• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gross Error Detection and Identification Based on Parameter Estimation for Dynamic Systems*

    2009-05-14 03:04:50JIANGChunyang姜春陽QIUTong邱彤ZHAOJinsong趙勁松andCHENBingzhen陳丙珍
    關(guān)鍵詞:勁松

    JIANG Chunyang (姜春陽), QIU Tong (邱彤)**, ZHAO Jinsong (趙勁松) and CHEN Bingzhen (陳丙珍)

    ?

    Gross Error Detection and Identification Based on Parameter Estimation for Dynamic Systems*

    JIANG Chunyang (姜春陽), QIU Tong (邱彤)**, ZHAO Jinsong (趙勁松) and CHEN Bingzhen (陳丙珍)

    Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a powerful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in efficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the presence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be estimated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of decision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a continuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.

    gross error detection, data reconciliation, parameter estimation

    1 Introduction

    In the chemical industry, accurate and real-time process data is the foundation of on-line fault diagnosis, real-time monitoring, advanced control and dynamic optimization. Data reconciliation can effectively eliminate errors, typically for the normally distributed random errors, so that the quantities derived from the process data obey the first principles. In fact the industrial measurements are, however, usually contaminated by gross errors, which can be subdivided into measurement bias and outliers. Measurement bias refers to the situation in which measurement devices provide consistently erroneous values, either high or low. Outliers can be considered as abnormal behavior of the measurements, process peaks or unmeasured disturbances [1]. With the presence of gross errors, the reconciled measurements may greatly deviate from their true values. It’s quite necessary to carry out gross error detection and identification, which can locate and eliminate gross errors before data reconciliation.

    For outliers there have been relatively effective methods, which can be divided into two categories. One is related to the process model and utilized to identify outliers and eliminate or reduce their influences on the performance of the conventional data reconciliation by making use of cluster analysis [2], quantile probability plots [3] or robust estimation [4-6]. The other one has no relation with the process model but utilizes the multi-scale property of wavelets for data processing and outlier identification [7].

    For measurement bias detection and identification, current methods are limited in accuracy and efficiency, and cannot meet the demand for on-line application.

    Narasimhan and Mah extended the generalized likelihood ratio (GLR) method for identifying gross errors and used a simple chi-square test to estimate the occurrence time of the gross errors [8]. Kao and Tamhane made use of the cumulative sum (CUSUM) test to detect the presence of gross errors and applied GLR method to identify and estimate their magnitudes [9]. Rollins. presented unbiased estimation technique (UBET) to identify measurement bias and process leaks [10, 11]. Devanathan. proposed a gross error identification approach based on the detection of bias changes [12]. Bagajewicz and Jiang presented a dynamic integral measurement test (DIMT) to identify hold-up measurements as suspects of gross errors [13]. But the above methods are all designed only for linear dynamic systems, which usually operate around a pseudo steady state.

    Karjala and Himmelblau proposed an approach to identify measurement bias or measurement errors, which involved the usage of recurrent neural networks (RNN) and the extended Kalman filter (EKF) [14]. However, it is probable for RNN to encounter combinatory explosion problems. Vachhani. viewed the biased parameter identification as a diagnostic problem and brought in methods from fault diagnosis literature to improve the performance [15]. However, this approach is not adoptable for the situation in which multiple gross errors may exist.

    Liebman. developed nonlinear dynamic data reconciliation (NDDR) method, which estimated measurement bias as a parameter [16]. This method could be applied to strongly nonlinear dynamic systems with multiple gross errors present. However, no strategy is included in this method to detect the presence of gross errors. Instead, each variable of the process is assumed to be biased and added a parameter for estimation, which increases the complexity of NDDR and limits its efficiency in on-line applications.

    Based on Liebman’s parameter estimation method, McBrayer and Edgar proposed a new approach which examined the residuals and carried out summation test and regression test for bias detection [17]. This approach can serially identify and compensate measurement bias and avoid unnecessary parameter estimation, but involves too many unnecessary reconciliations. Besides, the base case required in this approach is ideal and difficult to acquire. Abu-el-zeet. simplified McBrayer’s strategy and presented a new methodology, which combined bias and outlier identification in dynamic data reconciliation [18]. Although base case is removed and some unnecessary calculations are avoided, it is still a serial detection and compensation procedure and not favorable for online applications. Kong. proposed the concept of gross error identifiability and derived the identifiable condition of a process. They also addressed an identification approach on the basis of parameter estimation [19]. But all these methods did not overcome the weakness of parameter estimation and could not meet the needs for high efficiency.

    In this article, based on parameter estimation, a new bias detection strategy is proposed, which can simply detect the presence of bias and its occurring and ending time. As a result, the number of estimated parameters is remarkably reduced and the performance of parameter estimation is greatly improved. Furthermore, the strategy is combined with present outlier identification method. It is shown through simulations on the continuous stirred tank reactor (CSTR) test case and Tennessee Eastman (TE) Challenge Process that the integrated approach simultaneously and efficiently identifies bias and outliers for on-line data reconciliation.

    2 The original parameter estimation method

    In the absence of gross errors the measurement model can be written as:

    The data reconciliation problem can be stated as a constrained nonlinear programming problem [16]:

    The model above has been proved powerful for nonlinear dynamic systems with random errors [16]. However, if the assumption that systematic bias is absent is not hold, the measurement model can be written as:

    The original parameter estimation method is applicable and effective for nonlinear dynamic process with multiple gross errors present. But it does not include any bias detection strategy so as to be limited in efficiency, especially when only a small proportion of the measured variables contains gross errors, and present improved strategies bring in other iteration problems while reducing the number of the estimated parameters [17, 18], as mentioned above.

    3 The improved parameter estimation method with bias detection strategy

    3.1 Bias detection criterion

    The CSTR test case published by Liebman. [16] was studied and the reconciled results which were acquired using model (2) were analyzed. It shows that the reconciled results differ a lot with or without the presence of bias. If the measurements only contain random errors in a moving horizon, there will be little deviation between the mean of estimated values and the mean of measured values [see Fig. 1 (a)]. If bias exists, the reconciled results will smear a lot from the measurements [see Fig. 1 (b)].

    Figure 1 Reconciled results (a) without measurement bias and (b) with measurement bias ——?true values; ×?measured values;●?estimated values

    If the smearing could be detected in time using a simple criterion, measurement bias would be identified, including the contaminated variable and the occurring and ending time of the bias. However, it is not easy to tell whether the current deviation is caused by bias or not, because measurement bias is consistently erroneous, as is mentioned above. As a result, detection should be carried out on the basis of statistical analysis of measurements in a moving horizon. The straightforward idea is to analyze the difference between the mean of estimated values and the mean of measured values. Thus, a new criterion for bias detection is proposed as the following:

    3.2 Improved data reconciliation model

    Based on the criterion, the original parameter estimation model, as Eq. (5), is amended as the following:

    whereis the aggregate of subscript of the variables which might contain bias,is a vector to record the bias detection results.

    It should be noted that a positive detection of criterion (6) does not mean that the current measured variable is positively biased. It should be determined eventually by whether the estimated value ofδis over the threshold.

    3.3 Bias detection and identification strategy

    Bias detection and identification strategy of the improved parameter estimation method is quite straightforward as the following:

    1) For the first moving horizon, there is no historical measured data for reference. It is assumed that all the variables are not free of bias, sois set to unit vector. Then data reconciliation is carried out using model (7).

    2) Save the reconciled results of the former moving horizon, and check whether criterion (6) holds. Record the detection result in the vector.

    3) Reconcile the measurements in the current horizon. If the bias estimation of some variable is over the threshold, the presence of bias is insured and recorded.

    4) Return to Step 2).

    In this strategy unnecessary parameter estimations and iterations are avoided, so the complexity of data reconciliation is greatly reduced. Besides, the strategy is convenient to be integrated with the original parameter estimation method. Therefore, the improved parameter estimation method with bias detection strategy (IPEBD) can eliminate measurement bias and random errors simultaneously and efficiently.

    4 Simulation case study

    The IPEBD approach was successfully applied to the CSTR test case and the TE Challenge Processsimulation, which were both based on Matlab 7.3.0 platform on a PC (P4 3.0G, 1G ram).

    4.1 CSTR test case

    4.1.1

    For comparison, IPEBD was tested on the same CSTR test case used by Liebman[16]. The scaled dynamic model can be written as:

    4.1.2

    4.1.3

    Bias detection result is shown in Fig. 2. The vertical axis represents the judgment of the detection strategy, where 1 stands for positive detection and 0 for negative detection. As a result of the assumption that all the variables in the first moving horizon are not free of bias, it is not detection fault that the first stage of all the plots is 1. Since the strategy uses reconciled results in the former horizon for bias detection, there is a short delay in detection results, which is about 0.5-1 times the size of a horizon. There is only one detection fault at time steps 150-180. It is mainly caused by the step change in the input concentration, which is reasonable and acceptable.

    The complexity and time consumption are greatly reduced by narrowing the search region. Table 1 shows that the efficiency of IPEBD is greatly improved whether measurement bias present or not. For this test case, in which approximate 50% of the measured data is contaminated by bias, the reconciliation efficiency is increased by about 30%. Since most measured data is free of bias in chemical industry, the efficiency increased will be up to 40%.

    4.2 TE challenge process

    The advantages of IPEBD have been proved in the CSTR test case where the measured data is contaminated by random errors and measurement bias. But real industrial process is usually more complex than a single CSTR, and the measured data usually contains outliers. In this section, IPEBD will be tested in a complex process named TE Challenge Process with random errors, bias and outliers present.

    Table 1 Comparison of average time consumption

    4.2.1

    The TE Challenge Process—hereafter called the TE problem—was proposed by Downs and Vogel at an AIChE meeting in 1990 [20]. It involves coordination of four unit operations: an exothermic two-phase reactor, a flash separator, a reboiled stripper and a recycle compressor. The process produces two products from four exothermic, irreversible reactions. There are a total of eight components labeled as A-H, with component B an inert, components G and H the primary products, and component F a byproduct. The chemical reactions provided are written as:

    4.2.2

    Downs and Vogel omit details of the kinetics, phase equilibria and process dynamics, and no plant model is provided. Fortunately, some mechanistic nonlinear model has been developed and validated with data taken from the original Downs and Vogel work and their accompanying Fortran programs [21-23]. In this article, all the simulations of the TE problem are based on Ricker’s work [21, 22]. The mechanistic nonlinear model includes 76 algebraic equations, 26 differential equations and a total of 112 variables including 67 measured variables. More details could be found in the Refs. [21, 22].

    The TE problem is tested through computer simulation with a sampled time of 1 min, and each moving horizon includes 7 measurements. Random errors in normal distribution, outliers of magnitude 5-10and measurement bias of magnitude 4-6are introduced randomly.

    Since outliers are present, the IPEBD approach needs to be improved. With the object function replaced by a robust estimator [24, 25], IPEBD will be capable to deal with random errors, measurement bias and outliers simultaneously. The robust estimator adopted in the simulation is first published by the author, which is stated as the following [26]:

    where,,are parameters to be tuned.

    4.2.3

    Since there are too many measured variables in the TE problem, only part of the reconciled results will be shown in the following text.

    As a result of the introduction of the robust estimator, outliers are successfully identified and eliminated by IPEBD as shown in Fig. 5.

    Figure 5 Results of outlier detection and identification——?true values; × measured values; ●?estimated values; ○?outlier errors

    There are totally 4 measured variables contaminated by measurement bias, all of which are successfully detected by IPEBD (see Fig. 6). Bias detection only decides which variable might contain bias and the final judgments are made by the results of parameter estimation. As the CSTR test case, there are a short delay and some faults in bias detection, but bias identification is not affected. All the 4 biases are identified and reconciled eventually as shown in Fig. 7.

    Because of the accurate bias detection of IPEBD, most parameters in the original parameter estimation method are avoided, which greatly improves the efficiency of data reconciliation. With the help of bias detection strategy, the average time consumption is reduced by about 30%. Since most measurements are free of bias in the industrial process, time consumption will be further reduced by about 38% (see Table 2). Besides, for the measurements in a single time step, the maximum time consumption of IPEBD is less than the sampled time step, typically 60 seconds in this case, which means IPEBD can be used for online application.

    Table 2 Comparison of time consumption

    Figure 7 Results of bias identification——?true values; × measured values; ●?estimated values

    5 Conclusions

    Parameter estimation method has been proved to be a powerful tool for bias identification. However, without a reliable and efficient bias detection strategy, data reconciliation based on parameter estimation is limited in efficiency and cannot be applied widely. Against the shortcomings of parameter estimation method, a new bias detection strategy is successfully constructed and has been shown to work efficiently in detecting the presence of measurement bias and recognizing its occurring time. With the strategy present, the number of parameters to be estimated is greatly reduced, and serially detection and iterations are avoided. Besides, the number of decision variables of optimization is reduced, through which influences between parameters estimated are decreased and the accuracy of parameter estimation is improved. By incorporating the strategy into the data reconciliation model, a new methodology named IPEBD is constructed based on parameter estimation method, and it works pretty well in CSTR and TE testing cases.

    NOMENCLATURE

    feasible region of the original method

    feasible region of the improved method

    aggregate of subscript of the variables which might contain bias

    6reactor feed, kmol·h-1

    7reactor outlet, kmol·h-1

    differential equation constraints

    algebraic inequality constraints

    width of the history horizon

    algebraic equality constraints

    number of the measured variables

    vector of time

    ccurrent time

    Δsample time step

    vector of the unmeasured variables

    variance-covariance matrix of the measurements

    vector of the reconciled measurements

    r(G) G in reactor, % (by mol)

    5(E) E in top outlet of stripper, % (by mol)

    6(H) H in reactor feed, % (by mol)

    7(E) E in reactor outlet, % (by mol)

    8(B) B in recycle stream, % (by mol)

    8(F) F in recycle stream, % (by mol)

    vector to record the bias detection results

    vector of the measurement bias

    δtheth assumed parameter to be estimated

    vector of the random errors

    ζthreshold of the criterion

    penalty weight for theth variable

    1 Yuan, Y.G., Li, H.S., Data Rectification of Process Measurements, China PetroChemical Press, Beijing (1996).

    2 Chen, J., Romagnoli, J.A., “A strategy for simultaneous dynamic data reconciliation and outlier detection”,..., 24 (4/5), 559-562 (1998).

    3 Chen, J., Bandoni, A., Romagnoli, J.A., “Outlier detection in process plant data”,..., 22 (4/5), 641-646 (1998).

    4 Zhou, L.K., Su, H.Y., Chu, J., “A new method to solve robust data reconciliation in nonlinear process”,...., 14 (3), 357-363 (2006).

    5 ?zyurt, D.B., Pike, R.W., “Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes”,..., 28, 381-402 (2004).

    6 Faber, R., Li, B., Li, P., W?zny, G., “Data reconciliation for real-time optimization of an industrial coke-oven-gas purification process”,, 14, 1121-1134 (2006).

    7 Jiang, T.W., Chen, B.Z., He, X.R., “Industrial application of wavelet transform to the on-line prediction of side draw qualities of crude unit”,..., 24, 507-512 (2000).

    8 Narasimhan, S., Mah, R.S.H., “Generalized likelihood ratios for gross error identification in dynamic processes”,., 34, 1321-1331 (1988).

    9 Kao, C.S., Tamhane, A.C., Mah, R.S.H., “Gross error detection in serially correlated process data (2) Dynamic systems”,...., 31, 254-262 (1992).

    10 Rollins, D.K., Davis, J.F., “Unbiased estimation of gross errors in process measurements”,., 38 (4), 563-572 (1992).

    11 Rollins, D.K., Devanathan, S., “Unbiased estimation in dynamic data reconciliation”,., 39, 1330-1334 (1993).

    12 Devanathan, S., Rollins, D.K., Vardeman, S.B., “A new approach for improved identification of measurement bias”,..., 24, 2755-2764 2000).

    13 Bagajewicz, M. J., Jiang, Q., “Gross error modeling and detection in plant linear dynamic reconciliation”,..., 22, 1789-1809 (1997).

    14 Karjala, T.W., Himmelblau, D.M., “Dynamic rectification of datarecurrent neural nets and extended Kalman filter”,., 42, 2225-2239 (1996).

    15 Vachhani, P., Rengaswamy, R., Venkatasubramanian, V., “A framework for integrating diagnositic knowledge with nonlinear optimization for data reconciliation and parameter estimation in dynamic system”,..., 56, 2133-2148 (2001).

    16 Liebman, M.J., Edgar, T.F., Lasdon, L.S., “Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques”,..., 16 (10/11), 963-986 (1992).

    17 McBrayer, K.F., Edgar, T.F., “Bias detection and estimation in dynamic data reconciliation”,., 5 (4), 285-289 (1995).

    18 Abu-el-zeet, Z.H., Becerra, V.M., Roberts, P.D., “Combined bias and outlier identification in dynamic data reconciliation”,..., 16, 921-935 (2002).

    19 Kong, M.F., Chen, B.Z., He, X.R., Hu, S.Y., “Gross error identification for dynamic system”,..., 29, 191-197 (2004).

    20 Downs, J.J., Vogel, E.F., “A plant-wide industrial process control problem”,..., 17 (3), 245-255 (1993).

    21 Ricker, N.L., “Optimal steady-state operation of the Tennessee Eastman challenge process”,..., 19 (9), 949-959 (1995).

    22 Ricker, N.L., Lee, J.H., “Nonlinear modeling and state estimation for the Tennessee Eastman challenge process”,..., 19 (9), 983-1005 (1995).

    23 Tian, Z.H., Hoo, K.A., “Multiple model-based control of the Tennessee- Eastman process”,...., 44, 3187-3202 (2005).

    24 Huber, P.J., Robust Statistics, Wiley, New York (1981).

    25 Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A., Robust Statics: the Approach Based on Influence Functions, John Wiley & Sons, New York (1985).

    26 Jiang, C.Y., Qiu, T., Chen, B.Z., Zhao, J.S., “An improved robust dynamic data reconciliation approach”,..., 24 (10), 1297-1301 (2007).

    2008-09-23,

    2009-03-11.

    the National High Technology Research and Development Program of China (2006AA04Z176).

    ** To whom correspondence should be addressed. E-mail: qiutong@tsinghua.edu.cn

    猜你喜歡
    勁松
    顧勁松
    藝術(shù)家(2024年2期)2024-04-15 08:19:20
    一種分步組合的部分模糊度固定方法
    莊勁松美術(shù)作品
    “貓”忍不住
    故事會(2022年7期)2022-04-03 19:26:31
    貓忍不住
    小小說月刊(2022年1期)2022-02-07 10:44:22
    王勁松:行走在邊緣的一顆恒星
    時代郵刊(2019年20期)2019-07-30 08:05:38
    Simulation and experimental research of digital valve control servo system based on CMAC-PID control method①
    Isolated attosecond pulse generation with few-cycle two-color counter-rotating circularly polarized laser pulses?
    余勁松
    閱讀理解精練
    久久精品国产自在天天线| 在线看a的网站| 亚洲成人av在线免费| 精品人妻偷拍中文字幕| 国产亚洲91精品色在线| 亚洲精品日本国产第一区| 国产精品蜜桃在线观看| 欧美人与善性xxx| 亚洲av欧美aⅴ国产| 国产精品av视频在线免费观看| 欧美一区二区亚洲| 亚洲欧美一区二区三区国产| 夜夜爽夜夜爽视频| 一级毛片黄色毛片免费观看视频| 亚洲精品乱久久久久久| 色婷婷久久久亚洲欧美| 在线观看一区二区三区激情| 永久网站在线| 精品午夜福利在线看| 午夜福利视频精品| 99久久人妻综合| 精品酒店卫生间| 深夜a级毛片| 久久影院123| 亚洲欧美一区二区三区国产| 中国美白少妇内射xxxbb| 日韩人妻高清精品专区| 久久久久人妻精品一区果冻| 国产无遮挡羞羞视频在线观看| 国产精品人妻久久久久久| 日韩欧美 国产精品| 99久久精品热视频| 亚洲欧美清纯卡通| 熟女人妻精品中文字幕| 又黄又爽又刺激的免费视频.| 国产午夜精品一二区理论片| 精品国产一区二区三区久久久樱花 | 久久女婷五月综合色啪小说| 99热网站在线观看| 热99国产精品久久久久久7| 伊人久久国产一区二区| 熟女电影av网| 99久久中文字幕三级久久日本| 日本av手机在线免费观看| 天美传媒精品一区二区| 一边亲一边摸免费视频| 亚洲国产av新网站| 国产免费一级a男人的天堂| 美女脱内裤让男人舔精品视频| 精品酒店卫生间| 99国产精品免费福利视频| 国产精品99久久久久久久久| 国产av一区二区精品久久 | 色网站视频免费| 性高湖久久久久久久久免费观看| 夜夜爽夜夜爽视频| 精品久久久噜噜| 国产精品久久久久久精品古装| 纯流量卡能插随身wifi吗| 久久久久久久大尺度免费视频| 亚洲三级黄色毛片| 午夜福利在线在线| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 在线亚洲精品国产二区图片欧美 | 成人无遮挡网站| 韩国av在线不卡| 免费少妇av软件| 在线天堂最新版资源| av国产免费在线观看| 少妇的逼好多水| 国产老妇伦熟女老妇高清| 亚洲图色成人| 国产在线免费精品| 美女国产视频在线观看| 美女内射精品一级片tv| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人 | 人妻夜夜爽99麻豆av| 一区在线观看完整版| 一区二区三区四区激情视频| 亚洲av综合色区一区| 国产av一区二区精品久久 | 一本色道久久久久久精品综合| 天美传媒精品一区二区| 欧美丝袜亚洲另类| 国产在线男女| 久久人妻熟女aⅴ| 国产精品秋霞免费鲁丝片| 欧美一区二区亚洲| 日本黄色片子视频| 久热这里只有精品99| 国产爱豆传媒在线观看| 午夜激情久久久久久久| 99久久精品国产国产毛片| 直男gayav资源| 亚洲欧美日韩东京热| 久久久久久九九精品二区国产| 一级毛片电影观看| 国产精品熟女久久久久浪| 直男gayav资源| 高清午夜精品一区二区三区| 最近最新中文字幕免费大全7| 国产在视频线精品| 在线观看人妻少妇| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡动漫免费视频| 卡戴珊不雅视频在线播放| 日韩一区二区三区影片| 大香蕉久久网| 最新中文字幕久久久久| 观看美女的网站| 国产女主播在线喷水免费视频网站| 国产亚洲欧美精品永久| 亚洲精品第二区| 国产av一区二区精品久久 | 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 国产乱人偷精品视频| 九草在线视频观看| 精品一区二区免费观看| 久久久久网色| 日韩欧美一区视频在线观看 | 日产精品乱码卡一卡2卡三| 各种免费的搞黄视频| 亚洲国产精品成人久久小说| 夜夜爽夜夜爽视频| 国产乱人视频| 日韩成人av中文字幕在线观看| 少妇 在线观看| 欧美+日韩+精品| 只有这里有精品99| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 高清视频免费观看一区二区| av播播在线观看一区| 久久久精品94久久精品| 亚洲人与动物交配视频| 亚洲av中文字字幕乱码综合| 亚洲激情五月婷婷啪啪| 亚洲,一卡二卡三卡| 一级av片app| 国产成人一区二区在线| 日本与韩国留学比较| 女人十人毛片免费观看3o分钟| 婷婷色av中文字幕| 亚洲色图av天堂| 黄片wwwwww| 久久精品久久精品一区二区三区| 一级黄片播放器| 欧美一级a爱片免费观看看| 亚洲经典国产精华液单| 欧美精品国产亚洲| 精品一区二区三区视频在线| 18+在线观看网站| 精华霜和精华液先用哪个| 偷拍熟女少妇极品色| 久久人人爽人人片av| 精品视频人人做人人爽| 91久久精品电影网| 成人漫画全彩无遮挡| 亚洲欧美日韩卡通动漫| 国产精品国产三级国产av玫瑰| 大码成人一级视频| 国产在视频线精品| 一个人免费看片子| 交换朋友夫妻互换小说| 精品一区在线观看国产| a级毛色黄片| 久久av网站| 又大又黄又爽视频免费| 久久午夜福利片| 成年人午夜在线观看视频| 国产精品久久久久久精品古装| 中文在线观看免费www的网站| 91精品一卡2卡3卡4卡| 亚洲国产高清在线一区二区三| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 精品久久久久久久末码| 狂野欧美激情性bbbbbb| 中文字幕免费在线视频6| 色5月婷婷丁香| 欧美三级亚洲精品| 亚洲精品自拍成人| 国产 一区精品| 亚洲av中文av极速乱| av国产免费在线观看| 精品国产乱码久久久久久小说| 久久久久久伊人网av| 男女边吃奶边做爰视频| 观看av在线不卡| 久久久久久久久大av| 亚洲国产精品专区欧美| 国产一区二区在线观看日韩| 久久久久精品久久久久真实原创| 18禁裸乳无遮挡动漫免费视频| 亚州av有码| 欧美另类一区| 搡老乐熟女国产| 校园人妻丝袜中文字幕| 综合色丁香网| 国产精品精品国产色婷婷| 亚洲国产精品一区三区| 久久久色成人| 日韩一区二区视频免费看| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 蜜桃亚洲精品一区二区三区| 亚洲第一av免费看| 中文资源天堂在线| 丰满乱子伦码专区| 日韩中文字幕视频在线看片 | 18禁在线播放成人免费| 性色avwww在线观看| 久久久久久久国产电影| 大又大粗又爽又黄少妇毛片口| 亚洲性久久影院| 国产免费福利视频在线观看| 26uuu在线亚洲综合色| av国产免费在线观看| 黑人高潮一二区| 亚洲av福利一区| 国产免费视频播放在线视频| 欧美xxxx性猛交bbbb| 又爽又黄a免费视频| 国产高潮美女av| 免费播放大片免费观看视频在线观看| 国产黄片视频在线免费观看| 美女视频免费永久观看网站| 尾随美女入室| 久久久久国产网址| 精品久久久久久久久亚洲| 欧美一区二区亚洲| 欧美xxxx性猛交bbbb| 成年av动漫网址| 欧美老熟妇乱子伦牲交| 亚洲成人中文字幕在线播放| 日本爱情动作片www.在线观看| 一级黄片播放器| 精品亚洲成国产av| 国产精品不卡视频一区二区| 日韩一本色道免费dvd| 一本—道久久a久久精品蜜桃钙片| 午夜老司机福利剧场| 成人二区视频| av黄色大香蕉| 看免费成人av毛片| 我的女老师完整版在线观看| 美女内射精品一级片tv| 色视频www国产| 免费黄网站久久成人精品| 尤物成人国产欧美一区二区三区| 少妇精品久久久久久久| 国产爽快片一区二区三区| 日韩欧美一区视频在线观看 | 老女人水多毛片| 国产一区有黄有色的免费视频| 国产探花极品一区二区| 欧美精品一区二区大全| 日韩欧美 国产精品| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久亚洲| 国产精品秋霞免费鲁丝片| 精品久久久久久久久av| 最近中文字幕高清免费大全6| 久久国内精品自在自线图片| 亚洲精品国产av蜜桃| 秋霞伦理黄片| 国产av精品麻豆| 久久久成人免费电影| 日韩成人av中文字幕在线观看| 成人漫画全彩无遮挡| 国产中年淑女户外野战色| 亚洲图色成人| av天堂中文字幕网| 黄片无遮挡物在线观看| 大码成人一级视频| 一级a做视频免费观看| 免费大片18禁| 亚洲一区中文字幕在线| 新久久久久国产一级毛片| 国产成人一区二区在线| 日韩大码丰满熟妇| 国产精品欧美亚洲77777| 国产精品免费视频内射| 国产精品麻豆人妻色哟哟久久| 90打野战视频偷拍视频| 国产黄频视频在线观看| 午夜久久久在线观看| 丰满少妇做爰视频| 侵犯人妻中文字幕一二三四区| 午夜免费男女啪啪视频观看| 19禁男女啪啪无遮挡网站| 69精品国产乱码久久久| 两个人看的免费小视频| 久热爱精品视频在线9| 亚洲人成网站在线观看播放| 久久精品久久久久久噜噜老黄| 日日爽夜夜爽网站| 丝袜喷水一区| 黄色一级大片看看| 最新的欧美精品一区二区| 国产一区二区 视频在线| 国产亚洲一区二区精品| 亚洲国产精品999| 婷婷色综合大香蕉| 免费在线观看日本一区| 一区二区三区激情视频| 亚洲精品一二三| 国产精品久久久久久人妻精品电影 | 国产精品国产三级国产专区5o| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产欧美一区二区综合| 又粗又硬又长又爽又黄的视频| 9191精品国产免费久久| 妹子高潮喷水视频| 久久人人97超碰香蕉20202| 久久鲁丝午夜福利片| 性少妇av在线| 国产成人免费无遮挡视频| 精品人妻1区二区| 黄色视频不卡| 亚洲一卡2卡3卡4卡5卡精品中文| √禁漫天堂资源中文www| 国产亚洲av高清不卡| 欧美日韩亚洲高清精品| av天堂在线播放| 日本91视频免费播放| 国产av一区二区精品久久| 国产伦理片在线播放av一区| 啦啦啦 在线观看视频| 亚洲人成77777在线视频| 女人久久www免费人成看片| 夫妻性生交免费视频一级片| 大香蕉久久成人网| 久久性视频一级片| 国产欧美日韩精品亚洲av| 一本一本久久a久久精品综合妖精| 成在线人永久免费视频| 国产伦人伦偷精品视频| 人人妻人人澡人人爽人人夜夜| 国产精品国产三级国产专区5o| 午夜影院在线不卡| 午夜福利在线免费观看网站| 欧美黄色淫秽网站| 日韩免费高清中文字幕av| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 丰满迷人的少妇在线观看| 少妇 在线观看| 欧美激情 高清一区二区三区| 最黄视频免费看| 日日摸夜夜添夜夜爱| 国产高清videossex| 免费人妻精品一区二区三区视频| 中文字幕人妻丝袜制服| 少妇的丰满在线观看| 少妇猛男粗大的猛烈进出视频| 日韩中文字幕欧美一区二区 | 国产一级毛片在线| 午夜影院在线不卡| 亚洲久久久国产精品| 国产国语露脸激情在线看| 免费看十八禁软件| 午夜av观看不卡| 桃花免费在线播放| 日本色播在线视频| 免费人妻精品一区二区三区视频| 国产精品三级大全| 不卡av一区二区三区| a 毛片基地| 97在线人人人人妻| 亚洲欧美色中文字幕在线| 亚洲精品自拍成人| 一级片'在线观看视频| 99久久99久久久精品蜜桃| 99久久综合免费| 黄色视频在线播放观看不卡| 国产精品99久久99久久久不卡| 欧美变态另类bdsm刘玥| 国产成人精品无人区| 成年女人毛片免费观看观看9 | 色视频在线一区二区三区| 国产精品一区二区精品视频观看| 国产免费又黄又爽又色| 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久小说| 欧美日韩视频高清一区二区三区二| 老司机亚洲免费影院| 999精品在线视频| 国产欧美日韩精品亚洲av| 免费高清在线观看日韩| 亚洲av国产av综合av卡| 欧美久久黑人一区二区| 男人爽女人下面视频在线观看| 国产一区有黄有色的免费视频| 亚洲九九香蕉| 午夜老司机福利片| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产区一区二| 黄色一级大片看看| 久久久久精品国产欧美久久久 | 国产亚洲av高清不卡| 亚洲七黄色美女视频| 亚洲欧美一区二区三区久久| 国产精品九九99| 亚洲成人手机| 午夜福利,免费看| svipshipincom国产片| 考比视频在线观看| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av| 少妇人妻 视频| 亚洲精品一区蜜桃| 国产成人av教育| 一级a爱视频在线免费观看| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 日韩人妻精品一区2区三区| 日本欧美国产在线视频| 狠狠婷婷综合久久久久久88av| 老司机深夜福利视频在线观看 | 午夜免费观看性视频| svipshipincom国产片| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| av在线app专区| 最新的欧美精品一区二区| 久久99精品国语久久久| 大陆偷拍与自拍| 亚洲男人天堂网一区| 国产亚洲精品久久久久5区| 成人三级做爰电影| 秋霞在线观看毛片| 最近中文字幕2019免费版| 午夜福利视频精品| 欧美日本中文国产一区发布| 两个人看的免费小视频| 宅男免费午夜| 欧美大码av| 国产午夜精品一二区理论片| www.熟女人妻精品国产| 国产一区有黄有色的免费视频| 国产成人av教育| 老司机靠b影院| 日本wwww免费看| 免费在线观看影片大全网站 | 久久久国产一区二区| 97在线人人人人妻| 日韩制服骚丝袜av| 午夜免费成人在线视频| 99精品久久久久人妻精品| 精品人妻一区二区三区麻豆| 精品一区二区三区四区五区乱码 | 成年人免费黄色播放视频| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲 | 日本av手机在线免费观看| 乱人伦中国视频| 18禁黄网站禁片午夜丰满| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| av天堂在线播放| 国产一区二区在线观看av| 好男人电影高清在线观看| 免费在线观看黄色视频的| 999精品在线视频| 亚洲色图 男人天堂 中文字幕| 欧美成人午夜精品| 91国产中文字幕| 性色av一级| 免费人妻精品一区二区三区视频| 久久久久国产精品人妻一区二区| 久久中文字幕一级| 热99国产精品久久久久久7| 叶爱在线成人免费视频播放| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 精品国产国语对白av| 国产成人精品在线电影| 女人爽到高潮嗷嗷叫在线视频| 国产三级黄色录像| 精品高清国产在线一区| 国产av精品麻豆| 日日爽夜夜爽网站| 满18在线观看网站| 曰老女人黄片| 国产免费福利视频在线观看| 欧美人与性动交α欧美软件| 精品免费久久久久久久清纯 | 午夜两性在线视频| 操出白浆在线播放| 男女无遮挡免费网站观看| 国产成人av激情在线播放| 国产成人精品在线电影| 国产黄色视频一区二区在线观看| 日本一区二区免费在线视频| 国产精品香港三级国产av潘金莲 | 国产精品av久久久久免费| 亚洲欧美精品综合一区二区三区| av福利片在线| 日韩精品免费视频一区二区三区| av国产精品久久久久影院| 51午夜福利影视在线观看| 韩国高清视频一区二区三区| 精品久久久久久电影网| 欧美黑人精品巨大| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看| 欧美大码av| 亚洲视频免费观看视频| 久久热在线av| 在线精品无人区一区二区三| 久久青草综合色| 视频区欧美日本亚洲| 咕卡用的链子| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 日韩一本色道免费dvd| 国产日韩欧美视频二区| 精品一区二区三区四区五区乱码 | 国产成人一区二区在线| 天天躁日日躁夜夜躁夜夜| 国产亚洲精品久久久久5区| 色婷婷久久久亚洲欧美| 日本a在线网址| 亚洲欧美一区二区三区国产| 婷婷色麻豆天堂久久| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 人妻 亚洲 视频| 亚洲欧洲日产国产| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| 国产一区二区三区综合在线观看| 老司机亚洲免费影院| 免费看十八禁软件| 国产精品一二三区在线看| 日韩大片免费观看网站| 美女午夜性视频免费| 伦理电影免费视频| 精品人妻熟女毛片av久久网站| 亚洲精品久久午夜乱码| 五月开心婷婷网| 亚洲欧美一区二区三区国产| 成年人黄色毛片网站| 亚洲精品中文字幕在线视频| 国产麻豆69| 亚洲少妇的诱惑av| 777米奇影视久久| 国产欧美亚洲国产| 99九九在线精品视频| 亚洲av日韩在线播放| 精品少妇一区二区三区视频日本电影| 男人操女人黄网站| 悠悠久久av| 免费人妻精品一区二区三区视频| 久久久久国产精品人妻一区二区| 国产精品一国产av| 亚洲专区中文字幕在线| 一本色道久久久久久精品综合| 亚洲第一av免费看| 国产高清国产精品国产三级| 久久久久精品人妻al黑| 国产1区2区3区精品| 久久国产精品大桥未久av| av不卡在线播放| 最近最新中文字幕大全免费视频 | 大型av网站在线播放| 国产精品一区二区精品视频观看| 嫁个100分男人电影在线观看 | 久久久久视频综合| 国产精品香港三级国产av潘金莲 | avwww免费| 精品第一国产精品| 国产一区二区激情短视频 | 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 亚洲欧美激情在线| 成人黄色视频免费在线看| 人人妻,人人澡人人爽秒播 | 天堂俺去俺来也www色官网| 99香蕉大伊视频| 少妇精品久久久久久久| 亚洲欧洲精品一区二区精品久久久| 欧美av亚洲av综合av国产av| 欧美另类一区| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 国产av一区二区精品久久| 久久久久久久精品精品| 国产精品av久久久久免费| 亚洲国产欧美网| 欧美激情极品国产一区二区三区| 欧美国产精品一级二级三级| 丁香六月天网| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区久久| 伊人亚洲综合成人网| 免费在线观看影片大全网站 | 国产一区二区 视频在线| 日韩熟女老妇一区二区性免费视频| 久久精品亚洲熟妇少妇任你| 亚洲五月婷婷丁香| 十八禁高潮呻吟视频| 男女边吃奶边做爰视频| 一级毛片黄色毛片免费观看视频| 亚洲精品一卡2卡三卡4卡5卡 |