• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation and experimental research of digital valve control servo system based on CMAC-PID control method①

    2017-09-25 12:53:35ZhaoJinsong趙勁松ZhaoZiningWangZhipengZhangChuanbiYaoJing
    High Technology Letters 2017年3期
    關(guān)鍵詞:勁松

    Zhao Jinsong (趙勁松), Zhao Zining, Wang Zhipeng , Zhang Chuanbi, Yao Jing

    (*Hebei Province Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, P.R.China)(**Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao 066004, P.R.China)(***School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China)

    Simulation and experimental research of digital valve control servo system based on CMAC-PID control method①

    Zhao Jinsong (趙勁松)******, Zhao Zining***, Wang Zhipeng***, Zhang Chuanbi***, Yao Jing②******

    (*Hebei Province Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, P.R.China)(**Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao 066004, P.R.China)(***School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China)

    Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time, a CMAC-PID(cerebellar model articulation controller -PID)compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment, the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness, and thus this compound control can be used as a new control strategy for the digital valve control servo system.

    electro-servo system, digital hydraulic, digital valve, CMAC-PID compound control, rapid control prototyping technology

    0 Introduction

    With the progress of science and technology, green development and innovation-driven development have become a trend. Since the advantages of high transmission efficiency, high reliability, digital valves have attracted more and more attention[1]. It can also be used to control the hydraulic actuators and form the electro-hydraulic valve control servo system. Digital valves are defined as valves with digital control and digital output response characteristics. However, digital valves are controlled by digital signal and its flow is discrete rather than continuous, so the electro-hydraulic digital valve control servo system has the shortcome of poor control accuracy and slower response speed. How to improve the control accuracy and response speed has become a hot spot[2-4].

    In order to get better control performance for digital valve control servo system, the control strategy must be improved. The traditional proportional-integral-derivative (PID) control method is adopted in most electro-hydraulic valve control servo systems. However, practice has proved that the PID controller cannot satisfy the complex nonlinear systems because of its immutable parameters, low control accuracy and poor anti-interference ability. With the progress of intelligent algorithm, fuzzy algorithm, BP neural network, genetic algorithm, some other algorithms are combined into PID controller[5-7]. Some scholars use the compound algorithm of fuzzy PID and feed-forward and feedback compound control method to achieve precise position control[8-10]. All of these controllers are used on the electro-hydraulic digital valve control servo system with better control performance than the traditional PID controller.

    Cerebellar model articulation controller(CMAC)can be used to simulate the learning structure of the cerebellum and can be effectively applied to the complex nonlinear system[11,12]. Some researchers propose the CMAC-PID compound control strategy and apply it in the pneumatic position servo system, electric servo loading system, controlling of electro-hydraulic proportional valve and DC motor[13-17]. They all get better control performance than using traditional PID controller. However, few have applied the CMAC-PID in the electro-hydraulic digital valve control servo system. In this paper, the CMAC-PID compound controller in the electro-hydraulic digital valve control servo system is applied and compared with the traditional PID on the control performance through simulation and experiment.

    1 Working principle of digital valve control servo system

    In this paper, the working principle of digital valve control servo system is shown in Fig.1.

    Fig.1 Schematic diagram of digital valve control servo system

    The system consists of the following seven parts: 1 constant-voltage source; 2 high speed switch type digital valve; 3 electromagnetic directional valve; 4 hydraulic cylinder; 5 relief valve; 6 oil tank; 7 displacement sensor. In this diagram, the combination of digital valve 2 and electromagnetic directional valve 3 can take the place of servo valve, which control the hydraulic cylinder. Digital valve controls the oil flow and the electromagnetic valve controls the direction of oil. Relief valve controls the back pressure of the load system. The displacement sensor can measure the displacement of hydraulic cylinder, which constitutes a closed-loop position control system. This system can achieve precise position control of the hydraulic cylinder.

    2 Modeling of digital valve control servo system

    2.1 Modeling of the high speed switch type digital valve

    In the working process, the digital valve element will be affected by four types of forces, the Fh(hydraulic pressure force), the Ff(flow force), the Fm(electromagnetic force) and Fk(spring force). The force of the digital valve element is shown in Fig.2.

    Fig.2 Force diagram of the high speed switch type digital valve

    The equivalent circuit diagram of the digital valve is shown in Fig.3.

    Fig.3 The equivalent circuit diagram

    By analyzing this diagram, the exciting coil voltage balance equation in digital valve is

    (1)

    where, ugis the signal voltage of amplifier (V), Kuis the gain of amplifier, Rcis the resistance of control coil (Ω), rpis the internal resistance of amplifier (Ω), Lcis the inductance of control coil (H) and icis the electric current of control coil(A).

    The DC solenoid electromagnetic force of the digital valve is generated in steady state:

    (2)

    where, μ0is the permeability of vacuum(N/A2), S is the cross-sectional area of work air gap (m2), Kfis the magnetic leakage factor, b is the length of work air gap(m), N is the number of coil and i is the electromagnet current (A).

    This equation is simplified by the Taylor series and the second order infinitesimal quantity, is omitted

    Fm=Kmii-Kmxx

    (3)

    where,

    (4)

    and Kmiis the electromagnetic force variation coefficient caused by the coil electric current change.

    (5)

    and Kmxis the electromagnetic force variation coefficient caused by the valve element displacement change.

    The flow force of the valve element is

    Ff=2CvCdWΔpcosθ

    (6)where, Cvis the velocity coefficient, usually 0.95~0.98, Cdis the flux coefficient of valve port, W is the area-grads(m), Δp is the pressure drop of valve port(Pa) and θ is the angle of jet flow(°).

    This equation is simplified by the Taylor series and the second order infinitesimal quantity is omitted:

    Ff=-Kfxx+KfpP

    (7)

    where,

    (8)

    here Kfxis the liquid force variation coefficient caused by the valve element displacement change.

    Where,

    (9)

    and Kfpis the liquid force variation coefficient caused by the pressure difference.

    In the work schedule, the force balance equation of valve element is

    (10)

    where, m is the mass of ball value and pushrod(kg), B is the viscous damping coefficient (N/(m/s)), K is the spring stiffness(N/m), x0is the precompressed spring length(m) and Flis the fluid force of valve element(N).

    The flow which passes the high speed switch type digital valve port is

    (11)

    where, Cdis the flow coefficient of ball valve port, A is the valve port area (m2), Δp is the pressure drop of valve port(Pa), ρ is the oil density(kg/m3).

    Eqs(1), (3), (7) and (10) take Laplace transform:

    KuUg=(Rc+rp)Ic+LcIcs

    (12)

    Fm=KmiI-KmxX

    (13)

    Ff=-KfxX+KfpP

    (14)

    Fm=mXvs2+BXvs1+K(X0+X)+Fl

    (15)

    Assuming:

    (16)

    (17)

    (18)

    where, ωcis the coil angular frequency(rad/s), ω is the hydraulic inherent frequency(rad/s), ζ is the hydraulic damping ratio and k=K+Kfx+Kmx(N/m) is the synthetic stiffness.

    In conclusion, the high speed switch type digital valve block diagram is shown in Fig.4.

    Fig.4 The high-speed switch type digital valve control diagram

    2.2 Modeling of the electromagnetic valve and hydraulic cylinder

    Since the inherent frequency of electromagnetic directional valve is close to the hydraulic inherent frequency, it is simplified into the second order oscillation section.

    (19)

    where, Ugis the voltage of reversing valve(V), Xvis the displacement of reversing valve(m), Kvis the enlarged coefficients of reversing valve, ωvhis the inherent frequency of reversing valve(rad/s) and ζvhis the damping ratio of reversing valve.

    The electromagnetic valve for pressure and flow equation is

    QL=KqXv-KcPL

    (20)

    where, QLis the load flow of electromagnetic valve (m3/s), Kqis the flow gain coefficient of electromagnetic value (m2/s),Kcis the valve flow and pressure coefficient ((m3/s)/Pa) and PLis the load pressure(Pa).

    The continuity equation of the hydraulic cylinder is

    (21)

    where, APis the effective area of the hydraulic cylinder piston(m2), Ctpis the total leakage coefficient of hydraulic cylinder((m3/s)/Pa), Vtis the total compressed volume of the hydraulic cylinder (m3), βeis the elastic modulus of effective volume (Pa) and ypis the piston rod displacement (m).

    The force balance equation of the hydraulic cylinder is

    ApPL=mts2Xp+BpsXp+KXp+FL

    (22)

    where, mtis the mass of the piston and the load equivalent to the piston(kg), Bpis the viscous damping coefficient of piston and the load(N/(m/s)), K is the spring stiffness of load(N/m) and FLis external load force(N).

    From the above equations, omitting the elastic load and hydraulic cylinder leakage, the high-speed on-off digital valve control cylinder system block diagram is shown in Fig.5.

    Fig.5 Digital valve control cylinder system control diagram

    Finally, the position closed-loop control block diagram of the electro-hydraulic digital valve control servo cylinder system is shown in Fig.6.

    Fig.6 Digital servo closed-loop position control diagram

    3 Design of CMAC-PID adaptive controller

    CMAC network is different from conventional neural networks. From the viewpoint of individual neuron, its input-output relationship is linear. However, the overall structure of CMAC network is nonlinear. The CMAC network has a strong nonlinear mapping and generalization ability for real-time control of complex nonlinear dynamic application.

    3.1 CMAC network structure

    A typical CMAC network consists of an input space, a storage space and an output space. The network realizes the mapping from input space to storage space and storage space to output space.

    The dimensions of input space are determined by the dimensions of the controlled model. Each input vector from input space is mapped to the storage space (A) in accordance to certain rules.

    The storage space(A) is divided into virtual storage space(AC) and practical storage space(AP). Each input vector has the corresponding memory spaces, the number of which is C(generalization parameter). The process of actual learning may not contain all the input state of the system, so the information of AC should be mapped to AP according to a certain coding method, and right value is stored in the corresponding address of AP.

    In the output layer, the total output of the network is the plus of the C memory cells’ weight (w) in the actual storage space AP:

    (23)

    The CMAC network structure is shown in Fig.7.

    Fig.7 Structure of CMAC neural network

    Fig.7 shows that the network output is a linear combination of weights, while the network is addressed by linear change and random compression. So the CMAC network has the ability to map nonlinear functions.

    3.2 CMAC network working principle

    On the basis of the CMAC network structure, the working principle of the whole network is divided into the following steps:

    Step 1 Quantification of input vector

    Since the input space is one-dimensional, the quantification method can be described as:

    Input s∈[a,b], M is the quantification stages, and u is the quantification value.

    Δu=(b-a)/(M-1)

    (24)

    u(i)=a+Δu*(i-1) (i=1,2,…,M)

    (25)

    Step 2 The input space to the virtual storage space

    After the quantification, the input value requires to be mapped to the virtual memory space. According to the CMAC network principles, an input value could and should be used to activate C memory cells in the virtual storage space simultaneously.

    Step 3 Virtual mapping to the actual mapping

    The mapping from the virtual storage space(AC) to the actual storage space(AP) commonly uses hash coding method. Since the input space of this article is one-dimensional and small, one to one mapping is used instead of hash mapping in coding.

    Step 4 Learning algorithm

    CMAC network uses a supervised learning method, which requires the presence of a tutor outside the network. The tutor provides desired output for the neural network according to their experience and knowledge. The error between the CMAC output value and the desired output value is used to adjust the weights in the C memory cells. Adjusting the weights is used to reduce errors and to approximate to the desired output.

    CMAC network commonly uses δ learning rule to adjust the weights, and δ learning rule can be called least mean square(LMS) rule. Its objective of adjusting weights is to get the least mean square, which can be described as

    (26)

    e(t)=r(t)-y(t)

    (27)

    where, r(t) is the given signal, and y(t) is the feedback signal. According to the gradient descent method, the CMAC network weights adjusting formula is

    (28)

    wj(t)=wj(t-1)+Δwj(t)+α(wj(t-1) -wj(t-2))

    (29)

    (30)

    where, η is the learning rate, η∈(0,1), α is the momentum factor, α∈(0,1). Simultaneously, the selection of quantification stages M and generalization parameter C is also very important. M determines the CMAC network’s approximation accuracy, which increases with the increasing of the quantification levels. But the required memory space will be greater with the increasing of M. Generally, for the generalization parameter C, quantification stages M are 10 times more than parameter C. Only in this way, can the CMAC network achieve a better approximation accuracy of nonlinear function.

    3.3 Design of CMAC-PID compound controller

    In this paper, traditional PID is used as feedback control, in order to ensure the stability of the system, CMAC network is used as feed-forward control, in order to improve the control accuracy of the system. The plus of PID output and the CMAC network output is the total output. And the total output controls the controlled object. The compound control structure is shown in Fig.8.

    Fig.8 Structure of CMAC-PID compound control for digital valve control system

    According to the digital valve control servo cylinder system block diagram and CMAC-PID compound control block diagram, a CMAC-PID compound control simulation model is built in Matlab / Simulink, the simulation parameters of this system are set as Table 1.

    Table 1 Simulation parameters of digital valve control servo system

    3.4 Simulation study

    The given position step signal is 0.02m, oil pressure is 7MPa, the operating frequency is 10Hz, according to the system parameters to determine the PID parameters: Kp=150, Ki=0, Kd=0.02. To prevent

    Fig.9 Contrast of the step response curve

    over-learning phenomenon, learning rate is set as 0.001. The traditional PID control simulation curve and the CMAC-PID compound control simulation curve are shown in Fig.9~Fig.13.

    Fig.9~Fig.13 show that after using CMAC-PID compound control method, the transient and steady state performance are improved, which proves that this proposed control algorithm is effective.

    Fig.10 Contrast of the error curve

    Fig.11 Contrast of the sine response curve

    Fig.12 Contrast of the square-wave response curve

    Fig.13 Contrast of the random signal response curve

    4 Experiment study

    4.1 Experiment scheme

    An experiment is conducted in the electro-hydraulic digital valve control servo system test bench as shown in Fig.14.

    Fig.14 Electro-hydraulic digital valve control servo system experiment bench

    The experiment scheme is shown in Fig.15. The Host PC controls the system through the Matlab/Simulink software, then the control program runs in the Slave PC by the xPCTarget. The Slave PC outputs the signal by controlling cards. The card ACL-6126 and PCL-731 control the high-speed switch type digital valve, and the card PCL-731 controls the solenoid directional valve. Hydraulic components output the signal to the DAQ Card PCL-1716 through the sensors, and the PCL-1716 transmits the signal to the Slave PC. This experiment scheme achieves precise control of the hydraulic cylinder position.

    Fig.15 Experiment scheme

    Card PCI-1716 is a multi-channel high resolution DAQ Card of 16-bit. Card ACL-6126 is an analog control card with 6 channels and 12-bit resolution. The card can output voltage signals. Card PCL-731 provides 48 digital output channels. The parameters of main control components and sensors in this system are shown in the following tables.

    Table 2 Parameters of the high-speed switch type digital valve

    Table 3 Parameters of displacement sensor

    Table 4 Parameters of flow sensor

    4.2 Traditional PID as compared with CMAC-PID in control performance

    In this experiment, the supply oil pressure is 7Mpa, rated flow is 15L/min, the back pressure of the overflow valve is 3Mpa and the given signal is 0.02m step signal. The parameters of PID: Kp=170, Ki=0, Kd=0.1. This experiment is performed in different carrier frequencies of 1Hz, 10Hz and 50Hz respectively. The three groups of response curve under two different control strategies are shown in Fig.16.

    (a) Traditional PID

    (b) CMAC -PID

    The given signals are sine, square-wave and random. The amplitude of these signals is 0.02m. The frequency of sine and square-wave signals is 2Hz. The parameters of PID: Kp=170, Ki=0, Kd=0.1. This experiment is done with carrier frequency of 10Hz. The response curves under two different control strategies are shown in Fig.17~Fig.19.

    Fig.17 Response curve comparison for input signals of sine-wave

    Fig.18 Response curve comparison for input signals of square-wave

    Fig.19 Response curve comparison for input signals of random signals

    Comparison in Fig.16~Fig.19 proves that the simulation model of this system is effective which can reflect the basic characteristic of the system. It can be seen from Fig.16(a) and Fig.16(b) that the control precision under steady state and the transient response are improved with the increase of carrier frequency. Through the experiment and Fig.16~Fig.19, it is known that the transient response characteristics improve significantly, delaying time, rising time and adjusting time of the responses for the step signal, sine signal, square-wave signal and random signal decrease remarkably under the control of CMAC-PID. The simulation and the experiment prove the effectiveness of the CMAC-PID compound control method.

    5 Conclusion

    In this paper, the electro-hydraulic digital valve control servo system is conducted using one digital valve and one directional valve. Also the simulation model of the system and the CMAC-PID compound control method are established. The following can be concluded from the simulation and experiment:

    The accuracy of this system and the transient response characteristics increase as the digital valve working frequency increases. When the carrier frequency is 50Hz, this servo system can realize the stability control and the stable precision error is controlled within 0.7mm.

    Compared with traditional PID, the transient response characteristics increase significantly, the response time decreases by almost 25% under different carrier frequency using the CMAC-PID controller.

    Compared with the traditional PID, the stable precision improves significantly and the stable precision error is controlled within 0.1mm using the CMAC-PID controller.

    [ 1] Linjama M, Laamanen A, Vilenius M. Is it time for digital hydraulics. In: Proceedings of the 8th Scandinavian International Conference on Fluid Power, Tampere, Finland, 2003. 347-356

    [ 2] Xu Y Z, Chen W N. Hydraulic high-speed on-off valve and Its application on industries. Hydraulics Pneumatics & Seals, 2012, 32(1): 72-77

    [ 3] Ding F, Yao J D, Da J, et al. Advances on high-speed on-off valves. Chinese Journal of Construction Machinery, 2011, 9(3): 351-358(In Chinese)

    [ 4] Wang W W, Song J, Li L, et al. High speed on-off solenoid valve with proportional control based on high frequency PWM control. Journal of Tsinghua University(Science and Technology), 2011, 51(5): 715-719(In Chinese)

    [ 5] Paloniitty M, Linjama M, Huhtala K. Equal coded digital hydraulic valve system-improving tracking control with pulse frequency modulation. Procedia Engineering, 2015, 106: 83-91

    [ 6] He J, Yuan S Y. High-speed on/off valve hydraulic position control system based on DSP. China Mechanical Engineering, 2010, 21(24): 2929-2931(In Chinese)

    [ 7] Gao Q H, Liu Z H, Niu H L, et al. Position control of hydraulic cylinder controlled by high-speed on-off valve. China Mechanical Engineering, 2015,25(20): 2775-2781(In Chinese)

    [ 8] He J, Yuan S Y. H∞Control for hydraulic cylinder position control system based on high-speed on/off value. Control Engineering of China, 2008, 15 (S1): 79-84

    [ 9] Lin Y. Research and Digital Simulation of High speed on/off Valve:[M.S Dissertation]. Wuhan: School of Mechanical and Electronic Engineering, Wuhan University of Technology, 2005. 9-18(In Chinese)

    [10] Meng D Y, Tao G L, Li A M, et al. Adaptive robust control of pneumatic cylinders using fast switching on/off solenoid valves. Journal of Mechanical Engineering, 2015, 50(10): 180-188

    [11] Liu J K. Advanced PID Control MATLAB Simulation. Beijing: Electronic Industry Press, 2004. 183-193

    [12] Zhang Z X. Neural Network Control and MATLAB Simulation. Harbin: Harbin Industrial University Press,2011. 165-186(In Chinese)

    [13] Liu D, Jiang J, Zhang D W. Simulation study of controlling DC motor of based on CMAC neural network PID control algorithm. Instrumentation Technology, 2014, 1: 45-49

    [14] Qian X S, Li J, Lei P F. The application of CMAC-PID parallel control algorithm in electro-hydraulic servo system. Computer Measurement & Control, 2015,23(11): 3674-3681

    [15] Jia C Y, Shan X Y, Cui Y C. Modeling and simulation of hydraulic roll bending system based on CMAC neural network and PID coupling control strategy. Journal of Iron and Steel Research, International, 2013, 20(10):17-22

    [16] Rong Y R. Study of Controlling ZTS16 Electro-hydraulic Proportional Valve Based On CMAC-PID Compound control strategy:[M.S dissertation]. Changsha: College of Mechanical and Electrical Engineering, Central South University, 2010. 23-33(In Chinese)

    [17] Li Q, Yuan R B, Yang H F. Study on hybrid control of pneumatic position servo system based on CMAC and PID. Fluid Power Transmission & Control, 2009, 5: 19-21

    his Ph.D and M.S. degrees in Harbin Institute of Technology in 2013 and 2008, respectively.He also

    his B.S. degree from Northeastern University in 2006. His research interests include the control of electro-hydraulic servo system, rehabilitation robot and environmental simulator.

    10.3772/j.issn.1006-6748.2017.03.012

    To whom correspondence should be addressed. E-mail: jyao@ysu.edu.cn Received on Mar. 12, 2017

    Supported by the National Natural Science Foundation of China (No. 51505412) and the Independent Study Program for Young Teachers in Yanshan University (No. 14LGB004).

    猜你喜歡
    勁松
    顧勁松
    藝術(shù)家(2024年2期)2024-04-15 08:19:20
    一種分步組合的部分模糊度固定方法
    莊勁松美術(shù)作品
    “貓”忍不住
    故事會(huì)(2022年7期)2022-04-03 19:26:31
    貓忍不住
    王勁松:行走在邊緣的一顆恒星
    Isolated attosecond pulse generation with few-cycle two-color counter-rotating circularly polarized laser pulses?
    余勁松
    閱讀理解精練
    Gross Error Detection and Identification Based on Parameter Estimation for Dynamic Systems*
    国产一区二区三区在线臀色熟女| 老熟妇乱子伦视频在线观看| 亚洲avbb在线观看| 久久这里只有精品19| 国产成人av教育| 免费在线观看亚洲国产| 操出白浆在线播放| 男插女下体视频免费在线播放| 国产精品久久视频播放| 国产精品av久久久久免费| 一个人免费在线观看电影 | 国产亚洲欧美在线一区二区| 床上黄色一级片| 国产成人啪精品午夜网站| 亚洲一区高清亚洲精品| 成人国语在线视频| e午夜精品久久久久久久| 久久草成人影院| 欧美另类亚洲清纯唯美| 亚洲精品国产一区二区精华液| 狂野欧美激情性xxxx| 两人在一起打扑克的视频| 99久久精品国产亚洲精品| 97超级碰碰碰精品色视频在线观看| 免费在线观看亚洲国产| 国产麻豆成人av免费视频| 亚洲欧美激情综合另类| 99热6这里只有精品| 国产成人一区二区三区免费视频网站| 久久久国产成人免费| 黄片大片在线免费观看| 桃红色精品国产亚洲av| 男插女下体视频免费在线播放| 欧美乱妇无乱码| 欧美成狂野欧美在线观看| 俺也久久电影网| 国模一区二区三区四区视频 | 在线观看午夜福利视频| 丝袜人妻中文字幕| 18禁裸乳无遮挡免费网站照片| 一边摸一边抽搐一进一小说| 一本久久中文字幕| 亚洲五月婷婷丁香| 桃红色精品国产亚洲av| 嫁个100分男人电影在线观看| 1024手机看黄色片| 99在线视频只有这里精品首页| 无人区码免费观看不卡| 女警被强在线播放| 日本撒尿小便嘘嘘汇集6| 免费在线观看亚洲国产| 国产精品亚洲av一区麻豆| 又爽又黄无遮挡网站| 蜜桃久久精品国产亚洲av| 国产又黄又爽又无遮挡在线| 久久久精品大字幕| 国产精品野战在线观看| 国产精品野战在线观看| 中国美白少妇内射xxxbb| 麻豆成人av视频| 国语自产精品视频在线第100页| 22中文网久久字幕| 欧美bdsm另类| 美女国产视频在线观看| 日韩欧美一区二区三区在线观看| 在线免费观看的www视频| 亚洲18禁久久av| 欧美日韩乱码在线| 亚洲高清免费不卡视频| 男人的好看免费观看在线视频| 在线免费十八禁| 麻豆精品久久久久久蜜桃| 中文字幕免费在线视频6| 久久久精品大字幕| 亚洲欧美成人精品一区二区| 亚洲在久久综合| 国产精品久久久久久久电影| 久久热精品热| 久久欧美精品欧美久久欧美| 亚洲成人中文字幕在线播放| 一区福利在线观看| 国产精品人妻久久久影院| 久久人人爽人人爽人人片va| 日韩强制内射视频| 卡戴珊不雅视频在线播放| 午夜精品在线福利| 国产黄色视频一区二区在线观看 | 中文字幕精品亚洲无线码一区| 99热6这里只有精品| 内地一区二区视频在线| 亚洲在线观看片| 日韩成人伦理影院| 欧美不卡视频在线免费观看| 欧美日韩综合久久久久久| 日韩人妻高清精品专区| 精品久久久久久久久亚洲| 久久精品国产亚洲av香蕉五月| 又粗又硬又长又爽又黄的视频 | 久久精品国产亚洲网站| 亚洲不卡免费看| 成人一区二区视频在线观看| 麻豆成人av视频| 九九在线视频观看精品| 波多野结衣高清无吗| 26uuu在线亚洲综合色| 99热只有精品国产| 18禁在线播放成人免费| 午夜免费激情av| 午夜激情福利司机影院| 内地一区二区视频在线| 欧美潮喷喷水| 大香蕉久久网| 麻豆久久精品国产亚洲av| 久久国产乱子免费精品| av又黄又爽大尺度在线免费看 | 亚洲精品自拍成人| 男女下面进入的视频免费午夜| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品成人综合色| 1024手机看黄色片| 老司机福利观看| 欧美潮喷喷水| h日本视频在线播放| 悠悠久久av| av国产免费在线观看| 日韩欧美三级三区| 18禁在线播放成人免费| 日日摸夜夜添夜夜爱| 久久午夜亚洲精品久久| 亚洲成人久久爱视频| 免费黄网站久久成人精品| 午夜精品一区二区三区免费看| 欧美日韩国产亚洲二区| 成人特级黄色片久久久久久久| 国产极品天堂在线| 成人国产麻豆网| a级毛片免费高清观看在线播放| 欧美激情在线99| 欧美xxxx性猛交bbbb| 欧美高清性xxxxhd video| 欧美最黄视频在线播放免费| 亚洲欧美日韩东京热| 国产女主播在线喷水免费视频网站 | 精品久久久久久久末码| 午夜激情福利司机影院| 国产色爽女视频免费观看| 特级一级黄色大片| 国产亚洲精品久久久久久毛片| 黄片无遮挡物在线观看| 亚洲18禁久久av| 男女视频在线观看网站免费| 日韩 亚洲 欧美在线| 真实男女啪啪啪动态图| 亚洲在久久综合| 中文字幕av成人在线电影| 少妇丰满av| 国产精品精品国产色婷婷| 亚洲四区av| 国产v大片淫在线免费观看| 亚洲欧美日韩高清在线视频| 国内精品一区二区在线观看| 男的添女的下面高潮视频| 搡女人真爽免费视频火全软件| 淫秽高清视频在线观看| 国产成人影院久久av| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 欧美精品一区二区大全| 国内揄拍国产精品人妻在线| 观看美女的网站| 国产美女午夜福利| 尤物成人国产欧美一区二区三区| 日韩在线高清观看一区二区三区| 亚洲欧美精品自产自拍| 18禁黄网站禁片免费观看直播| 久久久久久大精品| 亚洲欧美清纯卡通| 老司机福利观看| 久久久久久久久中文| 熟女电影av网| av免费观看日本| 国产精品一区二区三区四区久久| 卡戴珊不雅视频在线播放| 国产日本99.免费观看| 国内精品久久久久精免费| 小说图片视频综合网站| 国产精品无大码| a级毛片免费高清观看在线播放| 插阴视频在线观看视频| 一级av片app| 欧美最黄视频在线播放免费| 变态另类成人亚洲欧美熟女| 国产亚洲5aaaaa淫片| АⅤ资源中文在线天堂| 一区二区三区免费毛片| 免费看av在线观看网站| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕一区二区三区有码在线看| 国产不卡一卡二| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 欧洲精品卡2卡3卡4卡5卡区| 熟妇人妻久久中文字幕3abv| 日本五十路高清| 变态另类丝袜制服| 毛片一级片免费看久久久久| 欧美xxxx黑人xx丫x性爽| 1024手机看黄色片| 一本一本综合久久| 直男gayav资源| 国产精品一区二区三区四区免费观看| 亚洲精品亚洲一区二区| 九色成人免费人妻av| 日韩亚洲欧美综合| 国产亚洲av片在线观看秒播厂 | 国产精品av视频在线免费观看| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 亚洲精华国产精华液的使用体验 | 老司机影院成人| 久久久久久久久久久丰满| 国产精品国产高清国产av| 国产精品福利在线免费观看| a级毛片a级免费在线| 国产精品无大码| 高清日韩中文字幕在线| 精品久久久久久久末码| 精品日产1卡2卡| 国产免费男女视频| 国产一区二区三区av在线 | 日日摸夜夜添夜夜添av毛片| 午夜福利高清视频| av又黄又爽大尺度在线免费看 | 中国国产av一级| 99热全是精品| 日韩在线高清观看一区二区三区| 我的老师免费观看完整版| 国产高清激情床上av| а√天堂www在线а√下载| 嘟嘟电影网在线观看| 内射极品少妇av片p| 亚洲真实伦在线观看| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 久久久久久久久中文| 国产av在哪里看| 我要看日韩黄色一级片| 在线免费观看不下载黄p国产| 精品久久久久久久人妻蜜臀av| 亚洲激情五月婷婷啪啪| or卡值多少钱| 青春草国产在线视频 | 免费看a级黄色片| 偷拍熟女少妇极品色| 99热6这里只有精品| 国产成人a区在线观看| 精品久久久久久久人妻蜜臀av| 国产又黄又爽又无遮挡在线| 免费人成视频x8x8入口观看| 国产午夜福利久久久久久| 一级毛片我不卡| 欧美3d第一页| 精品久久久久久成人av| 中国美白少妇内射xxxbb| 日韩一本色道免费dvd| 国产成人精品婷婷| 99久久精品国产国产毛片| 99热精品在线国产| 亚洲精品乱码久久久久久按摩| 久久久久久久午夜电影| 久久99热6这里只有精品| 亚洲国产精品合色在线| 日韩精品有码人妻一区| 一区二区三区免费毛片| av黄色大香蕉| 国产午夜福利久久久久久| 国产亚洲91精品色在线| 久久久久网色| 日韩一区二区视频免费看| 久久久久久九九精品二区国产| 变态另类丝袜制服| 午夜激情欧美在线| 成人一区二区视频在线观看| 男的添女的下面高潮视频| 成年女人永久免费观看视频| 最近2019中文字幕mv第一页| 欧美一级a爱片免费观看看| 国内精品美女久久久久久| 长腿黑丝高跟| 一本一本综合久久| 一级毛片aaaaaa免费看小| 国产高潮美女av| 综合色av麻豆| 婷婷色av中文字幕| 久久精品国产亚洲av涩爱 | 成人av在线播放网站| 联通29元200g的流量卡| 男的添女的下面高潮视频| 亚洲精品粉嫩美女一区| av女优亚洲男人天堂| 精品久久久久久久人妻蜜臀av| 亚洲精品乱码久久久久久按摩| 淫秽高清视频在线观看| 干丝袜人妻中文字幕| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 中国美女看黄片| 成人综合一区亚洲| 国产精品一区二区性色av| 亚洲国产欧美在线一区| 99在线视频只有这里精品首页| 国产高清三级在线| 午夜福利在线观看免费完整高清在 | 观看美女的网站| 免费黄网站久久成人精品| 一级黄色大片毛片| 美女黄网站色视频| 亚洲人与动物交配视频| 亚洲国产日韩欧美精品在线观看| 欧美日韩在线观看h| 亚洲av第一区精品v没综合| 特大巨黑吊av在线直播| 国产毛片a区久久久久| 免费电影在线观看免费观看| 日韩亚洲欧美综合| 日韩欧美国产在线观看| 精品久久久久久久人妻蜜臀av| 国产精品综合久久久久久久免费| 最新中文字幕久久久久| 能在线免费看毛片的网站| av在线老鸭窝| 大型黄色视频在线免费观看| 欧美性感艳星| 老司机福利观看| 三级男女做爰猛烈吃奶摸视频| 又粗又硬又长又爽又黄的视频 | 国产成人午夜福利电影在线观看| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 在线观看美女被高潮喷水网站| 校园春色视频在线观看| av.在线天堂| 噜噜噜噜噜久久久久久91| 国产一级毛片在线| 女同久久另类99精品国产91| 少妇的逼好多水| 91精品国产九色| 精品免费久久久久久久清纯| 晚上一个人看的免费电影| 黄色日韩在线| 国产精品人妻久久久影院| 中文字幕精品亚洲无线码一区| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久| 国产中年淑女户外野战色| 三级经典国产精品| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 成年版毛片免费区| 哪里可以看免费的av片| 男人狂女人下面高潮的视频| 亚洲成人av在线免费| 色综合站精品国产| 晚上一个人看的免费电影| 国产一级毛片七仙女欲春2| 成人漫画全彩无遮挡| 日本三级黄在线观看| 大型黄色视频在线免费观看| 我要搜黄色片| 国产综合懂色| 亚洲激情五月婷婷啪啪| 99久久无色码亚洲精品果冻| 天堂网av新在线| 久久人人精品亚洲av| 男人的好看免费观看在线视频| 欧美日韩国产亚洲二区| 久久中文看片网| 色视频www国产| 日本黄色视频三级网站网址| 色综合站精品国产| 午夜精品国产一区二区电影 | 波野结衣二区三区在线| 色哟哟·www| 精品99又大又爽又粗少妇毛片| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 天堂影院成人在线观看| 2022亚洲国产成人精品| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 亚州av有码| 久久草成人影院| 国产免费一级a男人的天堂| 综合色丁香网| 老女人水多毛片| 亚洲成人精品中文字幕电影| 18禁裸乳无遮挡免费网站照片| 麻豆成人av视频| 黑人高潮一二区| 精品日产1卡2卡| 午夜福利高清视频| 亚洲五月天丁香| 日韩在线高清观看一区二区三区| 亚洲综合色惰| 欧美色欧美亚洲另类二区| 在线天堂最新版资源| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 黄片无遮挡物在线观看| 久久午夜亚洲精品久久| 色综合色国产| 亚洲最大成人av| 久久久a久久爽久久v久久| 国产 一区精品| 午夜爱爱视频在线播放| 成人高潮视频无遮挡免费网站| 一边亲一边摸免费视频| 国产91av在线免费观看| 男人舔奶头视频| 国产精华一区二区三区| 亚洲最大成人中文| 国产精品久久久久久精品电影| 精品一区二区三区视频在线| 黄色一级大片看看| a级毛片免费高清观看在线播放| 高清在线视频一区二区三区 | 黄色配什么色好看| 亚洲18禁久久av| 国产精品久久电影中文字幕| 亚洲精品自拍成人| 亚洲va在线va天堂va国产| 不卡视频在线观看欧美| 亚洲内射少妇av| 国产久久久一区二区三区| 国产av在哪里看| 日本一二三区视频观看| 黄色一级大片看看| 乱人视频在线观看| 午夜精品一区二区三区免费看| 久久亚洲精品不卡| 日本黄色片子视频| 欧美精品一区二区大全| 美女内射精品一级片tv| 久久鲁丝午夜福利片| 久久精品综合一区二区三区| 久久久a久久爽久久v久久| 精品人妻视频免费看| 99热全是精品| 一进一出抽搐gif免费好疼| 日韩高清综合在线| www.av在线官网国产| 久久精品综合一区二区三区| 高清在线视频一区二区三区 | 免费看光身美女| 亚洲最大成人av| 青春草视频在线免费观看| 色综合亚洲欧美另类图片| 男人狂女人下面高潮的视频| 天堂√8在线中文| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 久久久久久久久久黄片| 晚上一个人看的免费电影| 又粗又爽又猛毛片免费看| 男人的好看免费观看在线视频| 日本熟妇午夜| 国产一区二区三区在线臀色熟女| 亚洲在线自拍视频| 少妇丰满av| 国产精品伦人一区二区| 日韩人妻高清精品专区| 免费观看的影片在线观看| www.av在线官网国产| 99九九线精品视频在线观看视频| 国产成人a区在线观看| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 一进一出抽搐gif免费好疼| 插阴视频在线观看视频| 少妇高潮的动态图| 一级二级三级毛片免费看| 99精品在免费线老司机午夜| 99久久中文字幕三级久久日本| 中文字幕制服av| 村上凉子中文字幕在线| 一进一出抽搐动态| 国产黄色小视频在线观看| 日韩欧美在线乱码| 丰满乱子伦码专区| 中文字幕av在线有码专区| 国产精品日韩av在线免费观看| 国产精品电影一区二区三区| 中文精品一卡2卡3卡4更新| 十八禁国产超污无遮挡网站| av免费在线看不卡| 天堂影院成人在线观看| 亚洲综合色惰| 国产色爽女视频免费观看| 亚洲综合色惰| 99久久成人亚洲精品观看| 亚洲欧洲国产日韩| 亚洲美女搞黄在线观看| 日韩制服骚丝袜av| 又爽又黄a免费视频| 高清日韩中文字幕在线| 天堂影院成人在线观看| av免费在线看不卡| 老女人水多毛片| 日韩三级伦理在线观看| 天堂网av新在线| 国产av不卡久久| 国产精品野战在线观看| 一级毛片电影观看 | 亚洲久久久久久中文字幕| 久久亚洲精品不卡| 国产激情偷乱视频一区二区| 国产成人a∨麻豆精品| 午夜福利高清视频| 欧洲精品卡2卡3卡4卡5卡区| 国国产精品蜜臀av免费| 亚洲经典国产精华液单| 非洲黑人性xxxx精品又粗又长| 亚洲美女视频黄频| 国产午夜精品一二区理论片| 国产精品久久视频播放| 日日啪夜夜撸| 国产 一区 欧美 日韩| 99九九线精品视频在线观看视频| 国产精品久久久久久久电影| 麻豆av噜噜一区二区三区| 亚洲一级一片aⅴ在线观看| 国产午夜精品论理片| 男人的好看免费观看在线视频| 2021天堂中文幕一二区在线观| 精品人妻一区二区三区麻豆| 黄色视频,在线免费观看| 精品不卡国产一区二区三区| 青春草国产在线视频 | 精品99又大又爽又粗少妇毛片| 国产成人福利小说| 国产黄片美女视频| 99热全是精品| 在线免费观看的www视频| 伦精品一区二区三区| 国内精品宾馆在线| 欧美日韩精品成人综合77777| 成人一区二区视频在线观看| 一个人观看的视频www高清免费观看| 久久热精品热| 国产av一区在线观看免费| 乱人视频在线观看| 亚洲电影在线观看av| 国产一级毛片在线| 国产成人福利小说| 夫妻性生交免费视频一级片| 亚洲成a人片在线一区二区| 免费不卡的大黄色大毛片视频在线观看 | 在线免费十八禁| 一区福利在线观看| 中文字幕av在线有码专区| 日韩高清综合在线| 深夜a级毛片| 日韩大尺度精品在线看网址| 欧美在线一区亚洲| 国产三级中文精品| 久久人妻av系列| 91在线精品国自产拍蜜月| 日本免费一区二区三区高清不卡| 日本在线视频免费播放| 99九九线精品视频在线观看视频| 国产成人精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 丰满乱子伦码专区| 夜夜看夜夜爽夜夜摸| 极品教师在线视频| 一级毛片电影观看 | 2022亚洲国产成人精品| 日本一本二区三区精品| 亚洲欧美日韩卡通动漫| 此物有八面人人有两片| 日本一本二区三区精品| 69av精品久久久久久| 欧美又色又爽又黄视频| 亚洲av成人精品一区久久| 亚洲aⅴ乱码一区二区在线播放| 欧美+亚洲+日韩+国产| 国产 一区 欧美 日韩| 日日干狠狠操夜夜爽| 亚洲精品乱码久久久久久按摩| 国产亚洲av片在线观看秒播厂 | 久久精品久久久久久噜噜老黄 | 黄片无遮挡物在线观看| 99热精品在线国产| 欧美成人一区二区免费高清观看| 欧美日韩在线观看h| 国产欧美日韩精品一区二区| 岛国在线免费视频观看| 日本黄大片高清| 亚洲精品乱码久久久v下载方式| 18禁在线播放成人免费| 国产高潮美女av| 国产在视频线在精品| 69人妻影院| 午夜福利在线在线| 啦啦啦观看免费观看视频高清| 国产精品久久视频播放| 深夜a级毛片| 波多野结衣巨乳人妻| 美女cb高潮喷水在线观看| 欧美bdsm另类|