热国产这里只有精品6| 午夜日本视频在线| 亚洲第一区二区三区不卡| 十八禁网站网址无遮挡 | 成人美女网站在线观看视频| 丝瓜视频免费看黄片| 91精品国产九色| 日韩一区二区三区影片| 五月天丁香电影| 国产成人a∨麻豆精品| 久久ye,这里只有精品| 日本wwww免费看| 国产 一区精品| 午夜日本视频在线| 全区人妻精品视频| 九草在线视频观看| 国产成人一区二区在线| 亚洲av成人精品一区久久| 国产久久久一区二区三区| 妹子高潮喷水视频| 亚洲精品成人av观看孕妇| 简卡轻食公司| 午夜老司机福利剧场| 偷拍熟女少妇极品色| 一级毛片电影观看| 亚洲精品乱久久久久久| 精品国产三级普通话版| 街头女战士在线观看网站| 中文字幕av成人在线电影| 国产爱豆传媒在线观看| 欧美xxⅹ黑人| 一级毛片黄色毛片免费观看视频| 成人亚洲欧美一区二区av| 国产在线免费精品| 欧美人与善性xxx| 国产成人午夜福利电影在线观看| 日韩电影二区| 国产在线一区二区三区精| 欧美成人午夜免费资源| 九九爱精品视频在线观看| 精品99又大又爽又粗少妇毛片| 国产精品一二三区在线看| 黑丝袜美女国产一区| 成人高潮视频无遮挡免费网站| a级一级毛片免费在线观看| 少妇的逼水好多| 小蜜桃在线观看免费完整版高清| 秋霞伦理黄片| 国产午夜精品一二区理论片| 国产成人一区二区在线| 国产伦在线观看视频一区| 日韩成人伦理影院| 国产探花极品一区二区| 少妇高潮的动态图| 亚洲欧美日韩东京热| 内射极品少妇av片p| 国产成人午夜福利电影在线观看| 欧美高清成人免费视频www| 小蜜桃在线观看免费完整版高清| 80岁老熟妇乱子伦牲交| 80岁老熟妇乱子伦牲交| 久久毛片免费看一区二区三区| 久久久欧美国产精品| 亚洲人成网站在线观看播放| 免费人成在线观看视频色| 在线观看一区二区三区激情| 在线观看人妻少妇| 国产色爽女视频免费观看| 亚洲人成网站高清观看| 99久久精品一区二区三区| 蜜桃在线观看..| 亚洲无线观看免费| 日日摸夜夜添夜夜添av毛片| 人妻一区二区av| 色5月婷婷丁香| 精品少妇黑人巨大在线播放| 久久久久久久久久成人| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区综合在线观看 | 日韩在线高清观看一区二区三区| 精品一区二区三卡| 久久婷婷青草| 80岁老熟妇乱子伦牲交| 久久毛片免费看一区二区三区| 国产伦理片在线播放av一区| 国产毛片在线视频| 在线看a的网站| 免费观看av网站的网址| h日本视频在线播放| 精品99又大又爽又粗少妇毛片| 欧美日韩国产mv在线观看视频 | 欧美3d第一页| 一二三四中文在线观看免费高清| 亚洲真实伦在线观看| 夜夜看夜夜爽夜夜摸| 亚洲色图av天堂| 91狼人影院| 人人妻人人看人人澡| av线在线观看网站| 一级av片app| 国产精品嫩草影院av在线观看| 久久久久久久精品精品| 欧美精品国产亚洲| 成人国产麻豆网| 日本av免费视频播放| 亚洲一区二区三区欧美精品| 高清午夜精品一区二区三区| 黄色一级大片看看| 久久亚洲国产成人精品v| 免费人成在线观看视频色| 国产高清三级在线| 亚洲av免费高清在线观看| 国模一区二区三区四区视频| 国产黄片视频在线免费观看| 九色成人免费人妻av| 午夜激情久久久久久久| 美女国产视频在线观看| 3wmmmm亚洲av在线观看| av播播在线观看一区| freevideosex欧美| 91午夜精品亚洲一区二区三区| 国产精品一区二区性色av| 精品熟女少妇av免费看| 亚洲经典国产精华液单| 黄色一级大片看看| 国产探花极品一区二区| 99国产精品免费福利视频| 亚洲精品一二三| 久久这里有精品视频免费| 夜夜爽夜夜爽视频| 国产一区有黄有色的免费视频| 精品亚洲乱码少妇综合久久| 亚洲精品国产av蜜桃| 极品教师在线视频| 国产精品久久久久久精品古装| 色视频www国产| 91aial.com中文字幕在线观看| 少妇人妻 视频| 亚洲国产欧美在线一区| 国产精品一及| av免费在线看不卡| 久久99热这里只有精品18| 久久99热这里只有精品18| 亚洲怡红院男人天堂| 日本午夜av视频| 91aial.com中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 交换朋友夫妻互换小说| 大话2 男鬼变身卡| 午夜福利高清视频| 亚洲精品视频女| 亚洲精品aⅴ在线观看| 亚洲精品aⅴ在线观看| 纵有疾风起免费观看全集完整版| av网站免费在线观看视频| 一级毛片 在线播放| 毛片女人毛片| 国产精品国产av在线观看| 亚洲精品视频女| 狂野欧美激情性xxxx在线观看| 免费黄色在线免费观看| 美女中出高潮动态图| 亚洲国产高清在线一区二区三| 欧美bdsm另类| 91在线精品国自产拍蜜月| 如何舔出高潮| 内射极品少妇av片p| 国内少妇人妻偷人精品xxx网站| 日韩精品有码人妻一区| 国产精品欧美亚洲77777| 国精品久久久久久国模美| 下体分泌物呈黄色| 内地一区二区视频在线| 久久毛片免费看一区二区三区| 国产高清不卡午夜福利| 国产精品无大码| 国产亚洲欧美精品永久| 国产成人免费无遮挡视频| 日韩 亚洲 欧美在线| 国产久久久一区二区三区| 另类亚洲欧美激情| 亚洲第一区二区三区不卡| 亚洲美女黄色视频免费看| 在线观看三级黄色| 最近中文字幕高清免费大全6| 有码 亚洲区| 一区二区三区免费毛片| 日本黄色片子视频| 大又大粗又爽又黄少妇毛片口| 岛国毛片在线播放| 午夜福利在线在线| 日韩三级伦理在线观看| 日日摸夜夜添夜夜爱| 日韩一区二区三区影片| 国产色婷婷99| 网址你懂的国产日韩在线| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 亚洲色图综合在线观看| 少妇 在线观看| 观看免费一级毛片| 大香蕉久久网| 国产精品国产三级专区第一集| 亚洲自偷自拍三级| 一级毛片我不卡| 国产精品蜜桃在线观看| 赤兔流量卡办理| 午夜福利网站1000一区二区三区| 国产精品三级大全| 少妇熟女欧美另类| 18+在线观看网站| 国产黄色免费在线视频| 91久久精品国产一区二区三区| 麻豆乱淫一区二区| 在线精品无人区一区二区三 | 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 一级毛片电影观看| 色视频www国产| 国产精品99久久久久久久久| 街头女战士在线观看网站| 国产高清国产精品国产三级 | 全区人妻精品视频| 国产精品av视频在线免费观看| 91精品伊人久久大香线蕉| 久久精品国产鲁丝片午夜精品| 国产黄片美女视频| 99久久精品热视频| 国内精品宾馆在线| 99久久精品一区二区三区| 日产精品乱码卡一卡2卡三| 青青草视频在线视频观看| 一级av片app| 女人久久www免费人成看片| 久久国产乱子免费精品| 久久青草综合色| 成人二区视频| 国产精品一区二区三区四区免费观看| 日韩制服骚丝袜av| 国产精品久久久久成人av| 国产色婷婷99| 国产永久视频网站| 国产精品一区二区在线不卡| 国产精品一二三区在线看| 97超碰精品成人国产| 黄片无遮挡物在线观看| 天堂8中文在线网| 性色av一级| 伦精品一区二区三区| 又大又黄又爽视频免费| 久久午夜福利片| 精品人妻一区二区三区麻豆| 亚洲电影在线观看av| xxx大片免费视频| 黄色视频在线播放观看不卡| 久久毛片免费看一区二区三区| 日日啪夜夜撸| 国产精品秋霞免费鲁丝片| a级毛片免费高清观看在线播放| 亚洲av综合色区一区| 亚洲三级黄色毛片| av网站免费在线观看视频| 伦理电影免费视频| 国产精品99久久99久久久不卡 | 久久这里有精品视频免费| 免费观看在线日韩| 亚洲怡红院男人天堂| 国产黄片视频在线免费观看| 久久久久国产精品人妻一区二区| 一级毛片aaaaaa免费看小| 亚洲欧美精品自产自拍| 亚洲av男天堂| 欧美xxxx黑人xx丫x性爽| 中文字幕免费在线视频6| 日韩国内少妇激情av| 亚洲欧美精品专区久久| 舔av片在线| 国产精品国产三级国产专区5o| 国产欧美日韩精品一区二区| av.在线天堂| 日韩大片免费观看网站| 欧美日韩国产mv在线观看视频 | 只有这里有精品99| 欧美另类一区| 人妻少妇偷人精品九色| 国产日韩欧美在线精品| 老司机影院毛片| 国产成人91sexporn| 亚洲aⅴ乱码一区二区在线播放| 成人二区视频| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 青青草视频在线视频观看| 妹子高潮喷水视频| 日日摸夜夜添夜夜添av毛片| 深夜a级毛片| 欧美zozozo另类| 久久久久久久大尺度免费视频| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 国产一级毛片在线| 国产在线视频一区二区| 五月伊人婷婷丁香| 国产av国产精品国产| 成年av动漫网址| 亚洲经典国产精华液单| www.色视频.com| 一级毛片我不卡| 观看免费一级毛片| 亚洲电影在线观看av| xxx大片免费视频| 久久久久精品性色| 日韩一区二区视频免费看| 久久精品人妻少妇| 久久ye,这里只有精品| 99热这里只有是精品在线观看| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 亚洲国产最新在线播放| 又黄又爽又刺激的免费视频.| 永久网站在线| 色哟哟·www| 久久人人爽人人片av| 伦精品一区二区三区| 最黄视频免费看| 王馨瑶露胸无遮挡在线观看| 精品亚洲成a人片在线观看 | 亚洲aⅴ乱码一区二区在线播放| 亚洲精品乱码久久久v下载方式| 99精国产麻豆久久婷婷| 国产男人的电影天堂91| 简卡轻食公司| 日韩成人伦理影院| 精华霜和精华液先用哪个| 免费观看无遮挡的男女| 日日啪夜夜爽| 欧美xxⅹ黑人| 国产男女内射视频| 麻豆乱淫一区二区| 国产成人freesex在线| 最新中文字幕久久久久| 丰满少妇做爰视频| 青春草视频在线免费观看| 亚洲精品自拍成人| 成人18禁高潮啪啪吃奶动态图 | 欧美激情国产日韩精品一区| 久久99精品国语久久久| 亚洲,一卡二卡三卡| 精品亚洲成a人片在线观看 | 国产在视频线精品| 在线观看免费视频网站a站| 国产极品天堂在线| 久久精品久久精品一区二区三区| 国产v大片淫在线免费观看| 大陆偷拍与自拍| 国产国拍精品亚洲av在线观看| 免费黄色在线免费观看| 99re6热这里在线精品视频| 一区二区av电影网| 在线 av 中文字幕| 中文资源天堂在线| 成人国产麻豆网| 色婷婷久久久亚洲欧美| 免费看不卡的av| 亚洲精品视频女| 女人十人毛片免费观看3o分钟| 精品亚洲成国产av| 日韩一本色道免费dvd| 观看美女的网站| 精品人妻一区二区三区麻豆| 日本黄大片高清| 搡老乐熟女国产| 久久精品国产鲁丝片午夜精品| 国产免费一级a男人的天堂| 丰满迷人的少妇在线观看| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看| 成人影院久久| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 18禁在线播放成人免费| 高清毛片免费看| 人妻夜夜爽99麻豆av| 一级毛片久久久久久久久女| 老熟女久久久| 国产爱豆传媒在线观看| 观看美女的网站| 极品少妇高潮喷水抽搐| 黄片wwwwww| 人妻少妇偷人精品九色| 国产毛片在线视频| 成人国产av品久久久| 三级国产精品欧美在线观看| 久久影院123| 新久久久久国产一级毛片| 亚洲一区二区三区欧美精品| 久久久久久久精品精品| 国产成人精品一,二区| 国产午夜精品久久久久久一区二区三区| av国产久精品久网站免费入址| 精品视频人人做人人爽| 免费观看a级毛片全部| 在现免费观看毛片| 不卡视频在线观看欧美| 大码成人一级视频| 亚洲精品中文字幕在线视频 | 亚洲图色成人| 久久热精品热| 亚洲成人手机| 午夜免费男女啪啪视频观看| 亚洲av电影在线观看一区二区三区| 精品99又大又爽又粗少妇毛片| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| 秋霞伦理黄片| 草草在线视频免费看| 久久精品夜色国产| 亚洲成人av在线免费| 青春草亚洲视频在线观看| 久久久a久久爽久久v久久| av播播在线观看一区| 毛片女人毛片| 人妻制服诱惑在线中文字幕| 九色成人免费人妻av| 九九爱精品视频在线观看| 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 熟女av电影| 国产精品人妻久久久影院| 国产精品蜜桃在线观看| 成人毛片a级毛片在线播放| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 九九久久精品国产亚洲av麻豆| 免费在线观看成人毛片| 亚洲成人av在线免费| 免费大片18禁| 精品久久久噜噜| 久久精品久久久久久噜噜老黄| 精品人妻熟女av久视频| 色网站视频免费| 日韩成人av中文字幕在线观看| 成人一区二区视频在线观看| 视频区图区小说| 国产乱来视频区| 午夜福利在线观看免费完整高清在| 国产高清有码在线观看视频| 午夜视频国产福利| 亚洲一级一片aⅴ在线观看| 亚洲精品中文字幕在线视频 | 99热这里只有是精品50| 日韩精品有码人妻一区| 国产乱来视频区| 国产免费福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 少妇的逼水好多| 日韩中文字幕视频在线看片 | 最黄视频免费看| 一级黄片播放器| 国产精品一区二区性色av| 大片免费播放器 马上看| 不卡视频在线观看欧美| 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 99久久精品热视频| 欧美成人精品欧美一级黄| 亚洲精品久久久久久婷婷小说| 2021少妇久久久久久久久久久| 欧美激情极品国产一区二区三区 | 国产成人免费无遮挡视频| 欧美老熟妇乱子伦牲交| 日韩av免费高清视频| 免费少妇av软件| 菩萨蛮人人尽说江南好唐韦庄| 欧美极品一区二区三区四区| 在线观看免费日韩欧美大片 | 亚洲精品aⅴ在线观看| 激情 狠狠 欧美| 精品一区二区三卡| 日韩大片免费观看网站| 欧美高清性xxxxhd video| 欧美日韩视频精品一区| 免费在线观看成人毛片| 在线观看av片永久免费下载| 2021少妇久久久久久久久久久| 九九在线视频观看精品| 美女福利国产在线 | 亚洲真实伦在线观看| 黄色视频在线播放观看不卡| 黄色配什么色好看| 一级毛片久久久久久久久女| 人人妻人人看人人澡| 有码 亚洲区| 中文字幕久久专区| 国产精品人妻久久久影院| 97在线人人人人妻| 亚洲国产av新网站| 99热这里只有精品一区| av国产免费在线观看| 干丝袜人妻中文字幕| 久久久午夜欧美精品| 黄色视频在线播放观看不卡| 人妻夜夜爽99麻豆av| 日本欧美国产在线视频| 亚洲电影在线观看av| 亚洲综合精品二区| 高清午夜精品一区二区三区| 国模一区二区三区四区视频| av福利片在线观看| 王馨瑶露胸无遮挡在线观看| h日本视频在线播放| 国产免费视频播放在线视频| 看免费成人av毛片| 精品少妇久久久久久888优播| 国产毛片在线视频| 亚洲av电影在线观看一区二区三区| 国产成人午夜福利电影在线观看| 黑人猛操日本美女一级片| 在线观看免费视频网站a站| 久久久国产一区二区| 欧美精品一区二区大全| 男人和女人高潮做爰伦理| 亚洲电影在线观看av| 美女cb高潮喷水在线观看| 久久人妻熟女aⅴ| 99久国产av精品国产电影| 欧美xxⅹ黑人| 日韩亚洲欧美综合| 亚洲欧美一区二区三区黑人 | 日韩av不卡免费在线播放| a 毛片基地| 日韩一本色道免费dvd| 亚洲精品第二区| 午夜福利在线在线| 超碰97精品在线观看| 日韩伦理黄色片| av在线app专区| 一级毛片 在线播放| 尤物成人国产欧美一区二区三区| 又大又黄又爽视频免费| 亚洲av不卡在线观看| 日本午夜av视频| 国产精品蜜桃在线观看| 亚洲成人中文字幕在线播放| 99热这里只有是精品在线观看| 亚洲精品亚洲一区二区| 97精品久久久久久久久久精品| 两个人的视频大全免费| 亚洲国产色片| 中文天堂在线官网| 亚洲国产色片| 国产永久视频网站| 亚洲欧美一区二区三区国产| 久久热精品热| 51国产日韩欧美| 在线观看av片永久免费下载| av女优亚洲男人天堂| 永久免费av网站大全| 女性被躁到高潮视频| 国产有黄有色有爽视频| 高清欧美精品videossex| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 免费观看av网站的网址|