• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of linear active disturbance rejection control for photoelectric tracking system①

    2017-09-25 12:53:36WangWanting王婉婷GuoJinJiangZhenhuaWangTingfeng
    High Technology Letters 2017年3期

    Wang Wanting (王婉婷), Guo Jin, Jiang Zhenhua, Wang Tingfeng

    (*Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P.R.China)(**State Key Laboratory of Laser Interaction with Matter, Changchun 130033, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    Application of linear active disturbance rejection control for photoelectric tracking system①

    Wang Wanting (王婉婷)②******, Guo Jin***, Jiang Zhenhua***, Wang Tingfeng***

    (*Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P.R.China)(**State Key Laboratory of Laser Interaction with Matter, Changchun 130033, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control (LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error, friction and nonlinear factor existing in position loop are treated as ‘disturbance’, which is estimated and compensated by generalized proportional integral (GPI) observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features, such as quick dynamic response, low overshoot and high tracking precision. Furthermore, with the proposed method, friction is suppressed effectively.

    photoelectric tracking system, linear active disturbance rejection control (LADRC), generalized proportional integral observer, adaptive differential evolution

    0 Introduction

    The photoelectric tracking system has been widely applied for tracking moving targets precisely. Driven by direct current motor[1], photoelectric tracking system is considered as a high precision servo system. Considering the characteristics inherent in motor, the control system design represents a difficult and challenging problem. Low resonance oscillation may restrict greatly the closed loop bandwidth and gain of open loop. The miss distance delay caused by detector may make the system unstable[2]. The nonlinear factors, such as friction, model errors and external disturbance, might reduce tracking precision[3]. Therefore, an effective control strategy is particularly important for high tracking precision and fast response speed.

    To solve the above problems, various control strategies have been proposed and developed in literature. Classical algorithms, such as proportional integral derivative (PID) and lead lag algorithm are still dominant even today for their low complexity, simplicity of implementation and strong robustness. These examples can be found in speed and acceleration delay compensation[1], predication algorithm[4], nonlinear PID[5], etc. However, most of the control strategies focus on improving tracking precision. Along with advances in intelligent control techniques, new methodologies have been proposed to achieve perfect performance. These approaches are fuzzy control[6], internal control[7]and adaptive backstepping control[8]. However, due to the factors, such as complexity of algorithms, computation burden and convergence speed, the high precision control performance is still difficult to be achieved when implementing these methods in practice.

    Based on the realistic rethinking about the PID technology, active disturbance rejection control (ADRC) was first proposed by Han[9]in 1990s and has been shown to be an effective tool in dealing with dynamic uncertainties, disturbance, and nonlinearities. Traditional ADRC has been applied to solve practical control problems in several fields[10-13]. For the tracking system, ADRC method has been successfully applied to speed loop in photoelectric platform[14-16]. Experimental results show strong ability in disturbance rejection. However, all this proposed methods were designed without considering the position tracking precision.

    Unlike traditional ADRC based approaches, the generalized proportional integral (GPI) observer[17]constitutes an effective manner of integral ADRC schemes. With GPI observer, the estimation accuracy can be improved greatly[18]. In order to achieve perfect dynamic performance at the same time improving the control precision, a linear ADRC (LADRC) based on GPI observer is put forward in this paper and applied directly to position loop. The control scheme is tested on practical photoelectric tracking system, showing excellent results for tracking moving targets. The proposed method not only greatly reduces the tracking errors, but also improves the dynamic performance both in overshoot and response speed.

    1 Formulation problem and design of control system

    A typical photoelectric tracking system consists of speed and position loop. In this paper, current loop is introduced to deal with disturbance and back electromotive force. The equivalent structure of a photoelectric tracking system is shown in Fig.1.

    Fig.1 The equivalent structure of photoelectric tracking system

    Considering the fact that all the parameters including load torque, inertia and motor parameters are uncertain and not measurable, thus to obtain precise mathematical model directlyis difficult. Moreover, a precise mathematical model plays an important role in control system design. Therefore, an effective parameter identification strategy is particular important.

    To obtain the accurate transfer function model, an adaptive differential evolution (ADE) algorithm[19]is chosen to carry on parameter estimation with input and output data. Impulse signal is selected as input x(t). Output data y(t), such as rotating speed of motor and armature current, are obtained by experiments. Fourier transform is applied to obtain the amplitude-frequency characteristic[20], which is shown in

    (1)

    The amplitude-frequency characteristic from input voltage to output current |G(jω)|U-Iis shown in Fig.2(a), and the amplitude-frequency characteristic from input voltage to output speed |G(jω)|U-Vis shown in Fig.2(b).

    Fig.2 Experimented and simulated results

    The transfer functions of voltage-current GU-Iand voltage-speed GU-Vobtained by ADE algorithm are shown in

    (2)

    GU-V=

    (3)

    To deal with disturbance and back electromotive force constant, a current controller is designed as

    (4)

    The controlled object of speed loop can be expressed as Eq.(5) by adjusting the gain of current controller properly.

    (5)

    The transfer function of speed controller using Lead lag control law is given by

    (6)

    Then the transfer function model of position open loop can be described as

    (7)

    Eq.(7) can be reduced to a typicalⅡsystem in low frequency, as shown in

    (8)

    The purpose of position controller is to obtain high tracking precision and fast response speed. However, considering the factors, such as friction, model errors, internal and external disturbance, it will be difficult to meet requirements of high tracking precision and fast response speed. It is for this reason that LADRC is adopted to effectively improve the tracking performance.

    2 LADRC control strategy for position loop

    Traditional ADRC[9]contains tracking differentiator (TD), feedback control law (FCL), and extended state observer (ESO), which is shown in Fig.3. The key of ADRC is to observe and compensate state variables, internal and external disturbances of the system through ESO, so that the system can restrain disturbance in real time[9]. To achieve accurate on-line estimations of all unknown disturbances, GPI observer is in charge of that estimation.

    Fig.3 The principle of ADRC

    Model errors, friction and disturbance are considered as ‘whole disturbance’, estimated and compensated by GPI observer in real time. Structure of the proposed method based on GPI observer is shown in Fig.4.

    For the sake of simplicity and clarity, Eq.(8) is converted into state space form and is designed as

    (9)

    where, x1and x2denote the angle position and speed of the system. ξ represents the “total disturbance”, such as all the higher order terms neglected by linearization, model errors, external unknown disturbance, and so on.

    Fig.4 Structure of the proposed method based on GPI observer

    GPI observer is designed in the form:

    (10)

    where, e represents the observer error, y1, y2are the estimates of position, speed. z1, z2are the estimates of disturbance. λ=[λ0, λ1, λ2, λ3]Tis the observer gains vector. φ(t, y) is the control input gain, which is considered as a constant gain in this paper.

    Using bandwidth parameterization method[21]to tune the observer gain vectors and the equality is shown as

    (s+ω0)4=s4+λ0s3+…+λ2s+λ3

    (11)

    where, ω0is the observer bandwidth, ω0should be selected properly to achieve satisfied performance.

    Generally, a good control state can be obtained by combing TD with FCL. However, this approach will cause some problems in engineering applications, and it is not easy to achieve perfect performance[14]. Therefore, a linear control law is chosen in this paper. Using estimated value z1to correct the output of position controller u0, overall output u of LADRC is shown as

    (12)

    where, r is the input of tracking system.

    By substituting Eq.(12) into Eq.(9), the system becomes

    (13)

    Obviously, the transfer function between u0and y is reduced to a cascade integrator.

    3 Simulation analyses

    In order to verify the perfect performance of LADRC, the control strategy is implemented in Matlab/Simulink platform and parameters are set as follows: The bandwidth of speed loop is 6Hz and the bandwidth of position loop is 1.62Hz. The LADRC parameters are set to be Kp-ADCR=5.29, Ki-ADRC=11.42. The simulation results of PI control[5]and traditional ADRC[16]are given for comparison, and the parameters are selected to make sure it has the same cut-off frequency with the proposed method.

    3.1 Dynamic performance

    Fig.5 gives the comparative results of step response. Regarding to the overshoot, both ADRC and LADRC can achieve satisfactory performance. It is seen in this case, the maximum overshoot of PI control is 60%, which is higher than ADRC and LADRC. From Fig.5, the settling time of LADRC is 0.7s, which is smaller than PI control and ADRC. Therefore, the LADRC method obtains the best dynamic performance.

    3.2 Tracking performance

    Fig.6 gives the comparative results of tracking performance in the closed loop control system for reference r=10sin(t) (°). As can be seen from Fig.6, the maximum tracking error of LADRC is 5.2′, which is lower than PI control and ADRC control. Obviously, the comparative results demonstrate the effectiveness of LADRC method.

    Fig.5 The comparative results of step response

    Fig.6 The comparative results of tracking errors

    4 Experiment analyses

    Photoelectric tracking system is established further to validate the correctness and effectiveness of the proposed strategy. The basic configuration of the experimental system is shown in Fig.7.

    The experimental system consists of digital control board based on a 32-bit float-point TMS320C28335, the master control interface, the moving target, photoelectric tracking platform and so on. The control algorithm is downloaded and executed in the DSP controller. Experimental data are collected via the Code Composer Studio software and then processed in Matlab. Position displacement is obtained by absolute optical encoder, and the current is obtained by the current sensor. Under the experiment conditions, the miss distance, obtained by CCD sensor and processed by master control interface, is sent to DSP controller through SCI port. Lagrange interpolation is applied to deal with miss distance delay[1]. With position, speed and current closed-loop control, DSP controller adjusts the PWM according to the output of current controller, and generates direct voltage to regulate the photoelectric tracking platform.

    Fig.7 The basic configuration of the experimental system

    Under the condition of experiments, the position, speed and current loop update in 0.001s, and the frequency of PWM is 20kHz. The experimental results of PI control[5]and traditional ADRC[16]are also given for comparison.

    4.1 Dynamic performance

    To verify the dynamic performance of LADRC, experimental results of acquiring a static target are comprehensively discussed.

    Fig.8 gives the comparison results of tracking error, which is shown in pixel. From Fig.8(a) and Fig.8(b), for traditional ADRC strategy, the maximum rise time is 0.03s and the overshoot is 37%, for PI control, the maximum rise time is 0.072s and the overshoot is 60%; for LADRC strategy, the maximum rise time is 0.023s and the overshoot is 23%. Compared with PI control, the overshoot and rising time are reduced by over 60% and 65%.

    From Fig.8, for PI strategy, the tracking error in steady state is controlled within 10 pixels. Considering the nonlinear factors existing in the tracking system, the control accuracy is not very high. For ADRC strategy, the tracking error in steady state is controlled within 5 pixels. For LADRC strategy, the tracking error in steady state is controlled within 3 pixels. The control precision is improved greatly, indicating that the proposed method has strong ability in disturbance rejection.

    From the above analysis, it is clear that the LADRC method shows the best performance in terms of fast response speed, low overshoot and high control accuracy.

    (a) The miss distance of target in acquisition mode

    (b) The enlarged drawing of miss distance

    4.2 The tracking performance

    For the far moveable target, the equivalent velocity and acceleration of photoelectric tracking system are restricted lower than 10. On the other hand, without considering the friction compensation or failing to compensate for it may lead to large tracking error in low speed. To verify the friction rejection ability and tracking performance of the proposed method, experiments for tracking moving targets are performed in this section.

    Fig.9 and Fig.10 give the comparative results of tracking error and its spectrogram with moving targets whose equivalent velocity are 0.91°/s and 2.23°/s. The vertical coordinate is shown in pixels. From Fig.9(a) and Fig.10(a), due to the friction, the tracking error of PI control is larger than that of ADRC and LADRC when speed decays to zero. The comparative results show that the friction is effectively reduced by ADRC and LADRC. Comparing with ADRC, LADRC method obtains the minimum tracking error, which indicates that the tracking precision can be improved significantly. From Fig.9(b) and Fig.10(b), the maximum amplitude spectrum of PI control is 15dB, the maximum amplitude spectrum of ADRC is 3.7dB, the maximum amplitude spectrum of LADRC is 2.1dB. Obviously, LADRC shows strong rejection in nonlinearity.

    (a) The tracking error

    (b) The spectrogram of tracking error

    Fig.9 The comparative results of tracking error and its spectrogram with moving targets whose equivalent velocity is 0.91°/s

    (a) The tracking error

    (b) The spectrogram of tracking error

    Fig.10 The comparative results of tracking error and its spectrogram with moving targets whose equivalent velocity is 2.23°/s

    5 Conclusions

    Generally, a novel position control approach based on ADRC has been proposed and applied to deal with tracking problems. The unknown dynamics and the external disturbance are estimated and compensated by GPI observer in real time. Comparative results show that LADRC method significantly improves the tracking performance when applied directly to photoelectric tracking system. Compared with traditional methods, the proposed method shows high tracking precision, fast response speed and low overshoot. In the future work, it is believed that the application of the proposed method in tracking system can be further acknowledged.

    Reference

    [ 1] Wang J L. Study on TV Tracking System of O-E Theodolite to Track and Acquire Fast Moving Targets: [Ph.D dissertation]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003. 9-16 (In Chinese)

    [ 2] Tang T, Ma J G, Ren G, et al. Compensating for some errors related to time delay in a charge-coupled-device-based fast steering mirror control system using a feedforward loop. Optical Engineering. 2010, 49(7): 717-720

    [ 3] Xia Y, et al. Application of active disturbance rejection control in tank gun control system. Journal of the Franklin Institute, 2014, 351(4): 2299-2314

    [ 4] Li K Y, Tian F Q, Rong L. Equivalent combined control of photoelectric tracking and pointing system based on square-root cubature Kalman filter. Systems Engineering & Electronics, 2013, 35(7):1508-1513 (In Chinese)

    [ 5] Li H, Ren C, Song L, et al. Application of combined controller based on CMAC and nonlinear PID in dual redundant telescope tracking system. In: Proceedings of the Conference on Software and Cyberinfrastructure for Astronomy III, Montreal, Canada, 2014. 91521:91521V1-6

    [ 6] Liu L, Shen H H. Fuzzy-PID control for airborne optoelectronic stabilized platform. In: Proceedings of the 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical System Technologies for Manufacturing and Testing, Xiamen, China, 2012. 8420: 84201H-84201H-6

    [ 7] Li H W. Servo system of large telescope based on internal model PID control method. Optics and Precision Engineering, 2009,17(2): 327-332 (In Chinese)

    [ 8] Ren Y, Liu Z H, Rui Z. DOB based robust adaptive backstepping control of compound-axis Opto-electronic tracking system. In: Proceedings of the 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, 2012. 2984-2988

    [ 9] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906

    [10] Jiang T, Huang C, Guo L. Control of uncertain nonlinear systems based on observers and estimators. Automatica, 2015, 59: 35-47

    [11] Ran M, Wang Q, Dong C, Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control. Automatica, 2016, 63: 302-310

    [12] Zhao Z L, Guo B Z. On active disturbance rejection control for nonlinear systems using time-varying gain. European Journal of Control, 2015, 23: 62-70

    [13] Xue W, Huang Y. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 2015, 58(5): 133-154

    [14] Wang S, Li H W, Meng H R, et al. Active disturbance rejection controller for speed-loop in telescope servo system. Optics and Precision Engineering, 2011, 19(10): 2442-2449 (In Chinese)

    [15] Li J Y, Fu C Y, Tang T, et al. Design of active disturbance-rejection controller for photoelectric tracking system on moving bed. Control Theory&Applications. 2012, 29(7): 955-958+964 (In Chinese)

    [16] Li X T, Zhang B, Shen H H. Improvement of isolation degree of aerial photoelectrical stabilized platform on ADRC. Optics and Precision Engineering. 2014, 22(8): 2223-2231 (In Chinese)

    [17] Ramírez-Neria M, Sira-Ramírez H, Garrido-Moctezuma R, et al. Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum. ISA Transactions, 2014, 53(4): 920-928

    [18] Zhang Y J, Zhang J, Wang L, et al. Composite disturbance rejection control based on generalized extended state observer. ISA Transction. 2016, 63(7): 377-386

    [19] Gong W, Cai Z, Yang J, et al. Parameter identification of an SOFC model with an efficient, adaptive differential evolution algorithm. International Journal of Hydrogen Energy, 2014, 39(10): 5083-5096

    [20] Wang G X, He Z. Control System Design. Beijing: Tsinghua University Press, 2009. 31-33 (In Chinese)

    [21] Z G. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American Control Conference, Denver, USA, 2006. 4989-96

    Wang Wanting, born in 1990. She is working on the Ph.D degree in Optical Engineering from State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, and the University of Chinese Academy of Sciences. She received her B.S. degree in Measurement & Control Technology and Instrumentations from North China University of Water Resources and Electric Power, Zhengzhou, China, in 2011. Her current research interest involves system identification and servo control.

    10.3772/j.issn.1006-6748.2017.03.013

    Supported by the National High Technology Research and Development Programme of China (No. 2015AA8082065) and the National Natural Science Foundation of China (No. 61205143).

    To whom correspondence should be addressed. E-mail: wangwanting0907@163.com

    on Aug. 22, 2016

    欧美日韩亚洲综合一区二区三区_| 久久香蕉精品热| 久久精品亚洲精品国产色婷小说| 久久久国产一区二区| 中文字幕色久视频| 人人妻人人澡人人爽人人夜夜| 人妻一区二区av| av欧美777| 极品少妇高潮喷水抽搐| 国产99白浆流出| 黑人巨大精品欧美一区二区mp4| 老熟妇乱子伦视频在线观看| 色老头精品视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲精品久久午夜乱码| aaaaa片日本免费| 亚洲av美国av| 亚洲成人国产一区在线观看| 色94色欧美一区二区| 欧美在线一区亚洲| 久久午夜亚洲精品久久| av福利片在线| 中国美女看黄片| 久久精品成人免费网站| 视频在线观看一区二区三区| 18在线观看网站| 国产av精品麻豆| 大陆偷拍与自拍| 叶爱在线成人免费视频播放| 欧美日韩亚洲综合一区二区三区_| 成在线人永久免费视频| 日韩视频一区二区在线观看| 免费女性裸体啪啪无遮挡网站| 极品教师在线免费播放| 91麻豆精品激情在线观看国产 | 法律面前人人平等表现在哪些方面| 熟女少妇亚洲综合色aaa.| 亚洲一区高清亚洲精品| 久久久久久亚洲精品国产蜜桃av| 日韩一卡2卡3卡4卡2021年| 亚洲五月天丁香| 免费人成视频x8x8入口观看| 嫁个100分男人电影在线观看| 男女之事视频高清在线观看| 男女下面插进去视频免费观看| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产欧美一区二区综合| 日韩熟女老妇一区二区性免费视频| 国产激情久久老熟女| 精品一品国产午夜福利视频| 国产真人三级小视频在线观看| 黄网站色视频无遮挡免费观看| 日韩中文字幕欧美一区二区| 伊人久久大香线蕉亚洲五| av天堂在线播放| 悠悠久久av| 91字幕亚洲| 无遮挡黄片免费观看| 极品少妇高潮喷水抽搐| 国产男靠女视频免费网站| 久久久久久久国产电影| 亚洲伊人色综图| 久久婷婷成人综合色麻豆| 不卡一级毛片| 国产精品影院久久| 久久国产乱子伦精品免费另类| 日本欧美视频一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久免费高清国产稀缺| 999精品在线视频| 国产高清视频在线播放一区| 成人国产一区最新在线观看| 韩国精品一区二区三区| 亚洲精品在线观看二区| 在线观看66精品国产| 一边摸一边做爽爽视频免费| 好男人电影高清在线观看| 极品少妇高潮喷水抽搐| 天天躁狠狠躁夜夜躁狠狠躁| 国产免费av片在线观看野外av| 99re6热这里在线精品视频| 欧美日韩视频精品一区| 啪啪无遮挡十八禁网站| tocl精华| 精品国产一区二区久久| 亚洲成国产人片在线观看| 中文字幕色久视频| 夫妻午夜视频| 国产在线精品亚洲第一网站| 国产成人av激情在线播放| 色综合婷婷激情| 黄色a级毛片大全视频| 99久久99久久久精品蜜桃| 精品国产国语对白av| 色老头精品视频在线观看| av免费在线观看网站| 精品福利观看| 久久久精品区二区三区| 天天躁夜夜躁狠狠躁躁| 涩涩av久久男人的天堂| 久久亚洲精品不卡| 99精品欧美一区二区三区四区| 黄色视频,在线免费观看| 国产精品久久久久久人妻精品电影| 亚洲国产欧美一区二区综合| 欧美国产精品va在线观看不卡| 国产精品亚洲一级av第二区| 久久天堂一区二区三区四区| 1024视频免费在线观看| 精品午夜福利视频在线观看一区| 欧美人与性动交α欧美软件| 精品亚洲成a人片在线观看| 国产免费现黄频在线看| 日本一区二区免费在线视频| 久久青草综合色| 国产精品久久久久久精品古装| 国产免费av片在线观看野外av| a级毛片在线看网站| 日韩欧美在线二视频 | 亚洲熟妇熟女久久| 国产精品久久久久久人妻精品电影| 欧美一级毛片孕妇| 亚洲av成人一区二区三| 久久久久久久国产电影| 女性生殖器流出的白浆| 欧美日韩亚洲综合一区二区三区_| 欧美日韩视频精品一区| www.熟女人妻精品国产| 韩国av一区二区三区四区| 精品一区二区三区视频在线观看免费 | 免费观看人在逋| 免费不卡黄色视频| 99国产精品99久久久久| 亚洲精品一卡2卡三卡4卡5卡| 日本欧美视频一区| 欧美激情高清一区二区三区| 99热网站在线观看| 色播在线永久视频| 亚洲精品在线观看二区| 99国产综合亚洲精品| 99热国产这里只有精品6| 久久青草综合色| 成年版毛片免费区| av天堂在线播放| 天堂动漫精品| 亚洲第一青青草原| www.自偷自拍.com| 一本一本久久a久久精品综合妖精| 精品免费久久久久久久清纯 | 在线十欧美十亚洲十日本专区| 在线观看免费视频日本深夜| 精品亚洲成国产av| 欧美日本中文国产一区发布| 日本a在线网址| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 不卡av一区二区三区| 一进一出抽搐gif免费好疼 | 欧美激情极品国产一区二区三区| 人成视频在线观看免费观看| 国产精品秋霞免费鲁丝片| 久久青草综合色| 热re99久久精品国产66热6| 无遮挡黄片免费观看| 电影成人av| 黄色a级毛片大全视频| 人人妻,人人澡人人爽秒播| 一夜夜www| 国产精品一区二区在线不卡| 久久国产乱子伦精品免费另类| 一边摸一边抽搐一进一小说 | 51午夜福利影视在线观看| 91大片在线观看| 欧美+亚洲+日韩+国产| 满18在线观看网站| 黄色毛片三级朝国网站| 精品国产美女av久久久久小说| 在线观看日韩欧美| 亚洲五月色婷婷综合| 国产亚洲欧美在线一区二区| 免费久久久久久久精品成人欧美视频| 嫩草影视91久久| 亚洲av熟女| 亚洲情色 制服丝袜| 国产男靠女视频免费网站| 麻豆av在线久日| 成人精品一区二区免费| 精品乱码久久久久久99久播| 两人在一起打扑克的视频| 精品少妇一区二区三区视频日本电影| 丝袜美腿诱惑在线| 国产精品电影一区二区三区 | 人人妻人人添人人爽欧美一区卜| 午夜福利欧美成人| 国产成人av教育| 欧美精品亚洲一区二区| 91av网站免费观看| 窝窝影院91人妻| 国产真人三级小视频在线观看| 高清毛片免费观看视频网站 | 欧美 亚洲 国产 日韩一| 80岁老熟妇乱子伦牲交| 夜夜夜夜夜久久久久| 一边摸一边做爽爽视频免费| 国产精品.久久久| 亚洲精品国产一区二区精华液| 亚洲欧美激情在线| 国产一区二区三区在线臀色熟女 | 777久久人妻少妇嫩草av网站| 啦啦啦 在线观看视频| 99热网站在线观看| 久久精品亚洲精品国产色婷小说| av视频免费观看在线观看| 亚洲五月天丁香| 高清av免费在线| 精品电影一区二区在线| a级毛片在线看网站| 看黄色毛片网站| 久久精品国产清高在天天线| 亚洲成a人片在线一区二区| 黄网站色视频无遮挡免费观看| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区 | 精品无人区乱码1区二区| 侵犯人妻中文字幕一二三四区| 久久国产精品大桥未久av| 最近最新中文字幕大全电影3 | 99精品久久久久人妻精品| 9热在线视频观看99| 欧美日韩中文字幕国产精品一区二区三区 | 18禁国产床啪视频网站| 老司机福利观看| 18禁观看日本| 在线观看午夜福利视频| 曰老女人黄片| 少妇裸体淫交视频免费看高清 | netflix在线观看网站| 亚洲伊人色综图| 亚洲av第一区精品v没综合| 欧美精品人与动牲交sv欧美| 亚洲精品成人av观看孕妇| 中文字幕制服av| 国产免费现黄频在线看| 久9热在线精品视频| 亚洲avbb在线观看| 黑人巨大精品欧美一区二区mp4| 国产真人三级小视频在线观看| 一个人免费在线观看的高清视频| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 91在线观看av| 999久久久国产精品视频| 亚洲男人天堂网一区| 久久精品亚洲av国产电影网| 久久人人爽av亚洲精品天堂| 热re99久久精品国产66热6| 91精品三级在线观看| 午夜精品久久久久久毛片777| 欧美最黄视频在线播放免费 | 怎么达到女性高潮| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 极品人妻少妇av视频| 国产精品乱码一区二三区的特点 | 国产亚洲精品一区二区www | 一边摸一边抽搐一进一出视频| 91成年电影在线观看| 9色porny在线观看| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91| 欧美+亚洲+日韩+国产| 久久性视频一级片| 侵犯人妻中文字幕一二三四区| 狠狠婷婷综合久久久久久88av| 日日爽夜夜爽网站| 亚洲熟妇熟女久久| 怎么达到女性高潮| 91精品三级在线观看| 丰满人妻熟妇乱又伦精品不卡| tube8黄色片| 视频区图区小说| 国产亚洲精品久久久久久毛片 | 国产无遮挡羞羞视频在线观看| 国产伦人伦偷精品视频| 日韩免费高清中文字幕av| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 久久精品国产清高在天天线| 欧美日韩亚洲国产一区二区在线观看 | 久久久久精品人妻al黑| 人人澡人人妻人| 一区福利在线观看| 亚洲免费av在线视频| 妹子高潮喷水视频| 欧美激情高清一区二区三区| av网站免费在线观看视频| 亚洲欧美色中文字幕在线| 久久久久精品人妻al黑| 久久亚洲真实| 精品少妇久久久久久888优播| 国产精品久久久av美女十八| 久久久久国内视频| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 91国产中文字幕| 国产精品永久免费网站| 欧美亚洲日本最大视频资源| 久久国产精品大桥未久av| 免费久久久久久久精品成人欧美视频| 久久久久久免费高清国产稀缺| 极品教师在线免费播放| 国产亚洲欧美98| 亚洲欧美精品综合一区二区三区| 久久狼人影院| 69精品国产乱码久久久| 手机成人av网站| 国产精品九九99| 国产激情久久老熟女| 热re99久久精品国产66热6| 国产有黄有色有爽视频| 中文字幕最新亚洲高清| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 9191精品国产免费久久| 在线观看免费视频网站a站| 欧美色视频一区免费| 色婷婷久久久亚洲欧美| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9 | 一级黄色大片毛片| 深夜精品福利| 黄频高清免费视频| 成年女人毛片免费观看观看9 | 精品一品国产午夜福利视频| 亚洲欧美一区二区三区黑人| 少妇的丰满在线观看| 久久精品亚洲精品国产色婷小说| 久久国产乱子伦精品免费另类| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 久久国产精品人妻蜜桃| 亚洲欧美激情在线| 他把我摸到了高潮在线观看| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 国产亚洲精品第一综合不卡| 亚洲国产欧美一区二区综合| 一级毛片精品| 在线观看一区二区三区激情| 大香蕉久久成人网| 国产激情欧美一区二区| 在线视频色国产色| 欧美日韩成人在线一区二区| 咕卡用的链子| 黄片小视频在线播放| av片东京热男人的天堂| 午夜两性在线视频| 午夜亚洲福利在线播放| 淫妇啪啪啪对白视频| 无遮挡黄片免费观看| 久久午夜亚洲精品久久| 777久久人妻少妇嫩草av网站| 免费高清在线观看日韩| 国产精品永久免费网站| 亚洲少妇的诱惑av| 狠狠婷婷综合久久久久久88av| 久久人妻av系列| 国产精品久久久久成人av| 侵犯人妻中文字幕一二三四区| videosex国产| 三级毛片av免费| 如日韩欧美国产精品一区二区三区| 久久人妻av系列| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 十八禁人妻一区二区| av天堂久久9| 悠悠久久av| 黑丝袜美女国产一区| 伦理电影免费视频| 一区二区三区激情视频| 国产一区二区三区在线臀色熟女 | 美女高潮喷水抽搐中文字幕| 亚洲成人国产一区在线观看| 国产无遮挡羞羞视频在线观看| 久久久国产精品麻豆| 中文字幕最新亚洲高清| 啦啦啦免费观看视频1| 国产国语露脸激情在线看| 精品少妇一区二区三区视频日本电影| 久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 国产一区二区三区综合在线观看| 色精品久久人妻99蜜桃| 亚洲一区二区三区欧美精品| 99精品在免费线老司机午夜| 黄片小视频在线播放| 夜夜夜夜夜久久久久| 悠悠久久av| 丝袜人妻中文字幕| 超碰成人久久| 91成年电影在线观看| 黄色丝袜av网址大全| 久久久国产欧美日韩av| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 欧美日本中文国产一区发布| 亚洲avbb在线观看| 精品久久久久久,| 日本wwww免费看| 午夜精品国产一区二区电影| 成人黄色视频免费在线看| 变态另类成人亚洲欧美熟女 | 老汉色∧v一级毛片| 免费人成视频x8x8入口观看| 一级毛片女人18水好多| 国产精品香港三级国产av潘金莲| e午夜精品久久久久久久| 飞空精品影院首页| 免费看十八禁软件| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 丁香六月欧美| 男女床上黄色一级片免费看| 国产人伦9x9x在线观看| 国产亚洲精品第一综合不卡| 午夜老司机福利片| 中文字幕制服av| 亚洲熟女精品中文字幕| 亚洲专区字幕在线| 美女高潮到喷水免费观看| 亚洲伊人色综图| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| 国产激情欧美一区二区| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 亚洲av成人不卡在线观看播放网| 免费观看a级毛片全部| 黄网站色视频无遮挡免费观看| 亚洲av日韩在线播放| 脱女人内裤的视频| 十八禁网站免费在线| 免费观看精品视频网站| 天堂动漫精品| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品sss在线观看 | 中文字幕人妻丝袜一区二区| 免费久久久久久久精品成人欧美视频| 老熟妇仑乱视频hdxx| 久久久久久久精品吃奶| 久久 成人 亚洲| 欧美激情 高清一区二区三区| 国产区一区二久久| 老熟妇仑乱视频hdxx| 电影成人av| 热re99久久国产66热| 高清视频免费观看一区二区| 久久精品国产99精品国产亚洲性色 | 久久精品亚洲熟妇少妇任你| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看 | 正在播放国产对白刺激| 999精品在线视频| 亚洲aⅴ乱码一区二区在线播放 | 日本一区二区免费在线视频| 国产视频一区二区在线看| 国产成人精品久久二区二区91| 日日夜夜操网爽| 在线免费观看的www视频| 人妻久久中文字幕网| 色在线成人网| 成人国语在线视频| 女人被躁到高潮嗷嗷叫费观| 日韩人妻精品一区2区三区| 韩国av一区二区三区四区| www.999成人在线观看| 黄色a级毛片大全视频| 久久精品aⅴ一区二区三区四区| 免费不卡黄色视频| 久久婷婷成人综合色麻豆| 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 飞空精品影院首页| 在线观看午夜福利视频| 亚洲专区字幕在线| 色94色欧美一区二区| 日日爽夜夜爽网站| 国产主播在线观看一区二区| 久久久久久亚洲精品国产蜜桃av| 国产深夜福利视频在线观看| 欧美成狂野欧美在线观看| 9热在线视频观看99| 成人亚洲精品一区在线观看| 欧美最黄视频在线播放免费 | 亚洲精品在线美女| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| 久久精品91无色码中文字幕| 欧美国产精品va在线观看不卡| 成人免费观看视频高清| 国产1区2区3区精品| 黄色女人牲交| 国产成人啪精品午夜网站| 新久久久久国产一级毛片| 91国产中文字幕| 国产精品99久久99久久久不卡| 亚洲av欧美aⅴ国产| 老司机深夜福利视频在线观看| 国产有黄有色有爽视频| 99国产精品99久久久久| 国产一区二区三区综合在线观看| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| 99热网站在线观看| 久久婷婷成人综合色麻豆| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 黄色视频,在线免费观看| 91精品国产国语对白视频| 亚洲精品美女久久久久99蜜臀| av天堂久久9| 在线永久观看黄色视频| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡| 男女免费视频国产| 一本综合久久免费| 亚洲av日韩精品久久久久久密| 日日摸夜夜添夜夜添小说| 美女高潮喷水抽搐中文字幕| 久久ye,这里只有精品| 另类亚洲欧美激情| 欧美一级毛片孕妇| 国产不卡一卡二| 精品欧美一区二区三区在线| 午夜影院日韩av| 极品人妻少妇av视频| 日韩免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美激情在线| 亚洲精品自拍成人| 欧美不卡视频在线免费观看 | ponron亚洲| bbb黄色大片| 日本五十路高清| 精品无人区乱码1区二区| 99国产极品粉嫩在线观看| bbb黄色大片| 久久国产乱子伦精品免费另类| 精品一区二区三区四区五区乱码| 成人av一区二区三区在线看| 桃红色精品国产亚洲av| 国产亚洲av高清不卡| 夜夜爽天天搞| 亚洲午夜精品一区,二区,三区| а√天堂www在线а√下载 | 视频区欧美日本亚洲| 黑人操中国人逼视频| 人人妻人人澡人人爽人人夜夜| 黑人操中国人逼视频| 99精国产麻豆久久婷婷| 99久久99久久久精品蜜桃| 叶爱在线成人免费视频播放| 韩国av一区二区三区四区| 精品国产一区二区三区久久久樱花| 男男h啪啪无遮挡| 90打野战视频偷拍视频| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 欧美人与性动交α欧美软件| 久久人妻福利社区极品人妻图片| 国产精品久久久久成人av| 精品免费久久久久久久清纯 | 一夜夜www| 水蜜桃什么品种好| 久久精品91无色码中文字幕| 日韩中文字幕欧美一区二区| 亚洲熟女精品中文字幕| 精品电影一区二区在线| 视频区图区小说| 亚洲国产毛片av蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| a级片在线免费高清观看视频| 高清在线国产一区| 男女床上黄色一级片免费看| 啦啦啦在线免费观看视频4| 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩乱码在线| 国产亚洲精品一区二区www | 亚洲成人手机| 91av网站免费观看| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区精品| 亚洲精品在线观看二区| 国产单亲对白刺激| 精品国产一区二区三区四区第35| 国产精品久久电影中文字幕 | 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 国产av又大| 亚洲全国av大片| 精品久久蜜臀av无| 丰满的人妻完整版| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色|