• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method *

    2018-07-06 10:01:50YuningZhang張宇寧KaihuaLiu劉凱華JinweiLi李金偉HaizhenXian冼海珍XiaozeDu杜小澤
    水動力學研究與進展 B輯 2018年3期
    關(guān)鍵詞:凱華

    Yu-ning Zhang (張宇寧), Kai-hua Liu , (劉凱華), Jin-wei Li (李金偉), Hai-zhen Xian (冼海珍),Xiao-ze Du (杜小澤)

    1. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039,China

    2. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education),North China Electric Power University, Beijing 102206, China

    3. Beijing South-to-North Water Diversion Tuancheng Lake Management Office, Beijing 100195, China

    4. China Institute of Water Resources and Hydropower Research, Beijing 100048, China

    Introduction

    As an essential component of the pumped hydro energy storage power plants, the reversible pump turbine plays an important role in the stability of the electrical systems through its ability of quickly meeting the electricity demand of the system and maintaining the frequency and the voltage of the system[1-3]. The aforementioned features of the reversible pump turbine are very important for the grid system with high penetration levels of the renewable energies (e.g., the wind energy[4]). The reversible pump turbine could be operated both in the turbine mode and in the pump mode with frequent shifts between different operational modes to satisfy the demand of the system. As a result, many instability problems (e.g., the strong pressure fluctuation[5-6], the hysteresis[7-8], the cavitation[9], the vibration and crack[10-12]and the rotating stall[13-14]) may occur,especially when the reversible pump turbine works under the off-design conditions. The formation of the vortex is one of the essential elements in the instability problems of the reversible pump turbine.The generation of vortices often accompanies with complex fluid flow phenomena inside the turbine (e.g.,the cavitation, the flow separation, and the rotating stall). When the undesirable flows are fully developed,a strong pressure fluctuation will be generated, and transmitted to the upstream (e.g., the vaneless space)to form more vortex structures locally. More details of the instability of the reversible pump turbines can be found in our recent review[1]. Hence, to solve the instability problems of the reversible pump turbine, it is necessary to better understand the associated vortex structure.

    Numerous algorithms and their applications of vortex identification methods are reviewed in another of our paper[15], including applications in the pressure wave propagation[16-17], and the cavitating flow[18].Generally, the vorticity magnitude method is usually employed to identify the vortex in the turbulent flow.In some special regions (e.g., the flow in the laminar boundary layer near the wall), this method sometimes gives some incorrect identifications of the vortices.The2λ[19]andQ[20]criterions are also widely employed during the vortex analysis of the hydroturbines, but their results highly depend on the selections of the related critical values. With large values of the related parameters, weak vortices might be ignored,while with small values, some vortex structures can not be distinguished. In order to have a good balance,Liu et al.[21]proposed a new omega method to identify the vortex through defining a ratio between the vortical vorticity and the total vorticity (denoted asR), which corresponds to the cases with the vorticity overtaking the deformation. In the above method, the selection of a fixed threshold is shown to be suitable for many demonstrating cases and both the strong and weak vortices could be captured at the same time. Liu et al.[21]has validated the new method by applying it to the vortex identification of the complex fluid flow e.g., the boundary layer transition, the micro wave generator, and the roughness induced transition. The traditional methods (e.g.,2λ criterion andQcriterion) were also compared to demonstrate the superiority of the new omega method. Some further developments of this method can be found in Liu et al.[22], Dong et al.[23].

    The vortices in the reversible pump turbines are complicated and varied in different operational modes.A large number of investigations show that the vortices may block the flow channels, generating a significant pressure fluctuation when the pump turbine works in the turbine brake and runaway modes. Hence,a well-defined method (e.g., the new omega method here) is required for the vortex identification in the reversible pump turbines.

    1. Methods for vortex identification

    The new omega method will be briefly introduced based on Liu et al.[21]. Liu et al.[21]divided the vorticity into two parts: one for the rotation of flow is called the vortical vorticity, the other is called the non-vortical vorticity. The ratio between the vortical vorticity and the whole vorticity is used to define the vortex. According to Liu et al.[21], in the fluid, the vorticity and the deformation exist at the same time.Hence, the vortex is formed when the vorticity prevails over the deformation. Then, the required ratio could be calculated using the vorticity and the deformation tensors defined by the velocity gradient.

    The related equation can be described as follows[21]:

    where ω is the total vorticity, A is the vortical vorticity,Ris the ratio between the vortical vorticity and the total vorticity, the symbol denotes the norm operation. The second term in Eq. (1)represents the non-vortical vorticity. A and ω have different directions in most cases. According to Eq. (3),Rvaries within the range of [0,1]. =0Rrepresents the pure deformation and =1Rrepresents the pure rotation. In our model, the geometry of the reversible pump turbine model is three dimensional and the flow is a turbulent flow.

    In order to calculate thethreshold ofRin a complex flow, the velocity gradient can be decomposed as follows[21]:

    where S is the deformation tensor, Ω is the

    vorticity tensor,trrepresents the trace of the matrix,aandbare the squares of the norms of S and Ω , respectively. Then,Rcould be defined as

    where ε is a positive infinitesimal number, which is employed to avoid the case with a dividend of zero.Generally speaking, the value of ε depends on the geometry and the velocity parameters of the object. In this paper, the nominal diameter of the impeller of the model reversible pump turbine is 0.24 m and the maximum flow rate is tens of meters per second.Hence ε = 10-6is selected in the present study. Liu et al.[21]verified that the omega method is not sensitive to theRvalue in a certain range (0.51-0.60) when it is used to identify the vortex in the flow. WhenR= 0.52, the distinct vortex structures are identified in many different cases. Therefore, the uniform valueR= 0.52 is employed to identify the internal vortices of the reversible pump turbine in different operational modes.

    2. Basics of numerical simulations

    The numerical simulation is based on solving the turbulence flow of the whole passage of the model type reversible pump turbine in a large pumped hydro energy storage power plant. The main geometrical and operational parameters of the unit are shown in Table 1. The simulation settings are listed in Table 2. During the simulation, a uniform boundary condition is posed at the inlet of the spiral casing and the upstream disturbance is ignored[24].

    Table 1 Parameters of the model type reversible pump turbine

    Table 2 Methods for numerical simulation and setups

    The reversible pump turbine is the key unit in the pumped hydro energy storage power plant. The main components of the reversible pump turbine are shown in Fig. 1, including the spiral casing (the translucent body in green color), the stay vanes (in red color), the guide vanes (in blue color), the impeller (the translucent body in purple color), and the draft tube (in orange color). In order to satisfy the varied demands,the reversible pump turbine is designed to be able to work in a variety of operational modes. Figure 2 shows the discharge-speed characteristic curve of the pump turbine in the generating mode. The discharge and speed factors (denoted asednandedQ, respectively) are defined by Eqs. (8), (9) according to the IEC 60193 standards.

    whereHis the water head,Dis the diameter of the impeller,nis the rotational speed of the impeller,Qfis the discharge of the turbine. When the pump turbine works in the generating mode, these parameters are defined as taking positive values.

    Fig. 1 (Color online) The main components of the reversible pump turbine including the spiral casing

    Five typical operational modes are shown in the performance curve (as in Fig. 2), including the turbine mode, the runaway mode, the turbine brake mode, the zero-flow-rate mode and the reverse pump mode. The runaway line (dashed blue line) separates the turbine and turbine brake modes. The intersection (marked as solid purple circle) between the characteristic curve and the runaway line is defined as the runaway mode.The zero-flow-rate line (green line) separates the turbine brake and reverse pump modes. The zeroflow-rate point in the characteristic curve is colored in light blue.

    Fig. 2 (Color online) A characteristic curve (red line) of the reversible pump turbine in the generating mode with the fixed guide vane opening

    3. Results and discussions

    The numerical simulation mainly focuses on the reversible pump turbine in the generating mode at 21°guide vane opening. Five operational modes are selected for the analysis, including the turbine mode,the runaway mode, the turbine brake mode, the zeroflow-rate mode and the reverse pump mode. In practice, the vortex rope in the draft tube is not important as compared with the vortices in the impeller.Therefore, the iso-surface of =0.52Ris used to identify the vortices in the upstream zones of the pump turbine (not including the draft tube).

    Figure 3 shows the basic characteristics and the distributions of vortices in five different operational modes. In the turbine mode, the vortices in the impeller have a periodical distribution with a concentration on the suction side of the impeller blade.Specifically, vortex rings are prominent at the inlet of the suction side of each blade. Only a few vortices can be observed in the stay vanes, the guide vanes and the vaneless space between the guide vanes and the impeller. In the turbine brake and runaway modes, the vortices in the impeller and the spiral casing show a significant non-uniform distribution among different passages, leading to the blockage of the block of part of the flow in the stay vanes and the guide vanes. In the zero-flow-rate mode, the vortex zone size increases with the generations of many tiny and disordered vortices in the flow passage. In the reverse pump mode, vortices are continuously distributed in the whole range of the flow passage.

    In order to further quantify the difference of vortices in various operational modes, Fig. 4 shows a quantitative statistics of vortex areas. Along the characteristic curve shown in Fig. 2, with the decrease of the discharge, the vortex area increases with a maximum area shown in the zero-flow-rate mode (up to 6.8 m2). Furthermore, the vortex area is also relatively large in the reverse pump mode. Hence the operation of the reversible pump turbine in those regions should be avoided.

    Fig. 3 (Color online) The vortices identified by =0.52R isosurface in the reversible pump turbine at 21° guide vane opening

    Fig. 4 (Color online) A quantitative statistics of vortex areas identified by =0.52R iso-surface under various kinds of operational conditions of the reversible pump turbine at 21° guide vane opening

    Fig. 5 (Color online) Vortices identified by the R = 0.52 isosurface in the r eve rsible pump tu rbinew orkin ginthe runaway modeatthreedifferentguidevaneopenings

    The runaway point is a typical working condition for the given guide vane opening. Hence, the runaway mode is selected to investigate the influences of the guide vane opening on the vortex distributions. Three guide vane openings, 6° (representing the small guide vane opening), 21° (representing the medium guide vane opening ) and 24° (with the strong S-shaped characteristic curve) are selected for the further investigation. Figure 5 shows the vortex distributions inside the reversible pump turbine at three guide vane openings in the runaway mode. In the spiral casing,the results are quite similar in terms of the vortex distributions and we will focus our attention on the vortices in the impeller. When the guide vane opening is small (6°), the distributions of vortices in the impeller and the vaneless space could be clearly visualized with a uniform distribution. However, with the increase of the guide vane opening (e.g., 24°), the flow in the impeller is deteriorated with a strong non-uniform vortex distribution.

    Figure 6 further shows the statistical vortex areas at three guide vane openings of the pump turbine in the runaway mode. Generally speaking, the vortex area increases with the increase of the guide vane opening. This trend becomes more obvious in cases with large guide vane openings. For example, the vortex area adds 0.281 m2when the guide vane opening changes from 21° to 24°.

    Fig. 6 (Color online) A quantitative statistics of vortex areas identified by R = 0.52 iso-surface in the reversible pump turbine working in runaway mode at three different guide vane openings

    4. Conclusions and limitations

    In the present paper, both qualitative and quantitative analyses of the vortices in the reversible pump turbine are made in terms of vortex distributions and areas based on the new omega vortex identification method. Five typical operational modes are employed,representing a variety of the operational modes of the reversible pump turbines in the generating mode. The conclusions can be summarized as follows:

    (1) For the identifications of the vortices in the reversible pump turbine, the new omega method employs the same iso-values and avoids the potential errors induced by the user-experience-based selection of improper thresholds. Furthermore, the results of different working modes can properly compared.

    (2) For the fixed guide vane openings, the vortex distributions and areas are highly related with the working modes (depending on the discharge).

    (3) In the runaway mode, with the increase of the guide vane opening, the vortices in the stay/guide vanes and the impellers increase with complicated distributions and the vortices in the spiral casing remain nearly the same.

    Our findings show that the new omega method can capture both the weak and strong vortices in the whole passage of the reversible pump turbine. The vortex structure in the reversible pump turbine is very complex (e.g., in terms of the vortex interactions),which is beyond the scope of the present paper.Another limitation of the present study is the lack of the experimental verifications. In the reversible pump turbines, it is extremely difficult to measure the vortex structure in the impeller accurately even in the vaneless space. Recently, Gentner et al.[25]made some measurements of the vortices in the vaneless space of the reversible pump turbine. However, the reported results in Gentner et al.[25]are quite limited (Fig. 8 of Ref. [25]) for the purpose of experimental validations.In the future, this new vortex identification method will be employed to study other complex fluid flows(e.g., the cavitation[26-29], the chaotic oscillations[30]the interface instabilities[31]and the shock wave induced flow[32]).

    Acknowledgement

    This work was supported by the Open Research Fund Program of Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University(Grant No. szjj-2017-100-1-003), the Open Foundation of National Research Center of Pumps, Jiangsu University (Grant No. NRCP201601).

    [1] Zhang Y., Zhang Y., Wu Y. A review of rotating stall in reversible pump turbine [J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(7): 1181-1204.

    [2] D?rfler P., Sick M., Coutu A. Flow-induced pulsation and vibration in hydroelectric machinery: Engineer’s guidebook for planning, design and troubleshooting [M].London, UK: Springer-Verlag, 2013.

    [3] Wu Y., Li S., Liu S. et al. Vibration of hydraulic machinery [M].Dordrecht, The Netherlands: Springer Science+Business Media, 2013.

    [4] Zhang Y., Tang N., Niu Y. et al. Wind energy rejection in China: Current status, reasons and perspectives [J].Renewable and Sustainable Energy Reviews, 2016, 66(12):322-344.

    [5] Zhang Y., Chen T., Li J. et al. Experimental study of load variations on pressure fluctuations in a prototype reversible pump turbine [J].Journal of Fluids Engineering,2017, 139(7): 074501.

    [6] Li J. W., Zhang Y. N. Experimental investigations of a prototype reversible pump turbine in generating mode with water head variations [J].Science China Technological Sciences, 61(4): 604-611.

    [7] Li D., Wang H., Qin Y. et al. Numerical simulation of hysteresis characteristic in the hump region of a pumpturbine model [J].Renewable Energy, 2018, 115: 433-447.

    [8] Li D., Wang H., Qin Y. et al. Entropy production analysis of hysteresis characteristic of a pump-turbine model [J].Energy Conversion and Management, 2017, 149: 175-191.

    [9] Tao R., Xiao R., Wang F. et al. Cavitation behavior study in the pump mode of a reversible pump-turbine [J].Renewable Energy, 2018, 125: 655-667.

    [10] Egusquiza E., Valero C., Valentin D. et al. Condition monitoring of pump-turbines. New challenges [J].Measurement, 2015, 67: 151-163.

    [11] Egusquiza E., Valero C., Presas A. et al. Analysis of the dynamic response of pump turbine impellers. Influence of the rotor [J].Mechanical Systems and Signal Processing,2016, 68: 330-341.

    [12] Li J. W., Zhang Y. N., Liu K. H. et al. Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode [J].Journal of Hydrodynamics, 2017, 29(4): 603-609.

    [13] Widmer C., Staubli T., Ledergerber N. Unstable characteristics and rotating stall in turbine brake operation of pump-turbines [J].Journal of Fluids Engineering, 2011,133(4): 041101.

    [14] Hasmatuchi V., Farhat M., Roth S. et al. Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode [J].Journal of Fluids Engineering, 2011, 133(5): 051104.

    [15] Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J].Renewable and Sustainable Energy Reviews, 2018, 81(Part 1): 1269-1285.[16] Zhang Y., Guo Z., Du X. Wave propagation in liquids with oscillating vapor-gas bubbles [J].Applied Thermal Engineering, 2018, 133(3): 483-492.

    [17] Zhang Y., Guo Z., Gao Y. et al. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures [J].Ultrasonics Sonochemistry, 2018, 40 (Part B): 40-45.

    [18] Zhang Y., Qian Z., Ji B. et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow [J].Renewable and Sustainable Energy Reviews, 2016, 56: 303-318.

    [19] Jeong J., Hussain F. On the identification of a vortex [J].Journal of Fluid Mechanics, 1995, 285: 69-94.

    [20] Hunt J., Wary A., Moin P. Eddies, streams, convergence zones in turbulent flows [C].Proceedings of the Summer Program 1988 in its Studying Turbulence Using Numerical Simulation Databases, Stanford, California, USA,1988, 193-208.

    [21] Liu C., Wang Y., Yang Y. et al. New omega vortex identification method [J].Science China Physics Mechanics and Astronomy, 2016, 59(8): 1-9.

    [22] Liu C., Gao Y., Tian S. et al. Rortex a new vortex vector definition and vorticity tensor and vector decompositions[J].Physics of Fluids, 2018, 30(3): 035103.

    [23] Dong X., Tian S., Liu C. Correlation analysis on volume vorticity and vortex in late boundary layer transition [J].Physics of Fluids, 2018, 30(1): 014105.

    [24] Chen T., Zheng X. H., Zhang Y. N. et al. Influence of upstream disturbance on the draft-tube flow of Francis turbine in part-load conditions [J].Journal of Hydrody-namics, 2018, 30(1): 131-139.

    [25] Gentner C., Sallsberger M., Widmer C. et al. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines [C].IOP Conference Series:Earth and Environmental Science, 2014, 22(3): 032046.

    [26] Zhang Y., Gao Y., Guo Z. et al. Effects of mass transfer on damping mechanisms of vapor bubbles oscillating in liquids [J].Ultrasonics Sonochemistry, 2018, 40 (Part A):120-127.

    [27] Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J].Journal of Fluid Mechanics, 2018,841: 287-309.

    [28] Suo D., Govind B., Zhang S. et al. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound [J].Ultrasonics sonochemistry, 2018, 41:419-426.

    [29] Suo D., Jin Z., Jiang X. et al. Microbubble mediated dualfrequency high intensity focused ultrasound thrombolysis:An In vitro study [J].Applied Physics Letters, 2017,110(2): 023703.

    [30] Zhang Y., Zhang Y. Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation [J].Ultrasonics Sonochemistry, 2018, 40(Part B): 151-157.

    [31] Zhang Y., Gao Y., Du X. Stability mechanisms of oscillating vapor bubbles in acoustic fields [J].Ultrasonics Sonochemistry, 2018, 40(Part A): 808-814.

    [32] Xiang G., Wang B. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity [J].Journal of Fluid Mechanics, 2017,825: 825-852.

    猜你喜歡
    凱華
    鼻咽癌調(diào)強放療擺位誤差對劑量分布影響的研究
    進入最后備戰(zhàn)階段 競走名將王凱華渴望東京創(chuàng)佳績
    當代體育(2021年24期)2021-09-10 07:22:44
    不忘初心 牢記使命 推進樂凱華光跨越發(fā)展
    樂凱華光印刷科技有限公司 公司簡介
    A selected review of vortex identification methods with applications *
    98歲趙凱華:勞動能使人健康長壽
    浣溪沙·新鄰居
    揚子江詩刊(2017年3期)2017-11-13 20:07:52
    Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode*
    浣溪沙·新鄰居
    揚子江(2017年3期)2017-06-27 12:32:02
    樂凱華光 向更高端進取
    一级片'在线观看视频| 亚洲精品视频女| 1000部很黄的大片| 在线看a的网站| 欧美日韩综合久久久久久| 国产有黄有色有爽视频| 国产熟女欧美一区二区| 99视频精品全部免费 在线| 亚洲第一区二区三区不卡| 国产爱豆传媒在线观看| 日产精品乱码卡一卡2卡三| 精品一区二区免费观看| 免费不卡的大黄色大毛片视频在线观看| 18禁在线播放成人免费| 久久久久久久午夜电影| 在线观看三级黄色| 国产精品偷伦视频观看了| 国产午夜精品久久久久久一区二区三区| 2022亚洲国产成人精品| 欧美亚洲 丝袜 人妻 在线| 五月伊人婷婷丁香| 高清日韩中文字幕在线| xxx大片免费视频| 国产亚洲最大av| 国产视频首页在线观看| 久久人人爽av亚洲精品天堂 | 视频中文字幕在线观看| 国产成人免费无遮挡视频| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 天堂中文最新版在线下载 | 干丝袜人妻中文字幕| 日韩一区二区视频免费看| 欧美最新免费一区二区三区| 日韩三级伦理在线观看| 久久精品夜色国产| 午夜视频国产福利| 国产精品国产三级专区第一集| 国产一区二区亚洲精品在线观看| 少妇人妻精品综合一区二区| 小蜜桃在线观看免费完整版高清| 亚洲真实伦在线观看| a级毛片免费高清观看在线播放| 午夜爱爱视频在线播放| 可以在线观看毛片的网站| 日本黄大片高清| 成人国产av品久久久| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 免费av毛片视频| 嫩草影院入口| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 亚洲av男天堂| 久久久久精品性色| 国产午夜精品一二区理论片| 国产高潮美女av| 九色成人免费人妻av| 国产精品久久久久久精品电影小说 | 嫩草影院新地址| 国产片特级美女逼逼视频| 秋霞在线观看毛片| 国产午夜精品一二区理论片| 99精国产麻豆久久婷婷| 亚洲av男天堂| 黄色视频在线播放观看不卡| 一个人看视频在线观看www免费| 亚洲自拍偷在线| 亚洲av电影在线观看一区二区三区 | 99视频精品全部免费 在线| 一级毛片 在线播放| 18禁在线无遮挡免费观看视频| 欧美高清性xxxxhd video| 成人免费观看视频高清| 一本色道久久久久久精品综合| av国产久精品久网站免费入址| 亚洲不卡免费看| 内射极品少妇av片p| 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 午夜老司机福利剧场| 尤物成人国产欧美一区二区三区| 亚洲欧美一区二区三区黑人 | 免费高清在线观看视频在线观看| 亚洲精品乱久久久久久| 亚洲精品aⅴ在线观看| 亚洲精品第二区| 欧美成人午夜免费资源| 欧美 日韩 精品 国产| 女的被弄到高潮叫床怎么办| 午夜免费男女啪啪视频观看| 国产男女超爽视频在线观看| 一级毛片黄色毛片免费观看视频| 亚洲精品一区蜜桃| 久久久久久久大尺度免费视频| 蜜桃久久精品国产亚洲av| 亚洲人成网站在线播| 成人欧美大片| 午夜免费男女啪啪视频观看| 国产老妇女一区| 久久99精品国语久久久| 精品午夜福利在线看| 久久ye,这里只有精品| 插阴视频在线观看视频| 超碰97精品在线观看| 国产91av在线免费观看| 国产探花在线观看一区二区| 国产精品人妻久久久久久| 亚洲无线观看免费| 99久久九九国产精品国产免费| 男女边摸边吃奶| 久久精品久久久久久噜噜老黄| 欧美性猛交╳xxx乱大交人| 免费观看无遮挡的男女| 人妻少妇偷人精品九色| 亚洲不卡免费看| 日韩欧美一区视频在线观看 | 亚洲美女视频黄频| 搡老乐熟女国产| 日日摸夜夜添夜夜爱| 久久ye,这里只有精品| 大片免费播放器 马上看| 国产中年淑女户外野战色| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在| 国产欧美另类精品又又久久亚洲欧美| 五月天丁香电影| 99久久人妻综合| 成人高潮视频无遮挡免费网站| 国产av码专区亚洲av| 久久99蜜桃精品久久| 激情 狠狠 欧美| 婷婷色av中文字幕| 十八禁网站网址无遮挡 | 一区二区三区精品91| 99九九线精品视频在线观看视频| 韩国高清视频一区二区三区| 搞女人的毛片| 久久精品久久久久久噜噜老黄| 欧美日韩国产mv在线观看视频 | 亚洲电影在线观看av| 亚洲av福利一区| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 亚洲精品日韩在线中文字幕| 欧美另类一区| 日韩 亚洲 欧美在线| 亚洲国产精品999| 日本与韩国留学比较| 久久97久久精品| av在线app专区| 日本黄大片高清| 久久久久久久久大av| 2021少妇久久久久久久久久久| 欧美97在线视频| 男女边摸边吃奶| 日本爱情动作片www.在线观看| 丝瓜视频免费看黄片| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 乱系列少妇在线播放| 欧美人与善性xxx| 久久国产乱子免费精品| 在线观看免费高清a一片| 中文在线观看免费www的网站| 两个人的视频大全免费| 高清日韩中文字幕在线| 一区二区三区免费毛片| 精品一区二区三卡| 国产精品偷伦视频观看了| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| 欧美日韩亚洲高清精品| 日本免费在线观看一区| 精品久久国产蜜桃| 欧美3d第一页| 99视频精品全部免费 在线| 国产伦精品一区二区三区视频9| 国产免费一区二区三区四区乱码| 国产淫语在线视频| 国产精品福利在线免费观看| 黄色怎么调成土黄色| 国产乱人偷精品视频| 成人毛片60女人毛片免费| 亚洲av电影在线观看一区二区三区 | 午夜福利在线观看免费完整高清在| 亚洲国产欧美人成| 免费看av在线观看网站| 精品国产露脸久久av麻豆| 九色成人免费人妻av| 国产精品久久久久久精品古装| 熟女电影av网| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 高清午夜精品一区二区三区| 成人特级av手机在线观看| 欧美极品一区二区三区四区| 全区人妻精品视频| 搡老乐熟女国产| 欧美高清性xxxxhd video| 国产免费一级a男人的天堂| 青春草亚洲视频在线观看| 久久精品国产鲁丝片午夜精品| 亚洲av欧美aⅴ国产| 偷拍熟女少妇极品色| 伊人久久国产一区二区| 国内少妇人妻偷人精品xxx网站| 听说在线观看完整版免费高清| 直男gayav资源| 亚洲精品亚洲一区二区| 国产免费视频播放在线视频| 日韩视频在线欧美| 免费观看a级毛片全部| 春色校园在线视频观看| 午夜视频国产福利| 日本wwww免费看| 最近2019中文字幕mv第一页| 国产成人freesex在线| 免费电影在线观看免费观看| a级毛色黄片| 久久女婷五月综合色啪小说 | 一级爰片在线观看| 亚洲精品日韩在线中文字幕| 欧美激情在线99| 日韩视频在线欧美| 在线观看一区二区三区| 亚洲国产色片| 精品酒店卫生间| 久久久久久久午夜电影| 欧美成人午夜免费资源| 国产乱人视频| 一二三四中文在线观看免费高清| 国产成人a区在线观看| 免费看a级黄色片| 欧美日韩国产mv在线观看视频 | 精品人妻视频免费看| 少妇裸体淫交视频免费看高清| 最近最新中文字幕大全电影3| 国产精品无大码| 国产在视频线精品| 国产伦理片在线播放av一区| 一本色道久久久久久精品综合| 天堂俺去俺来也www色官网| 插逼视频在线观看| 国产亚洲最大av| av在线app专区| 久久99蜜桃精品久久| 99久久精品国产国产毛片| 天天一区二区日本电影三级| 七月丁香在线播放| 国产69精品久久久久777片| 寂寞人妻少妇视频99o| 亚洲精品久久午夜乱码| 日韩电影二区| 一区二区av电影网| 久久人人爽人人片av| 高清午夜精品一区二区三区| 午夜亚洲福利在线播放| 国产淫语在线视频| 亚洲伊人久久精品综合| 少妇 在线观看| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 真实男女啪啪啪动态图| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 久久久久久久久久成人| 最近最新中文字幕免费大全7| 99热全是精品| 免费观看在线日韩| 成人漫画全彩无遮挡| 青春草视频在线免费观看| 26uuu在线亚洲综合色| 国产成人aa在线观看| 夜夜看夜夜爽夜夜摸| 精品少妇久久久久久888优播| 精品视频人人做人人爽| 日韩不卡一区二区三区视频在线| 日韩亚洲欧美综合| 成年版毛片免费区| 久久ye,这里只有精品| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人 | 久久99热这里只频精品6学生| 欧美潮喷喷水| 免费不卡的大黄色大毛片视频在线观看| 一级av片app| 欧美精品人与动牲交sv欧美| 国模一区二区三区四区视频| 亚洲国产精品999| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲网站| 亚洲国产日韩一区二区| 精品国产三级普通话版| 日本一二三区视频观看| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 久久韩国三级中文字幕| 联通29元200g的流量卡| 亚洲熟女精品中文字幕| av在线播放精品| 久久精品国产亚洲av天美| 最近中文字幕2019免费版| 各种免费的搞黄视频| 亚洲国产精品成人久久小说| 可以在线观看毛片的网站| 中文欧美无线码| 视频中文字幕在线观看| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花 | 中文资源天堂在线| 欧美bdsm另类| 春色校园在线视频观看| 一级毛片aaaaaa免费看小| 汤姆久久久久久久影院中文字幕| 超碰av人人做人人爽久久| 99热这里只有精品一区| 欧美三级亚洲精品| 欧美国产精品一级二级三级 | 亚洲欧洲日产国产| 国产 精品1| 国产成人一区二区在线| 亚洲av中文av极速乱| 69人妻影院| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 色哟哟·www| 中文字幕亚洲精品专区| 午夜福利在线观看免费完整高清在| 国产精品久久久久久av不卡| 国产探花在线观看一区二区| 日韩大片免费观看网站| 99久久人妻综合| eeuss影院久久| 建设人人有责人人尽责人人享有的 | 老司机影院毛片| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 我的女老师完整版在线观看| 国产久久久一区二区三区| 国产一区二区三区av在线| 欧美xxxx性猛交bbbb| 国产午夜福利久久久久久| 亚洲精品影视一区二区三区av| 特级一级黄色大片| 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 国产黄a三级三级三级人| 青春草视频在线免费观看| 日韩三级伦理在线观看| 在线观看人妻少妇| 七月丁香在线播放| 高清在线视频一区二区三区| www.色视频.com| 亚洲美女搞黄在线观看| eeuss影院久久| 中文字幕制服av| 亚洲自拍偷在线| 女人被狂操c到高潮| 2022亚洲国产成人精品| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 老司机影院成人| 午夜福利在线观看免费完整高清在| 国语对白做爰xxxⅹ性视频网站| 黄色日韩在线| 国模一区二区三区四区视频| 亚洲色图av天堂| 亚洲av成人精品一二三区| 特大巨黑吊av在线直播| 久久精品国产自在天天线| 如何舔出高潮| 亚洲精品自拍成人| 国产 精品1| 91久久精品电影网| 国产精品一区www在线观看| 国产免费福利视频在线观看| 国产老妇伦熟女老妇高清| 亚洲国产高清在线一区二区三| 嫩草影院入口| 99视频精品全部免费 在线| 丰满少妇做爰视频| 高清午夜精品一区二区三区| 日韩免费高清中文字幕av| 精品国产露脸久久av麻豆| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区| 亚洲精品国产av成人精品| 三级经典国产精品| 大片免费播放器 马上看| 亚洲成人av在线免费| 搡老乐熟女国产| tube8黄色片| 人妻制服诱惑在线中文字幕| 日韩在线高清观看一区二区三区| 精品国产乱码久久久久久小说| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 伊人久久精品亚洲午夜| 久久综合国产亚洲精品| 国产欧美日韩精品一区二区| 日韩大片免费观看网站| 国产爽快片一区二区三区| 午夜福利在线在线| 亚洲国产色片| 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频| 涩涩av久久男人的天堂| 亚洲一区二区三区欧美精品 | 国产精品不卡视频一区二区| 久久久久久伊人网av| 色视频www国产| 我的老师免费观看完整版| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| 久久99热这里只有精品18| 久久久久性生活片| 国产精品一区二区性色av| 亚洲国产最新在线播放| 一个人看视频在线观看www免费| 国产成人福利小说| 国产久久久一区二区三区| 成人黄色视频免费在线看| 在线免费十八禁| 亚洲成色77777| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| 色吧在线观看| 国产精品蜜桃在线观看| 亚洲精品乱码久久久久久按摩| 在现免费观看毛片| 日韩一区二区视频免费看| 99热网站在线观看| 国产乱来视频区| 日韩欧美 国产精品| 国产免费一区二区三区四区乱码| 综合色av麻豆| 美女xxoo啪啪120秒动态图| 最近2019中文字幕mv第一页| av网站免费在线观看视频| 亚洲综合色惰| 成人亚洲精品av一区二区| 亚洲精品久久久久久婷婷小说| 亚洲av免费高清在线观看| 看免费成人av毛片| 九色成人免费人妻av| 精品亚洲乱码少妇综合久久| 中文欧美无线码| 最近的中文字幕免费完整| 国产精品.久久久| 综合色丁香网| 免费av观看视频| 国产欧美另类精品又又久久亚洲欧美| 丝瓜视频免费看黄片| 日本与韩国留学比较| 免费在线观看成人毛片| 永久免费av网站大全| 能在线免费看毛片的网站| 亚洲,欧美,日韩| 亚洲国产欧美在线一区| 国产 一区 欧美 日韩| 2021天堂中文幕一二区在线观| 简卡轻食公司| 亚洲电影在线观看av| 欧美日韩国产mv在线观看视频 | 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 九草在线视频观看| 免费观看性生交大片5| 黄色一级大片看看| 国产精品嫩草影院av在线观看| 成人毛片a级毛片在线播放| 久久久久国产精品人妻一区二区| 国产 一区精品| 精品99又大又爽又粗少妇毛片| 国产成年人精品一区二区| 久久久精品免费免费高清| 69人妻影院| 99视频精品全部免费 在线| 下体分泌物呈黄色| 成人黄色视频免费在线看| 精品亚洲乱码少妇综合久久| 欧美另类一区| 岛国毛片在线播放| 精品一区二区三区视频在线| 中文欧美无线码| 精品人妻一区二区三区麻豆| 久久久久久国产a免费观看| 欧美激情国产日韩精品一区| 能在线免费看毛片的网站| 成人毛片a级毛片在线播放| 蜜桃亚洲精品一区二区三区| 中国三级夫妇交换| 新久久久久国产一级毛片| 日韩制服骚丝袜av| 亚洲成人一二三区av| 蜜臀久久99精品久久宅男| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 亚洲色图综合在线观看| 亚洲在久久综合| av在线天堂中文字幕| a级一级毛片免费在线观看| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 视频区图区小说| 热re99久久精品国产66热6| 男女啪啪激烈高潮av片| 久久久色成人| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 国产有黄有色有爽视频| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 18禁裸乳无遮挡免费网站照片| 国产高清不卡午夜福利| 成人无遮挡网站| 久久久久久久久久久免费av| 国产av国产精品国产| 免费看光身美女| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看 | 少妇人妻一区二区三区视频| 国产久久久一区二区三区| 国产成人福利小说| 国产白丝娇喘喷水9色精品| 老司机影院成人| av免费观看日本| 真实男女啪啪啪动态图| 尾随美女入室| 国产免费一区二区三区四区乱码| 午夜日本视频在线| 国产日韩欧美亚洲二区| 亚洲最大成人av| 人体艺术视频欧美日本| 韩国av在线不卡| 国产精品一及| 91精品一卡2卡3卡4卡| 性色avwww在线观看| 日日啪夜夜撸| 国产 一区 欧美 日韩| 在线观看国产h片| 欧美最新免费一区二区三区| 狂野欧美激情性bbbbbb| 日韩制服骚丝袜av| 国产又色又爽无遮挡免| videossex国产| 亚洲精品,欧美精品| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久午夜电影| 成人亚洲精品一区在线观看 | 免费黄网站久久成人精品| 高清av免费在线| 内射极品少妇av片p| 精品一区二区三区视频在线| 少妇被粗大猛烈的视频| 国产伦精品一区二区三区四那| 卡戴珊不雅视频在线播放| 久久久亚洲精品成人影院| 中文字幕亚洲精品专区| 欧美国产精品一级二级三级 | 不卡视频在线观看欧美| 五月天丁香电影| 又大又黄又爽视频免费| 80岁老熟妇乱子伦牲交| 好男人视频免费观看在线| 神马国产精品三级电影在线观看| 观看免费一级毛片| 视频中文字幕在线观看| 欧美精品一区二区大全| 免费黄网站久久成人精品| 亚洲最大成人av| 人体艺术视频欧美日本| 男人狂女人下面高潮的视频| 国产一区亚洲一区在线观看| 九草在线视频观看| 水蜜桃什么品种好| 国产成人免费观看mmmm| 亚洲国产精品999| 好男人在线观看高清免费视频| 欧美日韩精品成人综合77777| 亚洲丝袜综合中文字幕| 欧美成人a在线观看| 亚洲av中文av极速乱| 涩涩av久久男人的天堂| 69人妻影院| 国产永久视频网站| 亚洲图色成人| av在线天堂中文字幕| 麻豆久久精品国产亚洲av| 久久久久久久国产电影| 久久久精品欧美日韩精品| 寂寞人妻少妇视频99o| 亚洲国产成人一精品久久久| 久久久久久国产a免费观看| 国产av码专区亚洲av| 特大巨黑吊av在线直播| 久久精品综合一区二区三区| 美女脱内裤让男人舔精品视频| 成人鲁丝片一二三区免费| 少妇的逼好多水| 成年版毛片免费区| 色视频www国产| 中文精品一卡2卡3卡4更新| 波野结衣二区三区在线| 一级黄片播放器| 亚洲美女视频黄频| av在线亚洲专区| 乱系列少妇在线播放|