• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    醋酸鉛作為鉛源合成CH3NH3PbBr3?xClx納米晶體顆粒

    2017-11-01 18:11:07王亞楠彭路梅方艷艷周曉文
    物理化學(xué)學(xué)報(bào) 2017年10期
    關(guān)鍵詞:中國(guó)科學(xué)院醋酸晶體

    王亞楠 馬 品 彭路梅 張 迪 方艷艷 周曉文 林 原,*

    (1中國(guó)科學(xué)院化學(xué)研究所,光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,中國(guó)科學(xué)院分子科學(xué)科教融合卓越中心,北京 100190;2中國(guó)科學(xué)院大學(xué),北京 100049)

    醋酸鉛作為鉛源合成CH3NH3PbBr3?xClx納米晶體顆粒

    王亞楠1,2馬 品1,2彭路梅1張 迪1,2方艷艷1周曉文1林 原1,2,*

    (1中國(guó)科學(xué)院化學(xué)研究所,光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,中國(guó)科學(xué)院分子科學(xué)科教融合卓越中心,北京 100190;2中國(guó)科學(xué)院大學(xué),北京 100049)

    采用醋酸鉛作為鉛源,成功制備出CH3NH3PbBr3-xClx(MA = CH3NH3, 0 ≤ x ≤ 3)發(fā)光納米晶體顆粒。醋酸鉛比鹵化物鉛鹽,尤其是氯化鉛,能更好地溶解在N?N-二甲基甲酰胺(DMF)溶劑中,解決了鹵化物鹽溶解度低的問(wèn)題。在MAPbBr3-xClx中,不同比例的Br/Cl可以產(chǎn)生不同的光譜性質(zhì),熒光光譜(PL)可以從399 nm調(diào)控到527 nm。所有熒光光譜的半峰寬(FWHM)在20 nm左右,說(shuō)明色譜比較純。制備的MAPbBr3-xClx納米晶體顆粒尺寸分布在~(11 ± 3) nm,可以很好地分散在甲苯中。其中,MAPbBr3納米晶體顆粒的熒光量子產(chǎn)率(PLQY)高達(dá)73%,其平均熒光壽命為97.4 ns。

    鈣鈦礦;CH3NH3PbBr3?xClx;納米晶體;醋酸鉛

    1 Introduction

    The field of solution processed organic-inorganic halide perovskite based solar cells has emerged in the last couple of years1?6. Intensive research has led to a rapid rise in powerconversion efficiency (PCE) since their original publication in 2009 to values reaching 22.1% in 20167, showing superiority over all other third generation photovoltaic devices. The most studied compound in photovoltaic is the methylammonium lead iodide CH3NH3PbI3(CH3NH3= MA) perovskite, due to its strong bandgap absorption of about 1.6 eV8,9. While the predominant research have since been oriented towards the use of these materials as active layer in light-harvesting devices,more recent studies have demonstrated photoelectronic applications of perovskite materials in light-emitting-devices(LEDs)10?14. In these studies, the compound of the perovskite is MAPbBr3with bandgap of about 2.3 eV. The above mentioned perovskite has a generic structure of APbX3(A = cationic organic molecules; X = halogens), which can be made from abundant and low-cost starting compounds.

    Nano-structured halide perovskite hold great promise for various optoelectronic applications, especially for electroluminescent devices and lasers15?21. Researchers have been developing synthesis approaches to create a variety of nanostructures of organic-inorganic halide perovskite to expand the property space and to achieve new properties. Pé rez-Prieto and co-workers did pioneering works about non-template synthesis of perovskite nanopaticles (NPs)22. Nanoscaled MAPbBr3NPs were first synthesized at mild temperature.MAPbBr3NPs can be prepared by fine-tuning the molar ratios of all the componments, which either form part of the framework (MABr and PbBr2) or act as the organic capping(octylammonium bromide and 1-octadecene, ODE)23. Zhong and co-workers demonstrated a strategy to prepare MAPbBr3NPs by ligand-assissted reprecipitation (LARP) technique in order to solve the poor solubility of perovskite precursors in ODE24. All precursors were dissolved into the DMF and dropped into the poor solvent. Typical products had an average diameter of 3.3 nm with a size deviation of ±0.7 nm and the PLQY up to 70%. Ogale and co-workers have recently reported the preparation of MAPbBr3NPs by electrospay antisolventsolvent extraction and intercalation25.

    The photoluminescence (PL) spectrum of halide perovskite also can be modified via controlling the ratio of halide26,27.However, tuning the band-gap in the blue-green region using solution processed chloride-bromide mixed halide perovskite has been a challenging task, given the low solubility of the chloride containing precursor (PbCl2) in solvent DMF. With the lead acetate to synthesis the perovskite NCs, the growth of perovskite crystal is much faster28. Lead acetate also has a high solubility in DMF. So we here use an organic lead source of lead acetate Pb(Ac)2to synthesis the perovskite NCs.

    In this work, we use an organic lead source of lead acetate as Pb precursor to synthesis the mixed halide perovskites MAPbBr3?xClx(0≤ x ≤3) (NCs), especially for the blue-green perovskite MAPbBr3?xClxNCs. The obtained colloidal MAPbBr3NCs with absolute quantum yield reaches 73% at room temperature, which is comparable to the reported MAPbBr3QDs24. We conducted surface characterization,optical properties and thermal stability to illustrate the MAPbBr3colloidal NCs obtained by the lead acetate. Finally,we tuned the color by varying the chloride to bromide ratios in the MAPbBr3?xClx(0 ≤ x ≤ 3) perovskite using lead acetate.The PL emission peak can be tuned from 399 to 527 nm. Their FWHM are about 20 nm, indicating better color purity.

    2 Experimental

    2.1 Synthesis of CH3NH3Br and CH3NH3Cl

    The precursors CH3NH3Br and CH3NH3Cl were synthesized from HBr (48% in water, Aladdin) and HCl (37% in water,Beijing Chemical Works) respectively, by reaction with methylamine solution (27%?32% in ethanol, Sinopharm) as follows. First, acid solution (HBr or HCl) was added dropwise to CH3NH2solution at 0 °C with stirring for 2 h. The mixture was evaporated in a rotary evaporator under vacumme at 60 °C.The resulting solid was washed with diethyl ether (AR, Beijing Chemical Works) for three times and then recrystallized from ethanol (AR, Beijing Chemical Works). The obtained CH3NH3Br and CH3NH3Cl crystals were dried under vacuum and used without further purification.

    2.2 Synthesis of CH3NH3PbBr3?xClxnanoparticles

    For MAPbBr3, 36 mmol·L?1of Pb(Ac)2?3H2O (Ac =CH3COO, AR, Sinopharm) and 108 mmol·L?1of MABr were dissolved in 5 mL DMF (AR, Beijing Chemical Works) with 20 μL of n-octylamine (99%, Aladdin) and 0.5 mL of oleic acid(85%, Aladdin) to form a precursor solution. 0.2 mL of precursor solution was dropped into 5 mL of toluene (AR,Beijing Chemical Works) with vigorous stirring. Along with the mixing, strong green PL emission was observed. The MAPbCl3-based NCs were fabricated using the same strategy with 36 mmol·L?1of Pb(Ac)2?3H2O and 108 mmol·L?1of MACl as the precursor. For the synthesis of mixed-halid-based perovskite NCs, separate precursor solutions of MAPbBr3and MAPbCl3were mixed with different volume ratios.

    2.3 Characterization

    Transmission electron microscopy (TEM) images were captured using HITACHI HT7700 (Japan). X-ray diffraction(XRD) patterns were recorded on a Rigaku D/Max 2500 X-ray diffractometer (Cu Kαradiation, λ = 0.15402 nm, Japan). X-ray photoelectron spectroscopy (XPS) analysis was carried out using a VG Scientific ESCALab 220i-XL (England)spectrometer with standard Al Kαradiation. The UV-Visible spectra (UV-Vis) were recorded using HITACHI U3010 UV-Vis spectrophotometer (Japan). The steady-state PL spectra were performed at room temperature on a HITACHI F-7000 fluorescence spectrophotometer (Japan). The PL quantum yields of colloidal perovskites were measured by using a Edinburgh FLS980 (England) absolute PL quantum yield measurement system with monochromatic light source (Xe lamp, 150 W) and integrating sphere. The lifetime was measured using a Compact fluorescence lifetime spectrometer C11367 (Japan), Quantaurus-Tau, with LED excitation wavelength of 365 nm.

    Fig.1 (a) Schematic of MAPbBr3 NCs formation process by the reprecipitation technique.(b) Photographs taken under UV irradiation at indicated volume period with the precursor dropped into the toluene.

    3 Results and discussion

    Colloidal perovskite NCs were prepared by the modified ligand-assisted reprecipitation method as reported previously24.The scheme of the synthesis process is shown in Fig.1. In this work, Pb(Ac)2and MABr for the synthesis of MAPbBr3, were dissolved together with oleic acid (OA) and octylamine (OLA)in the good solvent dimethylformamide (DMF), resulting in a transparent solution (Fig.1a), which has no light emitting under 365 nm UV-lamp. The precursor solution was subsequently dropwise to the poor solvent toluene under vigorous stirring at room temperature (Fig.1a). Poor solvent means that in which both perovskite precursors are completely insoluble. Initially,the sample fluoresces blue, but with each addition of further precursor solution, the color shifts to green (Fig.1b). Finally,the semitransparent colloidal with green emitting under UV-lamp was formed. Smaller MAPbBr3NCs were formed when tiny amounts of the precursors (7 μL) were added into the toluene. The smaller MAPbBr3NCs exhibited blue-shifted emission due to quantum confinement analogous to conventional semiconductors. The change in photoluminescence with increasing amount of precursor indicates that the formation takes place via seed-mediated growth15,17.

    Fig.2a shows a typical TEM image of MAPbBr3NCs, it is observed that typical MAPbBr3NCs have an average diameter of 11 nm with a size deviation of ±3 nm (Fig.2b). The particle size distribution of MAPbBr3NCs is uniform without large crystals. In order to analyze the phase structure, XRD (Fig.2b)patterns were applied to characterize the obtained samples. The diffraction peaks of MAPbBr3NC at 15.07°, 21.26°, 30.28°,33.90°, 43.31°, 46.00° can be index to the (100), (110), (200),(210), (220) and (300) planes, respectively, corresponding to a cubic phase group29,30. In order to understand the chemical composition and the surface properties of the MAPbBr3NCs,the samples were subjected to XPS analyses and the results are shown in Fig.2(d?f). The XPS data in Fig.2d show two symmetric peaks of Pb 4f7/2and Pb 4f5/2at binding energy value 138.4 and 143.2 eV, respectively. No sign of metallic Pb was observed in the NCs. The Br 3d peak can be fitted into two peaks with binding energies of 68.5 and 69.5 eV, respectively.The N 1s XPS data are plotted in the Fig.2e. In the MAPbBr3NCs, N 1s peak can be fitted to two peaks at 399.3 and 402.1 eV, indicating existence two chemical states. The peak at 399.3 eV can be assigned to the presence of ―NH2from OLA, while the peak at binding 402.1 eV originates from methylamine.The ―NH2group as a ligand intercalate with the MAPbBr3NCs and control the size of the MAPbBr3NCs15?17.

    The optical properties of MAPbBr3NCs were investigated by steady-state absorption, photoluminescence (PL), and recombination lifetime. Fig.3a shows the PL behavior and absorption spectra MAPbBr3NCs. The abrupt absorption onsets and emission peaks at 527 nm correspond well with the band-to-band transition of bromide perovskite. Its FWHM is~20 nm. This is comparable to previous colloidal MAPbBr3quantum dots (QDs) solution results23,24, indicating better color purity. The absolute PLQY of colloidal solutions was 73%. The high PLQY indicated the reduction of nonradiative decay in high-quality MAPbBr3NCs. The recombination lifetime of MAPbBr3NCs was determined by measuring PL decay at the emission peak wavelength (λpeak). The PL decay curve of colloidal MAPbBr3NCs was shown in the Fig.3b. The curve is fitted with a triexponential function of time F(t), where τiis the decay time and aiis a prefactor.

    Fig.2 (a) Transmission electron micrograph of colloidal MAPbBr3 NCs, inset shows photograph of the NCs dispersion in toluene under ambient light. (b) Size distribution histogram of MAPbBr3 NCs. (c) X-ray diffraction patterns of MAPbBr3 NCs.(d?f) XPS spectra corresponding to Pb 4f (d), Br 3d (e), and N 1s (f) of MAPbBr3 NCs.

    Fig.3 (a) PL and UV-Vis spectra of green MAPbBr3 NCs, insets show photographs of a toluene dispersion of MAPbBr3 NCs under white light and UV-light. (b) PL decay (black circle) and fitting curves (red line) for excitation at 365 nm and emission at 527 nm of MAPbBr3 NCs, the inset table is the fitting result. color online.

    The average recombination lifetime (τave) was obtained from the triexponential decays according to the equation (2):

    The PL decay fitting result is shown in the table of Fig.3b. The τaveof MAPbBr3NCs is 97.4 ns, indicating a low recombination rate compared to the MAPbBr3QDs. The triexponential decay suggests that there are three components in the colloidal solution. The fast decay is related to trap-assisted recombination between the NCs, whereas the slow decay is related to exciton recombination inside the NCs13.

    We used circulating water controller system to test the thermal stability (Fig.4). The experimental temperature ranged from 20 to 80 °C. The PL intensity decrease when the temperature increased (Fig.4a). Along with the quenching of MAPbBr3NCs emission, the peak wavelength has a little blue shift and there is no obvious change about the FWHM. The intensity of the NCs emission increased with the cooling of the temperature (Fig.4b). After the temperature cooling to the original temperature, the peak wavelength and the FWHM can fully recover, but the PL intensity cannot recover. The relative intensity of MAPbBr3NCs is shown in Fig.4c. From Fig.4c, we can see that the PL intensity was decreased to about 75% after heat treatment. It is possibly due to some surface breakage that may promote the recombination which is similar to the conventional inorganic QDs33.

    We fabricated a series of colloidal MAPbBr3?xClxNCs with Pb(Ac)2. Fig.5a shows the photo of NCs with compositions varying from pure Br to pure Cl colloidal NCs. The colloidal samples show different emission colors from green to blue when illuminated with UV-lamp. We use XRD pattern to study the structural properties of the MAPbBr3?xClxNCs, and the result is shown in the Fig.5b. Multiple reflections demonstrate that all the MAPbBr3?xClxNCs associated with the cubic Pm3m space group. Most remarkably, we find that all Bragg peaks slightly shift towards a high angle along with the increase in the smaller Cl substitution ratio. The inset of Fig.5b shows a cubic lattice constant a as a function of x. The cubic lattice constant a is extracted from the angular position of the (100) Bragg reflection 2θ using λ/2a = sinθ. The monotonic trend in the lattice constants from MAPbBr3to MAPbCl3indicates an expansion of the perovskite cage. The normalized PL peak wavelength of the MAPbBr3?xClxNCs is shown in Fig.5c. The change in emission indicates the increase in the bandgap as Br is replaced with Cl. The PLQYs of the MAPbBr3?xClxNCs were measured using a fluorescence spectrometer equipped with an integrating sphere and excitation at a wavelength of 365 nm and the data were summarized in Table 1. It is surprising that such a slight variation in the MAPbBr3?xClxcan lead to such a remarkable difference in their PL emission intensity. The exact reason is still not clear, it might be associated with the orientation and vibration restraint of the MA cation in the MAPbBr3?xClxNCs30. In addition, Pb(Ac)2also can be used to synthesis the MAPbBr3?xIxNCs and the PL emission spectra are shown in the inset of Fig.5c. The PL decay curves of MAPbBr3?xClxNCs are shown in the Fig.5d. The fitting results are shown in Table 1. We can see that the corresponding τaveof MAPbBr3?xClxNCs decreases with the increase of Cl substitution ratio. This trend is the same as that of PLQY, indicating the reduction of nonradiative decay in high-quality MAPbBr3NCs.

    Fig.4 (a) PL spectra of MAPbBr3 NCs with the increase of temperature. (b) PL spectra of MAPbBr3 NCs with the decrease of temperature.(c) Temperature-dependent PL intensity of MAPbBr3 NCs. color online.

    Fig.5 (a) Photographs of MAPbBr3?xClx NCs under 365 nm UV-lamp. (b) X-ray diffraction patterns of MAPbBr3?xClx NCs.Inset: evolution of the lattice parameter as a function of x. (c) PL emission spectra of MAPbBr3?xClx NCs.Inset: PL emission spectra of MAPbBrxI3?x. (c) PL decay curves of MAPbBr3?xClx NCs for excitation at 365 nm.

    Table 1 Detailed information of halide substituted samples

    4 Conclusions

    In summary, mixed halide perovskites MAPbBr3-xClxNCs are successfully synthesized by using lead acetate. We also tune the color by varying the chloride to bromide ratios in the MAPbBr3?xClx(0 ≤ x ≤ 3) perovskite using lead acetate. The PL emission peak can be tuned from 399 to 527 nm. Their FWHM are about 20 nm, indicating better color purity. The NCs are uniformly dispersed in toluene with an average size of(11 ± 3) nm. The photoluminescence quantum yield of MAPbBr3NCs reaches ~73%. The τaveof MAPbBr3NCs is 97.4 ns, indicating a low recombination rate. Above all,Pb(Ac)2can be used to prepared MAPbBr3?xClxNCs, so it may be a promising lead source to fabricate the perovskite optoelectronic devices.

    (1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc.2009, 131, 6050. doi: 10.1021/ja809598r

    (2) Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei,H.; Li, B.; Wan, J.; Yang, G.; Yan, Y. J. Am. Chem. Soc. 2015, 137,6730. doi: 10.1021/jacs.5b01994

    (3) Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk,K.; Abate, A.; Giordano, F.; Correa Baena, J. P.; Decoppet, J. D.;Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gr? tzel, M.; Hagfeldt, A.Sci. Adv. 2016, 2, 1. doi: 10.1126/sciadv.1501170

    (4) Wang, Y. Q.; Li, L.; Nie, L. H.; Li, N. N.; Shi, C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724. [王艷青, 李 龍, 聶林輝,李楠楠, 史成武. 物理化學(xué)學(xué)報(bào), 2016, 32 (11), 2724.]doi: 10.3866/pku.whxb201607272.

    (5) Mejí a Escobar, M. A.; Pathak, S.; Liu, J.; Snaith, H. J.; Jaramillo, F.ACS App. Mater. Inter. 2017, 9 , 2342. doi: 10.1021/acsami.6b12509.

    (6) Zhou, L.; Zhu, J.; Xu, Y. F.; Shao, Z. P.; Zhang, X. H.; Ye, J. J.;Huang, Y.; Zhang, C. N.; Dai, S. Y. Acta Phys.-Chim. Sin. 2016, 32 ,1207. [周 立, 朱 俊, 徐亞峰, 邵志鵬, 張旭輝, 葉加久, 黃陽(yáng), 張昌能, 戴松元. 物理化學(xué)學(xué)報(bào), 2016, 32 (5), 1207.]doi: 10.3866/pku.whxb201602241.

    (7) NREL, B. R. C. E. http://www.nrel.gov, accessed: November 2016.

    (8) Yin, X.; Xu, Z.; Guo, Y.; Xu, P.; He, M. ACS Appl. Mater. Inter.2016, 8, 29580. doi: 10.1021/acsami.6b09326.

    (9) Yin, X.; Guo, Y.; Xue, Z.; Xu, P.; He, M.; Liu, B. Nano Res. 2015, 8,1997. doi: 10.1007/s12274-015-0711-4.

    (10) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.;Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.;Friend, R. H. Nat. Nanotech. 2014, 9, 687.doi: 10.1038/nnano.2014.149

    (11) Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K. L.;Zheng, Y.; Liu, S.; Chen, S.; Wang, K.; Sun, X. W. Adv. Mater.2017, 1606405-1/7. doi: 10.1002/adma.201606405

    (12) Yao, Q.; Fang, H.; Deng, K.; Kan, E.; Jena, P. Nanoscale 2016, 8, 17836. doi: 10.1039/c6nr05573g

    (13) Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee,C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. Science 2015, 350, 1222. doi: 10.1126/science.aad1818

    (14) Ling Y.; Yuan, Z.; Tian. Y.; Wang, X.; Wang, J. C.; Xin, Y.;Hanson, K.; Ma, B.; Gao, H. Adv. Mater. 2015, 17, 1.doi: 10.1002/adma.201503954

    (15) Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.;Milowska, K. Z.; Garcí a Cortadella, R.; Nickel, B.;Cardenas-Daw, C.; Stolarczyk, J. K.; Urban, A. S.; Feldmann,J. Nano Lett. 2015, 15, 6521.doi: 10.1021/acs.nanolett.5b02985

    (16) Tyagi, P.; Arveson, S. M.; Tisdale, W. A. J. Phys. Chem. Lett.2015, 6, 1911. doi: 10.1021/acs.jpclett.5b00664

    (17) Tong, Y.; Ehrat, F.; Vanderlinden, W.; Cardenas-Daw, C.;Stolarczyk, J. K.; Polavarapu, L.; Urban, A. S. ACS Nano 2016, 10, 10936. doi: 10.1021/acsnano.6b05649.

    (18) Hassan, Y.; Song, Y.; Pensack, R. D.; Abdelrahman, A. I.;Kobayashi, Y.; Winnik, M. A.; Scholes, G. D. Adv. Mater.2016, 28, 566. doi: 10.1002/adma.201503461.

    (19) Di, D.; Musselman, K. P.; Li, G.; Sadhanala, A.; Ievskaya, Y.;Song, Q.; Tan, Z. K.; Lai, M. L.; MacManus-Driscoll, J. L.;Greenham, N. C. J. Phys. Chem. Lett. 2015, 6 (3), 446.doi: 10.1021/jz502615e

    (20) Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach,A. L. Adv. Sci. 2015, 2 (9), 1500194-1/5.doi: 10.1002/advs.201500194.

    (21) Bhaumik, S.; Veldhuis, S. A.; Ng, Y. F.; Li, M.; Muduli, S. K.;Sum, T. C.; Damodaran, B.; Mhaisalkar, S.; Mathews, N.Chem. Commun. 2016, 52, 7118. doi: 10.1039/C6CC01056C.

    (22) Gonzalez-Carrero, S.; Galian, R. E.; Pé rez-Prieto, J. J. Mater.Chem. A 2015, 3, 9187. doi: 10.1039/c4ta05878j

    (23) Schmidt, L. C.; Pertegs, A.; Gonzlez-Carrero, S.;Malinkiewicz, O.; Agouram, S.; Mnguez Espallargas, G.;Bolink, H. J.; Galian, R. E.; Prez-Prieto, J. J. Am. Chem. Soc.2014, 136, 850. doi: 10.1021/ja4109209

    (24) Zhang, F.; Zhong, H.; Chen, C.; Wu, X. G.; Hu, X.; Huang,H.; Han, J.; Zou, B.; Dong, Y. ACS Nano 2015, 9 (4), 4533.doi: 10.1021/acsnano.5b01154

    (25) Naphade, R.; Nagane, S.; Shanker, G. S.; Fernandes, R.;Kothari, D.; Zhou, Y.; Padture, N. P.; Ogale, S. ACS Appl.Mater. Inter. 2016, 8, 854. doi: 10.1021/acsami.5b10208.

    (26) Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P.M.; Deschler, F.; Hoye, R. L. Z.; G? del, K. C.; Bein, T.;Docampo, P.; Dutton, S. E.; De Volder, M. F. L.; Friend, R. H.Nano Lett. 2015, 15, 6095. doi:10.1021/acs.nanolett.5b02369.

    (27) Pathak, S.; Sakai, N.; Wisnivesky Rocca Rivarola, F.; Stranks,S. D.; Liu, J. W.; Eperon, G. E.; Ducati, C.; Wojciechowski,K.; Griffiths, J. T.; Haghighirad, A. A.; Pellaroque, A.; Friend,R. H.; Snaith H. J. Chem. Mater. 2015, 27, 8066.doi: 10.1021/acs.chemmater.5b03769

    (28) Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; H? rantner,M. T.; Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.;Alexander-Webber, J. A.; Abate, A.; Sadhanala, A.; Yao, S.;Chen, Y.; Friend, R. H.; Estroff, L. A.; Wiesner, U.; Snaith, H.J. Nat. Commun.2015, 6, 6142. doi: 10.1038/ncomms7142

    (29) Zhuo, S.; Zhang, J.; Shi, Y.; Huang, Y.; Zhang, B. Angew.Chem. Inter. Edit. 2015, 54, 5693.doi: 10.1002/anie.201411956

    (30) Comin, R.; Walters, G.; Thibau, E. S.; Voznyy, O.; Lu, Z. H.;Sargent, E. H. J. Mater. Chem. C 2015, 3, 8839.doi: 10.1039/C5TC01718A

    (31) Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; de Mello Donegá, C.; Meijerink, A. ACS Nano 2012, 6, 9058.doi: 10.1126/science.1243167

    Synthesis of Colloidal Perovskite CH3NH3PbBr3?xClxNanocrystals with Lead Acetate

    WANG Ya-Nan1,2MA Pin1,2PENG Lu-Mei1ZHANG Di1,2FANG Yan-Yan1ZHOU Xiao-Wen1LIN Yuan1,2,*
    (1Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;2University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

    Lead acetate, which is highly soluble in dimethylformamide, was used to synthesize mixed halide perovskite CH3NH3PbBr3-xClx(MA = CH3NH3, 0 ≤ x ≤ 3) nanocrystals (NCs). This method provides an approach to address the low solubility of lead halides, especially lead chloride. Different Br/Cl ratios in MAPbBr3-xClxlead to various optical properties. The photoluminescence emission peak can be tuned from 399 to 527 nm. Their full-widths at half-maxima (FWHM) are about 20 nm. MAPbBr3-xClxNCs have an average diameter of ~(11 ± 3) nm and have uniform dispersion in toluene. The MAPbBr3NCs have a long average recombination lifetime (τave= 97.4 ns) and a photoluminescence quantum yield (PLQY) of up to 73%.

    Perovskite; CH3NH3PbBr3-xClx; Nanocrystal; Lead acetate

    April 3, 2017; Revised: May 2, 2017; Published online: May 11, 2017.

    O646

    10.3866/PKU.WHXB201705115 www.whxb.pku.edu.cn

    *Corresponding author. Email: linyuan@iccas.ac.cn; Tel: +86-10-82615031; Fax: +86-10-82617315.

    The project was supported by the National Natural Science Foundation of China (51303186, 51673204) and National Materials Genome Project, China(2016YFB0700600).

    國(guó)家自然科學(xué)基金(51303186, 51673204)和國(guó)家重點(diǎn)研發(fā)計(jì)劃材料基因工程關(guān)鍵技術(shù)與支撐平臺(tái)(2016YFB0700600)資助

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    中國(guó)科學(xué)院醋酸晶體
    《中國(guó)科學(xué)院院刊》新媒體
    中國(guó)科學(xué)院院士
    ——李振聲
    醋酸鈣含量測(cè)定方法的對(duì)比與優(yōu)化
    云南化工(2021年11期)2022-01-12 06:06:20
    “輻射探測(cè)晶體”專題
    圖說(shuō)醋酸
    廣州化工(2020年8期)2020-05-19 06:23:56
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    醋酸甲酯與合成氣一步合成醋酸乙烯
    醋酸甲酯與合成氣一步合成醋酸乙烯
    光子晶體在兼容隱身中的應(yīng)用概述
    国产成人精品久久二区二区91| 在线国产一区二区在线| 久久久精品区二区三区| 日韩欧美三级三区| 国产精华一区二区三区| av一本久久久久| 欧美性长视频在线观看| 免费少妇av软件| 黑丝袜美女国产一区| 后天国语完整版免费观看| 大片电影免费在线观看免费| 欧美日韩精品网址| 热99久久久久精品小说推荐| 久久天躁狠狠躁夜夜2o2o| 一级片'在线观看视频| 午夜福利影视在线免费观看| 搡老岳熟女国产| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 91九色精品人成在线观看| 国产精品综合久久久久久久免费 | 99久久国产精品久久久| 欧美黄色淫秽网站| √禁漫天堂资源中文www| 日日夜夜操网爽| 欧美日韩瑟瑟在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频一区二区在线观看| 亚洲性夜色夜夜综合| 免费人成视频x8x8入口观看| 高清毛片免费观看视频网站 | 国产欧美日韩精品亚洲av| 99精国产麻豆久久婷婷| cao死你这个sao货| 这个男人来自地球电影免费观看| 成人黄色视频免费在线看| 交换朋友夫妻互换小说| 日韩人妻精品一区2区三区| 五月开心婷婷网| 日本a在线网址| 无人区码免费观看不卡| 国产高清videossex| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 亚洲熟妇熟女久久| 黄色视频不卡| 亚洲一码二码三码区别大吗| aaaaa片日本免费| 最近最新中文字幕大全电影3 | 国产免费男女视频| 亚洲五月色婷婷综合| 老熟妇仑乱视频hdxx| 日韩欧美一区二区三区在线观看 | 久久久久精品国产欧美久久久| 欧美日韩国产mv在线观看视频| 建设人人有责人人尽责人人享有的| 国产亚洲精品第一综合不卡| 欧美午夜高清在线| 欧美日韩亚洲综合一区二区三区_| 精品免费久久久久久久清纯 | 国产乱人伦免费视频| 韩国精品一区二区三区| 热99久久久久精品小说推荐| 欧美激情高清一区二区三区| 一级作爱视频免费观看| 国产成人欧美在线观看 | 欧美精品高潮呻吟av久久| 国产精品久久久人人做人人爽| 视频区欧美日本亚洲| 高清毛片免费观看视频网站 | 男女之事视频高清在线观看| 欧美乱妇无乱码| 久久这里只有精品19| 伦理电影免费视频| 欧美人与性动交α欧美软件| 水蜜桃什么品种好| 美女午夜性视频免费| 香蕉丝袜av| 午夜精品久久久久久毛片777| 亚洲精品国产一区二区精华液| 国产免费男女视频| 欧美日韩黄片免| 亚洲av美国av| 亚洲七黄色美女视频| 中文字幕人妻熟女乱码| 精品欧美一区二区三区在线| 欧美久久黑人一区二区| 美国免费a级毛片| 激情视频va一区二区三区| av中文乱码字幕在线| 18禁国产床啪视频网站| 欧美激情高清一区二区三区| 如日韩欧美国产精品一区二区三区| av片东京热男人的天堂| 9色porny在线观看| 亚洲自偷自拍图片 自拍| 亚洲成人免费电影在线观看| 国产在线观看jvid| 久久精品人人爽人人爽视色| 亚洲熟女精品中文字幕| 婷婷丁香在线五月| www.精华液| 欧美日韩乱码在线| 中亚洲国语对白在线视频| 操出白浆在线播放| 久久人人爽av亚洲精品天堂| 激情在线观看视频在线高清 | 黄片小视频在线播放| 亚洲av第一区精品v没综合| 免费久久久久久久精品成人欧美视频| 欧美亚洲日本最大视频资源| av有码第一页| 国产精品久久电影中文字幕 | 精品福利永久在线观看| av一本久久久久| 亚洲精品国产区一区二| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看 | 国产精品乱码一区二三区的特点 | 午夜福利视频在线观看免费| 黑丝袜美女国产一区| 久久九九热精品免费| 亚洲avbb在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美 日韩 精品 国产| 欧美日韩亚洲高清精品| 一级毛片精品| 久久久久国产精品人妻aⅴ院 | 91成年电影在线观看| 91国产中文字幕| 国产精品免费大片| netflix在线观看网站| 亚洲精品在线美女| 国产精品国产av在线观看| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 搡老乐熟女国产| 99国产精品一区二区三区| 自线自在国产av| 啦啦啦 在线观看视频| 中文欧美无线码| 国产精品 欧美亚洲| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网| 天堂动漫精品| 青草久久国产| 两个人看的免费小视频| 亚洲精品国产区一区二| 国产精品免费一区二区三区在线 | 欧美性长视频在线观看| 亚洲av美国av| 色综合欧美亚洲国产小说| 建设人人有责人人尽责人人享有的| 成人免费观看视频高清| 黄色丝袜av网址大全| ponron亚洲| 国产亚洲精品久久久久5区| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| 极品教师在线免费播放| xxx96com| 一a级毛片在线观看| 亚洲色图 男人天堂 中文字幕| 在线国产一区二区在线| 久热这里只有精品99| 在线观看免费日韩欧美大片| 久久午夜综合久久蜜桃| 精品久久蜜臀av无| 欧美精品人与动牲交sv欧美| av福利片在线| 久久 成人 亚洲| 女同久久另类99精品国产91| 国产精品久久久av美女十八| 免费观看人在逋| 99久久综合精品五月天人人| 在线十欧美十亚洲十日本专区| 日本五十路高清| 免费女性裸体啪啪无遮挡网站| 一区二区三区精品91| 成人18禁在线播放| 一级a爱视频在线免费观看| 精品国产一区二区三区四区第35| 久久人妻福利社区极品人妻图片| x7x7x7水蜜桃| av国产精品久久久久影院| 777久久人妻少妇嫩草av网站| 国产真人三级小视频在线观看| 久久国产精品大桥未久av| 国产精品免费大片| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 国产精品1区2区在线观看. | 可以免费在线观看a视频的电影网站| 久久国产精品男人的天堂亚洲| 1024视频免费在线观看| 天天躁日日躁夜夜躁夜夜| 精品国产美女av久久久久小说| 人人妻人人澡人人看| 下体分泌物呈黄色| 国产有黄有色有爽视频| 久久 成人 亚洲| 久久狼人影院| 99热网站在线观看| 少妇粗大呻吟视频| 51午夜福利影视在线观看| 91老司机精品| 久久久精品免费免费高清| 亚洲人成电影免费在线| 日本黄色视频三级网站网址 | 久久香蕉精品热| 国产成人精品在线电影| 亚洲精品久久午夜乱码| 久久天堂一区二区三区四区| 一级片'在线观看视频| 国产欧美日韩一区二区三区在线| 一边摸一边抽搐一进一小说 | 亚洲精品粉嫩美女一区| 国产精品秋霞免费鲁丝片| 亚洲精品久久午夜乱码| 不卡av一区二区三区| 极品少妇高潮喷水抽搐| 日韩欧美免费精品| 免费观看精品视频网站| 久久天堂一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看 | av视频免费观看在线观看| 人人妻人人澡人人看| 久热爱精品视频在线9| 久久国产精品大桥未久av| 制服人妻中文乱码| 精品视频人人做人人爽| 在线av久久热| 久久婷婷成人综合色麻豆| 性色av乱码一区二区三区2| 50天的宝宝边吃奶边哭怎么回事| av视频免费观看在线观看| 日本vs欧美在线观看视频| 日本黄色视频三级网站网址 | 999久久久精品免费观看国产| 久久人妻熟女aⅴ| 两个人看的免费小视频| 少妇被粗大的猛进出69影院| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女 | www.自偷自拍.com| 12—13女人毛片做爰片一| 在线永久观看黄色视频| 91av网站免费观看| 久久久久久亚洲精品国产蜜桃av| 国产在视频线精品| 国产xxxxx性猛交| 中国美女看黄片| 国产精品一区二区免费欧美| 国产成人欧美| 一个人免费在线观看的高清视频| 很黄的视频免费| 欧美日韩国产mv在线观看视频| 无遮挡黄片免费观看| 午夜亚洲福利在线播放| 人妻久久中文字幕网| 侵犯人妻中文字幕一二三四区| 亚洲成人国产一区在线观看| 午夜精品在线福利| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 69av精品久久久久久| www.熟女人妻精品国产| 亚洲免费av在线视频| 亚洲人成伊人成综合网2020| 国产1区2区3区精品| 久久婷婷成人综合色麻豆| 欧美激情极品国产一区二区三区| 久久九九热精品免费| 久久国产亚洲av麻豆专区| 午夜免费成人在线视频| 精品国产乱码久久久久久男人| 久久久国产一区二区| 一级黄色大片毛片| 久久中文看片网| 69精品国产乱码久久久| 精品国产国语对白av| 一级a爱片免费观看的视频| 电影成人av| 国产aⅴ精品一区二区三区波| 热re99久久精品国产66热6| 亚洲精品国产精品久久久不卡| 一进一出抽搐动态| 老司机亚洲免费影院| 久久天堂一区二区三区四区| 青草久久国产| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三区在线| 夫妻午夜视频| 身体一侧抽搐| 久久久久精品人妻al黑| 成年女人毛片免费观看观看9 | 脱女人内裤的视频| 精品亚洲成a人片在线观看| 亚洲五月天丁香| 一级毛片女人18水好多| 国产日韩欧美亚洲二区| 黄片大片在线免费观看| 午夜福利影视在线免费观看| 亚洲av美国av| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 精品福利永久在线观看| 亚洲中文日韩欧美视频| 在线观看一区二区三区激情| 在线视频色国产色| 亚洲国产看品久久| 亚洲一码二码三码区别大吗| 搡老乐熟女国产| 欧美 日韩 精品 国产| 男女之事视频高清在线观看| 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 国产三级黄色录像| 婷婷丁香在线五月| 亚洲精品在线美女| 大陆偷拍与自拍| 丰满人妻熟妇乱又伦精品不卡| 中文字幕制服av| 一夜夜www| 夫妻午夜视频| 好男人电影高清在线观看| 亚洲性夜色夜夜综合| 国产成人啪精品午夜网站| 老司机靠b影院| 黑丝袜美女国产一区| 丰满人妻熟妇乱又伦精品不卡| 韩国精品一区二区三区| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 亚洲欧美色中文字幕在线| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 捣出白浆h1v1| av国产精品久久久久影院| 深夜精品福利| 欧美最黄视频在线播放免费 | 精品乱码久久久久久99久播| 精品久久久久久久久久免费视频 | 久久国产精品大桥未久av| 在线观看免费高清a一片| 国产午夜精品久久久久久| 夜夜躁狠狠躁天天躁| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 五月开心婷婷网| √禁漫天堂资源中文www| 国产深夜福利视频在线观看| 久久久久久久午夜电影 | 精品福利观看| 国产精品免费一区二区三区在线 | 香蕉久久夜色| 国产精品免费一区二区三区在线 | 免费日韩欧美在线观看| 人人妻人人爽人人添夜夜欢视频| 国产精品久久电影中文字幕 | 精品国产一区二区三区久久久樱花| svipshipincom国产片| 日韩制服丝袜自拍偷拍| 久久精品成人免费网站| 咕卡用的链子| 亚洲成av片中文字幕在线观看| 久久久久视频综合| 国产成人欧美| 母亲3免费完整高清在线观看| 国产成人精品久久二区二区免费| 国产欧美日韩一区二区三| 欧美黄色淫秽网站| 久久婷婷成人综合色麻豆| 亚洲av欧美aⅴ国产| 国产片内射在线| 黑人欧美特级aaaaaa片| 美女视频免费永久观看网站| 女人久久www免费人成看片| 美女 人体艺术 gogo| 国产成+人综合+亚洲专区| 两个人免费观看高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 女性被躁到高潮视频| 国产精品九九99| av一本久久久久| 色在线成人网| 欧美成狂野欧美在线观看| 国产亚洲精品一区二区www | 日本撒尿小便嘘嘘汇集6| 又紧又爽又黄一区二区| 久久中文字幕人妻熟女| 精品国产乱子伦一区二区三区| 亚洲片人在线观看| 99热网站在线观看| 热re99久久精品国产66热6| 久久久久久久精品吃奶| netflix在线观看网站| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产亚洲在线| 成人黄色视频免费在线看| 中文字幕制服av| 久久这里只有精品19| 国产亚洲精品第一综合不卡| 欧美另类亚洲清纯唯美| avwww免费| 色尼玛亚洲综合影院| a级片在线免费高清观看视频| 久久热在线av| 亚洲精品国产精品久久久不卡| 午夜日韩欧美国产| 高清黄色对白视频在线免费看| 午夜激情av网站| 久久久久国内视频| 午夜视频精品福利| 亚洲一区高清亚洲精品| 两个人免费观看高清视频| xxx96com| videosex国产| 不卡av一区二区三区| 老鸭窝网址在线观看| 亚洲五月色婷婷综合| 国产av又大| 日韩制服丝袜自拍偷拍| 精品午夜福利视频在线观看一区| 91麻豆精品激情在线观看国产 | 999久久久精品免费观看国产| 99精品久久久久人妻精品| 亚洲av成人不卡在线观看播放网| 国产成人欧美在线观看 | 欧美最黄视频在线播放免费 | 视频在线观看一区二区三区| 超碰97精品在线观看| 黄色片一级片一级黄色片| 精品亚洲成国产av| 成人18禁在线播放| 成年人免费黄色播放视频| 午夜91福利影院| 51午夜福利影视在线观看| 一二三四在线观看免费中文在| 在线观看免费日韩欧美大片| 韩国精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 热99久久久久精品小说推荐| 日日爽夜夜爽网站| 日本a在线网址| 久久国产精品影院| 日韩有码中文字幕| 国产精品免费视频内射| a在线观看视频网站| 一进一出抽搐gif免费好疼 | 高清欧美精品videossex| 亚洲黑人精品在线| 热re99久久精品国产66热6| 黄色片一级片一级黄色片| 国产成人系列免费观看| 国产高清国产精品国产三级| 亚洲中文av在线| 香蕉久久夜色| 久久久久国内视频| 亚洲 国产 在线| 99久久综合精品五月天人人| 日韩欧美三级三区| 王馨瑶露胸无遮挡在线观看| 久久亚洲真实| 美女视频免费永久观看网站| 女人被狂操c到高潮| 午夜福利一区二区在线看| 免费观看精品视频网站| 午夜亚洲福利在线播放| 黄网站色视频无遮挡免费观看| bbb黄色大片| 国产又爽黄色视频| 人人澡人人妻人| 日韩视频一区二区在线观看| 国产精品免费视频内射| bbb黄色大片| 国产xxxxx性猛交| 丰满迷人的少妇在线观看| 人人妻人人澡人人爽人人夜夜| 久久精品亚洲熟妇少妇任你| 黄片大片在线免费观看| 亚洲伊人色综图| www.精华液| 99在线人妻在线中文字幕 | 黄片大片在线免费观看| av天堂在线播放| 日韩欧美在线二视频 | 欧美性长视频在线观看| 国产色视频综合| 久久精品国产a三级三级三级| 国产男女内射视频| 久久久水蜜桃国产精品网| 一本综合久久免费| 超色免费av| 亚洲伊人色综图| 免费av中文字幕在线| 国产午夜精品久久久久久| 在线十欧美十亚洲十日本专区| 久久精品亚洲av国产电影网| 国产野战对白在线观看| 亚洲欧洲精品一区二区精品久久久| 女人久久www免费人成看片| 成年人午夜在线观看视频| 亚洲熟女精品中文字幕| 免费少妇av软件| 国产精品 欧美亚洲| 国产91精品成人一区二区三区| 最近最新中文字幕大全电影3 | 一级作爱视频免费观看| 国产无遮挡羞羞视频在线观看| 大香蕉久久成人网| 变态另类成人亚洲欧美熟女 | 免费少妇av软件| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 国产成人av教育| 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| 欧美成狂野欧美在线观看| 久热爱精品视频在线9| 亚洲五月天丁香| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 国产亚洲精品一区二区www | 久久久久久久久免费视频了| 亚洲av成人av| 丝袜美腿诱惑在线| 狠狠婷婷综合久久久久久88av| 9热在线视频观看99| 国产黄色免费在线视频| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 久99久视频精品免费| av天堂在线播放| 欧美成人免费av一区二区三区 | 国产精品.久久久| 国产成+人综合+亚洲专区| 满18在线观看网站| 激情在线观看视频在线高清 | 亚洲专区国产一区二区| av网站免费在线观看视频| 天堂俺去俺来也www色官网| 99香蕉大伊视频| 亚洲美女黄片视频| 免费av中文字幕在线| 亚洲熟妇中文字幕五十中出 | 久久精品国产综合久久久| 日韩熟女老妇一区二区性免费视频| 精品卡一卡二卡四卡免费| 少妇裸体淫交视频免费看高清 | 69精品国产乱码久久久| 精品视频人人做人人爽| 亚洲中文日韩欧美视频| 99riav亚洲国产免费| videos熟女内射| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区黑人| 纯流量卡能插随身wifi吗| 国产精品欧美亚洲77777| 高清视频免费观看一区二区| 免费一级毛片在线播放高清视频 | 国产精品久久久久成人av| 久久天堂一区二区三区四区| www.精华液| 久久天堂一区二区三区四区| 制服人妻中文乱码| 日韩欧美三级三区| 91老司机精品| 亚洲熟妇熟女久久| 久久精品国产综合久久久| 亚洲欧美一区二区三区黑人| 欧美精品啪啪一区二区三区| 最近最新免费中文字幕在线| 妹子高潮喷水视频| 久久这里只有精品19| 国产一区有黄有色的免费视频| 大片电影免费在线观看免费| avwww免费| 中文字幕高清在线视频| 又大又爽又粗| 亚洲欧美色中文字幕在线| 中文字幕av电影在线播放| 免费人成视频x8x8入口观看| 亚洲伊人色综图| 我的亚洲天堂| av超薄肉色丝袜交足视频| 国产男靠女视频免费网站| 亚洲精品久久午夜乱码| 色精品久久人妻99蜜桃| 色在线成人网| 日日摸夜夜添夜夜添小说| a在线观看视频网站| 99re在线观看精品视频| 亚洲国产欧美网| 成年人黄色毛片网站| 欧美黑人精品巨大| 一本综合久久免费| 中文字幕人妻熟女乱码| 久久精品国产清高在天天线| 色婷婷久久久亚洲欧美| 老司机午夜十八禁免费视频| 亚洲男人天堂网一区| 色老头精品视频在线观看| 性少妇av在线| 亚洲熟妇中文字幕五十中出 | 热99久久久久精品小说推荐| av不卡在线播放| 操出白浆在线播放| a级片在线免费高清观看视频|