• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The rough representation and measurement of quotient structure in algebraic quotient space model①

    2017-09-25 13:01:54ChenLinshu陳林書WangJiayang
    High Technology Letters 2017年3期

    Chen Linshu (陳林書), Wang Jiayang

    (*School of Computer Science and Technology, Hunan University of Science and Technology, Xiangtan 411201, P.R. China)(**School of Information Science and Engineering, Central South University, Changsha 410083, P.R. China)

    The rough representation and measurement of quotient structure in algebraic quotient space model①

    Chen Linshu (陳林書)②*, Wang Jiayang**

    (*School of Computer Science and Technology, Hunan University of Science and Technology, Xiangtan 411201, P.R. China)
    (**School of Information Science and Engineering, Central South University, Changsha 410083, P.R. China)

    Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed, where the quotient structure could not be deduced if the granulation was based on an equivalence relation. In this paper, definitions were given and formulas of the lower quotient congruence and upper quotient congruence were calculated to roughly represent the quotient structure. Then the accuracy and roughness were defined to measure the quotient structure in quantification. Finally, a numerical example was given to demonstrate that the rough representation and measuring methods are efficient and applicable. The work has greatly enriched the algebraic quotient space model and granular computing theory.

    granular computing, algebraic quotient space model, quotient structure, upper ( lower) congruence relation

    0 Introduction

    Granular computing, which was first introduced in 1997 by Lin[1,2], is an emerging computing paradigm of information processing, and is now viewed as a superset of models including rough set, topology quotient space[3], fuzzy set[4], word theory, etc. Granular computing has been widely applied in image processing, data mining, complex problem solving, pattern recognition, intelligent control, artificial neural network, knowledge acquisition, and so on[5-8].

    Being a widely applied structure in data coding, formal language and electronic circuit design, algebra is used broadly to describe the granule structure[9-10]. Based on the topology quotient space model (U,F,T) proposed in Ref. [11], and supposing the granule structure T as an algebraic operator °, in Refs [12,13] of our previous work, algebraic quotient space model (U,F,°) was proposed.

    In the algebraic quotient space theory, given equivalence relation R on granularity (U,F,°), one can only get the quotient universe [U] and quotient attribute [F] according to Refs [3,11], but can not get the quotient structure [°] by the conclusion of Refs [12,13]. Thus, is there a method of roughly representing the quotient structure? If yes, how to measure the new method?

    In this paper, an equivalence relation R is given as a granulation rule in the algebraic quotient space model. Inspired by the lower approximation and upper approximation to approximately represent a rough set, a rough representation method of quotient structure is shown in algebraic quotient space model. Rough set theory and algebraic quotient space model in Refs [12,13] are simply introduced in Section 1.in Section 2, the lower quotient structure and upper quotient structure are defined to roughly represent the quotient structure. Section 3 gives the measurement of the above rough representation method. Section 4 presents a numeral example which shows that the rough representation and measuring methods are feasible and applicable.

    1 Research basis

    In this section, simple introductions are given to the rough set theory and the algebraic quotient space model in our previous work in Refs[12,13].

    The rough set theory, first proposed by Polish scientist Pawlak[14,15]in 1982, is an effective mathematical tool for the characterization of incomplete and uncertain problems. The rough set is defined as follows.

    (1)

    (2)

    The algebraic quotient space model (U,F,°) in Refs [12,13] was proposed as follows.

    Definition 2[12,13]Given congruence relation R on granularity (U,F,°), where U is the universe, F:U→Y is the attribute function, and ° is the granule structure on U. It defines: the quotient universe [U] as p:U→U/R, the quotient attribute [F] as [F]:[U]→2Y, where

    ?x∈[U],[F](x)=F(p-1(x)) ={F(y)|y∈p-1(x)}

    (3)

    the quotient structure [°] as

    ?x,y∈U,p(x°y)=p(x)[°]p(y)

    (4)

    then ([U],[F],[°]) is defined as an algebraic quotient space of (U,F,°).

    In Definition 2, it gives the mapping functions of the quotient universe [U], the quotient attribute [F] and the quotient structure [°]. The quotient universe is a natural mapping, and the quotient attribute provides a general solution, because [F]:[U]→2Ymust satisfy some optimization principle specified as a certain value such as a statistic number, the average, the maximum, the sum, the intersection or the union, etc.[13]. The quotient structure is a homomorphic mapping between the original structure and quotient structure.

    In Definition 2, the sufficient condition of having the algebraic quotient space ([U],[F],[°]) is that R is a congruence relation, which is proved in theorem in Refs [12,13]. From the view point of the algebraic theory, in order to keep the original structure ° and quotient structure [°] being homomorphic, the granulation rule must be a congruence relation, i.e., only if congruence relation R is given on granularity (U,F,°), one can get the quotient space [°].

    2 Rough representation of quotient structure

    Given equivalence relation R on granularity (U,F,°), by Definition 2 the quotient structure [°] does not exist, and the key of getting an approximate quotient structure is to find an approximate congruence relation. Hence, the properties of congruence relation and equivalence relation are first discussed.

    On universe U, by Refs [3,11] all the equivalence relations form a complete semi-order lattice, and by Refs [12,13] all the congruence relations form a complete semi-order lattice. Meanwhile, it is known that the congruence relation is a special case of the equivalence relation, i.e., a congruence relation must be an equivalence relation, but an equivalence relation may not be a congruence relation.

    On granularity (U,F,°), let R be all the equivalence relations, Ω be all the congruence relations, and R∈R. Then, under the containment order of equivalence relation, (R,?) is a complete semi-order lattice, and (Ω,?) is a complete semi-order lattice. The lattice Hasse graphic is shown in Fig.1, where the hollow point is an equivalence relation, and the solid point is a congruence relation.

    Fig. 1 The lattice Hasse graph of R and Ω

    (5)

    (6)

    Firstly, ?(x,y)∈∩Rα∈Ω,Rα?RRα, so ?R0∈{Rα|Rα∈Ω,Rα?R}α, (x,y)∈R0, thus, ?z∈U, (x°z,y°z),(z°x,z°y)∈R0∈∩Rα∈Ω,Rα?RRα, therefore, ∩Rα∈Ω,Rα?RRαis a congruence relation.

    Firstly, it is proved that t(∪R?Rβ∈ΩRβ) is a congruence relation. For ?(x,y)∈t(∪R?Rβ∈ΩRβ), it has two cases: On the one hand,(x,y)∈∪R?Rβ∈ΩRβ. Then ?R0∈{Rβ|R?Rβ∈Ω}, where (x,y)∈R0, so ?z∈U,(x°z,y°z),(z°x,z°y)∈R0?∪R?Rβ∈ΩRβ. On the other hand, (x,y)?∪R?Rβ∈ΩRβ, then, ?(x=p1),p2,…,(pm=y), where (pi,pi+1)∈R0∈{Rβ|R?Rβ∈Ω}, so ?z∈U, (pi°z,pi+1°z),(z°pi,z°pi+1)∈R0?t(∪R?Rβ∈ΩRβ). Therefore, t(∪R?Rβ∈ΩRβ) is a congruence relation.

    Thus, the lower quotient structure or upper quotient structure can be used to roughly represent the quotient structure which are not actually exist.

    3 Rough measurement of quotient structure

    In the front section, just the rough representing method of quotient structure is discussed,i.e., the concepts of lower congruence relation and upper congruence relation are defined and their calculating formulas are given. In the following, the rough measuring method of quotient structure is discussed in detail by defining the accuracy and roughness of quotient structure.

    In order to describe the quotient structure in quantification more exactly, accuracy αR[°] and roughness ρR[°] are defined as follows from the reverse side.

    (7)

    ρR[°]=1-αR[°]

    (8)

    Clearly, accuracy 0<αR[°]≤1, and the larger the accuracy αR[°] is, the smaller the roughness ρR[°] is.

    4 Numerical example

    In this section, a numerical example is demonstrated which shows that the rough representation and measuring methods above are feasible and applicable.

    Supposing R is an equivalence relation on granularity (U,F,°), where X={0,1,2,3,4,5,6,7}, X/R={{0,2},{1,5},{3,7},{4,6}} and the algebraic operation ° is shown in Table 1.

    Seeing from Table 1, the binary algebraic operation x°y means (x×y) mod8. It can be proved that R is only an equivalence relation but not a congruence relation, then by Definition 2 there does not exist the quotient structure.

    Table 1 Algebraic operation ° on U

    Table 3 On after isomorphic mapping

    Table 4 Algebraic operation on

    Table 5 on after isomorphic mapping

    According to Eq. (7) of Definition 4, the accuracy αR[°] of quotient structure is

    ρR[°]=1-αR[°]=1-50%=50%.

    5 Conclusion

    In Refs [12,13] of the previous work, it is granulated by a congruence relation in the algebraic quotient space model. In this paper, granulated by an equivalence relation, one can only get the quotient universe and quotient attribute but can’t get the quotient structure according to Refs [3,11] in the algebraic quotient space model.

    Inspired by the definitions of lower approximation and upper approximation in the rough set theory, this paper gives the definitions and calculating formulas of the lower quotient congruence relation and upper quotient congruence relation, based on which one can easily get the lower quotient structure and upper quotient structure, which can be used to roughly represent the quotient structure.

    Then the accuracy and roughness are defined to measure the quotient structure in quantification. Finally, a numerical example is given to demonstrate that the rough representation and measuring methods are efficient and applicable.

    This work enriches the algebraic quotient space model and granular computing models greatly.

    [ 1] Lin T Y. Granular computing: structures, representations, and applications. In: Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Chongqing, China, 2003. 16-24

    [ 2] Lin T Y. Granular computing: a problem solving paradigm. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Reno, USA , 2005. 132-137

    [ 3] Zhang L, Zhang B. The Quotient space theory of problem solving. Fundamenta Informaticae, 2004, 59(2):11-15

    [ 4] Zadeh L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 1997, 90(90): 111-127

    [ 5] Zhao L, Xue Z. Generalized dominance-based set approach to security evaluation with imprecise information. High Technology Letters, 2010, 16(3): 254-262

    [ 6] Zeng Y, Liang X W, Li Y. A distributed routing algorithm based-on simplified topology in LEO satellite networks. High Technology Letters, 2010, 16(2): 117-123

    [ 7] Ren B, Zhang S Y, Shi Y D. The partition and regeneration of multi-granularity transplantable structures for structural variant design. Chinese High Technology Letters, 2012, 22(1): 100-105 (In Chinese)

    [ 8] Meng Z Q, Shi Z Z. Self-adaptive image semantic classification based on tolerance granular space model. Chinese High Technology Letters, 2012, 22(7): 697-705 (In Chinese)

    [ 9] Wang Y X, Zadeh L A, Yao Y. On the system algebra foundations for granular computing. International Journal of Software Science and Computational Intelligence, 2009, 1(1) : 64-86

    [10] Wang Y X. Granular algebra for modeling granular systems and granular computing. In: Proceedings of IEEE International Conference on Cognitive Informatics, Hong Kong, China, 2009. 145-154

    [11] Zhang L, Zhang B. Theory and Applications of Problem Solving. 2ndEdition. Beijing: Tsinghua University Press, 2007. (In Chinese)

    [12] Chen L S, Wang J Y, Li L, et al. Quotient space model based on algebraic structure. High Technology Letters, 2016, 22(2): 160-169

    [13] Chen L S, Wang J Y, Li L. The models of granular system and algebraic quotient space in granular computing. Chinese Journal of Electronics, 2016, 25(6): 1109-1113

    [14] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982, 11: 341-356

    [15] Pawlak Z. Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of IEEE International Conference on Fuzzy Systems, San Antonio, USA, 1998. 106-110

    his Ph.D and M.E. degrees in School of Information Science and Engineering, Central South University. His research interest is granular computing and intelligent information processing.

    10.3772/j.issn.1006-6748.2017.03.010

    Supported by the National Natural Science Foundation of China (No. 61772031) and the Special Energy Saving Foundation of Changsha, Hunan Province in 2017.

    To whom correspondence should be addressed. E-mail: chen-lin-shu@163.com

    on July 7, 2016

    国产亚洲精品av在线| 色哟哟·www| 午夜福利在线观看吧| 亚洲精品456在线播放app| 又黄又爽又刺激的免费视频.| 国产伦在线观看视频一区| 男的添女的下面高潮视频| 久久99热这里只有精品18| 国产黄片视频在线免费观看| 超碰97精品在线观看| 中文字幕av在线有码专区| 日本黄大片高清| 精品一区二区免费观看| 亚洲国产最新在线播放| 高清毛片免费看| 伊人久久精品亚洲午夜| 欧美bdsm另类| 精品久久久久久久末码| 亚洲人成网站在线播| 欧美日本视频| 亚洲自拍偷在线| 淫秽高清视频在线观看| 干丝袜人妻中文字幕| 欧美高清成人免费视频www| 边亲边吃奶的免费视频| 日韩av免费高清视频| 午夜免费激情av| 国产v大片淫在线免费观看| 91精品一卡2卡3卡4卡| 中文天堂在线官网| 亚洲欧洲日产国产| 秋霞在线观看毛片| 亚洲性久久影院| 亚洲精品视频女| 一级a做视频免费观看| 亚洲国产最新在线播放| 亚洲va在线va天堂va国产| 一级av片app| 久久亚洲国产成人精品v| 婷婷色麻豆天堂久久| 日本猛色少妇xxxxx猛交久久| 亚洲四区av| 国产综合懂色| 国产高潮美女av| 久久久久久久久久黄片| 男人爽女人下面视频在线观看| av在线老鸭窝| 欧美精品一区二区大全| 五月玫瑰六月丁香| 大香蕉97超碰在线| 熟妇人妻不卡中文字幕| 国产毛片a区久久久久| 91av网一区二区| 国产精品女同一区二区软件| 久久精品久久久久久久性| 免费看不卡的av| 久久久亚洲精品成人影院| 亚洲国产精品专区欧美| 99久国产av精品国产电影| videos熟女内射| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| 欧美三级亚洲精品| 亚州av有码| 最近手机中文字幕大全| 免费人成在线观看视频色| 精品一区二区三区人妻视频| 床上黄色一级片| 国产精品久久久久久精品电影小说 | 黑人高潮一二区| 性色avwww在线观看| 高清在线视频一区二区三区| 精品国产三级普通话版| 久久精品国产自在天天线| 中国国产av一级| 麻豆乱淫一区二区| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看| 精品久久久久久久末码| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 欧美另类一区| 91精品国产九色| 免费看光身美女| 美女主播在线视频| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 精品不卡国产一区二区三区| 日韩三级伦理在线观看| 少妇人妻精品综合一区二区| 亚洲欧美日韩东京热| av免费观看日本| 国精品久久久久久国模美| 欧美极品一区二区三区四区| 一级毛片黄色毛片免费观看视频| 麻豆国产97在线/欧美| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 亚洲成人中文字幕在线播放| 亚洲va在线va天堂va国产| 国产日韩欧美在线精品| 欧美精品一区二区大全| 91在线精品国自产拍蜜月| 欧美 日韩 精品 国产| 国产精品99久久久久久久久| 免费av毛片视频| 性色avwww在线观看| 日韩视频在线欧美| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 国产一级毛片在线| 欧美不卡视频在线免费观看| 九九久久精品国产亚洲av麻豆| 色播亚洲综合网| 中文在线观看免费www的网站| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 国产乱来视频区| 亚洲性久久影院| 欧美bdsm另类| 久久久色成人| 亚洲国产日韩欧美精品在线观看| 美女大奶头视频| 91在线精品国自产拍蜜月| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆 | 美女高潮的动态| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 成人一区二区视频在线观看| 少妇人妻一区二区三区视频| 亚洲va在线va天堂va国产| 亚洲丝袜综合中文字幕| 亚洲国产精品sss在线观看| 成人午夜高清在线视频| 中文字幕久久专区| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 麻豆乱淫一区二区| 久久久久久久久久久免费av| 少妇的逼好多水| 秋霞在线观看毛片| 国产精品.久久久| 男人舔女人下体高潮全视频| 毛片女人毛片| 国产午夜精品一二区理论片| 亚洲欧美成人综合另类久久久| 亚洲综合精品二区| 免费看不卡的av| 欧美bdsm另类| 97精品久久久久久久久久精品| 欧美人与善性xxx| 日韩精品有码人妻一区| 乱系列少妇在线播放| 熟妇人妻久久中文字幕3abv| 最近最新中文字幕免费大全7| 高清欧美精品videossex| 成人美女网站在线观看视频| 内地一区二区视频在线| 乱人视频在线观看| av网站免费在线观看视频 | 又黄又爽又刺激的免费视频.| 九草在线视频观看| 国产三级在线视频| 国产成人福利小说| 亚洲va在线va天堂va国产| 欧美高清性xxxxhd video| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| 国产成人精品婷婷| 97热精品久久久久久| 欧美成人午夜免费资源| 成人高潮视频无遮挡免费网站| 精品国产三级普通话版| 午夜激情福利司机影院| 色综合色国产| 激情五月婷婷亚洲| 欧美日韩亚洲高清精品| 在线观看av片永久免费下载| 美女内射精品一级片tv| 亚洲精华国产精华液的使用体验| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 亚洲va在线va天堂va国产| 高清毛片免费看| 亚洲色图av天堂| 日本色播在线视频| 免费看美女性在线毛片视频| 最近2019中文字幕mv第一页| 成人综合一区亚洲| 全区人妻精品视频| 亚洲综合色惰| 久久韩国三级中文字幕| 如何舔出高潮| 欧美+日韩+精品| 2022亚洲国产成人精品| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 午夜视频国产福利| 97超视频在线观看视频| 国产69精品久久久久777片| 成人亚洲精品一区在线观看 | 色综合色国产| 全区人妻精品视频| 少妇人妻精品综合一区二区| av在线老鸭窝| 亚洲电影在线观看av| 男的添女的下面高潮视频| 99热全是精品| 美女cb高潮喷水在线观看| 成人亚洲精品av一区二区| 老师上课跳d突然被开到最大视频| 久久久久久伊人网av| 国模一区二区三区四区视频| 亚洲精品一区蜜桃| 高清视频免费观看一区二区 | 国精品久久久久久国模美| 如何舔出高潮| 少妇高潮的动态图| 国产不卡一卡二| 久久6这里有精品| 欧美成人精品欧美一级黄| 91精品一卡2卡3卡4卡| 亚洲乱码一区二区免费版| 听说在线观看完整版免费高清| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 午夜福利高清视频| 97在线视频观看| 亚洲一区高清亚洲精品| 欧美激情国产日韩精品一区| 色综合站精品国产| 精品久久久久久久久久久久久| 国产黄频视频在线观看| 日本欧美国产在线视频| 波野结衣二区三区在线| 天美传媒精品一区二区| 在线播放无遮挡| av免费在线看不卡| 丝瓜视频免费看黄片| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 久久精品夜色国产| 边亲边吃奶的免费视频| 亚洲高清免费不卡视频| 日本熟妇午夜| 最近视频中文字幕2019在线8| 成人美女网站在线观看视频| 免费高清在线观看视频在线观看| 日韩成人av中文字幕在线观看| 久久久久久久久久久免费av| av在线蜜桃| 一级毛片 在线播放| 好男人视频免费观看在线| 在线观看人妻少妇| 寂寞人妻少妇视频99o| 国产男人的电影天堂91| 亚洲欧美一区二区三区国产| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 日韩av在线大香蕉| 久久精品国产鲁丝片午夜精品| 欧美日韩一区二区视频在线观看视频在线 | 韩国高清视频一区二区三区| 伦精品一区二区三区| 国产一区二区在线观看日韩| 国产精品一区www在线观看| av天堂中文字幕网| av免费在线看不卡| 久久人人爽人人片av| 亚洲国产高清在线一区二区三| 搡老妇女老女人老熟妇| 高清视频免费观看一区二区 | 十八禁网站网址无遮挡 | 久久99精品国语久久久| 欧美激情在线99| 极品少妇高潮喷水抽搐| 在线观看一区二区三区| 男人爽女人下面视频在线观看| kizo精华| 亚洲av福利一区| 免费黄网站久久成人精品| 汤姆久久久久久久影院中文字幕 | 国产老妇女一区| 久久97久久精品| 中文字幕av在线有码专区| xxx大片免费视频| 亚洲精品乱码久久久v下载方式| 汤姆久久久久久久影院中文字幕 | 美女脱内裤让男人舔精品视频| 国产黄色小视频在线观看| 看黄色毛片网站| 黑人高潮一二区| 久久久久久久久久久丰满| av免费观看日本| 三级国产精品片| 国产免费一级a男人的天堂| 精品久久久精品久久久| 美女脱内裤让男人舔精品视频| 91久久精品国产一区二区成人| 在线播放无遮挡| 精品久久国产蜜桃| 久久这里有精品视频免费| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 亚洲自拍偷在线| 非洲黑人性xxxx精品又粗又长| 寂寞人妻少妇视频99o| 丰满少妇做爰视频| 国产精品一区二区在线观看99 | 国产亚洲精品av在线| 色哟哟·www| 免费少妇av软件| 国产精品久久久久久精品电影| 午夜精品国产一区二区电影 | 高清日韩中文字幕在线| 中文字幕免费在线视频6| 精品人妻视频免费看| 青春草国产在线视频| 久久精品人妻少妇| 久久人人爽人人片av| 国产爱豆传媒在线观看| 简卡轻食公司| 亚洲内射少妇av| 国产91av在线免费观看| 热99在线观看视频| 亚洲久久久久久中文字幕| av国产免费在线观看| 婷婷色av中文字幕| 国产一区二区三区av在线| 三级国产精品片| 久久久午夜欧美精品| 亚洲国产色片| 纵有疾风起免费观看全集完整版 | 少妇高潮的动态图| 欧美成人a在线观看| 麻豆成人av视频| 黄片无遮挡物在线观看| 日韩欧美精品免费久久| 午夜免费观看性视频| 91aial.com中文字幕在线观看| 97热精品久久久久久| 欧美变态另类bdsm刘玥| 国产伦精品一区二区三区视频9| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 一级片'在线观看视频| 亚洲精品中文字幕在线视频 | 日韩av在线免费看完整版不卡| 欧美激情在线99| 久久这里有精品视频免费| 成人国产麻豆网| 精品一区二区三区视频在线| 女人久久www免费人成看片| 午夜亚洲福利在线播放| 国产成人freesex在线| 一夜夜www| 国产伦在线观看视频一区| 18禁在线播放成人免费| 欧美+日韩+精品| 午夜亚洲福利在线播放| 国产成人精品福利久久| videossex国产| 国产老妇女一区| 插阴视频在线观看视频| 精品一区二区三区人妻视频| 亚洲欧美一区二区三区国产| 国产亚洲5aaaaa淫片| 天堂俺去俺来也www色官网 | 在线免费观看不下载黄p国产| 久久精品人妻少妇| 日本黄色片子视频| 国产一区二区在线观看日韩| 色尼玛亚洲综合影院| 亚洲伊人久久精品综合| 亚洲av成人精品一区久久| 亚洲国产欧美在线一区| 波多野结衣巨乳人妻| 夫妻午夜视频| 人妻一区二区av| 亚洲精品久久午夜乱码| 人人妻人人澡人人爽人人夜夜 | 特级一级黄色大片| 听说在线观看完整版免费高清| 欧美97在线视频| 免费av毛片视频| 日本一二三区视频观看| 最近手机中文字幕大全| 中文字幕久久专区| 免费不卡的大黄色大毛片视频在线观看 | 97超视频在线观看视频| 午夜福利成人在线免费观看| 日韩av在线免费看完整版不卡| 毛片一级片免费看久久久久| 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 国产69精品久久久久777片| 51国产日韩欧美| h日本视频在线播放| 亚洲av一区综合| 日韩欧美一区视频在线观看 | 亚洲av福利一区| 啦啦啦啦在线视频资源| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 国产午夜精品论理片| 2018国产大陆天天弄谢| 精品人妻一区二区三区麻豆| 免费观看a级毛片全部| 久久精品夜色国产| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 亚洲精华国产精华液的使用体验| 亚洲av免费在线观看| 99热这里只有精品一区| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 男女边摸边吃奶| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 日日撸夜夜添| 免费黄频网站在线观看国产| 欧美另类一区| 久久久久久久久久成人| 欧美xxxx黑人xx丫x性爽| 亚洲第一区二区三区不卡| 能在线免费观看的黄片| 深夜a级毛片| 亚洲av电影不卡..在线观看| 久久久久久伊人网av| 日韩视频在线欧美| 亚洲图色成人| 亚洲av男天堂| 国产 一区 欧美 日韩| 国产成人精品婷婷| 国产精品人妻久久久久久| 久久99热这里只频精品6学生| 黄色一级大片看看| 免费观看的影片在线观看| 永久免费av网站大全| 久久精品夜色国产| 黄片wwwwww| 久久精品国产鲁丝片午夜精品| 精品午夜福利在线看| 国产午夜精品一二区理论片| 观看美女的网站| 国产成人freesex在线| 欧美xxxx黑人xx丫x性爽| 国内精品美女久久久久久| av国产免费在线观看| 久热久热在线精品观看| 91aial.com中文字幕在线观看| 亚洲美女搞黄在线观看| 亚洲伊人久久精品综合| 日韩欧美一区视频在线观看 | 成人毛片60女人毛片免费| 亚洲av一区综合| 久久这里有精品视频免费| 97超视频在线观看视频| 国产69精品久久久久777片| 欧美xxⅹ黑人| 亚洲aⅴ乱码一区二区在线播放| 久久亚洲国产成人精品v| 亚洲熟妇中文字幕五十中出| 亚洲精品一区蜜桃| 日本猛色少妇xxxxx猛交久久| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 一级毛片黄色毛片免费观看视频| 国产中年淑女户外野战色| 国产真实伦视频高清在线观看| 欧美成人午夜免费资源| 日韩av免费高清视频| 伦精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 一区二区三区高清视频在线| 久热久热在线精品观看| 国产欧美另类精品又又久久亚洲欧美| 日日摸夜夜添夜夜添av毛片| 天天躁日日操中文字幕| 成人毛片60女人毛片免费| 韩国高清视频一区二区三区| 99热网站在线观看| 99久久精品一区二区三区| 免费看美女性在线毛片视频| 国产av码专区亚洲av| 国产精品一区www在线观看| 国产 一区精品| 中文字幕制服av| 亚洲18禁久久av| 国产成人一区二区在线| av卡一久久| 大话2 男鬼变身卡| 亚洲精品456在线播放app| 日韩大片免费观看网站| 尾随美女入室| 嫩草影院入口| 亚洲精品aⅴ在线观看| 免费看日本二区| 日韩欧美三级三区| 国产午夜精品论理片| 亚洲国产最新在线播放| 午夜日本视频在线| 别揉我奶头 嗯啊视频| 男女边吃奶边做爰视频| 久久久久国产网址| 日本欧美国产在线视频| 国产 一区精品| 亚洲人成网站高清观看| 视频中文字幕在线观看| 亚洲欧美精品自产自拍| 蜜桃亚洲精品一区二区三区| 在线免费观看的www视频| 日韩成人伦理影院| 欧美成人一区二区免费高清观看| freevideosex欧美| 亚洲av在线观看美女高潮| 久久久精品94久久精品| 免费av不卡在线播放| 在线免费十八禁| 国产精品无大码| 久久久久久久亚洲中文字幕| 一级二级三级毛片免费看| av福利片在线观看| 免费在线观看成人毛片| 草草在线视频免费看| 国产在线男女| 69人妻影院| 1000部很黄的大片| 成人亚洲精品av一区二区| 国产成人福利小说| 免费看光身美女| 国产老妇伦熟女老妇高清| 婷婷色综合大香蕉| 可以在线观看毛片的网站| 日韩av在线大香蕉| 中文字幕av成人在线电影| 日本三级黄在线观看| 91久久精品国产一区二区三区| 亚洲在久久综合| 在线 av 中文字幕| 深夜a级毛片| 夜夜爽夜夜爽视频| 日日摸夜夜添夜夜爱| 午夜福利高清视频| 熟妇人妻不卡中文字幕| 男女边吃奶边做爰视频| 老司机影院毛片| 建设人人有责人人尽责人人享有的 | 老师上课跳d突然被开到最大视频| 舔av片在线| 日本免费在线观看一区| 蜜桃亚洲精品一区二区三区| 九色成人免费人妻av| 久久久久国产网址| 最近2019中文字幕mv第一页| 亚洲综合色惰| 欧美+日韩+精品| 亚洲精品日本国产第一区| av国产免费在线观看| av专区在线播放| 好男人视频免费观看在线| av在线观看视频网站免费| 久久久久久久亚洲中文字幕| 国产av国产精品国产| 日韩av不卡免费在线播放| 久久精品国产亚洲av天美| 欧美另类一区| 插逼视频在线观看| 亚洲精品456在线播放app| 精品久久久久久久久av| 老司机影院毛片| 啦啦啦啦在线视频资源| 高清av免费在线| 女人久久www免费人成看片| 99热6这里只有精品| 久久久久久久久大av| 国产伦理片在线播放av一区| 五月天丁香电影| 草草在线视频免费看| 日日摸夜夜添夜夜添av毛片| 五月天丁香电影| 草草在线视频免费看| 色5月婷婷丁香| 男人爽女人下面视频在线观看| 日本wwww免费看| 18+在线观看网站| 大香蕉97超碰在线| 久久久久精品久久久久真实原创| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久av不卡| 国产黄频视频在线观看| 啦啦啦韩国在线观看视频| videossex国产| 亚洲熟女精品中文字幕| 免费人成在线观看视频色| 国产精品久久久久久av不卡| 国产精品福利在线免费观看| 久久精品熟女亚洲av麻豆精品 | 麻豆成人av视频| 人妻少妇偷人精品九色| 91精品伊人久久大香线蕉| 亚洲真实伦在线观看| 中文字幕久久专区| 18禁在线无遮挡免费观看视频| 国产精品无大码| 亚洲av中文字字幕乱码综合| 禁无遮挡网站| 男人舔女人下体高潮全视频| 免费观看精品视频网站|