• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative analysis of the performance of vector tracking algorithms①

    2017-09-25 13:01:30WangQianCuiXiaoweiLiuJingZhaoSihao
    High Technology Letters 2017年3期

    Wang Qian (王 前), Cui Xiaowei, Liu Jing, Zhao Sihao

    (*Beijing Satellite Navigation Center, Beijing 100094, P.R.China)(**Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R.China)

    Quantitative analysis of the performance of vector tracking algorithms①

    Wang Qian (王 前)②*, Cui Xiaowei**, Liu Jing**, Zhao Sihao**

    (*Beijing Satellite Navigation Center, Beijing 100094, P.R.China)(**Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R.China)

    Vector tracking changes the classical structure of receivers. Combining signal tracking and navigation solution, vector tracking can realize powerful processing capabilities by the fusion technique of receiving channel and feedback correction. In this paper, we try to break through the complicated details of numerical analysis, consider the overall influencing factors of the residual in observed data, and use the intrinsic link between a conventional receiver and a vector receiver. A simple method for performance analysis of the vector tracking algorithm is proposed. Kalman filter has the same steady performance with the classic digital lock loop through the analysis of the relation between gain and band width. The theoretical analysis by the least squares model shows that the reduction of range error is the basis for the superior performance realized by vector tracking. Thus, the bounds of its performance enhancement under weak signal and highly dynamic conditions can be deduced. Simulation results verify the effectiveness of the analysis presented here.

    vector tracking, dynamic stress noise, loop band width, pseudo-range error

    0 Introduction

    Satellite navigation systems can provide precise real-time positioning, velocity measurements, and timing services in all weather conditions and at any location. With continuous expansion and improvement of human production and living standards, the requirements of satellite navigation terminals have increased. Traditional receiving terminals cannot perform optimally in highly dynamic and weak signal conditions, which is a major limit on satellite navigation applications. A series of solutions for improving satellite navigation terminal performance have appeared, including inertial navigation assistance, satellite power boosting, and vector tracking.

    Among all of the aforementioned solutions, only “vector tracking” focuses on improving receiver performance without the help of an auxiliary external system, which has made vector tracking an active and growing area of research. The basic idea of vector tracking[1]is to combine channel tracking and navigational information from all of the received channels using an extended Kalman filter. The position results are obtained while simultaneously using measured values as a feedback signal for the local oscillator in order to maintain stable satellite signal tracking.

    Compared with a traditional scalar-loop structure, a vector-loop receiver can indeed exhibit superior performance. In particular, a vector-loop receiver can achieve stable tracking under highly dynamic and weak signal conditions. The advantage of vector-loop channel fusion effectively reduces the measurement error, thereby enhancing the carrier-to-noise ratio and sensitivity of the receiver. In dynamic environments, vector tracking algorithms can use vector decomposition to track dynamic signals in the correct direction by using characteristics of the motion to offset the dynamic stress in a strong dynamic direction, and reduce ineffective setting in a weak dynamic direction.

    Many publications have presented detailed analyses that quantify the advantages of vector loop performance. Refs[2] and [3] presented comparative analyses of vector and scalar loop receiver performance under different scenarios. Ref.[3] emphasized the superiority of vector loops under the condition of losing and recapturing lock. Ref.[4] described the tracking performance exhibited by a vector loop under the condition of ionospheric scintillation. Ref.[5] compared and analyzed the tracking performance of scalar and vector loops based on Kalman filtering under the condition of lower signal to noise ratio. All of the aforementioned documents emphasize the tracking advantages of vector loops in various harsh environments, however, systematic and in-depth analyses of the performance of vector tracking algorithms are limited.

    Based on the aforementioned research work, this article focuses on the physical factors that influence vector tracking algorithm performance, and points out the role of the Kalman filter in the algorithm. Starting from a bandwidth analysis, an in-depth discussion on how vector tracking achieves excellent performance with highly dynamic and weak signals is presented. A theoretical analysis that quantifies the enhancement range of vector tracing performance for engineering applications is proposed and verified by simulation.

    1 Model description

    1.1 Signal model

    The downlink signal in satellite navigation system is modulated by pseudo code and carrier wave. The signal is input to the base band after frequency conversion through RF module, which can be expressed by

    (1)

    where, t is the receiving moment, N is the number of visible satellites, and ai, τi, φiand fd,iare the amplitude, the phase delay, the carrier phase, and the Doppler frequency shift of signal i, respectively. Si(t-τi) is the modulation spreading code for the corresponding signal, and n(t) is white Gaussian noise. The process of tracking in the receiver is used to obtain the aforementioned signal parameters from the noise signal. A scalar loop obtains the parameters of a single branch through an independent DLL (delay locked loop) /FLL (frequency locked loop) minor feedback loop, while a vector loop obtains the parameters of all of the branches simultaneously through a VDLL/VFLL major feedback loop.

    1.2 Vector loop structure model

    The model of a vector loop is shown in Fig.1, and the core is based on discrete time state recursion. In the initial stage of system operation, estimates of the necessary signal parameter information of position and velocity are obtained via a scalar loop as mentioned in Section 1.1. After this initial operation, the scalar loop connection between the discriminator and the local reference oscillator should be disconnected. The discriminator outputs the predicted error vector of the observed value and, by processing this data with a Kalman filter, the vectors of displacement and velocity can

    Fig.1 The model of a vector loop

    be updated. After radial projection in the direction of the satellite, the predicted code phase/frequency and carrier frequency can be obtained in order to drive the local reference oscillator to recover the pseudo code and carrier information. Thus, a complete signal vector tracking process is realized.

    During continuous operation of the vector loop, updates of the Kalman gain are mainly based on the following recursion formula:

    (2)

    1.3 Influence factor analysis

    As shown in Fig.1, the Kalman filter is the core of the vector loop, and its parameters directly influence the performance of the vector tracking algorithm. The state variables of the filter are signal synchronization parameters such as power, code phase and carrier Doppler. In the corresponding mode the measure variables are the surplus estimations of the above parameters derived from the descriminators. In general, Kalman filtering consists of two processing procedures: “prediction” and “correction”, where the state noise and measurement noise should be used, respectively. The covariance matrix of the state noise is composed of signal power noise and carrier Doppler noise. Note that carrier Doppler noise depends on the state of satellite motion, receiver motion, and the clock drift of user’s equipment. The covariance matrix of measurement noise consists of the residual code phase delay, the residual Doppler shift, and the discriminator error variance for the residual signal power. The discriminator commonly adopts the non-coherent power method, for which the expression of discriminator error variance[9]is

    (3)

    (4)

    (5)

    2 Theoretical analysis

    2.1 Thermal noise analysis

    (6)

    (7)

    According to the principle of the vector loop, the displacement vector can be transformed into a pseudo range variation only by radial projection in the direction of the carrier and satellite.

    (8)

    Similarly, according to the least square method, equation

    (9)

    can be solved as:

    (10)

    The estimated variation of a pseudo range can then be expressed as

    (11)

    And the error variance of vector loop equals to:

    (12)

    Table 1 The processing performance of weak signals by the vector loop

    2.2 Dynamic stress analysis

    (13)

    The classical expression of dynamic stress error is shown in Eq.(13), where α is the loop bandwidth, B is the empirical coefficient of characteristic frequency conversion, R is the distance between the carrier and the satellite, and n is the loop order. The value of the dynamic stress is mainly related to two factors: 1) the relative dynamic state between the carrier and the satellite, and 2) the characteristic frequency, which is closely related to the loop bandwidth. Because the dynamic stress error generated in the transient response is much larger than that in the steady state response, the loop bandwidth is generally conservative in order to guarantee the signal frequency and phase change caused by the dynamic motion of the loop are rejected.

    In Section 2.1, it shows that a vector loop improves the noise performance of the loop, which reduces the requirement of a conservative loop bandwidth. Therefore, the bandwidth can be increased to increase signal tracking performance in the presence of dynamic stress.

    Under the premise of the same noise variance, the loop bandwidth of a vector loop can be increased to improve adaptability to the dynamic stress error experienced by the receiving terminals. Fig.2 shows that the tolerance of the loop bandwidth increases gradually as the carrier to noise ratio increases. Moreover, if the coherent integration time is longer, this advantage is more obvious. When the carrier to noise ratio increases from 18dB·Hz to 20.5dB·Hz, the bandwidth of the 2ms integral increases from 2Hz to 4.5Hz, and the bandwidth of the 20ms integral increases from 2Hz to 6Hz. However, the ability to increase the integration time is always limited by factors such as the message data, dynamic stress, frequency stability of the crystal oscillator in the receiver, etc. Thus, it is not suitable to set the integration time too long. Note that the input of the vector loop still employs the frequency discriminator output of a traditional scalar loop, therefore, the threshold value of the frequency tracking loop can be expressed by

    (14)

    Fig.2 The bandwidth variation under weak signal conditions

    In Eq. (14), σwis the root mean square of the frequency error caused by thermal noise, and θeis the tracking error caused by the dynamic stress. Under weak signal conditions σwis very large, so the margin for dynamic stress is very small, and the effect of the increase in dynamic range is not obvious.

    When the carrier to noise ratio is relatively high, the curve in Fig.3 indicates that the effect of the integration time on performance can be neglected. To summarize, according to Eq. (13) with all other parameters being equal, doubling the bandwidth in a first order loop increases the tolerable dynamic stress by a factor of 2, and doubling the bandwidth in a second order loop increases the tolerable dynamic stress by a factor of 4.

    Fig.3 The bandwidth variation under strong signal conditions

    3 Performance Verification

    3.1 Simulation environment

    In the simulation results presented here, a signal generator produces the multi-channel BPSK navigation signal. The signal intensity in each channel is constant, and C/N0is set to 19dB·Hz for a weak signal, and 40dB·Hz for a normal signal. The Nyquist sampling rate is 8.184MHz, and the simulation duration is 400s. The simulated movement is a combination of uniform acceleration and sudden acceleration. The acceleration jumps from 0.5g m/s2to -0.5gm/s2, where the high one is from 6g m/s2to -6g m/s2. Signal setting of simulation is consistent with the presented tracking threshold of VDFLL[10].

    The two receivers implemented here use a scalar receiver and a vector VDFLL receiver, respectively. For a fair comparison between the two types of algorithms, both are based on the tracking loop of a Kalman filter and the influence of a changing loop bandwidth on the algorithm performance is neglected. Observation noise parameters are captured directly from the output value of the discriminator, and process noise parameters are fixed under weak signal conditions without the adaptability adjustment that could be obtained from the variation of the dynamic state of the carrier. Although this parameter adjustment is useful for improving the performance, it prevents comparing the two algorithms on the same platform. Under highly dynamic conditions, the bandwidth parameter is adjusted according to the dynamic state while maintaining the same measurement error is desired. The loop integral time is set to 20ms in all cases.

    3.2 Weak signal processing analysis

    Fig.4 and Fig.5 list the code phase delay error, carrier frequency error due to Doppler shifts for different numbers of satellites (6, 8, and 11), respectively under weak signal conditions (19dB·Hz, ±0.5g m/s2). These conditions provide insight into the processing capability of the VDFLL architecture in a weak signal environment. Fig.4 and Fig.5 reveal that with an increasing number of satellites, the code phase error and carrier frequency error are both reduced. When the number of satellites is 6, FLL and DLL are out of lock, so the error is large. Scalar receivers with same settings can achieve a stable tracking state for the signal parameters of (23dB·Hz, ±0.5g), which is in line with the theoretical analysis presented in Section 2.

    Fig.4 Frequency error under weak signal conditions

    Fig.5 Code phase error under weak signal conditions

    3.3 Dynamic stress processing analysis

    Fig.6 and Fig.7 list the code phase delay error, carrier frequency error due to Doppler shifts, and position error for different numbers of satellites (6, 8, and 11), respectively, under highly dynamic conditions (40dB·Hz, ±6g m/s2) in order to investigate the processing capability of the VDFLL architecture in a highly dynamic environment. Due to different simulation parameters, the results are not entirely consistent with those obtained in the weak signal environment. Owing to the excellent signal quality, the errors of code phase with different satellite number are not obvious. From Fig.7, it should be pointed out that the frequency error of channel 6 is between 8 and 12Hz,

    Fig.6 Code phase error in highly dynamic conditions

    Fig.7 Frequency error in highly dynamic conditions

    which is close to the threshold value of the FLL’s tracking bandwidth (12.5Hz). Therefore, it is the loss of lock in the FLL that causes the final positioning failure. In addition to the bandwidth parameters, the other scalar receivers with the same parameter settings reach a stable tracking state for the signal parameters of (40dB·Hz, ±3g m/s2), which is in good agreement with the theoretical analysis presented in Section 2.

    3.4 Validation with actual data

    In order to validate the performance, an actual real-time data is used by RF signal recording and playback apparatus[11]. The trajectory of the vehicle on the highway with the velocity of 90km/h is shown as Fig.8. The C/N0of GPS collected satellite signal is 44dB·Hz.

    Fig.8 Trajectory of the vehicle on the highway

    In this condition, the measure errors of VDLL and VFLL with the vector loop are 0.0021 chip and 0.45Hz, while those with the scalar loop are 0.0032 chip and 3.8Hz. This experiment shows the advantage of VDLL/VFLL in signal tracking compared with DLL/FLL in the regular scene.

    4 Conclusion

    The vector tracking architecture in global navigation satellite system (GNSS) receivers has the advantage of increased performance through multi-channel integration processing, but it also has disadvantages including a complex structure and the need to perform a large number of calculations. Thus, analyzing its performance is also a problem in industry settings. In this paper, transformation between vector tracking and scalar tracking is used to determine the influence and constraints of integration time, loop bandwidth, thermal noise, dynamic stress, and other factors that affect receiver performance. The vector loop can reduce the observation error and improve performance through accurate feedback obtained by multi-channel fusion technology. Under equivalent conditions, the vector receiver exhibits a gain that is 3dB higher, or endures 2~4 times the dynamic stress, when compared with a scalar receiver.

    Reference

    [ 1] Sennott J W. A flexible GPS software development system and timing analyzer for present and future microprocessors. Navigation, 1984, 31(2): 84-95

    [ 2] Lashley M, Bevly D M, Hung J Y. A valid comparison of vector and scalar tracking loops. In: Proceedings of the IEEE/ION Position Location and Navigation Symposium (PLANS), Indian Wells, USA, 2010. 464-474

    [ 3] Kanwal N, Hurskainen H, Nurmi J. Vector tracking loop design for degraded signal environment. In: Proceedings of International Conference on Ubiquitous Positioning Indoor Navigation and Location Based Service, Kirk konummi, Finland, 2010. 1-4

    [ 4] Xia J, Yue F Z, Wang P P, et al. Robust GNSS signal tracking algorithm based on vector tracking loop under ionospheric scintillation conditions. In: Proceedings of the 12th International Conference on Signal Processing, Hangzhou, China, 2014. 2385-2389

    [ 5] Zhao S H, Lu M Q, Feng Z M. GNSS vector lock loop based on adaptive Kalman filter. Journal of Harbin Institute of technology, 2012,44(7): 139-143 (In Chinese)

    [ 6] Lashley M, Bevly D M, Hung J Y. Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics. IEEE Journal of Selected Topics in Signal Processing Selected, 2009, 3(4): 661-673

    [ 9] Van Dierendonck A J, Fenton P, Ford T. Theory and performance of narrow correlator spacing in a GPS receiver. Navigation, 1992, 39(3): 265-284

    [ 7] Qian Y, Cui X W, Lu M Q, et al. Steady-state performance of Kalman filter for DPLL. Tsinghua Science and Technology, 2009, 14(4): 470-473 (In Chinese)

    [ 8] Wang Q, Hu C B. Kalman filter signal tracking based on relatively fixed-gain. Chinese High Technology Letters, 2015,25(1): 17-23 (In Chinese)

    [10] Liu J, Cui X W, Lu M Q, et al. Vector tracking loops in GNSS receivers for dynamic weak signals. Journal of Systems Engineering and Electronics, 2013, 24(3): 349-364

    [11] Xian D Y, Fan P R, Wu H L. Test system for BDS user terminal based on RF replay apparatus. In: Proceedings of the 7th China Satellite Navigation Conference, Changsha, China, 2016, 5: 413-422

    his Ph.D degree in Computer Science Department of Beihang University. His research interests include the design of algorithms for signal tracking, integrated navigation and precision positioning.

    10.3772/j.issn.1006-6748.2017.03.002

    Supported by the National Natural Science Foundation of China (No. 41474027) and the National Defense Basic Science Project (JCKY2016110B004).

    To whom correspondence should be addressed. E-mail: wqaloha@139.com

    on June 8, 2016

    免费播放大片免费观看视频在线观看| 免费高清在线观看视频在线观看| 亚洲不卡免费看| 少妇猛男粗大的猛烈进出视频 | 美女大奶头视频| 天堂网av新在线| 51国产日韩欧美| 国产视频首页在线观看| 2022亚洲国产成人精品| 99re6热这里在线精品视频| 成年av动漫网址| 欧美日韩国产mv在线观看视频 | 成人亚洲精品av一区二区| 欧美zozozo另类| 我的女老师完整版在线观看| www.av在线官网国产| 欧美潮喷喷水| 精品国内亚洲2022精品成人| 麻豆精品久久久久久蜜桃| 美女xxoo啪啪120秒动态图| 在线观看av片永久免费下载| 成人毛片60女人毛片免费| 亚洲国产精品专区欧美| 国产男女超爽视频在线观看| 联通29元200g的流量卡| 午夜福利成人在线免费观看| 国产美女午夜福利| 成年人午夜在线观看视频 | 久久精品国产自在天天线| 最近最新中文字幕大全电影3| 午夜爱爱视频在线播放| 亚洲四区av| 大片免费播放器 马上看| av在线天堂中文字幕| 日韩欧美精品v在线| 日本熟妇午夜| 亚洲人成网站高清观看| 极品少妇高潮喷水抽搐| 欧美成人午夜免费资源| 亚洲av不卡在线观看| 亚洲精品456在线播放app| 亚洲最大成人手机在线| 91久久精品国产一区二区三区| 精品久久久久久电影网| 3wmmmm亚洲av在线观看| 欧美日韩精品成人综合77777| 久久精品国产自在天天线| 成人国产麻豆网| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 99久国产av精品国产电影| 日韩欧美精品免费久久| 日本欧美国产在线视频| 国产精品精品国产色婷婷| 亚洲国产精品专区欧美| 日韩精品青青久久久久久| 熟女电影av网| 日本熟妇午夜| 99热这里只有是精品50| 中文字幕久久专区| 又黄又爽又刺激的免费视频.| 亚洲人与动物交配视频| 91久久精品国产一区二区成人| 精品久久国产蜜桃| 男人舔女人下体高潮全视频| 91久久精品电影网| 国产黄片美女视频| 日本熟妇午夜| 欧美成人午夜免费资源| av女优亚洲男人天堂| 国产精品嫩草影院av在线观看| 国产av国产精品国产| 国产伦精品一区二区三区视频9| 日产精品乱码卡一卡2卡三| 婷婷色麻豆天堂久久| 国产精品福利在线免费观看| 日韩精品有码人妻一区| 亚洲乱码一区二区免费版| 亚洲成人av在线免费| 国产老妇女一区| 亚洲一码二码三码区别大吗| 亚洲av国产av综合av卡| 精品酒店卫生间| 涩涩av久久男人的天堂| 少妇猛男粗大的猛烈进出视频| 观看美女的网站| 丰满迷人的少妇在线观看| 丰满迷人的少妇在线观看| 黄片无遮挡物在线观看| 看十八女毛片水多多多| 亚洲精品久久成人aⅴ小说| 丰满饥渴人妻一区二区三| 最近的中文字幕免费完整| 妹子高潮喷水视频| 欧美成人午夜免费资源| 欧美av亚洲av综合av国产av | 亚洲国产欧美网| 99九九在线精品视频| 国产亚洲最大av| 国产成人精品婷婷| 国产亚洲最大av| 人人澡人人妻人| 亚洲,一卡二卡三卡| www.精华液| 免费高清在线观看视频在线观看| 国产欧美亚洲国产| 国产av精品麻豆| 91午夜精品亚洲一区二区三区| 亚洲国产看品久久| 国产日韩欧美亚洲二区| 欧美日韩一级在线毛片| 一区在线观看完整版| 男的添女的下面高潮视频| 久久国产精品大桥未久av| 在线天堂中文资源库| 十八禁网站网址无遮挡| 人人妻人人爽人人添夜夜欢视频| 午夜福利,免费看| 免费在线观看完整版高清| 国产精品不卡视频一区二区| 欧美97在线视频| 国产精品久久久久久精品电影小说| 国产精品欧美亚洲77777| 欧美bdsm另类| 18在线观看网站| 在线看a的网站| 成年美女黄网站色视频大全免费| 欧美日韩综合久久久久久| 国产在线视频一区二区| 人人妻人人爽人人添夜夜欢视频| 亚洲人成网站在线观看播放| 精品视频人人做人人爽| 男女无遮挡免费网站观看| 亚洲精品中文字幕在线视频| 18禁观看日本| 久久久久久久亚洲中文字幕| 国产毛片在线视频| 女人高潮潮喷娇喘18禁视频| 伊人久久国产一区二区| 国产成人欧美| 国产精品麻豆人妻色哟哟久久| 久久这里有精品视频免费| 尾随美女入室| 大香蕉久久网| 99精国产麻豆久久婷婷| 大话2 男鬼变身卡| 久久免费观看电影| 免费观看a级毛片全部| 91aial.com中文字幕在线观看| 制服诱惑二区| 91国产中文字幕| 丝袜人妻中文字幕| 这个男人来自地球电影免费观看 | 亚洲在久久综合| 久久精品国产亚洲av高清一级| 男女边摸边吃奶| 免费高清在线观看日韩| videosex国产| 精品酒店卫生间| 色网站视频免费| 精品人妻偷拍中文字幕| 性少妇av在线| 国产综合精华液| 久久久久网色| 麻豆乱淫一区二区| 丁香六月天网| 人人妻人人爽人人添夜夜欢视频| 色网站视频免费| 夫妻性生交免费视频一级片| 国产有黄有色有爽视频| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 国产视频首页在线观看| 亚洲,一卡二卡三卡| 亚洲精品国产一区二区精华液| 中文精品一卡2卡3卡4更新| 丰满乱子伦码专区| 精品久久久精品久久久| 亚洲三区欧美一区| 国产老妇伦熟女老妇高清| 下体分泌物呈黄色| 黄网站色视频无遮挡免费观看| 三上悠亚av全集在线观看| 97在线人人人人妻| 日韩视频在线欧美| 午夜福利乱码中文字幕| 久久av网站| 亚洲国产日韩一区二区| 伊人亚洲综合成人网| 免费高清在线观看视频在线观看| 国产精品一国产av| 日韩中字成人| 日韩制服骚丝袜av| 日韩中文字幕视频在线看片| 又粗又硬又长又爽又黄的视频| 多毛熟女@视频| 久久综合国产亚洲精品| 一二三四中文在线观看免费高清| 久久国产亚洲av麻豆专区| 天天躁日日躁夜夜躁夜夜| 女性被躁到高潮视频| 秋霞在线观看毛片| 国产精品久久久久久久久免| 老熟女久久久| 午夜免费观看性视频| 成年女人在线观看亚洲视频| 亚洲男人天堂网一区| av.在线天堂| 一区二区三区精品91| 国产黄频视频在线观看| 一区二区av电影网| 日韩伦理黄色片| 一级,二级,三级黄色视频| 亚洲美女黄色视频免费看| 性少妇av在线| 日日爽夜夜爽网站| 久久久精品区二区三区| 精品人妻在线不人妻| 大香蕉久久网| 国产精品国产三级专区第一集| 免费不卡的大黄色大毛片视频在线观看| 久久 成人 亚洲| 少妇 在线观看| 欧美97在线视频| 欧美日韩综合久久久久久| av在线观看视频网站免费| 精品国产一区二区三区久久久樱花| 纵有疾风起免费观看全集完整版| 亚洲天堂av无毛| 国产亚洲欧美精品永久| 国产在视频线精品| 亚洲精品一区蜜桃| 亚洲成av片中文字幕在线观看 | 人妻一区二区av| 国产一区二区激情短视频 | 精品国产乱码久久久久久男人| av福利片在线| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 少妇精品久久久久久久| 十八禁网站网址无遮挡| 国产精品国产三级专区第一集| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线不卡| 中文字幕精品免费在线观看视频| 成人二区视频| 尾随美女入室| 一级,二级,三级黄色视频| 一级片'在线观看视频| 亚洲,一卡二卡三卡| 国产在视频线精品| 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频| 国产毛片在线视频| 国产精品无大码| 丰满迷人的少妇在线观看| 日日摸夜夜添夜夜爱| a 毛片基地| 99久久人妻综合| 午夜福利,免费看| 成年美女黄网站色视频大全免费| 亚洲熟女精品中文字幕| 日韩av免费高清视频| 好男人视频免费观看在线| 侵犯人妻中文字幕一二三四区| 18禁观看日本| 伦精品一区二区三区| 69精品国产乱码久久久| 91精品国产国语对白视频| 在线观看www视频免费| 久久久国产欧美日韩av| 亚洲久久久国产精品| 大陆偷拍与自拍| 在线看a的网站| 日日撸夜夜添| 亚洲精品国产一区二区精华液| 又粗又硬又长又爽又黄的视频| 国产精品久久久久成人av| 日本欧美视频一区| 满18在线观看网站| 丰满乱子伦码专区| 免费黄色在线免费观看| 少妇 在线观看| 建设人人有责人人尽责人人享有的| 亚洲少妇的诱惑av| 九草在线视频观看| 精品国产乱码久久久久久小说| 久久青草综合色| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 久久精品久久久久久噜噜老黄| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线进入| 美女国产视频在线观看| 亚洲av免费高清在线观看| 久久精品国产亚洲av天美| 91精品三级在线观看| 男女下面插进去视频免费观看| 婷婷色综合大香蕉| 两个人看的免费小视频| 春色校园在线视频观看| 国产日韩欧美在线精品| 日韩av在线免费看完整版不卡| 中文字幕最新亚洲高清| 国产无遮挡羞羞视频在线观看| 亚洲精品一二三| 热99久久久久精品小说推荐| 国产精品一区二区在线观看99| 国产一区二区三区av在线| 亚洲精品乱久久久久久| 国产视频首页在线观看| 成人二区视频| 成人亚洲精品一区在线观看| 久久久久久伊人网av| 2021少妇久久久久久久久久久| 久久精品aⅴ一区二区三区四区 | 永久免费av网站大全| 午夜久久久在线观看| 免费黄色在线免费观看| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区黑人 | 欧美成人精品欧美一级黄| 亚洲人成77777在线视频| av又黄又爽大尺度在线免费看| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| 久久精品国产亚洲av高清一级| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 国产成人精品一,二区| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 国语对白做爰xxxⅹ性视频网站| 国产乱人偷精品视频| 国产一区二区激情短视频 | 五月开心婷婷网| 欧美日韩精品成人综合77777| 黑人欧美特级aaaaaa片| 夜夜骑夜夜射夜夜干| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区蜜桃| 少妇精品久久久久久久| 免费观看av网站的网址| xxx大片免费视频| 一本大道久久a久久精品| 美女中出高潮动态图| 男人操女人黄网站| 午夜福利影视在线免费观看| 天天躁夜夜躁狠狠躁躁| 深夜精品福利| 成人手机av| 久久人人爽av亚洲精品天堂| 麻豆精品久久久久久蜜桃| 日韩欧美一区视频在线观看| 成年美女黄网站色视频大全免费| 日韩大片免费观看网站| 一级毛片我不卡| 精品人妻一区二区三区麻豆| 国产成人精品在线电影| 五月伊人婷婷丁香| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 欧美日韩av久久| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| 天堂8中文在线网| 国产一级毛片在线| 看免费成人av毛片| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 午夜福利,免费看| 亚洲欧美成人综合另类久久久| www日本在线高清视频| 欧美激情 高清一区二区三区| 成人手机av| 久久97久久精品| 亚洲美女搞黄在线观看| 天堂中文最新版在线下载| 激情五月婷婷亚洲| 老汉色∧v一级毛片| 国产有黄有色有爽视频| 久久影院123| 黄色 视频免费看| 亚洲成色77777| 五月伊人婷婷丁香| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 国产免费现黄频在线看| 久久久国产一区二区| 9热在线视频观看99| 在线精品无人区一区二区三| 一区二区av电影网| 国产精品久久久久成人av| 国产色婷婷99| 丝袜人妻中文字幕| 最近中文字幕高清免费大全6| 高清在线视频一区二区三区| 母亲3免费完整高清在线观看 | 精品久久久精品久久久| 18+在线观看网站| 亚洲伊人久久精品综合| 狂野欧美激情性bbbbbb| videosex国产| 高清av免费在线| 久久精品久久久久久久性| 亚洲成色77777| 国产高清国产精品国产三级| 国产深夜福利视频在线观看| 成年美女黄网站色视频大全免费| 中国国产av一级| 黄色视频在线播放观看不卡| 99国产精品免费福利视频| 久久久久国产一级毛片高清牌| 人妻系列 视频| 99国产综合亚洲精品| 青春草亚洲视频在线观看| 久久精品国产亚洲av天美| 99国产综合亚洲精品| 国产亚洲最大av| 久久精品久久久久久久性| 波野结衣二区三区在线| 男女边吃奶边做爰视频| 亚洲伊人色综图| 亚洲人成电影观看| 性色avwww在线观看| 尾随美女入室| 极品人妻少妇av视频| 少妇 在线观看| 亚洲精品美女久久av网站| 一本—道久久a久久精品蜜桃钙片| 国产精品免费视频内射| 岛国毛片在线播放| 精品午夜福利在线看| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| 日韩av免费高清视频| 丝袜在线中文字幕| 性高湖久久久久久久久免费观看| 免费播放大片免费观看视频在线观看| 下体分泌物呈黄色| 波野结衣二区三区在线| 午夜免费鲁丝| 999精品在线视频| av.在线天堂| 国产精品一区二区在线不卡| 国产爽快片一区二区三区| 午夜福利在线观看免费完整高清在| 多毛熟女@视频| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| 丰满乱子伦码专区| 亚洲精品国产av蜜桃| 国产免费福利视频在线观看| 成人漫画全彩无遮挡| 伊人久久国产一区二区| 午夜福利网站1000一区二区三区| 亚洲欧美色中文字幕在线| 日韩精品免费视频一区二区三区| 欧美日韩视频精品一区| 亚洲欧美中文字幕日韩二区| 国产白丝娇喘喷水9色精品| 男女国产视频网站| 国产成人精品一,二区| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 午夜福利乱码中文字幕| 亚洲欧洲国产日韩| 三级国产精品片| 大话2 男鬼变身卡| 日韩欧美精品免费久久| 国产在线视频一区二区| 久久久久久久久免费视频了| 国产av一区二区精品久久| av免费在线看不卡| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 国产av国产精品国产| 精品一区二区三卡| 制服诱惑二区| 日本欧美国产在线视频| 黄色配什么色好看| 丰满乱子伦码专区| 老熟女久久久| 国产熟女午夜一区二区三区| 一边摸一边做爽爽视频免费| 精品人妻偷拍中文字幕| av电影中文网址| 欧美激情 高清一区二区三区| 亚洲国产av新网站| 九色亚洲精品在线播放| 国产一区二区激情短视频 | 在线亚洲精品国产二区图片欧美| 寂寞人妻少妇视频99o| 色播在线永久视频| 人妻一区二区av| 2018国产大陆天天弄谢| 女的被弄到高潮叫床怎么办| 国产有黄有色有爽视频| 亚洲精品国产色婷婷电影| www.自偷自拍.com| 日产精品乱码卡一卡2卡三| 99久久精品国产国产毛片| 亚洲第一青青草原| 国产成人91sexporn| 亚洲成人一二三区av| 交换朋友夫妻互换小说| 9191精品国产免费久久| 国产伦理片在线播放av一区| 在线观看三级黄色| 纯流量卡能插随身wifi吗| 久久久久久久久久久久大奶| 久久97久久精品| 久久婷婷青草| 99热国产这里只有精品6| 狂野欧美激情性bbbbbb| 香蕉丝袜av| 黄片播放在线免费| 成年动漫av网址| 国产成人免费观看mmmm| 妹子高潮喷水视频| 大话2 男鬼变身卡| 久久热在线av| 日本欧美视频一区| 成人国产麻豆网| 国产精品国产三级国产专区5o| 国产白丝娇喘喷水9色精品| 国产人伦9x9x在线观看 | 国产成人精品久久二区二区91 | 熟女av电影| 精品午夜福利在线看| 韩国精品一区二区三区| 制服诱惑二区| 成年人午夜在线观看视频| av有码第一页| 欧美精品av麻豆av| 久久久a久久爽久久v久久| 国产极品天堂在线| 一本大道久久a久久精品| 不卡视频在线观看欧美| 欧美日韩亚洲国产一区二区在线观看 | 搡老乐熟女国产| 久久毛片免费看一区二区三区| 男女边吃奶边做爰视频| 亚洲精品久久成人aⅴ小说| 2018国产大陆天天弄谢| 丁香六月天网| 国产一区二区在线观看av| 国产精品蜜桃在线观看| av在线观看视频网站免费| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久| 侵犯人妻中文字幕一二三四区| 男女边摸边吃奶| 一级黄片播放器| 国产精品国产三级专区第一集| 一级黄片播放器| 国产黄频视频在线观看| 国产精品国产三级国产专区5o| 久久久久久久久久久久大奶| a 毛片基地| 男女边摸边吃奶| 欧美成人午夜精品| 只有这里有精品99| 久久精品久久久久久久性| 制服诱惑二区| 女的被弄到高潮叫床怎么办| 久久久久精品久久久久真实原创| 精品99又大又爽又粗少妇毛片| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 中文欧美无线码| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 狂野欧美激情性bbbbbb| 亚洲av国产av综合av卡| 国产乱来视频区| 成人黄色视频免费在线看| 中文字幕亚洲精品专区| 日韩制服骚丝袜av| 久久久国产欧美日韩av| 爱豆传媒免费全集在线观看| 国产又爽黄色视频| 国产亚洲欧美精品永久| 日韩精品免费视频一区二区三区| 色哟哟·www| 午夜福利乱码中文字幕| 亚洲精品国产色婷婷电影| 黄片小视频在线播放| 青青草视频在线视频观看| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 90打野战视频偷拍视频| 日韩免费高清中文字幕av| 寂寞人妻少妇视频99o| 国产精品99久久99久久久不卡 | 免费观看在线日韩| www日本在线高清视频| 电影成人av| 日韩中文字幕欧美一区二区 | 亚洲av电影在线观看一区二区三区| 中文字幕人妻丝袜一区二区 | 热re99久久国产66热| 女人久久www免费人成看片| 美女福利国产在线| 最近中文字幕2019免费版| 99久国产av精品国产电影| 母亲3免费完整高清在线观看 | 秋霞伦理黄片| 黑人欧美特级aaaaaa片|