• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A leveling mechanism for the platform based on booms-constraint control of aerial vehicle①

    2017-09-25 13:02:15ZhangCuihong張翠紅CaoXuepengJiaoShengjieYangBinWangGuanhongZhouZhaoqiang
    High Technology Letters 2017年3期

    Zhang Cuihong (張翠紅), Cao Xuepeng, Jiao Shengjie, Yang Bin,Wang Guanhong, Zhou Zhaoqiang

    (*School of Construction Machinery, Chang’an University, Xi’an 710064, P.R.China)(**National Engineering Laboratory for Highway Maintenance Equipment, Chang’an University, Xi’an 710064, P.R.China)

    A leveling mechanism for the platform based on booms-constraint control of aerial vehicle①

    Zhang Cuihong (張翠紅)②***, Cao Xuepeng***, Jiao Shengjie***, Yang Bin**,Wang Guanhong**, Zhou Zhaoqiang**

    (*School of Construction Machinery, Chang’an University, Xi’an 710064, P.R.China)(**National Engineering Laboratory for Highway Maintenance Equipment, Chang’an University, Xi’an 710064, P.R.China)

    In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms (MAV) in full elevating domain, an auto-leveling mechanism for the platform is proposed based on a control method of booms-constraint, where mixed-boom structures and elevating characteristics are considered. Three models of constraint strategies include non-constraint model, elevating constraint model and lowering constraint model, which is designed to meet the leveling requirements in full working extent. Through the hydro-mechatronic unified modeling, a virtual prototype model is set up based on the auto-leveling mechanism, and leveling performances of the platform are studied during booms elevating to the maximum working height and extent. Simulation results show that the control method of booms-constraint can realize auto-leveling of the platform under two typical working conditions, meanwhile a leveling deviation appears at the constrained point, but the platform inclination is adjusted in the permissible range. The control method does not only restrict booms’ freedom elevating to a certain extent, but also impacts the booms extending to the maximum working range. Experimental results verify that the auto-leveling mechanism based on booms-constraint control is valid and rational, which provides an effective technology approach for development of the platform leveling of MAV.

    mixed-booms aerial vehicle (MAV), platform leveling, booms-constraint control, model simulating

    0 Introduction

    Aerial vehicles with mixed-booms (MAV) have dual advantages of articulating and telescoping booms with a large working range, flexible elevating, cross-barrier operations, environmental adaptability, etc.[1,2]. Automatic leveling approach of work platform, as one of the key technologies of MAV, is requested with large leveling angle, fast response and high leveling accuracy[3,4]. Flow distribution valve is used to parallel with the leveling circuit and the main one with compact and low-cost features[5], but the flow distribution varies with oil temperature, conducting fluctuations of supply flow-rate in the leveling procedure, so leveling stabilities become poor.

    Generally, independent leveling apparatus or circuit achieves the level adjusting of the platform, including parallel four-links structures, hydrostatic equilibrium, combining movements of bars and chains, compound regulation of hydro-mechanical circuit, etc.[6]. These leveling systems although have good stability and high reliability, but the features of response and low accuracy make them difficult to meet requirements for the platform leveling of MAV in large operating range[7].

    The method of electro-hydraulic leveling integrates with simple mechanism, high accuracy and fast response. The electro-hydraulic servo leveling having special manufacturing precision, high production cost, sensitive to fluid and high maintenance cost, is mainly used in the leveling system of large height fire trucks[8].

    For MAV platform leveling, if movements of booms elevating are not constrained, the sum of angular displacement of all-booms exceeds 180°, while the maximum leveling angle output from electro-hydraulic leveling system is only 180°[9,10], which does not match with the leveling requirement.

    1 Elevating features and leveling requirements

    1.1 Boom structures and elevating features

    A MAV has two-level telescopic booms and a small-jib, whose upper structures include turntable elevating booms consisting of down-boom (DB), upper-boom (UB), small-jib (SJ), work platform (WP), etc., shown as Fig.1. At the initial position, the upper-boom and the down arranged in parallel, and elevating angle displacement of other components compared to each initial state is shown as Table 1.

    Table 1 Angular displacement range of each component

    Note: Compared with the initial position, mark “+” is used when components turn counterclockwise, otherwise is “-”.

    1. Down- boom; 2. Upper-boom; 3. Small-jib; 4. Work platform;5.Outriggers; 6. Chassis; 7. Turntable

    1.2 Leveling requirements

    Based on the structure features, leveling performances of platform hanged at the end of booms has the following requirements.

    The output leveling-angle varies in a large scale. The elevating angle resulting from boom lifting reaches 260°, so large leveling angle output from leveling system is essential for balancing platform tilting caused by booms elevating.

    High leveling precision is prerequisite. This parameter is the comprehensive reflection of stability and responsiveness. The platform inclination with horizontal plane shall not exceed 5° at any working position in the national standards for aerial vehicles[11].

    2 Leveling solutions and component selection

    2.1 Drive schemes of leveling system

    According to elevating features, maximum swing angle for the platform is 180°, which cannot completely balance the inclination caused by booms elevating, and a displacement vacuum of 80° to leveling output still exists.

    An auto-leveling mechanism for MAV named as booms-constrained control is proposed to adapt to the platform adjusting, and this method keeps platform horizontal by coordinating inputs of booms elevating with output of leveling system. The structures of leveling system are shown as Fig.2.

    Fig.2 Structures of leveling system for MAV

    One engine drives double-pump supplying pressure oil to leveling circuit of platform and elevating circuit of booms, respectively. In the former, the tilt signal detected by inclination sensor adjusts the opening of leveling valve, fluid through which pushes a swing of leveling apparatus, then they output leveling angle of the platform, and the inclination adjustment is done. In the latter, pressure fluid controlled by each electro-hydraulic valve drives elevating apparatus lifting, and makes three booms move, including down-boom, upper-boom and small-jib, thus platform elevating is executed. Rotation sensors 1~4 are used to detect swinging angles of three booms, and these signals are input to a constraint controller. The controller integrates and compares the sum of angles from booms elevating with leveling angle from leveling apparatus, and export corresponding signal enters electro-hydraulic valve to restrict boom elevating, and keeps the input from booms match with the output from leveling apparatus. Based on the above procedures, a real-time adjustment of inclination for the platform is realized under different elevation of booms.

    2.2 Component selection

    Taking practical applications of pumps into account, the main constant-displacement pump also supplies pressure oil to other circuits beside the elevating circuit, so a larger-displacement one should be selected. While an aided pump is dedicated to the leveling of platform, small displacement is enough. The picking of rated pressure needs to sum up driven requirements of each load, and complies with the pressure greater than the maximum working pressure of each circuit. Selections of hydraulic cylinder should comprehensively consider impacts of velocity ratio of telescopic cylinder, dynamic responses of valves and stability induced by ratio of length and diameter. The valves should have a fast response and good control accuracy, and whose parameters should match with the cylinder. The selections of main components are shown as Table 2~Table 4.

    Table 2 Parameters of valves

    Table 3 Parameters of pumps

    Table 4 Parameters of cylinders

    3 Constraint strategies and control processes

    3.1 Constraint strategies for booms elevating

    (1) Non-constraint model

    The sum of elevating angle from the three booms lifting equals φ=α+β-γ, and meets with φ∈(0°, 180°). In this case, the constraint controller does not restrict the control signals of each elevating boom input from integrated handles. Control relationships can be expressed as

    If the sum φ∈ (0°, 180°), then the performing control is

    Δih≠0, θo=δ, θi=φ-σ, θo=θi

    (1)

    where, θ0, θiare the platform swivel angle from leveling apparatus and the platform inclination induced by booms elevating, δ is the output angle of leveling system, α, β and γ represent each elevating angle of down-boom, upper-boom and small-jib, α is the platform inclination caused by flexible deformations of booms, Δihis a signal incensement of the solenoid valve controlling boom elevating.

    (2) Elevating constraint model

    The sum of elevating angle reaches the upper limit of leveling angle, and boom up-elevating is intended to continue. In this case, signals producing boom up-elevating are all constrained.

    If the sum φ=180° and Δα>0 (Δβ>0 or Δγ>0), then the performing control is

    Δihβ<0 or Δihγ<0, θo=δ,

    θi=α+β-σ, θo=θi

    (2)

    where, Δiβ, Δiγare signal incensement of the solenoid valve controlling the elevating of down-boom and upper-boom, and negative value indicates the lowering of booms.

    (3) Lowering constraint model

    The sum of elevating angle reaches the lower limit of leveling angle, and a boom lowering is intended to continue. In this case, signals producing boom lowering are all constrained.

    If the sum φ=0° and Δα<0(Δβ<0 or Δγ<0), then the performing control is

    Δihβ>0 and Δihγ>0, θo=δ,

    θi=α+β-σ, θo=θi

    (3)

    In the actual condition, when elevating the platform to a target height, it generally accompanies with switches and organic combinations among these three control strategies. The constraint controller coordinates and schedules appropriate control strategies according to the variations of booms elevating, and restricts or discharges the action of related booms, by which keeping leveling angle consistent with elevating angle of booms.

    3.2 Control processes

    At design stage of leveling system, a permissible range of platform inclination should be determined, such as |θ|<3°. Based on the above control strategies, leveling control processes are plotted as Fig.3. In this flowchart, the controls of booms restraints and platform leveling are executed synchronously.

    Fig.3 The leveling flowchart under booms constrained

    4 Simulating analysis

    4.1 Virtual prototype model

    According to above control strategies, combining with booms structure of actual MAV, a virtual prototype model for auto-leveling system is built by the approach of hydro-mechatronics unified modeling in AMESim as Fig.4. As a typical mechanical electro-hydraulic simulating model, it comprises mechanical models of components, hydraulic models of elevating circuit and leveling system, and electrical model of constraint controller. Parameters of this virtual prototype are derived from a certain developed aerial working platform whose maximum working height could reach 37m. In which, fluids driving actuators are supplied by constant pressure source, and fluid compressibility and hose friction are considered, and backpressure 2MPa is set to prevent negative loads by relief valves in the return line and the value of other parameters is shown as Table 5.

    Fig.4 The virtual prototype model of auto-leveling system for aerial work platform

    ComponentsWeight(kg)Length(m) Down-boom80022 Upper-boom3508 Small-jib501.5 Platform(withloads)400 ComponentsLength(m)Diameter(mm)Hosestoplatform4010tojib3510toupper-boom2510todown-boom1.510

    4.2 Analysis of maximum-height working posture

    Due to the output working posture from the virtual prototype building in AMESim, obviously, the effectiveness of the proposed control strategies is validated. As shown in Fig.5(a), Posture U-B is the limited position, in which the output-leveling angle is 180°. Before the limited position, i.e. from Posture U-A to Posture U-B, the working platform is able to maintain the horizontal status. However, once the working position exceeds the limited position shown as Posture U-C, it is no doubt that the working platform will tip over subjected to the restricted output angle of the WP (seen as Table 1). While the proposed control strategies are applied to the control system, a reliable operation is obtained as Fig.5(b). When the working platform reaches the limited position, i.e. Posture E-A, controlling small-jib to move against elevating direction can release the leveling angle from 180° to 0°. This operation provides enough leveling angle to prevent the working platform from inclining during the elevating process from Posture E-B to Posture E-D.

    (a) Unable constraint control

    (b) Enable constraint control

    The specific performance of maximum-height posture operation is shown as Fig.6. The signals input to down-boom, upper-boom and small-jib from the handle are normalized as relative current value in [-1, 1], where the positive drives booms swinging as counterclockwise. The working conditions under booms-constraint strategies are symbolized “1” as non-constraint model and “2” as elevating constraint model.

    (a) Input signals to control valves for three booms

    (b) Variations of lifting angles for three booms

    (c) The changes of total lifting angle and leveling angle

    (d) Fluctuations of inclination angle for work platform

    The variations of input signals and elevating angle of each boom are displayed as Fig.6(a) and Fig.6(b) by the constraint controller scheduling. Down-boom starts lifting at t=0, and rises to the upper limit 80° at t=29.5s, then upper-boom elevating begins until t=48.6s. At the moment, the sum of elevating angle gets 180°, and reaches the upper limit of leveling angle.As shown in Fig.6(c), the upper-boom elevating is restricted strictly, even though elevating signal is continuously maintained, the elevating angle remain 99.4°. In other words, the control strategy of boom constraint moves towards the constraint model “2” from the non-constraint “1”. With the small-jib lowering at t=55.6s, the sum gradually decreases from 180°, and output leveling angle reduces till zero simultaneously. At this stage, an abundant leveling angle is released by small-jib swinging. The constraint of upper-boom elevating is removed at t=69.5s, whose elevating angle continues to increase again until the maximum is 180°, and this control phase also belongs to the non-constraint “1”.

    As shown in Fig.6(d), during the whole elevating process, the inclination angles of platform always change among the range from -3° to 3°. Especially, in the constraint process, the maximum inclination angle is 2.27°, which is a permissible safe range[11]. In addition, the fluctuations of inclination always appear at the point of start or stop of booms elevating and constraints imposed, but less than the permissible value. Besides, the fluctuations are inevitable because of the effect of long pipeline, overhanging beam and method of deviation adjustment. Therefore, based on the constraint control strategies of booms, the auto-leveling function of platform is achieved in the whole elevating domain. Furthermore, a ramp buffer continuing 3s are offered at booms startup in simulation, but some dithering still exists. So setting the buffer could not completely eliminate dither, other approaches should be also adopted.

    4.3 Analysis of maximum-range working posture

    Similarly, the maximum-range working posture could be obtained in the AMESim simulation environment. In order to achieve the maximum-range working posture of platform, the proposed control strategy is implemented and a better effect is displayed as Fig.7. It is shown in Fig.7(a) that Posture U-B is the limited position. In the limited position, the output leveling angle is 180° so that the unable constraint control cannot keep the working platform in horizontal status from Posture U-B to Posture U-C, let alone reaching the maximum-range working posture as Posture E-D. Compared with unable constraint control, the enable constraint control could release the leveling angle from 180° to 0° in the Posture E-A, which is limited position in Fig.7(b). Then no matter the working platform elevates from Posture E-B to Posture E-C or arrives at the maximum-range pose, i.e. Posture E-D, it always maintains its safe status.

    (a) Unable constraint control

    (b) Enable constraint control

    For elevating to the maximum range, variations of input signals and elevating angle of each boom are displayed as Fig.8(a) and Fig.8(b) by the constraint controller scheduling. When t<43.2s, the sum of elevating angle does not exceed 180°, which matches with the range of leveling angle, and belongs to the non-constraint “1” as Fig.8(c). After about 2s elevating restricted, the small-jib lowers at t=55s and output leveling angle reduces reversely, at the same time, redundant leveling angle is generated. From t=57.8s, booms elevating enters into non-constraint model “1”, and the elevating of upper-boom keeps on the same position till reaches the upper limit 180°. At t>70s, the down-boom progressively lowers to zero.

    The platform inclination varing in the whole elevating procedure is shown as Fig.8(d). Similarly, during the constraint process, the maximum inclination angle of working platform is 3.7°, which does not exceed the permissible range [-5°, 5°][11], so does the whole elevating domain, which validates the effectiveness of the proposed booms-constraint control. Although the inevitable inclination fluctuations also exist when constraint imposed because of the same reasons mentioned as the maximum-height working posture, the platform can reach the maximum-range working posture, i.e. Posture E-D, but the continuously non-constraint operation is unavailable.

    Simulation results indicate that the constraints strategies regulate boom elevating or lowering by imposing or removing constraints, by which the sum of elevating angle is maintained in [0°, 180°], and matches with the range of leveling angle output from the leveling apparatus. Under constraint strategies of booms, the auto-leveling system adjusts platform inclination within [-5°, 5] in full elevating domain, although fluctuations appear at the point of startup or stop of booms elevating and constraints.

    (a) Input signals to control valves for three booms

    (b) Variations of lifting angles for three booms

    (c) The changes of total lifting angle and leveling angle

    (d) Fluctuations of inclination angle for work platform

    5 Conclusions

    From mixed-boom structures of MAV and elevating features, an auto-leveling mechanism is proposed based on booms-constraint control. The drive scheme of leveling system is designed, and three control strategies are formulated to meet with the leveling requirements in full working domain, and the leveling flowchart is plotted.

    Combining with booms structure of actual MAV, a virtual prototype model for auto-leveling system is built by the approach of hydro-mechatronics unified modeling in AMESim, in which fluid compressibility, hoses friction, and negative loads are all considered.

    Simulation results confirm that the platform inclination is adjusted within permissible range in full elevating domain by regulating constraint strategies of booms and auto-leveling system, although some fluctuations appear when constraint imposed, which verify the auto-leveling mechanism based on booms-constrained control is effective and reasonable, and offers good references for the development of actual products.

    [ 1] Zhang H, Huo Y L. Industry development and prospects of our country aerial vehicle. Construction Machinery, 2009, 12: 38-43 (In Chinese)

    [ 2] Sun H X, Hou K, Jia Q X. Development, analysis and control of a spherical aerial vehicle. Journal of Vibroengineering, 2013,15(2):1069-1080

    [ 3] Yang H G, Li G Y. Study on leveling method and control technology of a vehicle-bore platform. Machinery Design & Manufacture, 2008,12:134-136

    [ 4] Schimaneck F, Merrifield D K. Aerial work platforms: safety, liability & the rental center. Professional Safety, 1998, 73(1): 25-28

    [ 5] Cheng J S, Yuan W R, Yuan H S, et al. Self-level system of skid-steer loader based on AMESim. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(6): 1390-1395 (In Chinese)

    [ 6] Tian L M, Guo W B. Leveling mechanism of small size aerial vehicle with folding booms. Construction Machinery, 2003, 34(2): 20-22

    [ 7] Krasucki J, Rostkowski A, Gozdek, et al. Control strategy of the hybrid drive for vehicle mounted aerial work platform. Automation in Construction, 2009,18(2): 130-138.

    [ 8] Cao X P, Jiao S J, Cheng L, et al. Auto-leveling mechanism based on interaction of jip-work platform Journal of Chang’an University (Natural Science Edition), 2014, 34(4):184-190(In Chinese)

    [ 9] Chen Y Q, Xu X H, Zhu H L, et al. Simulation research on the basic platform's automatic leveling system based on simhydraulics. Applied Mechanics and Materials, 2013.345:99-103

    [10] Wang X, Zhang H M, Fang J B. Research on electro-hydraulic proportional leveling system of large aerial work platform based on Fuzzy PID. Applied Mechanics and Materials, 2011, 58-60: 221-226

    [11] General Administration of Quality Supervision of China. GB/T 9465-2008,Vehicle-mounted mobile elevating work platform. Beijing:China Standards Press, 2008

    Zhang Cuihong, born in 1982. She is currently working toward the Ph.D degree in Mechanical Engineering at Chang’an Univesity. She received her M.S. degree in Mechanical Design and Theory from Southwest Jiaotong University in 2008. Her research interests include mechanical electro-hydraulic technology and highway construction and equipment.

    10.3772/j.issn.1006-6748.2017.03.014

    Supported by the National Natural Science Foundation of China (No. 51509006),the National Key Technology R&D Program(No.2015BAF07B08) and Fundamental Research Funds for the Central Universities of Chang’an University (No. 310825161008).

    To whom correspondence should be addressed. E-mail: caoxp2011@163.com

    on Oct. 20, 2016

    性色avwww在线观看| av免费在线看不卡| 免费看光身美女| 超碰97精品在线观看| 国语对白做爰xxxⅹ性视频网站| 精品久久久精品久久久| 日韩强制内射视频| 亚洲怡红院男人天堂| 亚洲av中文av极速乱| 全区人妻精品视频| 色网站视频免费| 欧美区成人在线视频| 尤物成人国产欧美一区二区三区| 妹子高潮喷水视频| 日韩av免费高清视频| 亚洲熟女精品中文字幕| 日本-黄色视频高清免费观看| 91精品一卡2卡3卡4卡| 亚洲人成网站高清观看| 亚洲成人一二三区av| 午夜老司机福利剧场| 欧美另类一区| 一级毛片 在线播放| 2022亚洲国产成人精品| 精品国产一区二区三区久久久樱花 | 久久精品人妻少妇| 麻豆成人av视频| 国产 一区 欧美 日韩| 日韩一区二区三区影片| 嫩草影院入口| 男女国产视频网站| 色婷婷av一区二区三区视频| 22中文网久久字幕| 看免费成人av毛片| 成人综合一区亚洲| 亚洲人成网站在线播| 麻豆成人午夜福利视频| 亚洲欧美日韩卡通动漫| 久久久国产一区二区| 欧美bdsm另类| 免费高清在线观看视频在线观看| 99精国产麻豆久久婷婷| 亚洲人成网站在线观看播放| 老师上课跳d突然被开到最大视频| a 毛片基地| 久久国产亚洲av麻豆专区| 色哟哟·www| 久久久久久久久大av| 婷婷色麻豆天堂久久| 欧美区成人在线视频| 亚洲国产精品999| 美女中出高潮动态图| 丝瓜视频免费看黄片| 建设人人有责人人尽责人人享有的 | 亚洲一级一片aⅴ在线观看| 亚洲av中文av极速乱| 你懂的网址亚洲精品在线观看| 精品少妇黑人巨大在线播放| 免费不卡的大黄色大毛片视频在线观看| 久久久亚洲精品成人影院| 2022亚洲国产成人精品| 亚洲天堂av无毛| 国产免费福利视频在线观看| 九草在线视频观看| 日韩成人伦理影院| 成人美女网站在线观看视频| 国产深夜福利视频在线观看| 麻豆乱淫一区二区| 亚洲欧美中文字幕日韩二区| 国产在视频线精品| 精品久久国产蜜桃| 我的女老师完整版在线观看| 日产精品乱码卡一卡2卡三| 肉色欧美久久久久久久蜜桃| 性高湖久久久久久久久免费观看| 国产伦在线观看视频一区| 在线观看免费视频网站a站| 免费黄频网站在线观看国产| 香蕉精品网在线| 麻豆乱淫一区二区| 日韩 亚洲 欧美在线| 色婷婷久久久亚洲欧美| 欧美日韩国产mv在线观看视频 | 亚洲av在线观看美女高潮| 国产人妻一区二区三区在| 亚洲精品国产av成人精品| 亚洲精品久久午夜乱码| 有码 亚洲区| 日韩三级伦理在线观看| 久久久久久久久大av| 免费播放大片免费观看视频在线观看| 国产极品天堂在线| 两个人的视频大全免费| 成年美女黄网站色视频大全免费 | 国产综合精华液| 中国国产av一级| 国产精品免费大片| 国产精品国产三级国产av玫瑰| 欧美bdsm另类| 久久精品久久久久久噜噜老黄| 精品少妇黑人巨大在线播放| 中文资源天堂在线| 午夜视频国产福利| 国产色婷婷99| 丝袜喷水一区| 亚洲图色成人| 纯流量卡能插随身wifi吗| 干丝袜人妻中文字幕| 欧美丝袜亚洲另类| 亚洲欧美清纯卡通| 丰满少妇做爰视频| 大片免费播放器 马上看| 亚洲aⅴ乱码一区二区在线播放| 久久ye,这里只有精品| 黑人猛操日本美女一级片| 一级片'在线观看视频| 久久久久久久久大av| 国产精品秋霞免费鲁丝片| 婷婷色综合大香蕉| 观看av在线不卡| 精品人妻视频免费看| 久久99蜜桃精品久久| 欧美精品一区二区免费开放| 亚洲真实伦在线观看| 成人黄色视频免费在线看| 精品人妻视频免费看| 五月伊人婷婷丁香| 精品久久久久久电影网| 日韩不卡一区二区三区视频在线| 精品久久久久久电影网| av免费在线看不卡| 亚洲国产欧美在线一区| 亚州av有码| 大片电影免费在线观看免费| 精品久久久久久久久av| 97在线视频观看| 亚洲欧洲日产国产| a级毛片免费高清观看在线播放| 免费av中文字幕在线| 搡老乐熟女国产| 欧美日韩视频高清一区二区三区二| 亚洲精品久久午夜乱码| 好男人视频免费观看在线| 国产在视频线精品| 中文乱码字字幕精品一区二区三区| 国产成人aa在线观看| 久久精品国产亚洲网站| 国产无遮挡羞羞视频在线观看| 美女视频免费永久观看网站| 国产久久久一区二区三区| tube8黄色片| 在线观看一区二区三区激情| 一个人看的www免费观看视频| 国产在线男女| 麻豆成人av视频| 在线看a的网站| 亚洲激情五月婷婷啪啪| 日本av免费视频播放| 亚洲成人中文字幕在线播放| 亚洲欧洲国产日韩| 国产成人免费观看mmmm| 777米奇影视久久| av一本久久久久| 免费大片18禁| 黄色怎么调成土黄色| 欧美成人一区二区免费高清观看| 一本一本综合久久| 日韩免费高清中文字幕av| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 亚洲精品456在线播放app| 中文字幕亚洲精品专区| videos熟女内射| 亚洲丝袜综合中文字幕| 在线播放无遮挡| 亚洲欧美日韩东京热| 黄色日韩在线| 欧美xxⅹ黑人| 久久久午夜欧美精品| 亚洲欧美精品专区久久| 3wmmmm亚洲av在线观看| 亚洲av男天堂| 日韩av免费高清视频| 搡老乐熟女国产| 国产黄片视频在线免费观看| 亚洲成人手机| 日本欧美国产在线视频| 久久久久国产精品人妻一区二区| 亚洲精品456在线播放app| videos熟女内射| 欧美变态另类bdsm刘玥| 精品少妇黑人巨大在线播放| 免费av不卡在线播放| 成人毛片60女人毛片免费| 男女啪啪激烈高潮av片| 免费观看a级毛片全部| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美人成| 啦啦啦中文免费视频观看日本| 久久午夜福利片| 水蜜桃什么品种好| 亚洲av不卡在线观看| av在线老鸭窝| 成人午夜精彩视频在线观看| 国产成人freesex在线| 日本-黄色视频高清免费观看| 国产亚洲5aaaaa淫片| 日本wwww免费看| 国产男人的电影天堂91| 黄色怎么调成土黄色| 欧美成人一区二区免费高清观看| 91在线精品国自产拍蜜月| 视频中文字幕在线观看| 亚洲av福利一区| 多毛熟女@视频| 国产av国产精品国产| 午夜福利影视在线免费观看| 亚洲精品第二区| 欧美日韩亚洲高清精品| 在线观看一区二区三区激情| 尾随美女入室| av在线蜜桃| 日本色播在线视频| 高清av免费在线| 高清不卡的av网站| 国产 精品1| 久久久久久人妻| 国产伦精品一区二区三区四那| 九草在线视频观看| 国产免费一级a男人的天堂| 精华霜和精华液先用哪个| 十分钟在线观看高清视频www | 伦理电影大哥的女人| 1000部很黄的大片| 观看av在线不卡| 2018国产大陆天天弄谢| 久久99热这里只频精品6学生| 国产精品嫩草影院av在线观看| 欧美丝袜亚洲另类| 精品亚洲成a人片在线观看 | 国产亚洲91精品色在线| 一区二区三区四区激情视频| 国产精品嫩草影院av在线观看| 99热6这里只有精品| av线在线观看网站| 国产成人午夜福利电影在线观看| 久久精品国产亚洲av涩爱| 欧美xxⅹ黑人| 久久久久精品久久久久真实原创| 亚洲内射少妇av| 在线观看免费高清a一片| 欧美xxxx性猛交bbbb| av黄色大香蕉| 欧美+日韩+精品| 两个人的视频大全免费| 国产一区二区在线观看日韩| 国产国拍精品亚洲av在线观看| 国产黄片视频在线免费观看| 在线 av 中文字幕| 极品教师在线视频| 亚洲国产毛片av蜜桃av| 国产精品不卡视频一区二区| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 春色校园在线视频观看| 精品久久久噜噜| 国产黄频视频在线观看| av卡一久久| 国产一级毛片在线| 欧美老熟妇乱子伦牲交| 午夜福利在线观看免费完整高清在| 国产真实伦视频高清在线观看| 国产精品人妻久久久影院| 久久韩国三级中文字幕| 免费黄色在线免费观看| 欧美成人午夜免费资源| 欧美日本视频| 日韩人妻高清精品专区| 亚州av有码| 能在线免费看毛片的网站| 亚洲国产成人一精品久久久| 日日摸夜夜添夜夜添av毛片| 国内少妇人妻偷人精品xxx网站| 一本—道久久a久久精品蜜桃钙片| 久久 成人 亚洲| 干丝袜人妻中文字幕| 免费看不卡的av| 亚洲av欧美aⅴ国产| 亚州av有码| 一级毛片我不卡| 国产深夜福利视频在线观看| 人妻制服诱惑在线中文字幕| av播播在线观看一区| 久久久精品94久久精品| 亚洲精品日本国产第一区| 极品少妇高潮喷水抽搐| 亚洲色图av天堂| 最黄视频免费看| 亚洲色图综合在线观看| 日本黄色片子视频| 亚洲欧美成人精品一区二区| 天天躁夜夜躁狠狠久久av| 欧美精品国产亚洲| 一级毛片我不卡| 新久久久久国产一级毛片| 精品酒店卫生间| 视频区图区小说| 国产av国产精品国产| 国产亚洲一区二区精品| 赤兔流量卡办理| 制服丝袜香蕉在线| 最近最新中文字幕免费大全7| 91久久精品国产一区二区成人| 亚洲成人一二三区av| 国产精品人妻久久久久久| 大话2 男鬼变身卡| 国产精品一及| 国产免费视频播放在线视频| 51国产日韩欧美| 亚洲三级黄色毛片| 美女脱内裤让男人舔精品视频| 欧美日韩在线观看h| 亚洲内射少妇av| 国产亚洲精品久久久com| 丝瓜视频免费看黄片| 精品少妇黑人巨大在线播放| 午夜福利在线在线| 麻豆国产97在线/欧美| 亚洲综合精品二区| 直男gayav资源| 国产在线视频一区二区| 黄片无遮挡物在线观看| 国产精品一区二区在线不卡| 亚洲国产精品成人久久小说| 乱码一卡2卡4卡精品| 国产精品一区二区在线观看99| 精品久久久久久久久亚洲| 综合色丁香网| 色视频www国产| 亚洲精品一二三| 日韩av在线免费看完整版不卡| 亚洲国产欧美在线一区| 亚洲精品日本国产第一区| 观看免费一级毛片| 色网站视频免费| 日韩不卡一区二区三区视频在线| 亚洲精品久久午夜乱码| 热re99久久精品国产66热6| 91精品一卡2卡3卡4卡| 欧美亚洲 丝袜 人妻 在线| av一本久久久久| 亚洲精品第二区| 亚洲精华国产精华液的使用体验| 国产永久视频网站| 国产视频首页在线观看| 天堂俺去俺来也www色官网| 国产精品99久久久久久久久| 哪个播放器可以免费观看大片| av国产精品久久久久影院| 国产爽快片一区二区三区| 伦理电影大哥的女人| 久久久成人免费电影| 夜夜骑夜夜射夜夜干| 国产色婷婷99| 午夜日本视频在线| 免费大片18禁| 18禁动态无遮挡网站| 亚洲成色77777| 各种免费的搞黄视频| 亚洲欧美中文字幕日韩二区| 亚洲人成网站在线观看播放| 在线观看免费日韩欧美大片 | 免费人成在线观看视频色| 午夜福利高清视频| 激情 狠狠 欧美| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 一级毛片 在线播放| 精品一区二区三区视频在线| 赤兔流量卡办理| 99热国产这里只有精品6| 美女cb高潮喷水在线观看| 国产毛片在线视频| 亚洲伊人久久精品综合| 少妇 在线观看| 一个人看视频在线观看www免费| 欧美bdsm另类| 一级毛片我不卡| 久久久久精品久久久久真实原创| 日本爱情动作片www.在线观看| 久久久久久久亚洲中文字幕| 国产精品偷伦视频观看了| av国产久精品久网站免费入址| 大又大粗又爽又黄少妇毛片口| 一区在线观看完整版| 婷婷色综合www| 中文资源天堂在线| 久久99热这里只有精品18| 在现免费观看毛片| 欧美老熟妇乱子伦牲交| 美女主播在线视频| 老司机影院成人| 91精品一卡2卡3卡4卡| 99久久精品热视频| 国产精品99久久99久久久不卡 | 国产成人精品久久久久久| 精品少妇久久久久久888优播| av在线app专区| 一区二区三区精品91| 国产淫片久久久久久久久| 在线播放无遮挡| 日本wwww免费看| 熟女人妻精品中文字幕| 色5月婷婷丁香| 国产精品av视频在线免费观看| 插阴视频在线观看视频| 97超碰精品成人国产| 一级毛片 在线播放| 少妇 在线观看| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 亚洲不卡免费看| 成人毛片a级毛片在线播放| 日日摸夜夜添夜夜爱| 久久毛片免费看一区二区三区| 成人国产麻豆网| 国产精品99久久99久久久不卡 | 纵有疾风起免费观看全集完整版| 免费大片18禁| 一级爰片在线观看| 国产 一区精品| 亚洲国产色片| 亚洲无线观看免费| 国产精品一及| 啦啦啦啦在线视频资源| 免费观看av网站的网址| 国产高清国产精品国产三级 | 日本午夜av视频| a 毛片基地| h日本视频在线播放| 一边亲一边摸免费视频| 超碰97精品在线观看| 国产熟女欧美一区二区| 搡老乐熟女国产| 97在线人人人人妻| 天天躁夜夜躁狠狠久久av| 卡戴珊不雅视频在线播放| 亚洲第一av免费看| 在线观看免费日韩欧美大片 | 夫妻性生交免费视频一级片| 亚洲精品色激情综合| 免费看av在线观看网站| 免费av不卡在线播放| 黑人猛操日本美女一级片| 精品亚洲成a人片在线观看 | 下体分泌物呈黄色| 看十八女毛片水多多多| 九色成人免费人妻av| 中文字幕制服av| 精品人妻偷拍中文字幕| 美女福利国产在线 | 欧美三级亚洲精品| 国产高清有码在线观看视频| 日韩电影二区| 男女下面进入的视频免费午夜| 午夜激情福利司机影院| 欧美xxⅹ黑人| 久久 成人 亚洲| 青春草视频在线免费观看| 最黄视频免费看| 亚洲人与动物交配视频| 全区人妻精品视频| 亚洲精品久久午夜乱码| 一级毛片aaaaaa免费看小| 视频区图区小说| 97精品久久久久久久久久精品| 黄色日韩在线| 天堂8中文在线网| 欧美97在线视频| 国产精品av视频在线免费观看| 色婷婷久久久亚洲欧美| 精品视频人人做人人爽| 国产真实伦视频高清在线观看| 少妇人妻精品综合一区二区| 日本免费在线观看一区| 亚洲欧洲日产国产| 女性被躁到高潮视频| 国产成人精品福利久久| 搡女人真爽免费视频火全软件| 一区二区av电影网| 老司机影院成人| 免费大片黄手机在线观看| 国产视频首页在线观看| 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 色婷婷久久久亚洲欧美| 欧美最新免费一区二区三区| 国产亚洲最大av| 久久久久久久亚洲中文字幕| av免费观看日本| 国产精品久久久久成人av| 免费看光身美女| 精品一区在线观看国产| 又黄又爽又刺激的免费视频.| 日本色播在线视频| 韩国av在线不卡| 亚洲精品aⅴ在线观看| 一本久久精品| 网址你懂的国产日韩在线| 深爱激情五月婷婷| 小蜜桃在线观看免费完整版高清| 久久久久视频综合| 蜜桃久久精品国产亚洲av| av播播在线观看一区| 丝袜脚勾引网站| 亚洲欧美精品自产自拍| av免费观看日本| 秋霞在线观看毛片| 日韩欧美 国产精品| 国模一区二区三区四区视频| 99re6热这里在线精品视频| 色哟哟·www| 老女人水多毛片| 99久久中文字幕三级久久日本| av线在线观看网站| 亚洲精品日韩av片在线观看| 热re99久久精品国产66热6| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 成年美女黄网站色视频大全免费 | kizo精华| 亚洲国产欧美人成| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区视频9| 妹子高潮喷水视频| 2022亚洲国产成人精品| 乱系列少妇在线播放| 交换朋友夫妻互换小说| 99久久精品国产国产毛片| 美女脱内裤让男人舔精品视频| 一二三四中文在线观看免费高清| 免费看光身美女| 成人漫画全彩无遮挡| 日韩成人伦理影院| 青春草亚洲视频在线观看| 久久久精品免费免费高清| xxx大片免费视频| 久久久久久久亚洲中文字幕| 亚洲伊人久久精品综合| 老师上课跳d突然被开到最大视频| 一区二区av电影网| 蜜桃久久精品国产亚洲av| 亚洲美女黄色视频免费看| 一级黄片播放器| 蜜臀久久99精品久久宅男| 久久人人爽人人片av| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影小说 | 国内少妇人妻偷人精品xxx网站| 在现免费观看毛片| av在线蜜桃| 国内精品宾馆在线| 国产成人精品久久久久久| 老司机影院成人| 亚洲av日韩在线播放| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 国产美女午夜福利| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲人与动物交配视频| 国产爱豆传媒在线观看| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 久久久久性生活片| 国产亚洲5aaaaa淫片| 亚洲av综合色区一区| 黄片无遮挡物在线观看| 国产精品久久久久久精品古装| 欧美日韩视频精品一区| 美女高潮的动态| 精品人妻视频免费看| 晚上一个人看的免费电影| 国产一区二区在线观看日韩| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 久热久热在线精品观看| 欧美bdsm另类| 欧美极品一区二区三区四区| 久久精品国产自在天天线| 超碰97精品在线观看| 成人黄色视频免费在线看| 免费看日本二区| 黄片wwwwww| 国产爽快片一区二区三区| 亚洲av成人精品一二三区| 精品亚洲成国产av| 精品午夜福利在线看| 免费人成在线观看视频色| 少妇的逼好多水| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 亚洲性久久影院| 啦啦啦中文免费视频观看日本| 九草在线视频观看| 午夜福利视频精品| 成年美女黄网站色视频大全免费 | 免费人妻精品一区二区三区视频| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区| 国产亚洲5aaaaa淫片| 少妇人妻精品综合一区二区| 国产有黄有色有爽视频|