• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode*

    2017-09-15 13:55:51JinweiLi李金偉YuningZhang張宇寧KaihuaLiu劉凱華HaizhenXian冼海珍JixingYu于紀幸
    水動力學研究與進展 B輯 2017年4期
    關(guān)鍵詞:凱華

    Jin-wei Li (李金偉), Yu-ning Zhang (張宇寧), Kai-hua Liu (劉凱華), Hai-zhen Xian (冼海珍), Ji-xing Yu (于紀幸)

    1.China Institute of Water Resources and Hydropower Research, Beijing 100048, China, E-mail: lijinw@iwhr.com

    2.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China

    3.Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

    Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode*

    Jin-wei Li (李金偉)1, Yu-ning Zhang (張宇寧)2,3, Kai-hua Liu (劉凱華)2, Hai-zhen Xian (冼海珍)2, Ji-xing Yu (于紀幸)1

    1.China Institute of Water Resources and Hydropower Research, Beijing 100048, China, E-mail: lijinw@iwhr.com

    2.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China

    3.Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

    The hydraulic force on the reversible pump turbine might cause serious problems (e.g., the abnormal stops due to large vibrations of the machine), affecting the safe operations of the pumped energy storage power plants. In the present paper, the hydraulic force on the impeller of a model reversible pump turbine is quantitatively investigated through numerical simulations. It is found that both the amplitude of the force and its dominant components strongly depend on the operating conditions (e.g., the turbine mode, the runaway mode and the turbine brake mode) and the guide vane openings. For example, the axial force parallel with the shaft is prominent in the turbine mode while the force perpendicular to the shaft is the dominant near the runaway and the turbine brake modes. The physical origins of the hydraulic force are further revealed by the analysis of the fluid states inside the impeller.

    Pump turbine, hydraulic force, numerical simulation, generating mode, vortex, backflow

    Introduction

    The pumped energy storage power plant involves an important large-scale energy storage technology, which can enhance the stability of the electric grid and relieve the fluctuations of the output power caused by the renewable energies[1,2](e.g., the wind[3], solar and tidal[4]energies). In the pumped energy storage power plant, the reversible pump turbine (RPT) is generally adopted due to its high efficiency, flexibility and economical benefits. For recent reviews of the reversible pump turbine, readers are referred to Zhang et al.[5,6]. One of the complexities of the reversible pump turbine technologies is its frequent starts and stops, switching between different working states (e.g., theload rejection or increment, the switches between the pumping mode and the generating mode) to meet the demand of the electric grid, leading to the generations of the vortex in the turbines[5]. Zhang et al.[6]clearly defined the various kinds of the aforementioned working conditions of the reversible pump turbines.

    Currently, the reversible pump turbines are being challenged by unstable flow-induced phenomenon. Zhang et al.[7]experimentally investigated the large pressure fluctuation in the prototype RPT. We found that the pressure fluctuation of the RPT could be categorized into three regions based on the load conditions and characteristics of the fluctuation. Such kind of operations could lead to serious problems for the turbine components (e.g., the mechanical fatigue of the impeller) due to the large pressure fluctuations and vibrations[8-10].

    Among the forces on the reversible pump turbine systems, there are three kinds of excitation forces according to their physical origins[8]: the hydraulic forces, the mechanical forces and the electromagnetic forces. The present paper focuses on the hydraulicforces. As compared with the conventional hydraulic turbines (e.g., the Francis turbine[11]), the reversible pump turbine has many unique features (e.g., fewer blades and higher rotating speed), as well as different operating parameters (e.g., the high water head), leading to a much larger hydraulic forces generated within the reversible pump turbines. Hence, in most cases, there exist prominent hydraulic forces on the fluid passing components of the reversible pump turbine (especially the impeller).

    The abnormal hydraulic force affects the safe operations of the pumped energy storage power plant seriously. The hydraulic force on the impeller can be decomposed into two components: the axial force (parallel with the shaft) and the force perpendicular to the shaft. The axial force could lead to the force unbalance of the turbine (e.g., the lift of the turbine), leading to the damage of the unit (e.g., the bearings and the labyrinth ring) and abnormal stops of the reversible pump turbine. And, the force perpendicular to the shaft leads to the swing of the shaft. For example, in the Tianhuangping power station of China, the frequent lifts of the rotational components of the reversible pump turbines were observed during the load increment from 200 MW to 300 MW in the generating mode, leading to the abrasive damage of the machine and hence unplanned closing down of the machine. The primary on-site study shows that the lift of the machinery is caused by the large hydraulic force on the impeller during the above transition process. In our previous experimental work[7,10], a detailed experimental study was performed based on the on-site measurements of the vibration, the pressure fluctuation and the swing of the shaft. It is desirable to shed light on the physical origins of the hydraulic force on the impeller of the reversible pump turbine.

    One of the difficulties of studying the hydraulic force on the impeller of a pump turbine is the presence of a great number of influential factors on these issues (e.g., the working states, the guide vane openings and the turbine geometries). For example, in the generating mode, the pump turbine could pass three working zones: the turbine zone, the turbine brake zone and the reverse pump zone, which are separated by the runaway line and the zero-flow-rate line[6]. A recent review of the reversible pump turbine can be found in Zhang et al.[6]. Hence, it is not possible and economical to experimentally determine those forces on the whole impeller in the above working states. Instead, the numerical simulation is a good choice to fulfill this task. In the literature, a great number of simulations were carried out[12-19], relating to the reversible pump turbines, mainly focusing on two aspects: the understanding of the S-shaped performance curve and the eliminating method (e.g., the misaligned guide vanes[13]and the hydraulic design of the impeller[14,15]), and the large pressure fluctuation[16,17]. The definition of the S-shaped performance curve of the reversible pump turbine was given in Zhang et al.[6]. The existence of the S-shaped performance characteristic curve could significantly affect the safe operation of the reversible pump turbine (in terms of the rotational speed)[18,19]. The engineering background of those studies is the instability under the idle load conditions, leading to large oscillations of the rotational speed and causing difficulties to the synchronous process with the electric grid. The literature review shows that the hydraulic force on the impeller of the reversible pump turbine remains an issue to be explored.

    1. Numerical methods

    This section gives a detailed introduction of the numerical simulation and related setups, together with the simulated operating conditions of the model reversible pump turbine. Figure 1 shows the main components of the reversible pump turbine (e.g., the spiral casing, the stay vanes, the guide vanes, the impeller and the draft tube) marked with different colors. Figure 2 shows the details of the impeller (including the crown, the blades and the band).

    Fig.1 (Color online) The basic geometry of the investigated reversible pump turbine. The main components are marked with different colors in the figure: The stay vanes and the spiral casing (in purple color), the guide vanes (in orange color), the impeller (in red color), and the draft tube (in blue color)

    The mesh convergence test is performed to ensure the validities of the present simulation. For the modelling of the rotor-stator interactions (e.g., the impeller-vanes interactions, here), the movement of the impeller is implemented through settings of the domain as a moving component.

    The simulated cases are selected based on the model test of the performance curve for three guide vane openings (6o,21oand 24o, respectively). For each guide vane opening, several typical cases are simulated in order to cover the possible operating conditions. A summary of the simulated cases is shown in Table 1 with the corresponding category of their operating conditions. In Table 1, the discharge factor (Q11) is defined as

    Fig.2 (Color online) A detailed view of the impeller. The top, middle and bottom subplots are the crown, the blades and the band, respectively

    Table 1 A list of operational conditions for numerical simulations and related operating regions

    whereQLis the volumetric discharge,Dis the nominal diameter of the impeller, andHis the water head. In our simulations, a single phase model is adopted and the flow-induced multiphase flow[20-22]are ignored. In some cases, the bubbly flow could be prominent with significant influences on the wave propagation[23]and resonances[24]through interactions[25,26].

    2. Analysis of hydraulic force on the impeller

    In this section, a detailed analysis of the hydraulic force on the impeller of the reversible pump turbine working is carried out under different operating conditions (including the turbine mode, the runaway mode, and the turbine brake mode) for different guide vane openings. In the present paper, our attention is mainly focused on the generation of the hydraulic force on the impeller because these forces are strongly related to many current challenges of the reversible pump turbine design and the on-site problems (e.g., the vibrations and the swing of the shaft).

    In the following sections, the force on the components of the reversible pump turbines are calculated based on the simulation results using the post-processing functions. In the present paper, only the hydraulic force generated by the fluids inside the reversible pump turbines is considered. Due to the high pressure inside the reversible pump turbine, the magnitude of the viscous force is quite limited. The employed post-processing functions could give the statistics of the force in three-dimensions (X,Y,Zdirections, respectively), which are further processed to obtain the whole force on the impeller. For a further analysis, the total forces are decomposed into two components: that parallel with the shaft (denoted byand that perpendicular to the shaft (denoted by

    Fig.3 (Color online) The variations of the total force on the impeller versus the discharge factor for guide vane openings 6o, 21oand 24o

    Figure 3 shows the variations of the amplitude of the total force on the whole impeller of the reversible pump turbine versus the discharge factor for different guide vane openings (6o,21oand 24o, respectively). In Fig.3, the marked arrows indicate the runaway modes. It is found that the total force under the same operating conditions varies greatly with the guide vane openings. Along the guide vane opening lines, with the decrease of the discharge, the total force firstly decreases due to the limited amount of the fluid passing the impeller. With the further decrease of the discharge (especially near the runaway), a dramatic increase of the total force is observed. Such kind of increases of the forces on the impeller is mainly induced by the abnormal fluid flow inside the bladechannels. In the turbine brake mode, the total force on the impeller still remains of a high value, indicating that the fluid patterns under these operating conditions are complex. The details of the analysis of the fluid states are in Section 3.

    Fig.4 (Color online) The variation of the amplitude ofFxyandFzof the impeller versus the discharge factor for guide vane opening 6o

    Fig.5 (Color online) The variation of the amplitude ofFxyandFzof the impeller versus the discharge factor for guide vane opening 21o

    Fig.6 (Color online) The variation of the amplitude ofFxyandFzof the impeller versus discharge factor for guide vane openings 24o

    Figures 4-6 show the variations ofFxyandFzversus the discharge factor for different guide vane openings (6o,21oand 24o, respectively). In the turbine mode, the total force is mainly dominated by theFz. In this region, the amplitudes ofFzare about ten times of those ofFxy. However, near the runaway (e.g., in the turbine brake mode), the axial forceFzis quite negligible whileFxyis the dominant component. Noticing that the diameter of the present model reversible pump turbine is only 0.24 m, the amplitude of the force near the runaway is quite significant, possibly leading to the swing of the shaft. This finding agrees well with our previous on-site measurements. In Li et al.[10], the shaft displacements in different directions of upper, lower and turbine guide bearings were measured. The results show that in the runaway mode, the displacements of all those bearings are the largest among all tested operating conditions (referring to Fig.3 of Ref.[10]). The significant values ofFxymay also be due to the oscillations of the rotational speed during the idle load mode.

    Fig.7 (Color online) The variation of axial force contributed by the crown, the band and the blades versus discharge factor for guide vane openingo6

    In order to further reveal the physical mechanisms of those hydraulic forces, the contributions of three main components of the impeller (i.e., the crown, the band and the nine blades) to the axial forces are also shown in Figs.7-9 for the guide vane openings 6o, 21oand 24o, respectively. The crown and the band make great contributions to the axial force while the contributions of the blades can be safely neglected because when the fluid passes the blades, the forces generated on each blade finally cancel each other due to the symmetric smooth flow. For small guide vane openings (e.g., 6o), the variations of the contribution of the crown and the band to the axial force are rather limited while for large guide vane openings (e.g., 21o, 24o), they decrease clearly with the decrease of the discharge factor.

    Fig.8 (Color online) The variation of axial force contributed by the crown, the band and the blades versus discharge factor for guide vane openingo21

    Fig.9 (Color online) The variation of axial force contributed by the crown, the band and the blades versus discharge factor for guide vane opening 24o

    Fig.10 (Color online) The variation of amplitude ofFxycontributed by the crown, the band and the blades versus discharge factor for guide vane openingo6

    Figures 10-12 show the contributions of three main components of the impeller (i.e., the crown, the band and the blades) toFxyfor the guide vane openings 6o, 21oand 24o, respectively. Near the runaway mode, the blades make the most significant contribution to theFxyfor all the guide vane openings.

    Fig.11 (Color online) The variation of amplitude ofFxycontributed by the crown, the band and the blades versus discharge factor for guide vane opening 21o

    Fig.12 (Color online) The variation of amplitude ofFxycontributed by the crown, the band and the blades versus discharge factor for guide vane opening 24o

    Therefore, it can be concluded that the significant values ofFxyare due to the asymmetric flow in the impeller channels caused by the fluid distortions (e.g., the swirling flow).

    A brief discussion of the zero-flow-rate mode and the reverse pump mode is given as follows. In the zero-flow-rate mode, the force is extremely small due to the rather limited amount of the fluid passing through the turbine. In the reverse pump mode (with the change of the flow directions), the axial force is the dominant component and varies slightly with the flow rate. In the engineering practice, the operation of the reversible pump turbine is carefully controlled to avoid entering (possibly) this mode.

    3. Analysis of the fluid states

    As shown in Section 2, the hydraulic force on the impeller is greatly affected by the fluid states. In this section, a comparison of the fluid states (in terms of the vortex and the backflow) between the turbine mode, the runaway mode and the turbine brake mode under different operating conditions is made for theguide vane openingo21.

    In the vortex analysis, a widely adoptedQ-criterion is employed. In order to compare the vortices in the impeller under different working conditions, a dimensionless value ofQ(e.g., denoted asQ0, which is normalized by using the maximum value ofQin each computational case) is adopted. For comparisons, we set the dimensionlessQ0=0.1 in all cases. Figure 13 shows the comparisons of the vortex structures in the impeller of the reversible pump turbine under different working conditions. In the turbine mode (Fig.13(c)), a limited number of vortices are distributed homogeneously in the blade channels and at the outlet of the impeller. Under this working condition, the generation of the vortex is uniform in the circumferential direction but not prominent (e.g., in terms of the amount of the vortex). Hence, as shown in Figs.4-6, no prominentFxyforce is observed in the turbine mode because the vortices are uniformly distributed in the impeller. With the decrease of the discharge (entering the runaway and turbine brake modes as shown in Figs.13(b) and 13(a)), the vortex structures become non-uniform, leading to the blockage of the channel. As a result,Fxyforce in the runaway and turbine brake modes are of great amplitudes (as shown in Figs.4-6).

    Fig.13 (Color online) Vortex identification based onQ-criterion in the impeller of the reversible pump turbine under different working conditions.Q0=0.1

    The existence of the backflow (e.g., the flow in the direction from the impeller to the guide vanes) in the turbine brake mode and the runaway mode is another reason for the observed large amplitude ofFxyforce. Figure 14 shows the backflow at the inlet of the impeller with the streamlines inside the impeller (colored by the magnitude of velocity). As shown in Fig.14(c), no backflow is observed in the turbine mode. However, very significant backflows are observed in the runaway and turbine brake modes (as shown in Figs.14(b) and 14(a)), leading to a further distortion of the fluid flow inside the impeller. Hence, under those conditions, the backflow further aggravates the non-uniformity of the fluid flow inside the impeller, leading to significant unbalanced forces (e.g., the large amplitude ofFxyforces in the turbine brake and runaway modes).

    Fig.14 (Color online) States of backflow at the inlet of impeller and streamlines in the impeller of the reversible pump turbine under different working conditions

    Fig.15 (Color online) The variation of the amplitude ofFxycontributed by different number of blades versus discharge factor in turbine brake mode for guide vane openingo21

    To further quantify the asymmetric flow in different blade channels, Fig.15 further shows the variations of the amplitude of forceFxyon each blade (with the total blade number of 9). The variations of the force are obviously observed with the maximum force of about 550 N on the blade No. 4 while the minimum force of only about 150 N on the blade No. 3. In the turbine mode for the same guide vane opening, the variations of the force on different blades could be safely neglected due to the symmetricflow inside the impeller.

    4. Conclusions

    In the present paper, the numerical simulations of the fluid flow inside the model reversible pump turbine are performed with a focus on the analysis of the generation of the hydraulic force on the impeller.

    (1) The dominant force component depends strongly on the working conditions. In the turbine mode, the axial component (mainly contributed by the crown and the band) parallel with the shaft is the dominant one. In the runaway and turbine brake modes, the component perpendicular to the shaft caused by the asymmetric flow inside impeller is the dominant one.

    (2) The physical reason of the large amplitude of the force component (perpendicular to the shaft) is the existence of the backflow and the vortex, which aggravate the non-uniformity of the flow inside the impeller.

    (3) The above features of the hydraulic force generated by the distorted flow should be paid a great attention for the prevention of the impeller fatigue due to the frequent shifts between working conditions.

    [1] Jiang R., Wang J., Guan Y. Robust unit commitment with wind power and pumped storage [J].IEEE Transactions

    [2] Caralis G., Papantonis D., Zervos A. The role of pumpedon Hydro Power Systems, 2012, 27(2): 800-810. storage systems towards the large scale wind integration in the Greek power supply system [J].Renewable and Sustainable Energy Reviews, 2012, 16(5): 2558-2565.

    [3] Zhang Y., Tang N., Niu Y. et al. Wind energy rejection in China: Current status, reasons and perspectives [J].Renewable and Sustainable Energy Reviews, 2016, 66(12): 322-344.

    [4] Huang B., Shi J., Wei X. Model testing of a series of counter-rotating type horizontal-axis tidal turbines with 500 mm diameter [J].ASME Journal of Engineering for Gas Turbines and Power, 2017, 139(10): 102602.

    [5] Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J].Renewable and Sustainable Energy Reviews, 2017, doi:http//dx.doi.org/10.1016/j.rser.2017.05.058.

    [6] Zhang Y., Zhang Y., Wu Y. A review of rotating stall in reversible pump turbine [J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(7): 1181-1204.

    [7] Zhang Y., Chen T., Li J. et al. Experimental study of load variations on pressure fluctuations in a prototype reversible pump turbine [J].Journal of Fluids Engineering, 2017, 139(7): 074501.

    [8] Egusquiza E., Valero C., Valentin D. et al. Condition

    [9] Egusquiza E., Valero C., Huang X. et al. Failure investimonitoring of pump-turbines. New challenges [J].Measurement, 2015, 67: 151-163.

    [10] Li J., Hu Q., Yu J. et al. Study on S-shaped characteristic gation of a large pump-turbine impeller [J].Engineering Failure Analysis, 2012, 23: 27-34. of Francis reversible unit by on-site test and CFD 2013, 56(9): 2163-2169.

    [11] Chen T., Zhang Y., Li S. Instability of large-scale prototype Francis turbines of Three Gorges power station at part load [J].Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230 (7): 619-632. simulation [J].Science China Technological Sciences,

    [12] Wang L., Yin J., Jiao L. et al. Numerical investigation on the “S” characteristics of a reduced pump turbine model [J].Science China Technological Sciences, 2011, 54(5):

    [13] Sun H., Xiao R., Liu W. et al. Analysis of S characteristics 1259-1266. and pressure pulsations in a pump-turbine with misaligned guide vanes [J].Journal of Fluids Engineering, 2013, 135(5): 051101.

    [14] Yin J. L., Wang D. Z., Wei X. Z. et al. Hydraulic improvement to eliminate S-shaped curve in pump turbine [J].

    [15] Yang W., Xiao R. Multiobjective optimization design of aJournal of Fluids Engineering, 2013, 135(7): 071105. pump-turbine impeller based on an inverse design using a combination optimization strategy [J].Journal of Fluids Engineering, 2014, 136(1): 014501.

    [16] Guo L., Liu J., Wang L. et al. Pressure fluctuation propagation of a pump turbine at pump mode under low head

    [17] Liu J., Liu S., Sun Y. et al. Three dimensional flow simucondition [J].Science China Technological Sciences, 2014, 57(4): 811-818.

    [18] Olimstad G., Nielsen T., B?rresen B. Stability limits of relation of load rejection of a prototype pump-turbine [J].Engineering with Computers, 2013, 29(4): 417-426. versible-pump turbines in turbine mode of operation and measurements of unstable characteristics [J].Journal of Fluids Engineering, 2012, 134(11): 111202.

    [19] Olimstad G., Nielsen T., B?rresen B. Dependency on impeller geometry for reversible-pump turbine characteristics in turbine mode of operation [J].Journal of Fluids Engineering, 2012, 134(12): 121102.

    [20] Zhang Y., Zhang Y., Qian Z. et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow [J].Renewable and Sustainable Energy Reviews, 2016, 56(4): 303-318.

    [21] Zhang Y., Zhang Y. Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation [J].Ultrasonics Sonochemistry, 2017, doi: http://dx.doi.org/10.1016/j.ultsonch.2017.03.058.

    [22] Zhang Y. N., Li S. Improved formulas for thermal behadynamics, 2016, 28(2): 325-328.

    [23] Zhang Y., Guo Z., Gao Y. et al. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures [J].Ultrasonics Sonochemistry, 2017, doi: http://dx.doi.org/10.1016/j.ultsonch.2017.03.048.

    [24] Zhang Y., Zhang Y., Li S. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation [J].Ultrasonics Sonochemistry, 2017, 35(3): 431-439.

    [25] Zhang Y., Zhang Y., Li S. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation[J].Ultrasonics Sonochemistry, 2016, 29(3): 129-145.

    [26] Zhang Y. N., Min Q., Zhang Y. N. et al. Effects of liquid compressibility on bubble-bubble interactions between vior of oscillating nanobubbles [J].Journal of Hydrooscillating bubbles [J].Journal of Hydrodynamics, 2016, 28(5): 832-839.

    (Received February 27, 2016, Revised July 17, 2016)

    * Project supported by the National Natural Science Foundation of China (Project No. 51506051).

    Biography:Jin-wei Li (1981-), Male, Ph. D., Senior Engineer

    Yu-ning Zhang,

    E-mail: y.zhang@ncepu.edu.cn

    猜你喜歡
    凱華
    鼻咽癌調(diào)強放療擺位誤差對劑量分布影響的研究
    進入最后備戰(zhàn)階段 競走名將王凱華渴望東京創(chuàng)佳績
    當代體育(2021年24期)2021-09-10 07:22:44
    不忘初心 牢記使命 推進樂凱華光跨越發(fā)展
    樂凱華光印刷科技有限公司 公司簡介
    A selected review of vortex identification methods with applications *
    98歲趙凱華:勞動能使人健康長壽
    Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method *
    浣溪沙·新鄰居
    揚子江詩刊(2017年3期)2017-11-13 20:07:52
    浣溪沙·新鄰居
    揚子江(2017年3期)2017-06-27 12:32:02
    樂凱華光 向更高端進取
    日韩三级伦理在线观看| 精品久久蜜臀av无| 电影成人av| 在线精品无人区一区二区三| 自线自在国产av| 超碰成人久久| av一本久久久久| 人人妻人人澡人人看| 纵有疾风起免费观看全集完整版| 人人妻人人爽人人添夜夜欢视频| av在线app专区| 免费黄色在线免费观看| 91精品国产国语对白视频| 在线观看三级黄色| 亚洲精品久久久久久婷婷小说| 精品少妇黑人巨大在线播放| 欧美av亚洲av综合av国产av | 久久99热这里只频精品6学生| 国产极品粉嫩免费观看在线| 纵有疾风起免费观看全集完整版| 校园人妻丝袜中文字幕| 免费在线观看黄色视频的| 午夜福利网站1000一区二区三区| 欧美黄色片欧美黄色片| 日日啪夜夜爽| 国产乱来视频区| 一本大道久久a久久精品| 久久热在线av| 色婷婷av一区二区三区视频| 久久久久久久久久久久大奶| 日本黄色日本黄色录像| 久久久久久久亚洲中文字幕| 老汉色∧v一级毛片| 丝袜美足系列| 国产一区二区 视频在线| 亚洲精品乱久久久久久| 国产精品一国产av| 久久精品国产亚洲av高清一级| 亚洲精品美女久久久久99蜜臀 | 国产 一区精品| 叶爱在线成人免费视频播放| 国产色婷婷99| 成人二区视频| 不卡av一区二区三区| 成人漫画全彩无遮挡| 精品一区二区免费观看| 亚洲精品自拍成人| av有码第一页| 精品视频人人做人人爽| 老汉色∧v一级毛片| 亚洲四区av| 校园人妻丝袜中文字幕| 精品久久蜜臀av无| 亚洲美女黄色视频免费看| 成人免费观看视频高清| 男女午夜视频在线观看| 久久精品夜色国产| 在线观看免费高清a一片| 中文精品一卡2卡3卡4更新| 日本av免费视频播放| 欧美xxⅹ黑人| 九草在线视频观看| 青春草视频在线免费观看| 欧美亚洲日本最大视频资源| 午夜福利影视在线免费观看| 国产综合精华液| 各种免费的搞黄视频| 国产精品偷伦视频观看了| 99精国产麻豆久久婷婷| 国产成人精品在线电影| 永久网站在线| 人妻一区二区av| 久久久a久久爽久久v久久| 天堂俺去俺来也www色官网| videossex国产| 久久久精品94久久精品| 亚洲美女视频黄频| 一级,二级,三级黄色视频| 美女高潮到喷水免费观看| 国产成人精品一,二区| 亚洲成人一二三区av| 欧美国产精品va在线观看不卡| 看免费av毛片| 亚洲精品国产一区二区精华液| 人人妻人人澡人人看| freevideosex欧美| 狠狠婷婷综合久久久久久88av| 国产不卡av网站在线观看| 亚洲国产精品国产精品| 性色av一级| 女性被躁到高潮视频| 高清不卡的av网站| 国产亚洲最大av| 久久久久视频综合| 黄片无遮挡物在线观看| 国产免费福利视频在线观看| 岛国毛片在线播放| 午夜福利一区二区在线看| 精品亚洲成a人片在线观看| 天堂俺去俺来也www色官网| 国产精品嫩草影院av在线观看| videossex国产| 午夜91福利影院| 久久综合国产亚洲精品| 97在线视频观看| 亚洲精品乱久久久久久| 国产麻豆69| 制服诱惑二区| 欧美+日韩+精品| 久久久国产欧美日韩av| 三上悠亚av全集在线观看| 日韩中文字幕欧美一区二区 | 中文字幕另类日韩欧美亚洲嫩草| 黄色一级大片看看| 亚洲男人天堂网一区| 一区二区日韩欧美中文字幕| 国产一区有黄有色的免费视频| 老熟女久久久| 五月开心婷婷网| 亚洲欧美一区二区三区黑人 | 在线观看免费高清a一片| 色视频在线一区二区三区| 制服人妻中文乱码| 2018国产大陆天天弄谢| 十分钟在线观看高清视频www| 国产欧美日韩综合在线一区二区| 久久精品亚洲av国产电影网| 亚洲精品aⅴ在线观看| 最近中文字幕2019免费版| 亚洲中文av在线| 久久av网站| 国产不卡av网站在线观看| 成年女人在线观看亚洲视频| 丁香六月天网| 男人舔女人的私密视频| 国产亚洲av片在线观看秒播厂| 国产爽快片一区二区三区| 久久久精品区二区三区| 97精品久久久久久久久久精品| 免费在线观看视频国产中文字幕亚洲 | 国产精品.久久久| 91精品三级在线观看| 午夜福利一区二区在线看| 日韩视频在线欧美| 新久久久久国产一级毛片| 亚洲精品国产av蜜桃| 美女视频免费永久观看网站| 久久久久国产精品人妻一区二区| 99久久精品国产国产毛片| av电影中文网址| 亚洲欧美清纯卡通| 久热久热在线精品观看| 婷婷色av中文字幕| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区三区在线| 一区福利在线观看| 日韩视频在线欧美| 欧美变态另类bdsm刘玥| 精品少妇黑人巨大在线播放| 女性生殖器流出的白浆| 国产免费现黄频在线看| 人体艺术视频欧美日本| 寂寞人妻少妇视频99o| 天天躁夜夜躁狠狠久久av| 国产精品偷伦视频观看了| 最黄视频免费看| 亚洲欧美成人综合另类久久久| 国产97色在线日韩免费| 亚洲内射少妇av| 黑人欧美特级aaaaaa片| 久久青草综合色| 国产免费一区二区三区四区乱码| 一级毛片我不卡| 97人妻天天添夜夜摸| 韩国高清视频一区二区三区| 啦啦啦啦在线视频资源| 男人舔女人的私密视频| 丝袜喷水一区| 两个人免费观看高清视频| 欧美人与善性xxx| av有码第一页| 婷婷成人精品国产| 亚洲美女搞黄在线观看| 久久久久国产网址| 一级毛片黄色毛片免费观看视频| 男女下面插进去视频免费观看| 国产成人精品久久久久久| 国产女主播在线喷水免费视频网站| 欧美精品人与动牲交sv欧美| 中文欧美无线码| 色婷婷av一区二区三区视频| 国产男女内射视频| 黄色怎么调成土黄色| 精品国产国语对白av| 午夜激情av网站| 999精品在线视频| 十八禁高潮呻吟视频| 日韩一区二区视频免费看| 99re6热这里在线精品视频| 成人亚洲欧美一区二区av| 成人毛片a级毛片在线播放| 大香蕉久久成人网| 性少妇av在线| 欧美国产精品一级二级三级| 色视频在线一区二区三区| 亚洲成国产人片在线观看| 免费av中文字幕在线| 午夜免费鲁丝| 高清欧美精品videossex| 精品少妇一区二区三区视频日本电影 | 久久免费观看电影| 美女主播在线视频| 爱豆传媒免费全集在线观看| 国产日韩一区二区三区精品不卡| 丝袜美足系列| 九色亚洲精品在线播放| 欧美日韩亚洲高清精品| 免费少妇av软件| 亚洲在久久综合| 免费观看av网站的网址| 69精品国产乱码久久久| 亚洲精品国产一区二区精华液| 美女xxoo啪啪120秒动态图| 一二三四中文在线观看免费高清| 高清欧美精品videossex| 三级国产精品片| videos熟女内射| 国产伦理片在线播放av一区| 国产熟女欧美一区二区| 只有这里有精品99| 中国三级夫妇交换| 国产日韩一区二区三区精品不卡| 美女福利国产在线| 最近2019中文字幕mv第一页| 久久久久久久大尺度免费视频| 国产免费又黄又爽又色| 国产毛片在线视频| 免费观看av网站的网址| 成人黄色视频免费在线看| 在线观看三级黄色| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 三上悠亚av全集在线观看| 久热这里只有精品99| 成人亚洲精品一区在线观看| 亚洲精品自拍成人| 极品人妻少妇av视频| 欧美精品av麻豆av| 人妻人人澡人人爽人人| 免费看av在线观看网站| 巨乳人妻的诱惑在线观看| 九草在线视频观看| 麻豆av在线久日| 最近最新中文字幕免费大全7| 久久久久久久久免费视频了| 2021少妇久久久久久久久久久| 国产无遮挡羞羞视频在线观看| 日韩视频在线欧美| 成人亚洲精品一区在线观看| 制服诱惑二区| 精品少妇内射三级| 亚洲五月色婷婷综合| av线在线观看网站| 赤兔流量卡办理| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| √禁漫天堂资源中文www| 一区二区三区乱码不卡18| 老汉色∧v一级毛片| 欧美变态另类bdsm刘玥| av.在线天堂| 欧美日韩精品成人综合77777| 一边亲一边摸免费视频| 精品少妇内射三级| 在线观看www视频免费| 成年女人在线观看亚洲视频| 成人毛片60女人毛片免费| 又大又黄又爽视频免费| 777米奇影视久久| 美女xxoo啪啪120秒动态图| 亚洲国产欧美网| 青春草国产在线视频| 国产亚洲精品第一综合不卡| 亚洲,欧美精品.| 一级毛片黄色毛片免费观看视频| 91国产中文字幕| av免费在线看不卡| 美女xxoo啪啪120秒动态图| av电影中文网址| 天堂俺去俺来也www色官网| 精品亚洲成国产av| 国产毛片在线视频| 男女下面插进去视频免费观看| 欧美人与性动交α欧美精品济南到 | 人体艺术视频欧美日本| 国产黄色免费在线视频| 亚洲伊人久久精品综合| 国产片内射在线| 国产精品99久久99久久久不卡 | 亚洲欧洲精品一区二区精品久久久 | 一区二区三区乱码不卡18| 一级黄片播放器| 涩涩av久久男人的天堂| 在线天堂中文资源库| 一级,二级,三级黄色视频| 十分钟在线观看高清视频www| 人人妻人人添人人爽欧美一区卜| a 毛片基地| 国产日韩欧美亚洲二区| 国产在线视频一区二区| 麻豆av在线久日| 亚洲成国产人片在线观看| 一二三四中文在线观看免费高清| 99热全是精品| 99热网站在线观看| 美女xxoo啪啪120秒动态图| 在线 av 中文字幕| 亚洲国产精品国产精品| 国产一区二区三区综合在线观看| 视频在线观看一区二区三区| 大码成人一级视频| 久久韩国三级中文字幕| 天堂俺去俺来也www色官网| 久久婷婷青草| 黄频高清免费视频| 精品一区二区免费观看| 国产av国产精品国产| 青春草国产在线视频| 在线观看免费视频网站a站| 中文字幕人妻丝袜制服| 亚洲欧美成人综合另类久久久| 人人妻人人添人人爽欧美一区卜| 最近2019中文字幕mv第一页| 国产精品麻豆人妻色哟哟久久| 亚洲经典国产精华液单| 欧美日韩精品成人综合77777| 国产一区二区 视频在线| 日韩 亚洲 欧美在线| 在线观看人妻少妇| 国产精品一区二区在线观看99| 日本午夜av视频| 青春草亚洲视频在线观看| 午夜激情av网站| 美女午夜性视频免费| 欧美日韩一区二区视频在线观看视频在线| 亚洲美女视频黄频| 久久国产亚洲av麻豆专区| 飞空精品影院首页| 精品少妇黑人巨大在线播放| 久久精品亚洲av国产电影网| 91久久精品国产一区二区三区| 亚洲av免费高清在线观看| 欧美av亚洲av综合av国产av | 久久久久国产网址| 亚洲熟女精品中文字幕| 校园人妻丝袜中文字幕| 妹子高潮喷水视频| 午夜福利,免费看| 只有这里有精品99| 中国国产av一级| 国产亚洲一区二区精品| 久久久欧美国产精品| 国产精品 国内视频| 国产精品免费大片| 久久久久精品性色| 日韩视频在线欧美| 中文天堂在线官网| 亚洲内射少妇av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产av新网站| 最近手机中文字幕大全| 秋霞伦理黄片| 欧美日韩精品成人综合77777| 免费日韩欧美在线观看| 伦精品一区二区三区| 十分钟在线观看高清视频www| 欧美日韩av久久| 精品人妻熟女毛片av久久网站| 美女国产视频在线观看| 在线免费观看不下载黄p国产| 国产在线视频一区二区| 亚洲精品国产一区二区精华液| 日韩一区二区三区影片| 亚洲成av片中文字幕在线观看 | 国产激情久久老熟女| 国产成人aa在线观看| 女性生殖器流出的白浆| 国产精品人妻久久久影院| 人妻少妇偷人精品九色| 老司机影院毛片| 日日爽夜夜爽网站| 国产成人午夜福利电影在线观看| 日日撸夜夜添| 欧美精品亚洲一区二区| 成人免费观看视频高清| 在线观看三级黄色| 日韩中文字幕欧美一区二区 | 99久久综合免费| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 三级国产精品片| videosex国产| 男女边吃奶边做爰视频| 建设人人有责人人尽责人人享有的| 亚洲av电影在线进入| 2018国产大陆天天弄谢| 另类精品久久| 中文字幕人妻丝袜制服| 中国国产av一级| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 丝袜美足系列| 亚洲精品一二三| 成人国产麻豆网| 亚洲一区中文字幕在线| 久久av网站| 美女国产视频在线观看| 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 中国三级夫妇交换| 久久人人爽人人片av| 日本黄色日本黄色录像| 一边亲一边摸免费视频| 国产精品久久久久久精品古装| 香蕉丝袜av| 啦啦啦视频在线资源免费观看| 精品亚洲成国产av| 哪个播放器可以免费观看大片| 一二三四中文在线观看免费高清| 波多野结衣av一区二区av| 国产一区二区在线观看av| 亚洲五月色婷婷综合| 欧美日韩综合久久久久久| 久久综合国产亚洲精品| 精品国产一区二区三区四区第35| 久久99蜜桃精品久久| 在线 av 中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜激情久久久久久久| 日韩中文字幕欧美一区二区 | 国产成人a∨麻豆精品| 一区二区日韩欧美中文字幕| 亚洲美女视频黄频| 成年动漫av网址| 日本午夜av视频| 国产乱来视频区| a级毛片在线看网站| 亚洲四区av| 成人亚洲精品一区在线观看| 黑人猛操日本美女一级片| 欧美成人午夜免费资源| 纵有疾风起免费观看全集完整版| 综合色丁香网| 天天躁狠狠躁夜夜躁狠狠躁| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 色网站视频免费| 午夜激情久久久久久久| 乱人伦中国视频| 亚洲av欧美aⅴ国产| www日本在线高清视频| 日本-黄色视频高清免费观看| 亚洲精品国产av成人精品| 性高湖久久久久久久久免费观看| 黄片播放在线免费| 国产精品不卡视频一区二区| 搡老乐熟女国产| 久久婷婷青草| 欧美日韩精品成人综合77777| 中文乱码字字幕精品一区二区三区| 深夜精品福利| 亚洲精品乱久久久久久| 人妻系列 视频| 欧美人与善性xxx| av免费在线看不卡| 国产乱来视频区| 看免费成人av毛片| 日韩三级伦理在线观看| 婷婷色av中文字幕| 欧美激情高清一区二区三区 | 大码成人一级视频| 999精品在线视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品av麻豆av| 免费黄网站久久成人精品| av网站免费在线观看视频| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 色播在线永久视频| 午夜福利一区二区在线看| 99热国产这里只有精品6| www日本在线高清视频| 在线精品无人区一区二区三| 亚洲国产av新网站| 成年人午夜在线观看视频| 黄色配什么色好看| 黑人欧美特级aaaaaa片| 午夜免费观看性视频| 一级毛片 在线播放| 如何舔出高潮| 日产精品乱码卡一卡2卡三| 亚洲精品日本国产第一区| 亚洲人成77777在线视频| 国产综合精华液| 80岁老熟妇乱子伦牲交| 日韩三级伦理在线观看| 日韩制服丝袜自拍偷拍| 制服诱惑二区| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区黑人 | 欧美激情极品国产一区二区三区| 在线观看美女被高潮喷水网站| 宅男免费午夜| 午夜久久久在线观看| 一级爰片在线观看| 亚洲av成人精品一二三区| 精品国产超薄肉色丝袜足j| 免费人妻精品一区二区三区视频| a级毛片黄视频| av.在线天堂| 9色porny在线观看| 亚洲人成网站在线观看播放| 桃花免费在线播放| 久久久久久久大尺度免费视频| 在线观看免费日韩欧美大片| 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 熟女av电影| 国产精品 欧美亚洲| 乱人伦中国视频| 欧美日韩精品成人综合77777| 精品少妇一区二区三区视频日本电影 | 男女边吃奶边做爰视频| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 男人操女人黄网站| 亚洲成人一二三区av| 欧美日韩成人在线一区二区| 美女国产高潮福利片在线看| 天堂中文最新版在线下载| 性色avwww在线观看| 日韩熟女老妇一区二区性免费视频| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 多毛熟女@视频| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 亚洲第一av免费看| 一本—道久久a久久精品蜜桃钙片| 亚洲伊人色综图| 亚洲美女视频黄频| 久久人人97超碰香蕉20202| 五月伊人婷婷丁香| 丝袜在线中文字幕| 亚洲天堂av无毛| 婷婷成人精品国产| 亚洲色图 男人天堂 中文字幕| 啦啦啦啦在线视频资源| 亚洲精品,欧美精品| 一区二区三区激情视频| 亚洲人成电影观看| 99热全是精品| 亚洲精品久久久久久婷婷小说| 韩国av在线不卡| 18在线观看网站| 欧美成人午夜精品| 亚洲人成电影观看| 天堂俺去俺来也www色官网| av在线观看视频网站免费| 国产精品99久久99久久久不卡 | 母亲3免费完整高清在线观看 | 欧美97在线视频| 免费久久久久久久精品成人欧美视频| 欧美97在线视频| 国产精品免费大片| 午夜福利一区二区在线看| 丰满乱子伦码专区| 久久久精品免费免费高清| 欧美中文综合在线视频| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 热99久久久久精品小说推荐| 国产视频首页在线观看| 18禁国产床啪视频网站| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 日韩av在线免费看完整版不卡| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久久大奶| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| 九色亚洲精品在线播放| 婷婷色麻豆天堂久久| 少妇熟女欧美另类| 成人手机av| 香蕉精品网在线| 最新中文字幕久久久久| 日日啪夜夜爽| 日韩中文字幕视频在线看片| 日韩精品免费视频一区二区三区| 色哟哟·www| 日韩在线高清观看一区二区三区| 黑人欧美特级aaaaaa片| 日本黄色日本黄色录像| av卡一久久| 免费女性裸体啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 亚洲激情五月婷婷啪啪| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久小说| 乱人伦中国视频| 国产精品人妻久久久影院|