• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ZnO whiskers growth on the surface of Sn9Zn/Cu solder joints in concentrator silicon solar cells solder layer①

    2017-09-25 12:53:39ZhangLiangYangFanZhongSujuan
    High Technology Letters 2017年3期

    Zhang Liang (張 亮), Yang Fan, Zhong Sujuan

    (*School of Mechanical & Electrical Engineering, Jiangsu Normal University, Xuzhou 221116, P.R.China)(**State Key Laboratory of Advanced Brazing Filler Metals & Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, P.R.China)

    ZnO whiskers growth on the surface of Sn9Zn/Cu solder joints in concentrator silicon solar cells solder layer①

    Zhang Liang (張 亮)②*, Yang Fan*, Zhong Sujuan**

    (*School of Mechanical & Electrical Engineering, Jiangsu Normal University, Xuzhou 221116, P.R.China)(**State Key Laboratory of Advanced Brazing Filler Metals & Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, P.R.China)

    ZnO whiskers observation on the surface of SnZn/Cu solder joints in concentrator silicon solar cells solder layer is reported. In the experiment, SnZn/Cu samples are left in laboratory after reflow soldering for two years before an examination by SEM, then ZnO whiskers can be observed obviously, which grows out from the rich-Zn phase of the samples and causes electrical short circuit in the electronics appliances, which demonstrates that the SnZn solder shows a risk for the short circuiting failure of an electronic device. Moreover, the growth mechanism of ZnO whiskers is researched based on cracked oxide theory, which provides the reference support for SnZn solders application.

    ZnO whiskers, reflow soldering, short circuiting failure, electronic device

    0 Introduction

    Concentrator silicon solar cells manufactured are soldered to a metal core printed circuit board, especially for the Cu substrate, and the solder layer of the concentrator silicon solar cells will affect the reliability of the whole structure[1]. Because lead is toxic, hazardous to human health, and not friendly to environment, electronic industries are striving to find viable alternatives to tin-lead (SnPb) solders in order to meet world-wide regulatory requirements on the restrictions of the use of lead (Pb)[2,3]. Due to environmental and health concerns, extensive investigations have been made over the last few years to find an acceptable lead-free solder for various electronic attachment applications and optoelectronics modules[4]. Sn9Zn solder alloy was proposed as a low melting alternative to SnPb solders because the former’s melting point (198℃) is close to that of the latter (183℃)[5]. Therefore, eutectic Sn9Zn solder can be extensively used as interconnection, especially for solder layer of concentrator silicon solar cells.

    Sn9Zn alloys were utilized in 3D packaging interconnection with SnZn/Cu and Cu/SnZn/Cu nanoscale thickness by Li[6], and the solder layer was totally consumed in the reflow process, and only Cu6Sn5and Cu3Sn phases were observed clearly at the interface. Zhang[7]demonstrated that the fatigue life of Sn9Zn solder joints in CSP device was higher than SnPb, SnAg and SnSb solder joints, and lower than that of SnAgCu solder joints. Sn9Zn solder joints represent excellent properties in electronic packaging, however, the low corrosion resistance is considered as the main issue for SnZn solder joints, because corrosion reduces solder joint strength for the formation of pits and corrosion products[8,9]. Up to now, no literature reports that Sn9Zn alloy shows a risk for electronic interconnection.

    In this work, the Sn9Zn/Cu samples soldered with reflow soldering, have been stored for two years in the laboratory with ambient environment, and then were investigated again, to analyze the microstructure evolution of solder joints. The ZnO whiskers were found on the surface of Sn9Zn/Cu surface, which is the first time to report this phenomenon in lead-free solder joints.

    1 Experiment

    Commercial Sn9Zn paste was put on the surface of Cu substrate, and interconnection between Cu and SnZn paste was carried out by reflow soldering with peak temperature 230℃. The samples were saved for two years in the laboratory atmosphere, then cut and the cross-section was treated, the microstructures of SnZn/Cu solder joint were characterized using a solution of 5% (vol.) HNO3and 95%CH3OH for 7s. Then the phases in the matrix microstructure were determined after seven days aging under room ambience scanning electron microscope (Quanta200) equipped with a thermo-electron x-ray energy dispersion spectrometry (EDS).

    Fig.1 Schematic illustration of Sn9Zn solder joint

    2 Results and discussion

    The Sn9Zn eutectic solder consists of two phases, namely, the β-Sn and rich-Zn phases, as shown in Fig.2. Accompanying the microstructures observation, it was noted that whiskers growth took place in the matrix microstructure of SnZn/Cu solder joints. Fig.3 and Fig.4 show the growth of a crystal whisker on the SnZn solder joints surface with scanning electron microscopic

    images, and the mapping element analysis demonstrates that the whiskers are the Zn-O composites. Moreover the root area of whiskers are rich-Zn phases, the Zn is notable for its high chemical activity, it can react with the oxygen (2Zn+O2→2ZnO) much more easily in the air and accelerate ZnO whisker growth in SnZn/Cu solder joints. The length of ZnO whiskers in Fig.2 and Fig.3 are 35μm, 15μm respectively, and the average diameter of ZnO whisker is 5μm. Moreover, only on the surface of bulk rich-Zn phase, the ZnO whiskers can be observed, no whiskers can be found on small rich-Zn phase. This phenomenon indicates that the whisker growth is related to the sizes of rich-Zn phase.

    Fig.2 Microstructure of Sn9Zn solder

    Fig.3 The ZnO whisker of SnZn/Cu solder joints with needle morphology

    Fig.4 The ZnO whisker of SnZn/Cu solder joints with bulk morphology

    Fig.5 shows the different morphologies of ZnO whiskers, it is found that all the whiskers grow out from the dark stick-like rich-Zn phase, and needle-like and bulk-like morphologies for ZnO whiskers can be observed obviously, and the longest whisker in SnZn/Cu solder joints observed by SEM is about 38μm. Fig.6 shows the distribution of ZnO whiskers in the SnZn solder matrix, different morphologies of ZnO whiskers can be observed in this picture, the roots of ZnO whiskers are all from the rich-Zn phases. For the chip stacking in 3D packaging, the size and the distance is about 20μm and the whisker is long enough to short two neighboring micro-bumps. It is possible that when there is a high electrical field crossing the narrow gap between the tip of a whisker and the point of contact on the other micro-bumps, just before the tip of the whisker touching the other micro-bump, a spark may ignite fire[10], which can result in short circuit failure of the

    Fig.5 The relationship between ZnO whisker and rich-Zn phase

    device, like the short circuit failure induced by whiskers as shown in Fig.7[11]. Moreover, in the high-density device, the failure can also be found between two neighboring leads or solder joints. Tu[12]established the broken oxide model to explain the Sn whisker growth, the growth of whisker is an eruption from the oxidized surface, which has to break to form Sn whisker. For ZnO whisker growth in the research, oxidation is essential too, but the ZnO whisker formed results from the accumulation of Zn-O reaction, and the growth site is the root of the ZnO whiskers.

    Fig.6 Distribution of ZnO whiskers in matrix

    Fig.7 Short circuiting failure inducing by whiskers

    In order to clarify the growth mechanism of ZnO whiskers in the SnZn/Cu solder joints in our research, the schematic illustration in Fig.8 was plotted. The bulk stick-like rich-Zn phase can precipitate from the molten SnZn solder joints, due to the touch of rich-Zn phase with oxygen, the oxidation reaction between Zn and O2may happen and the volume of rich-Zn phase will expand obviously, so the stress potential gradient can be formed while the stress is a necessary condition for spontaneous whiskers growth, so it is believed that the driving force for ZnO whisker growth is related to the stress potential gradient developed in the rich-Zn phase. Chen[13]found the stress resulting in the Sn whisker growth was tensile residual stress not compressive stress in Sn-Mn alloy electrodeposits. Ye[14]suggested that the compressive stress is the driving force for Sn whisker growth during thermal cycling. Therefore, for ZnO whiskers, the stress driving the formation of whiskers growth in SnZn/Cu solder joints should be determined further. Moreover, due to volume expanding, the neighboring Sn matrix will deform simultaneously, so the crack can be found in the Sn matrix around ZnO phase, as shown in Fig.8 and the crack phenomena can be observed in the SEM figure (see Fig.9). Meanwhile, the cracks of Sn matrix can provide the paths for the touching of oxygen with rich-Zn phase, only when the rich-Zn phase reacts with oxygen completely. All Zn in the rich-Zn phase will be squeezed into ZnO whisker, then the oxidation procedure and whiskers growth will cease. Therefore, the whiskers growth and the whiskers length are determined by the rich-Zn sizes. Fig.10 shows the effect of Zn content on the ZnO whisker growth, it is found that with the decrease of Zn, the ZnO whiskers can be reduced significantly, and no ZnO whiskers can be observed in Sn-1Zn and Sn-2Zn. Since the Zn content in SnZn solder is 9wt.%, the oxidation can be found obviously. When the content of Zn is reduced to an extent in SnZn solder (1%Zn and 2%Zn), the rich-Zn phase is too small to provide the stress potential gradient during oxidation, the ZnO whiskers may be not formed in the small rich-Zn phases for low Zn SnZn solders. So the Sn9Zn eutectic solder shows a risk for the short circuiting failure of electronic device, the application of Sn9Zn solder should be considered carefully in concentrator silicon solar cells.

    Fig.8 Growth mechanism of ZnO whisker

    Fig.9 Crack in the matrix around ZnO whisker

    Fig.10 Effect of Zn content on the whiskers growth

    3 Conclusions

    ZnO whiskers in Sn9Zn/Cu solder joints of concentrator silicon solar cells solder layer are reported firstly. It is observed that the ZnO whiskers grow out from the surface of rich-Zn phase in the solder joints under room ambience. A cracked oxidation mechanism is used to explain the growth behavior of ZnO whiskers, and the whiskers may increase the risk of short circuit failure in electronic devices. Such a phenomenon of abnormal whisker growth may significantly degrade the reliability of whole assembly.

    [ 1] Baricordi S, Calabrese G, Gualdi F, et al. A joint thermal-electrical analysis of void formation effects on concentrate silicon solar cells solder layer. Solar Energy Materials Solar Cells, 2013, 111(4): 133-140

    [ 2] Zhang L, Han J G, Guo Y H, et al. Properties and microstructures of SnAgCu-xEu alloys for concentrator silicon solar cells solder layer. Solar Energy Materials Solar Cells, 2014, 130: 397-400

    [ 3] Zhang L, Tu K N. Structure and properties of lead-free solders bearing micro and nano particles. Materials Science Engineering Reports, 2014, 82(1): 1-32

    [ 4] Meydaneri F, Saatci B, Gündüz M, et al. Determination of thermal conductivities of Sn-Zn lead-free solder alloys with radial heat flow and Bridgman-type apparatus. Continuum Mechanics and Thermodynamics, 2013, 25(6): 691-704

    [ 5] Shrestha T, Gollapudi S, Charit I, et al. Creep deformation behavior of Sn-Zn solder alloys. Journal of Materials Science, 2014, 49(5): 2127-2135

    [ 6] Li Q Q, Chan Y C, Zhang K L, et al. Study of microstructure evolution in novel Sn-Zn/Cu bi-layer and Cu/Sn-Zn/Cu sandwich structures with nanoscale thickness for 3D packaging interconnection. Microelectronic Engineering, 2014, 122(16): 52-58

    [ 7] Zhang L, Sun L, Guo Y H, et al. Reliability of lead-free solder joints in CSP device under thermal cycling. Journal of Materials Science: Materials in Electronics, 2014, 25(3): 1209-1213

    [ 8] Ghaddafy M G, Yahaya M Z, Mohamad A A. Corrosion of Sn-9Zn solder joints: a review. International Journal of Electroactive Materials, 2014, 2: 8-16

    [ 9] Zhang L, Han J G, Guo Y H, et al. Microstructures and properties of SnZn lead-free solder joints bearing La for electronic packaging. IEEE Transactions on Electron Devices, 2012, 59(12): 3269-3272

    [10] Tu K N, Li J C M. Spontaneous whisker growth on lead-free solder finishes. Materials Science & Engineering: A, 2005, 409(1-2), 131-139

    [11] Tu K N, Chen C, Wu A T. Stress analysis of spontaneous Sn whisker growth. Joural of Materials Science: Materials in Electronics, 2007, 18(1):269-281

    [12] Tu K N. Electronic Thin-Film Reliability. Cambridge: Cambridge University Press, 2011

    [13] Chen K M, Wilcox G D. Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits. Physical Review Letters, 2005, 94(6): 066104

    [14] Ye H, Xue S B, Petcht M. Effects of thermal cycling on rare earth (Pr)-induced Sn whisker/hillock growth. Materials Letters, 2013, 98(5): 78-81

    Zhang Liang, born in 1984. He is currently a professor in School of Mechatronic Engineering, Jiangsu Normal University, China. He received his Ph.D degree from Nanjing University of Aeronautics and Astronautics, China in 2011. His research interests include microelectronics welding, SMT, lead-free solders. etc. He has published over 100 papers.

    10.3772/j.issn.1006-6748.2017.03.016

    Supported by the National Natural Science Foundation of China (No. 51475220), the State Foundation of Laboratory of Advanced Brazing Filler Metals & Technology (Zhengzhou Research Institute of Mechanical Engineering) (No. SKLABFMT-2015-03) and High Level Talent Plan of Jiangsu Normal University (No. YQ2015002).

    To whom correspondence should be addressed. E-mail: zhangliang@jsnu.edu.cn

    on July 27, 2016

    中文字幕av在线有码专区| 99久久精品一区二区三区| 欧美丝袜亚洲另类| 国产欧美日韩精品一区二区| 全区人妻精品视频| 免费观看精品视频网站| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| av在线播放精品| 别揉我奶头~嗯~啊~动态视频| 晚上一个人看的免费电影| 男女那种视频在线观看| 久久久久久久久中文| 国产免费男女视频| 熟妇人妻久久中文字幕3abv| 小说图片视频综合网站| 12—13女人毛片做爰片一| 国产成人91sexporn| 最近中文字幕高清免费大全6| 国产精品美女特级片免费视频播放器| 99久国产av精品| 在线看三级毛片| 久久精品国产鲁丝片午夜精品| 午夜精品一区二区三区免费看| 日本成人三级电影网站| 人人妻人人澡欧美一区二区| 亚洲av.av天堂| 高清日韩中文字幕在线| 丰满乱子伦码专区| 国产黄色视频一区二区在线观看 | 波多野结衣巨乳人妻| 国产高清三级在线| 中文字幕久久专区| 免费av不卡在线播放| 天天躁夜夜躁狠狠久久av| 午夜福利高清视频| 婷婷精品国产亚洲av在线| 国产av不卡久久| 亚洲欧美日韩高清专用| 国产在线男女| 日韩欧美 国产精品| 国产成年人精品一区二区| 中国美女看黄片| 别揉我奶头 嗯啊视频| 少妇熟女aⅴ在线视频| 国产精品无大码| 99九九线精品视频在线观看视频| 如何舔出高潮| 欧美绝顶高潮抽搐喷水| 男女下面进入的视频免费午夜| 精品免费久久久久久久清纯| 免费看av在线观看网站| 亚洲av五月六月丁香网| 亚洲国产精品sss在线观看| 俄罗斯特黄特色一大片| 色av中文字幕| 在线观看66精品国产| 国产蜜桃级精品一区二区三区| 99久久无色码亚洲精品果冻| 一本精品99久久精品77| 午夜福利高清视频| 久久久久久大精品| 蜜桃亚洲精品一区二区三区| 国产精品1区2区在线观看.| 99久久精品热视频| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 日本免费一区二区三区高清不卡| 美女xxoo啪啪120秒动态图| 97超级碰碰碰精品色视频在线观看| 久久久欧美国产精品| 又粗又爽又猛毛片免费看| 国国产精品蜜臀av免费| 国产69精品久久久久777片| 国产成人一区二区在线| 搡女人真爽免费视频火全软件 | 亚洲aⅴ乱码一区二区在线播放| 少妇熟女aⅴ在线视频| 免费在线观看影片大全网站| 国产 一区精品| 亚洲熟妇中文字幕五十中出| 日本爱情动作片www.在线观看 | 久久久久久久久中文| 亚洲专区国产一区二区| 蜜臀久久99精品久久宅男| 91麻豆精品激情在线观看国产| 久久久精品欧美日韩精品| 亚洲精品久久国产高清桃花| 久久午夜亚洲精品久久| 精品日产1卡2卡| 欧美一级a爱片免费观看看| 看片在线看免费视频| 久久久久久九九精品二区国产| 九九久久精品国产亚洲av麻豆| 国产男人的电影天堂91| 国产午夜福利久久久久久| 国产爱豆传媒在线观看| 国内揄拍国产精品人妻在线| 99热网站在线观看| 久久综合国产亚洲精品| 春色校园在线视频观看| 啦啦啦啦在线视频资源| 亚洲在线观看片| 此物有八面人人有两片| 亚洲最大成人av| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 国产精品无大码| 亚洲国产精品成人综合色| 亚洲图色成人| 日韩人妻高清精品专区| 国产高清有码在线观看视频| 成人综合一区亚洲| av天堂在线播放| 精品免费久久久久久久清纯| 成人美女网站在线观看视频| 无遮挡黄片免费观看| 一区二区三区四区激情视频 | 麻豆一二三区av精品| 欧美最新免费一区二区三区| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 免费观看在线日韩| 欧美日韩在线观看h| 看非洲黑人一级黄片| 久久久精品94久久精品| 男人和女人高潮做爰伦理| 日韩一区二区视频免费看| 午夜福利在线在线| 欧美成人a在线观看| 男女那种视频在线观看| 久久久午夜欧美精品| 成年女人永久免费观看视频| 99久久精品国产国产毛片| 亚洲成人久久爱视频| 色av中文字幕| 看片在线看免费视频| 成人亚洲欧美一区二区av| 亚洲成人中文字幕在线播放| 国产亚洲av嫩草精品影院| 联通29元200g的流量卡| 日产精品乱码卡一卡2卡三| 国产高清有码在线观看视频| 老女人水多毛片| 日本免费一区二区三区高清不卡| 中国国产av一级| 一本一本综合久久| 久久精品国产99精品国产亚洲性色| 国产大屁股一区二区在线视频| 国产精品乱码一区二三区的特点| 亚洲美女黄片视频| 欧美zozozo另类| 中文字幕免费在线视频6| 国内精品一区二区在线观看| 国产精品久久久久久久电影| 久久国内精品自在自线图片| 一级毛片我不卡| 精品99又大又爽又粗少妇毛片| 天天一区二区日本电影三级| 天天躁夜夜躁狠狠久久av| 亚洲av免费在线观看| 美女cb高潮喷水在线观看| 国产又黄又爽又无遮挡在线| 成人特级黄色片久久久久久久| 亚洲一级一片aⅴ在线观看| 日韩高清综合在线| 狂野欧美白嫩少妇大欣赏| 天堂av国产一区二区熟女人妻| 日本-黄色视频高清免费观看| 丰满的人妻完整版| 丝袜美腿在线中文| 免费看日本二区| 久久久久久久久中文| 日韩一本色道免费dvd| 国产黄a三级三级三级人| 免费观看的影片在线观看| 精品人妻一区二区三区麻豆 | 欧美又色又爽又黄视频| 国产一区二区在线av高清观看| 在现免费观看毛片| 又黄又爽又刺激的免费视频.| 免费av不卡在线播放| 搡女人真爽免费视频火全软件 | 成人美女网站在线观看视频| 永久网站在线| 欧美一区二区国产精品久久精品| 久久99热6这里只有精品| 国内精品一区二区在线观看| 久久久久久伊人网av| 国内精品宾馆在线| 亚洲天堂国产精品一区在线| 国产高清不卡午夜福利| 草草在线视频免费看| 69av精品久久久久久| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 深夜a级毛片| 69人妻影院| 99久国产av精品| 又黄又爽又免费观看的视频| 精华霜和精华液先用哪个| 嫩草影院新地址| 久久精品国产鲁丝片午夜精品| 黄色配什么色好看| www日本黄色视频网| 狠狠狠狠99中文字幕| 欧美高清性xxxxhd video| 亚洲av二区三区四区| 丰满的人妻完整版| 天天躁日日操中文字幕| 亚洲久久久久久中文字幕| 91狼人影院| 国产蜜桃级精品一区二区三区| 一个人观看的视频www高清免费观看| 成年av动漫网址| 国产精品99久久久久久久久| 日韩av不卡免费在线播放| 男人舔女人下体高潮全视频| 午夜福利在线观看吧| 一本精品99久久精品77| 国产高清不卡午夜福利| 久久久久久久久大av| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 国内精品美女久久久久久| 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 久久精品国产清高在天天线| 老司机福利观看| 99久久久亚洲精品蜜臀av| 亚洲国产精品成人综合色| 国产在线男女| 精品午夜福利在线看| 精品日产1卡2卡| 国产乱人视频| 久久国内精品自在自线图片| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区国产精品久久精品| 精品久久久噜噜| 91av网一区二区| 午夜爱爱视频在线播放| 欧美三级亚洲精品| 校园人妻丝袜中文字幕| 亚洲成av人片在线播放无| 草草在线视频免费看| 国产美女午夜福利| 91在线观看av| 成人国产麻豆网| 18禁裸乳无遮挡免费网站照片| 韩国av在线不卡| 国产成年人精品一区二区| 少妇猛男粗大的猛烈进出视频 | 国产黄a三级三级三级人| 国产亚洲精品久久久com| 免费人成在线观看视频色| 午夜福利在线在线| 日本欧美国产在线视频| 国产视频一区二区在线看| 国产精品女同一区二区软件| 亚洲av中文字字幕乱码综合| 国产精品一及| 亚洲精品乱码久久久v下载方式| 欧美又色又爽又黄视频| 一进一出抽搐动态| 国语自产精品视频在线第100页| 女生性感内裤真人,穿戴方法视频| 干丝袜人妻中文字幕| av福利片在线观看| 91在线观看av| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 欧美国产日韩亚洲一区| av.在线天堂| 免费电影在线观看免费观看| 欧美丝袜亚洲另类| 在线观看66精品国产| 精品久久久久久久久av| 一级av片app| 永久网站在线| 少妇裸体淫交视频免费看高清| 国产大屁股一区二区在线视频| av天堂在线播放| 成人无遮挡网站| 18+在线观看网站| 亚洲综合色惰| 韩国av在线不卡| 女同久久另类99精品国产91| 成人特级av手机在线观看| 老司机福利观看| 精品一区二区三区视频在线观看免费| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 黄色日韩在线| 亚洲自偷自拍三级| 人妻久久中文字幕网| 成人亚洲欧美一区二区av| 免费电影在线观看免费观看| 精品人妻熟女av久视频| 国产精品国产高清国产av| 变态另类丝袜制服| 99热这里只有精品一区| 欧美日韩综合久久久久久| 国产精品三级大全| 国产精品久久久久久久久免| 亚洲中文字幕日韩| 中文字幕熟女人妻在线| 91精品国产九色| 在线天堂最新版资源| 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 亚洲自拍偷在线| 午夜激情福利司机影院| 日本免费一区二区三区高清不卡| 午夜爱爱视频在线播放| 久久久久久九九精品二区国产| 禁无遮挡网站| 国产午夜福利久久久久久| 国产精品久久视频播放| 欧美最新免费一区二区三区| 午夜福利在线观看吧| 日韩精品中文字幕看吧| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 一夜夜www| 日日摸夜夜添夜夜添av毛片| 听说在线观看完整版免费高清| 啦啦啦韩国在线观看视频| 亚洲av.av天堂| 夜夜夜夜夜久久久久| h日本视频在线播放| 亚洲一级一片aⅴ在线观看| 中文字幕免费在线视频6| 午夜福利18| 免费在线观看成人毛片| 午夜福利高清视频| 三级毛片av免费| 日本免费一区二区三区高清不卡| 欧美xxxx性猛交bbbb| 成人毛片a级毛片在线播放| 午夜福利视频1000在线观看| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 毛片女人毛片| 成人av一区二区三区在线看| 国产成人aa在线观看| 成人毛片a级毛片在线播放| 精品欧美国产一区二区三| 日本-黄色视频高清免费观看| 一级毛片我不卡| 亚洲成人av在线免费| 午夜福利在线观看吧| 波野结衣二区三区在线| 插阴视频在线观看视频| 国产亚洲精品av在线| 国产一区二区三区在线臀色熟女| 尾随美女入室| 最近中文字幕高清免费大全6| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩卡通动漫| 久久久欧美国产精品| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 此物有八面人人有两片| 男插女下体视频免费在线播放| 大又大粗又爽又黄少妇毛片口| 中文字幕久久专区| 久久热精品热| а√天堂www在线а√下载| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女| 丰满乱子伦码专区| 国产精品永久免费网站| 日韩av不卡免费在线播放| 成人av在线播放网站| 亚洲中文字幕一区二区三区有码在线看| 一级毛片我不卡| 小说图片视频综合网站| 日韩亚洲欧美综合| 久久精品人妻少妇| 国产精品一二三区在线看| 亚洲精品一区av在线观看| 最近的中文字幕免费完整| 波多野结衣高清无吗| 久久人人爽人人片av| 大型黄色视频在线免费观看| 美女高潮的动态| 久久国产乱子免费精品| 中文字幕免费在线视频6| 亚洲欧美成人综合另类久久久 | 久久天躁狠狠躁夜夜2o2o| 婷婷亚洲欧美| 六月丁香七月| 国产极品精品免费视频能看的| 国内精品宾馆在线| 日韩欧美 国产精品| 别揉我奶头~嗯~啊~动态视频| 1000部很黄的大片| 久久人人爽人人片av| 久久人人精品亚洲av| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区 | 欧美性猛交╳xxx乱大交人| 在线播放无遮挡| 亚洲av一区综合| 赤兔流量卡办理| 亚洲自偷自拍三级| 内地一区二区视频在线| 日韩精品有码人妻一区| 午夜久久久久精精品| 91av网一区二区| 热99re8久久精品国产| 12—13女人毛片做爰片一| 人妻少妇偷人精品九色| 久久久久久伊人网av| 久99久视频精品免费| 白带黄色成豆腐渣| 欧美性猛交黑人性爽| 久久久久久久亚洲中文字幕| 色噜噜av男人的天堂激情| 亚洲图色成人| 一区福利在线观看| 久久精品国产亚洲网站| 白带黄色成豆腐渣| 亚洲精品国产成人久久av| 99热这里只有精品一区| 嫩草影视91久久| 禁无遮挡网站| 成人av一区二区三区在线看| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 男人狂女人下面高潮的视频| 国产成人91sexporn| 精品久久久噜噜| 亚洲无线在线观看| 少妇熟女aⅴ在线视频| 一边摸一边抽搐一进一小说| 两个人的视频大全免费| 热99re8久久精品国产| 女同久久另类99精品国产91| 国产一区二区激情短视频| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 久久午夜福利片| 伦精品一区二区三区| 免费大片18禁| 小说图片视频综合网站| 国产美女午夜福利| 亚洲精品成人久久久久久| 国内久久婷婷六月综合欲色啪| 日韩三级伦理在线观看| 成年女人毛片免费观看观看9| 精品人妻偷拍中文字幕| 韩国av在线不卡| 久久精品国产自在天天线| 中文字幕人妻熟人妻熟丝袜美| 精品国产三级普通话版| 久久草成人影院| 亚洲av中文av极速乱| 日本欧美国产在线视频| 白带黄色成豆腐渣| 69人妻影院| 欧美绝顶高潮抽搐喷水| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线播放欧美日韩| 国产精品一区www在线观看| 国产精品无大码| 亚洲国产精品国产精品| 成年女人永久免费观看视频| 黄色配什么色好看| 99久国产av精品国产电影| 午夜福利在线在线| 亚洲国产精品久久男人天堂| 国产成人福利小说| 日日摸夜夜添夜夜添av毛片| 久久久久久久午夜电影| 淫妇啪啪啪对白视频| 99久久精品热视频| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 亚洲国产色片| 99国产极品粉嫩在线观看| 99热这里只有精品一区| 九色成人免费人妻av| 国产午夜精品论理片| videossex国产| 一进一出抽搐gif免费好疼| 又爽又黄无遮挡网站| 日韩欧美一区二区三区在线观看| 国产 一区 欧美 日韩| 香蕉av资源在线| 精品久久久久久久久久久久久| 久久精品国产亚洲av香蕉五月| 高清毛片免费看| 草草在线视频免费看| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 69精品国产乱码久久久| 在线观看一区二区三区激情| 一级毛片久久久久久久久女| 久久久久国产网址| 国产高清有码在线观看视频| 亚洲精品色激情综合| 国产精品蜜桃在线观看| 国产午夜精品久久久久久一区二区三区| 精品人妻熟女av久视频| 国产免费一级a男人的天堂| 亚洲精品日本国产第一区| 高清黄色对白视频在线免费看 | 高清视频免费观看一区二区| 一区二区三区四区激情视频| 亚洲欧美日韩东京热| 一区二区三区四区激情视频| 伊人久久精品亚洲午夜| 黄色怎么调成土黄色| 国产精品.久久久| 大片免费播放器 马上看| 久久精品国产亚洲av涩爱| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 久久影院123| 99精国产麻豆久久婷婷| 国产精品一二三区在线看| 亚洲av男天堂| 人妻一区二区av| 一本大道久久a久久精品| 久久久久久久久久久久大奶| 最近2019中文字幕mv第一页| 九九在线视频观看精品| 亚洲欧美精品专区久久| 国产美女午夜福利| 欧美三级亚洲精品| 99久久精品国产国产毛片| 欧美区成人在线视频| 国产精品一区www在线观看| 最黄视频免费看| 一级毛片aaaaaa免费看小| 日日摸夜夜添夜夜爱| 22中文网久久字幕| 免费黄网站久久成人精品| 国产精品欧美亚洲77777| 五月开心婷婷网| 狂野欧美白嫩少妇大欣赏| 极品人妻少妇av视频| 日韩在线高清观看一区二区三区| 国语对白做爰xxxⅹ性视频网站| 免费人妻精品一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 一级二级三级毛片免费看| 亚洲电影在线观看av| 一级av片app| 2018国产大陆天天弄谢| 亚洲av二区三区四区| 久久精品国产亚洲网站| 国产精品国产三级国产av玫瑰| 99re6热这里在线精品视频| 五月天丁香电影| 最新中文字幕久久久久| 久久久欧美国产精品| 插阴视频在线观看视频| 国产 一区精品| 久久精品熟女亚洲av麻豆精品| 久久国产亚洲av麻豆专区| 亚洲精品亚洲一区二区| 在线观看人妻少妇| 国产黄片视频在线免费观看| 国产永久视频网站| 涩涩av久久男人的天堂| 日本av手机在线免费观看| 交换朋友夫妻互换小说| 亚洲av在线观看美女高潮| 99九九线精品视频在线观看视频| 大话2 男鬼变身卡| 免费黄网站久久成人精品| 国产高清国产精品国产三级| 成年美女黄网站色视频大全免费 | 成年女人在线观看亚洲视频| 精品少妇内射三级| 自拍偷自拍亚洲精品老妇| 欧美一级a爱片免费观看看| 91久久精品国产一区二区成人| 欧美区成人在线视频| 简卡轻食公司| 国产精品福利在线免费观看| 亚洲精品国产av蜜桃| 国产欧美日韩综合在线一区二区 | 国产有黄有色有爽视频| 国产亚洲精品久久久com| 国产永久视频网站| 免费看av在线观看网站| 久久久久视频综合| av有码第一页| 久久99热6这里只有精品| 亚洲怡红院男人天堂| 青春草视频在线免费观看| 黑人猛操日本美女一级片| 亚洲国产精品国产精品| 亚洲美女视频黄频| 国产免费又黄又爽又色| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 久久久久久久久大av| 午夜免费男女啪啪视频观看| 国产成人免费无遮挡视频| 汤姆久久久久久久影院中文字幕| 日本黄色片子视频| 七月丁香在线播放|