• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method *

    2018-07-06 10:01:50YuningZhang張宇寧KaihuaLiu劉凱華JinweiLi李金偉HaizhenXian冼海珍XiaozeDu杜小澤
    水動力學研究與進展 B輯 2018年3期
    關(guān)鍵詞:凱華

    Yu-ning Zhang (張宇寧), Kai-hua Liu , (劉凱華), Jin-wei Li (李金偉), Hai-zhen Xian (冼海珍),Xiao-ze Du (杜小澤)

    1. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039,China

    2. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education),North China Electric Power University, Beijing 102206, China

    3. Beijing South-to-North Water Diversion Tuancheng Lake Management Office, Beijing 100195, China

    4. China Institute of Water Resources and Hydropower Research, Beijing 100048, China

    Introduction

    As an essential component of the pumped hydro energy storage power plants, the reversible pump turbine plays an important role in the stability of the electrical systems through its ability of quickly meeting the electricity demand of the system and maintaining the frequency and the voltage of the system[1-3]. The aforementioned features of the reversible pump turbine are very important for the grid system with high penetration levels of the renewable energies (e.g., the wind energy[4]). The reversible pump turbine could be operated both in the turbine mode and in the pump mode with frequent shifts between different operational modes to satisfy the demand of the system. As a result, many instability problems (e.g., the strong pressure fluctuation[5-6], the hysteresis[7-8], the cavitation[9], the vibration and crack[10-12]and the rotating stall[13-14]) may occur,especially when the reversible pump turbine works under the off-design conditions. The formation of the vortex is one of the essential elements in the instability problems of the reversible pump turbine.The generation of vortices often accompanies with complex fluid flow phenomena inside the turbine (e.g.,the cavitation, the flow separation, and the rotating stall). When the undesirable flows are fully developed,a strong pressure fluctuation will be generated, and transmitted to the upstream (e.g., the vaneless space)to form more vortex structures locally. More details of the instability of the reversible pump turbines can be found in our recent review[1]. Hence, to solve the instability problems of the reversible pump turbine, it is necessary to better understand the associated vortex structure.

    Numerous algorithms and their applications of vortex identification methods are reviewed in another of our paper[15], including applications in the pressure wave propagation[16-17], and the cavitating flow[18].Generally, the vorticity magnitude method is usually employed to identify the vortex in the turbulent flow.In some special regions (e.g., the flow in the laminar boundary layer near the wall), this method sometimes gives some incorrect identifications of the vortices.The2λ[19]andQ[20]criterions are also widely employed during the vortex analysis of the hydroturbines, but their results highly depend on the selections of the related critical values. With large values of the related parameters, weak vortices might be ignored,while with small values, some vortex structures can not be distinguished. In order to have a good balance,Liu et al.[21]proposed a new omega method to identify the vortex through defining a ratio between the vortical vorticity and the total vorticity (denoted asR), which corresponds to the cases with the vorticity overtaking the deformation. In the above method, the selection of a fixed threshold is shown to be suitable for many demonstrating cases and both the strong and weak vortices could be captured at the same time. Liu et al.[21]has validated the new method by applying it to the vortex identification of the complex fluid flow e.g., the boundary layer transition, the micro wave generator, and the roughness induced transition. The traditional methods (e.g.,2λ criterion andQcriterion) were also compared to demonstrate the superiority of the new omega method. Some further developments of this method can be found in Liu et al.[22], Dong et al.[23].

    The vortices in the reversible pump turbines are complicated and varied in different operational modes.A large number of investigations show that the vortices may block the flow channels, generating a significant pressure fluctuation when the pump turbine works in the turbine brake and runaway modes. Hence,a well-defined method (e.g., the new omega method here) is required for the vortex identification in the reversible pump turbines.

    1. Methods for vortex identification

    The new omega method will be briefly introduced based on Liu et al.[21]. Liu et al.[21]divided the vorticity into two parts: one for the rotation of flow is called the vortical vorticity, the other is called the non-vortical vorticity. The ratio between the vortical vorticity and the whole vorticity is used to define the vortex. According to Liu et al.[21], in the fluid, the vorticity and the deformation exist at the same time.Hence, the vortex is formed when the vorticity prevails over the deformation. Then, the required ratio could be calculated using the vorticity and the deformation tensors defined by the velocity gradient.

    The related equation can be described as follows[21]:

    where ω is the total vorticity, A is the vortical vorticity,Ris the ratio between the vortical vorticity and the total vorticity, the symbol denotes the norm operation. The second term in Eq. (1)represents the non-vortical vorticity. A and ω have different directions in most cases. According to Eq. (3),Rvaries within the range of [0,1]. =0Rrepresents the pure deformation and =1Rrepresents the pure rotation. In our model, the geometry of the reversible pump turbine model is three dimensional and the flow is a turbulent flow.

    In order to calculate thethreshold ofRin a complex flow, the velocity gradient can be decomposed as follows[21]:

    where S is the deformation tensor, Ω is the

    vorticity tensor,trrepresents the trace of the matrix,aandbare the squares of the norms of S and Ω , respectively. Then,Rcould be defined as

    where ε is a positive infinitesimal number, which is employed to avoid the case with a dividend of zero.Generally speaking, the value of ε depends on the geometry and the velocity parameters of the object. In this paper, the nominal diameter of the impeller of the model reversible pump turbine is 0.24 m and the maximum flow rate is tens of meters per second.Hence ε = 10-6is selected in the present study. Liu et al.[21]verified that the omega method is not sensitive to theRvalue in a certain range (0.51-0.60) when it is used to identify the vortex in the flow. WhenR= 0.52, the distinct vortex structures are identified in many different cases. Therefore, the uniform valueR= 0.52 is employed to identify the internal vortices of the reversible pump turbine in different operational modes.

    2. Basics of numerical simulations

    The numerical simulation is based on solving the turbulence flow of the whole passage of the model type reversible pump turbine in a large pumped hydro energy storage power plant. The main geometrical and operational parameters of the unit are shown in Table 1. The simulation settings are listed in Table 2. During the simulation, a uniform boundary condition is posed at the inlet of the spiral casing and the upstream disturbance is ignored[24].

    Table 1 Parameters of the model type reversible pump turbine

    Table 2 Methods for numerical simulation and setups

    The reversible pump turbine is the key unit in the pumped hydro energy storage power plant. The main components of the reversible pump turbine are shown in Fig. 1, including the spiral casing (the translucent body in green color), the stay vanes (in red color), the guide vanes (in blue color), the impeller (the translucent body in purple color), and the draft tube (in orange color). In order to satisfy the varied demands,the reversible pump turbine is designed to be able to work in a variety of operational modes. Figure 2 shows the discharge-speed characteristic curve of the pump turbine in the generating mode. The discharge and speed factors (denoted asednandedQ, respectively) are defined by Eqs. (8), (9) according to the IEC 60193 standards.

    whereHis the water head,Dis the diameter of the impeller,nis the rotational speed of the impeller,Qfis the discharge of the turbine. When the pump turbine works in the generating mode, these parameters are defined as taking positive values.

    Fig. 1 (Color online) The main components of the reversible pump turbine including the spiral casing

    Five typical operational modes are shown in the performance curve (as in Fig. 2), including the turbine mode, the runaway mode, the turbine brake mode, the zero-flow-rate mode and the reverse pump mode. The runaway line (dashed blue line) separates the turbine and turbine brake modes. The intersection (marked as solid purple circle) between the characteristic curve and the runaway line is defined as the runaway mode.The zero-flow-rate line (green line) separates the turbine brake and reverse pump modes. The zeroflow-rate point in the characteristic curve is colored in light blue.

    Fig. 2 (Color online) A characteristic curve (red line) of the reversible pump turbine in the generating mode with the fixed guide vane opening

    3. Results and discussions

    The numerical simulation mainly focuses on the reversible pump turbine in the generating mode at 21°guide vane opening. Five operational modes are selected for the analysis, including the turbine mode,the runaway mode, the turbine brake mode, the zeroflow-rate mode and the reverse pump mode. In practice, the vortex rope in the draft tube is not important as compared with the vortices in the impeller.Therefore, the iso-surface of =0.52Ris used to identify the vortices in the upstream zones of the pump turbine (not including the draft tube).

    Figure 3 shows the basic characteristics and the distributions of vortices in five different operational modes. In the turbine mode, the vortices in the impeller have a periodical distribution with a concentration on the suction side of the impeller blade.Specifically, vortex rings are prominent at the inlet of the suction side of each blade. Only a few vortices can be observed in the stay vanes, the guide vanes and the vaneless space between the guide vanes and the impeller. In the turbine brake and runaway modes, the vortices in the impeller and the spiral casing show a significant non-uniform distribution among different passages, leading to the blockage of the block of part of the flow in the stay vanes and the guide vanes. In the zero-flow-rate mode, the vortex zone size increases with the generations of many tiny and disordered vortices in the flow passage. In the reverse pump mode, vortices are continuously distributed in the whole range of the flow passage.

    In order to further quantify the difference of vortices in various operational modes, Fig. 4 shows a quantitative statistics of vortex areas. Along the characteristic curve shown in Fig. 2, with the decrease of the discharge, the vortex area increases with a maximum area shown in the zero-flow-rate mode (up to 6.8 m2). Furthermore, the vortex area is also relatively large in the reverse pump mode. Hence the operation of the reversible pump turbine in those regions should be avoided.

    Fig. 3 (Color online) The vortices identified by =0.52R isosurface in the reversible pump turbine at 21° guide vane opening

    Fig. 4 (Color online) A quantitative statistics of vortex areas identified by =0.52R iso-surface under various kinds of operational conditions of the reversible pump turbine at 21° guide vane opening

    Fig. 5 (Color online) Vortices identified by the R = 0.52 isosurface in the r eve rsible pump tu rbinew orkin ginthe runaway modeatthreedifferentguidevaneopenings

    The runaway point is a typical working condition for the given guide vane opening. Hence, the runaway mode is selected to investigate the influences of the guide vane opening on the vortex distributions. Three guide vane openings, 6° (representing the small guide vane opening), 21° (representing the medium guide vane opening ) and 24° (with the strong S-shaped characteristic curve) are selected for the further investigation. Figure 5 shows the vortex distributions inside the reversible pump turbine at three guide vane openings in the runaway mode. In the spiral casing,the results are quite similar in terms of the vortex distributions and we will focus our attention on the vortices in the impeller. When the guide vane opening is small (6°), the distributions of vortices in the impeller and the vaneless space could be clearly visualized with a uniform distribution. However, with the increase of the guide vane opening (e.g., 24°), the flow in the impeller is deteriorated with a strong non-uniform vortex distribution.

    Figure 6 further shows the statistical vortex areas at three guide vane openings of the pump turbine in the runaway mode. Generally speaking, the vortex area increases with the increase of the guide vane opening. This trend becomes more obvious in cases with large guide vane openings. For example, the vortex area adds 0.281 m2when the guide vane opening changes from 21° to 24°.

    Fig. 6 (Color online) A quantitative statistics of vortex areas identified by R = 0.52 iso-surface in the reversible pump turbine working in runaway mode at three different guide vane openings

    4. Conclusions and limitations

    In the present paper, both qualitative and quantitative analyses of the vortices in the reversible pump turbine are made in terms of vortex distributions and areas based on the new omega vortex identification method. Five typical operational modes are employed,representing a variety of the operational modes of the reversible pump turbines in the generating mode. The conclusions can be summarized as follows:

    (1) For the identifications of the vortices in the reversible pump turbine, the new omega method employs the same iso-values and avoids the potential errors induced by the user-experience-based selection of improper thresholds. Furthermore, the results of different working modes can properly compared.

    (2) For the fixed guide vane openings, the vortex distributions and areas are highly related with the working modes (depending on the discharge).

    (3) In the runaway mode, with the increase of the guide vane opening, the vortices in the stay/guide vanes and the impellers increase with complicated distributions and the vortices in the spiral casing remain nearly the same.

    Our findings show that the new omega method can capture both the weak and strong vortices in the whole passage of the reversible pump turbine. The vortex structure in the reversible pump turbine is very complex (e.g., in terms of the vortex interactions),which is beyond the scope of the present paper.Another limitation of the present study is the lack of the experimental verifications. In the reversible pump turbines, it is extremely difficult to measure the vortex structure in the impeller accurately even in the vaneless space. Recently, Gentner et al.[25]made some measurements of the vortices in the vaneless space of the reversible pump turbine. However, the reported results in Gentner et al.[25]are quite limited (Fig. 8 of Ref. [25]) for the purpose of experimental validations.In the future, this new vortex identification method will be employed to study other complex fluid flows(e.g., the cavitation[26-29], the chaotic oscillations[30]the interface instabilities[31]and the shock wave induced flow[32]).

    Acknowledgement

    This work was supported by the Open Research Fund Program of Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University(Grant No. szjj-2017-100-1-003), the Open Foundation of National Research Center of Pumps, Jiangsu University (Grant No. NRCP201601).

    [1] Zhang Y., Zhang Y., Wu Y. A review of rotating stall in reversible pump turbine [J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(7): 1181-1204.

    [2] D?rfler P., Sick M., Coutu A. Flow-induced pulsation and vibration in hydroelectric machinery: Engineer’s guidebook for planning, design and troubleshooting [M].London, UK: Springer-Verlag, 2013.

    [3] Wu Y., Li S., Liu S. et al. Vibration of hydraulic machinery [M].Dordrecht, The Netherlands: Springer Science+Business Media, 2013.

    [4] Zhang Y., Tang N., Niu Y. et al. Wind energy rejection in China: Current status, reasons and perspectives [J].Renewable and Sustainable Energy Reviews, 2016, 66(12):322-344.

    [5] Zhang Y., Chen T., Li J. et al. Experimental study of load variations on pressure fluctuations in a prototype reversible pump turbine [J].Journal of Fluids Engineering,2017, 139(7): 074501.

    [6] Li J. W., Zhang Y. N. Experimental investigations of a prototype reversible pump turbine in generating mode with water head variations [J].Science China Technological Sciences, 61(4): 604-611.

    [7] Li D., Wang H., Qin Y. et al. Numerical simulation of hysteresis characteristic in the hump region of a pumpturbine model [J].Renewable Energy, 2018, 115: 433-447.

    [8] Li D., Wang H., Qin Y. et al. Entropy production analysis of hysteresis characteristic of a pump-turbine model [J].Energy Conversion and Management, 2017, 149: 175-191.

    [9] Tao R., Xiao R., Wang F. et al. Cavitation behavior study in the pump mode of a reversible pump-turbine [J].Renewable Energy, 2018, 125: 655-667.

    [10] Egusquiza E., Valero C., Valentin D. et al. Condition monitoring of pump-turbines. New challenges [J].Measurement, 2015, 67: 151-163.

    [11] Egusquiza E., Valero C., Presas A. et al. Analysis of the dynamic response of pump turbine impellers. Influence of the rotor [J].Mechanical Systems and Signal Processing,2016, 68: 330-341.

    [12] Li J. W., Zhang Y. N., Liu K. H. et al. Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode [J].Journal of Hydrodynamics, 2017, 29(4): 603-609.

    [13] Widmer C., Staubli T., Ledergerber N. Unstable characteristics and rotating stall in turbine brake operation of pump-turbines [J].Journal of Fluids Engineering, 2011,133(4): 041101.

    [14] Hasmatuchi V., Farhat M., Roth S. et al. Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode [J].Journal of Fluids Engineering, 2011, 133(5): 051104.

    [15] Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J].Renewable and Sustainable Energy Reviews, 2018, 81(Part 1): 1269-1285.[16] Zhang Y., Guo Z., Du X. Wave propagation in liquids with oscillating vapor-gas bubbles [J].Applied Thermal Engineering, 2018, 133(3): 483-492.

    [17] Zhang Y., Guo Z., Gao Y. et al. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures [J].Ultrasonics Sonochemistry, 2018, 40 (Part B): 40-45.

    [18] Zhang Y., Qian Z., Ji B. et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow [J].Renewable and Sustainable Energy Reviews, 2016, 56: 303-318.

    [19] Jeong J., Hussain F. On the identification of a vortex [J].Journal of Fluid Mechanics, 1995, 285: 69-94.

    [20] Hunt J., Wary A., Moin P. Eddies, streams, convergence zones in turbulent flows [C].Proceedings of the Summer Program 1988 in its Studying Turbulence Using Numerical Simulation Databases, Stanford, California, USA,1988, 193-208.

    [21] Liu C., Wang Y., Yang Y. et al. New omega vortex identification method [J].Science China Physics Mechanics and Astronomy, 2016, 59(8): 1-9.

    [22] Liu C., Gao Y., Tian S. et al. Rortex a new vortex vector definition and vorticity tensor and vector decompositions[J].Physics of Fluids, 2018, 30(3): 035103.

    [23] Dong X., Tian S., Liu C. Correlation analysis on volume vorticity and vortex in late boundary layer transition [J].Physics of Fluids, 2018, 30(1): 014105.

    [24] Chen T., Zheng X. H., Zhang Y. N. et al. Influence of upstream disturbance on the draft-tube flow of Francis turbine in part-load conditions [J].Journal of Hydrody-namics, 2018, 30(1): 131-139.

    [25] Gentner C., Sallsberger M., Widmer C. et al. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines [C].IOP Conference Series:Earth and Environmental Science, 2014, 22(3): 032046.

    [26] Zhang Y., Gao Y., Guo Z. et al. Effects of mass transfer on damping mechanisms of vapor bubbles oscillating in liquids [J].Ultrasonics Sonochemistry, 2018, 40 (Part A):120-127.

    [27] Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J].Journal of Fluid Mechanics, 2018,841: 287-309.

    [28] Suo D., Govind B., Zhang S. et al. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound [J].Ultrasonics sonochemistry, 2018, 41:419-426.

    [29] Suo D., Jin Z., Jiang X. et al. Microbubble mediated dualfrequency high intensity focused ultrasound thrombolysis:An In vitro study [J].Applied Physics Letters, 2017,110(2): 023703.

    [30] Zhang Y., Zhang Y. Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation [J].Ultrasonics Sonochemistry, 2018, 40(Part B): 151-157.

    [31] Zhang Y., Gao Y., Du X. Stability mechanisms of oscillating vapor bubbles in acoustic fields [J].Ultrasonics Sonochemistry, 2018, 40(Part A): 808-814.

    [32] Xiang G., Wang B. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity [J].Journal of Fluid Mechanics, 2017,825: 825-852.

    猜你喜歡
    凱華
    鼻咽癌調(diào)強放療擺位誤差對劑量分布影響的研究
    進入最后備戰(zhàn)階段 競走名將王凱華渴望東京創(chuàng)佳績
    當代體育(2021年24期)2021-09-10 07:22:44
    不忘初心 牢記使命 推進樂凱華光跨越發(fā)展
    樂凱華光印刷科技有限公司 公司簡介
    A selected review of vortex identification methods with applications *
    98歲趙凱華:勞動能使人健康長壽
    浣溪沙·新鄰居
    揚子江詩刊(2017年3期)2017-11-13 20:07:52
    Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode*
    浣溪沙·新鄰居
    揚子江(2017年3期)2017-06-27 12:32:02
    樂凱華光 向更高端進取
    亚洲国产精品999| 超碰成人久久| 一级片'在线观看视频| 在线观看三级黄色| 高清av免费在线| 可以免费在线观看a视频的电影网站 | 午夜91福利影院| 91老司机精品| 精品一区在线观看国产| 免费久久久久久久精品成人欧美视频| 亚洲国产中文字幕在线视频| 多毛熟女@视频| 两个人看的免费小视频| av在线播放精品| 精品久久久精品久久久| 老司机亚洲免费影院| 丝袜脚勾引网站| 老汉色∧v一级毛片| 亚洲欧美精品综合一区二区三区| 超碰成人久久| 色婷婷久久久亚洲欧美| 黄色毛片三级朝国网站| 成年美女黄网站色视频大全免费| 在线观看免费视频网站a站| 亚洲国产精品国产精品| 在线观看人妻少妇| 国产淫语在线视频| 蜜桃国产av成人99| 久久久久久免费高清国产稀缺| 亚洲国产最新在线播放| 国产精品免费视频内射| 亚洲熟女毛片儿| 欧美成人午夜精品| 国产一级毛片在线| 夫妻午夜视频| 精品福利永久在线观看| 1024香蕉在线观看| 欧美av亚洲av综合av国产av | 亚洲精品aⅴ在线观看| 男女边摸边吃奶| 男人操女人黄网站| 少妇人妻 视频| 18禁裸乳无遮挡动漫免费视频| 欧美中文综合在线视频| 黄色怎么调成土黄色| 一本久久精品| 日韩中文字幕欧美一区二区 | 在线免费观看不下载黄p国产| 亚洲一区中文字幕在线| 超碰成人久久| 亚洲精品国产区一区二| 黄色 视频免费看| 午夜精品国产一区二区电影| av在线老鸭窝| 久久毛片免费看一区二区三区| 久久久久久久久久久免费av| 国产av精品麻豆| 国产女主播在线喷水免费视频网站| 91aial.com中文字幕在线观看| 午夜老司机福利片| 一级片'在线观看视频| 欧美日韩视频高清一区二区三区二| 国产人伦9x9x在线观看| 制服人妻中文乱码| 精品少妇内射三级| 国产精品国产三级国产专区5o| 黄网站色视频无遮挡免费观看| 纯流量卡能插随身wifi吗| 国产 精品1| 天天躁夜夜躁狠狠躁躁| 精品人妻一区二区三区麻豆| 久久天堂一区二区三区四区| 国产男女超爽视频在线观看| 最近中文字幕2019免费版| av国产精品久久久久影院| 在线观看www视频免费| 乱人伦中国视频| 欧美黄色片欧美黄色片| 亚洲成av片中文字幕在线观看| 黄频高清免费视频| 中文字幕人妻熟女乱码| 一边亲一边摸免费视频| 午夜久久久在线观看| 国语对白做爰xxxⅹ性视频网站| 最近的中文字幕免费完整| 免费看av在线观看网站| av在线app专区| 亚洲第一青青草原| 欧美黑人欧美精品刺激| 日本黄色日本黄色录像| 在线看a的网站| 亚洲av国产av综合av卡| 又大又黄又爽视频免费| 亚洲免费av在线视频| 久久久国产一区二区| 天美传媒精品一区二区| av不卡在线播放| 午夜91福利影院| 国产老妇伦熟女老妇高清| 9热在线视频观看99| 国产精品免费视频内射| 久久精品国产a三级三级三级| 欧美黑人精品巨大| 在线天堂中文资源库| 男女下面插进去视频免费观看| 国产免费福利视频在线观看| 一级片免费观看大全| 男人操女人黄网站| 国产精品秋霞免费鲁丝片| av网站在线播放免费| www.熟女人妻精品国产| 高清av免费在线| 黄频高清免费视频| 亚洲精品自拍成人| 日韩一卡2卡3卡4卡2021年| 99热国产这里只有精品6| 国产成人欧美在线观看 | 男女免费视频国产| 最黄视频免费看| 久久午夜综合久久蜜桃| 亚洲国产欧美网| 我要看黄色一级片免费的| 黄色 视频免费看| 日韩,欧美,国产一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 丰满迷人的少妇在线观看| 另类精品久久| 国产精品av久久久久免费| 大片电影免费在线观看免费| 免费看av在线观看网站| 天天添夜夜摸| 国产成人欧美在线观看 | 国产av一区二区精品久久| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 日韩欧美一区视频在线观看| 母亲3免费完整高清在线观看| 国产国语露脸激情在线看| 欧美在线一区亚洲| 久久久精品国产亚洲av高清涩受| 亚洲,一卡二卡三卡| 久久精品亚洲熟妇少妇任你| 老司机靠b影院| 少妇精品久久久久久久| 久久精品国产亚洲av涩爱| 交换朋友夫妻互换小说| bbb黄色大片| 两个人看的免费小视频| www日本在线高清视频| 中文字幕亚洲精品专区| 亚洲成人免费av在线播放| 嫩草影视91久久| 精品一品国产午夜福利视频| 别揉我奶头~嗯~啊~动态视频 | 中国国产av一级| 女的被弄到高潮叫床怎么办| 91精品三级在线观看| 男人操女人黄网站| 亚洲一区中文字幕在线| 国产精品.久久久| av又黄又爽大尺度在线免费看| 秋霞在线观看毛片| 在线天堂最新版资源| 国产男女内射视频| 国产爽快片一区二区三区| 中文字幕人妻丝袜制服| 日韩成人av中文字幕在线观看| 亚洲少妇的诱惑av| 欧美精品人与动牲交sv欧美| 亚洲婷婷狠狠爱综合网| 午夜福利,免费看| 精品一区二区免费观看| 国产精品一区二区精品视频观看| 久久女婷五月综合色啪小说| 久久ye,这里只有精品| 女的被弄到高潮叫床怎么办| 色精品久久人妻99蜜桃| 日韩欧美精品免费久久| 中文字幕人妻丝袜一区二区 | 80岁老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 婷婷色综合www| 亚洲欧美成人精品一区二区| 精品一区二区三区四区五区乱码 | 久久久久久久国产电影| 母亲3免费完整高清在线观看| 日韩成人av中文字幕在线观看| 午夜福利视频在线观看免费| 国产精品无大码| 欧美日韩国产mv在线观看视频| 日韩欧美一区视频在线观看| 七月丁香在线播放| 国产一级毛片在线| 一级片免费观看大全| 丁香六月欧美| 另类亚洲欧美激情| 色吧在线观看| 久久久久久久大尺度免费视频| 久久人妻熟女aⅴ| 久久久久久久久免费视频了| 亚洲欧美色中文字幕在线| 国产极品天堂在线| 老司机深夜福利视频在线观看 | 日韩视频在线欧美| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的| 波野结衣二区三区在线| 黄色怎么调成土黄色| 国产日韩欧美在线精品| 黄片无遮挡物在线观看| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美视频二区| 亚洲欧美一区二区三区黑人| 黄色毛片三级朝国网站| 黄片小视频在线播放| 成人国产av品久久久| 亚洲精品aⅴ在线观看| 亚洲,一卡二卡三卡| h视频一区二区三区| 欧美日韩一级在线毛片| 一级黄片播放器| 亚洲中文av在线| 十分钟在线观看高清视频www| 日韩 亚洲 欧美在线| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产色婷婷电影| 97在线人人人人妻| 欧美日韩成人在线一区二区| a 毛片基地| 色94色欧美一区二区| 国产视频首页在线观看| 日本欧美视频一区| 亚洲av电影在线观看一区二区三区| 丰满饥渴人妻一区二区三| 免费观看人在逋| 免费日韩欧美在线观看| 久久精品aⅴ一区二区三区四区| bbb黄色大片| 国产精品99久久99久久久不卡 | 久久精品亚洲熟妇少妇任你| 天天添夜夜摸| 久久国产亚洲av麻豆专区| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 亚洲一区中文字幕在线| 国产有黄有色有爽视频| 中文字幕av电影在线播放| 一区福利在线观看| 亚洲精品乱久久久久久| 999精品在线视频| 亚洲七黄色美女视频| 精品一区二区三区av网在线观看 | 你懂的网址亚洲精品在线观看| 亚洲情色 制服丝袜| 亚洲欧美色中文字幕在线| 最黄视频免费看| 久久久久国产精品人妻一区二区| 亚洲欧美精品自产自拍| 国产1区2区3区精品| 国产精品久久久人人做人人爽| 最近最新中文字幕免费大全7| 蜜桃国产av成人99| 色精品久久人妻99蜜桃| 久久久久精品性色| 国产成人精品在线电影| 亚洲精品av麻豆狂野| av在线老鸭窝| 丝袜人妻中文字幕| 欧美日韩av久久| 最近中文字幕2019免费版| 黄色怎么调成土黄色| 两个人免费观看高清视频| 色婷婷av一区二区三区视频| 性色av一级| av网站免费在线观看视频| 精品卡一卡二卡四卡免费| 亚洲成人国产一区在线观看 | a 毛片基地| 美女脱内裤让男人舔精品视频| 我的亚洲天堂| 国产成人午夜福利电影在线观看| 高清av免费在线| 男女午夜视频在线观看| 少妇人妻久久综合中文| 男人舔女人的私密视频| av在线观看视频网站免费| 欧美 亚洲 国产 日韩一| 在线天堂中文资源库| 制服人妻中文乱码| kizo精华| 操美女的视频在线观看| 侵犯人妻中文字幕一二三四区| 777久久人妻少妇嫩草av网站| 日韩免费高清中文字幕av| 麻豆精品久久久久久蜜桃| 美女中出高潮动态图| 狠狠婷婷综合久久久久久88av| 国产视频首页在线观看| 涩涩av久久男人的天堂| 国产免费福利视频在线观看| 精品第一国产精品| 美女视频免费永久观看网站| 精品人妻熟女毛片av久久网站| 亚洲免费av在线视频| 麻豆乱淫一区二区| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| a级毛片黄视频| 亚洲精品一二三| 91aial.com中文字幕在线观看| 久久99热这里只频精品6学生| 老熟女久久久| 欧美日韩亚洲综合一区二区三区_| av网站在线播放免费| 少妇 在线观看| 亚洲精品一二三| 成人手机av| 亚洲精品av麻豆狂野| 女人被躁到高潮嗷嗷叫费观| 99精国产麻豆久久婷婷| e午夜精品久久久久久久| 99久国产av精品国产电影| 青春草视频在线免费观看| 国产黄色免费在线视频| 精品少妇久久久久久888优播| 日日啪夜夜爽| 一级,二级,三级黄色视频| 成年人午夜在线观看视频| 欧美激情高清一区二区三区 | 国产探花极品一区二区| 我的亚洲天堂| 欧美日本中文国产一区发布| 啦啦啦在线免费观看视频4| 精品少妇黑人巨大在线播放| 人人澡人人妻人| 久久毛片免费看一区二区三区| 午夜久久久在线观看| 男女无遮挡免费网站观看| 爱豆传媒免费全集在线观看| 国产成人系列免费观看| 国产亚洲欧美精品永久| tube8黄色片| 亚洲一级一片aⅴ在线观看| 亚洲少妇的诱惑av| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 日本欧美视频一区| 美女扒开内裤让男人捅视频| 午夜福利一区二区在线看| 高清av免费在线| 欧美97在线视频| 国产男人的电影天堂91| 日韩 欧美 亚洲 中文字幕| 在线观看三级黄色| 秋霞伦理黄片| 久久午夜综合久久蜜桃| 亚洲,欧美,日韩| 国产男女内射视频| 老熟女久久久| 老鸭窝网址在线观看| 美女福利国产在线| 人妻 亚洲 视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩中文字幕欧美一区二区 | www.av在线官网国产| 亚洲免费av在线视频| 国产精品久久久久久精品电影小说| 成人午夜精彩视频在线观看| 成人手机av| 99久久综合免费| 悠悠久久av| 免费观看av网站的网址| 国产男女内射视频| 国产日韩欧美视频二区| 久久av网站| 日本wwww免费看| 午夜激情av网站| 老汉色av国产亚洲站长工具| 又粗又硬又长又爽又黄的视频| 国产乱来视频区| 丝袜美腿诱惑在线| 久久热在线av| 亚洲少妇的诱惑av| 1024视频免费在线观看| 亚洲成人手机| 欧美黄色片欧美黄色片| 国产片内射在线| 热99久久久久精品小说推荐| 精品一区二区三区av网在线观看 | 国产一区二区三区综合在线观看| 亚洲,一卡二卡三卡| 欧美激情极品国产一区二区三区| netflix在线观看网站| 国产精品av久久久久免费| 无限看片的www在线观看| 国产熟女欧美一区二区| 久久精品亚洲熟妇少妇任你| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 少妇人妻 视频| 亚洲三区欧美一区| 高清黄色对白视频在线免费看| 曰老女人黄片| 亚洲人成电影观看| 久久久久久久大尺度免费视频| 少妇人妻 视频| 男女午夜视频在线观看| 2018国产大陆天天弄谢| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 亚洲av电影在线进入| 最近手机中文字幕大全| 亚洲国产欧美一区二区综合| 建设人人有责人人尽责人人享有的| 最近最新中文字幕大全免费视频 | videos熟女内射| 中国三级夫妇交换| 日韩欧美一区视频在线观看| 人人澡人人妻人| 大香蕉久久网| 国产在视频线精品| 美女大奶头黄色视频| 免费黄色在线免费观看| 婷婷色综合大香蕉| av在线app专区| 成人三级做爰电影| 亚洲第一青青草原| 中文字幕高清在线视频| 亚洲七黄色美女视频| 国产黄色视频一区二区在线观看| 大香蕉久久成人网| 亚洲美女搞黄在线观看| 国产成人欧美在线观看 | 老司机影院毛片| 国产精品无大码| 多毛熟女@视频| 国产精品久久久久久精品古装| 国产福利在线免费观看视频| 观看美女的网站| 久久狼人影院| 国产麻豆69| 久久精品久久久久久久性| 国产熟女欧美一区二区| 我的亚洲天堂| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 亚洲专区中文字幕在线 | 美国免费a级毛片| 亚洲久久久国产精品| 伦理电影免费视频| 国产成人系列免费观看| 国产极品粉嫩免费观看在线| 麻豆乱淫一区二区| 永久免费av网站大全| 久久99一区二区三区| 欧美少妇被猛烈插入视频| 80岁老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久 | 午夜免费观看性视频| 国产精品欧美亚洲77777| 国产xxxxx性猛交| 一级毛片 在线播放| 久久人人97超碰香蕉20202| 亚洲熟女精品中文字幕| 亚洲五月色婷婷综合| 亚洲欧美一区二区三区黑人| netflix在线观看网站| 性高湖久久久久久久久免费观看| 国产成人av激情在线播放| 国产又色又爽无遮挡免| 亚洲国产欧美在线一区| videos熟女内射| 性少妇av在线| 乱人伦中国视频| 日本wwww免费看| 丝瓜视频免费看黄片| 婷婷色综合大香蕉| 婷婷成人精品国产| 国产精品成人在线| 青春草国产在线视频| 亚洲精品自拍成人| 久久人人爽人人片av| a级毛片在线看网站| 亚洲国产精品成人久久小说| 交换朋友夫妻互换小说| 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 咕卡用的链子| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜爱| 欧美激情极品国产一区二区三区| 天美传媒精品一区二区| 在线精品无人区一区二区三| 久久久久久久久免费视频了| 亚洲成人国产一区在线观看 | 久久 成人 亚洲| 国产精品.久久久| 中文字幕高清在线视频| 久久久国产精品麻豆| 男男h啪啪无遮挡| 女性生殖器流出的白浆| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 一区二区三区四区激情视频| 国产在线免费精品| 男男h啪啪无遮挡| 最近中文字幕2019免费版| 国产精品免费视频内射| 午夜老司机福利片| 午夜免费观看性视频| 中文字幕av电影在线播放| 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 精品久久蜜臀av无| 精品人妻熟女毛片av久久网站| 国产精品久久久久成人av| 亚洲av国产av综合av卡| 人人妻,人人澡人人爽秒播 | 多毛熟女@视频| 熟女av电影| 丰满少妇做爰视频| av在线观看视频网站免费| 精品人妻一区二区三区麻豆| 制服人妻中文乱码| 亚洲成色77777| 亚洲精品国产av成人精品| 午夜福利网站1000一区二区三区| 婷婷成人精品国产| 色综合欧美亚洲国产小说| 国产在线视频一区二区| 五月天丁香电影| 美女主播在线视频| h视频一区二区三区| 卡戴珊不雅视频在线播放| 一级片免费观看大全| 嫩草影视91久久| 黑人猛操日本美女一级片| 人人妻人人澡人人爽人人夜夜| 少妇人妻精品综合一区二区| av片东京热男人的天堂| 国产伦理片在线播放av一区| 最近手机中文字幕大全| 亚洲色图 男人天堂 中文字幕| 久久久国产欧美日韩av| 色视频在线一区二区三区| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲高清精品| 午夜久久久在线观看| 国产免费现黄频在线看| 99热全是精品| 国产成人欧美在线观看 | 亚洲av成人精品一二三区| 考比视频在线观看| 99久久综合免费| 亚洲人成电影观看| 少妇精品久久久久久久| 亚洲国产中文字幕在线视频| 亚洲第一青青草原| 一区二区三区四区激情视频| 国产熟女欧美一区二区| 蜜桃国产av成人99| 美女扒开内裤让男人捅视频| 亚洲av电影在线进入| 亚洲三区欧美一区| av又黄又爽大尺度在线免费看| 亚洲精品美女久久av网站| a 毛片基地| 极品人妻少妇av视频| 免费观看av网站的网址| 如何舔出高潮| 国产精品 欧美亚洲| 夫妻性生交免费视频一级片| 国产亚洲av高清不卡| 亚洲成国产人片在线观看| 国产在线视频一区二区| 日韩 亚洲 欧美在线| 桃花免费在线播放| 男女床上黄色一级片免费看| 亚洲欧美中文字幕日韩二区| 久久久精品国产亚洲av高清涩受| 亚洲第一青青草原| 亚洲精品日本国产第一区| 欧美日韩福利视频一区二区| av视频免费观看在线观看| 日韩免费高清中文字幕av| 观看av在线不卡| 精品人妻在线不人妻| 人妻人人澡人人爽人人| 日本午夜av视频| 赤兔流量卡办理| 欧美人与性动交α欧美软件| 欧美人与性动交α欧美精品济南到| 人妻 亚洲 视频| 最近手机中文字幕大全| 看非洲黑人一级黄片| 久久久欧美国产精品| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品一二三| 亚洲四区av| 日韩伦理黄色片| 熟女av电影| av女优亚洲男人天堂| 亚洲伊人久久精品综合| 亚洲精品美女久久久久99蜜臀 | 国产一卡二卡三卡精品 | 黑丝袜美女国产一区| 老汉色∧v一级毛片| av一本久久久久| 久久精品国产亚洲av高清一级| 九九爱精品视频在线观看| 青青草视频在线视频观看|