• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemoselective Transfer Hydrogenation of Cinnamaldehyde over Activated Charcoal Supported Pt/Fe3O4Catalyst

    2017-09-03 07:53:52YongZhngChunChenWnbingGongJieyoSongYnpingSuHiminZhngGuozhongWngHuijunZho
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Yong Zhng,Chun Chen,Wn-bing Gong,Jie-yo Song,Yn-ping Su,Hi-min Zhng, Guo-zhong Wng,Hui-jun Zho,c?

    a.Key Laboratory of Materials Physics,Centre for Environmental and Energy Nanomaterials,Institute of Solid State Physics,Chinese Academy of Sciences,Hefei 230031,China

    b.Science Island Branch of Graduate School,University of Science and Technology of China,Hefei 230026,China

    c.Centre for Clean Environment and Energy,Griffith University,Gold Coast Campus,Queensland 4222, Australia

    Chemoselective Transfer Hydrogenation of Cinnamaldehyde over Activated Charcoal Supported Pt/Fe3O4Catalyst

    Yong Zhanga,b,Chun Chena?,Wan-bing Gonga,b,Jie-yao Songa,b,Yan-ping Sua,b,Hai-min Zhanga, Guo-zhong Wanga,Hui-jun Zhaoa,c?

    a.Key Laboratory of Materials Physics,Centre for Environmental and Energy Nanomaterials,Institute of Solid State Physics,Chinese Academy of Sciences,Hefei 230031,China

    b.Science Island Branch of Graduate School,University of Science and Technology of China,Hefei 230026,China

    c.Centre for Clean Environment and Energy,Griffith University,Gold Coast Campus,Queensland 4222, Australia

    A variety of spherical and structured activated charcoal supported Pt/Fe3O4composites with an average particle size of~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt(IV)and Fe(II)precursors as driving force.The formed Fe3O4nanoparticles(NPs)effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst,which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor.The electron-enrichment state of Pt NPs donated by Fe3O4nanocrystallites is corroborated by XPS measurement,which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical con figuration.The experimental results show that the activated charcoal supported Pt/Fe3O4catalyst exhibits 94.8%selectivity towards cinnamyl alcohol by the transfer hydrogenation of cinnamaldehyde with Pt loading of 2.46%under the optimum conditions of 120?C for 6 h,and 2-propanol as a hydrogen donor.Additionally,the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.

    Activated charcoal supported Pt/Fe3O4catalysts,Redox method,Transfer hydrogenation Cinnamaldehyde,Cinnamyl alcohol

    I.INTRODUCTION

    The chemoselective transformation of biomass-based unsaturated aldehyde has been recognized as a potentially promising candidate to bridge a gap between biomass resources and bio-chemicals[1,2].The products of cinnamaldehyde hydrogenation(e.g.hydrocinnamaldehyde,cinnamyl alcohol,hydrocinnamyl alcohol)can serve as signi ficant feed stocks in pharmaceuticals,perfumes,cosmetics,and fine chemicals industries[3–5].However,the chemoselective hydrogenation of C=O bond is more challenging because the hydrogenation of the C=C bond is thermodynamically more favorable than that of the C=O group.These byproducts formed by the hydrogenation of C=C bond will require a sophisticated puri fication procedure,which is labor-intensive and cost-expensive[6–8].Consequently, many endeavors have been devoted to improving the selectivity toward cinnamyl alcohol over the past decades. Indeed,the selectivity towards the unsaturated alcohol has been improved by the presence of some external modi fiers[9–11](e.g.,surface organic ligands or stabilizers,ion electron donating,alkali metal compounds)in the homogeneous and/or heterogeneous catalysis.However,the reaction mechanism will become more complex in the above-mentioned case.The activity and selectivity of the catalysts are strongly correlated with their properties such as geometric[12–14](e.g.,particle size,morphology,crystal phase)and electronic effects[15,16](e.g.,electron-de ficient or electron-rich). In addition,some of the additives are environmentally harmful.Therefore,it is imperative to explore facile methods for the synthesis of catalyst with comprehensive application.

    In comparison to conventional hydrogenation reactions by the aid of external H2,transfer hydrogenation reaction is advantageous because of its safety,economy, and handy of operation.Moreover,transfer hydrogenation usually demostrates speci fic seletivity to target pro ducts.Thus,it is reasonable to be used in the reductionof various unsaturated compounds because the high activity and selectivity is independent of H2pressure[17]. The most popular hydrogen donor such as 2-propanol and formic acid/formate salt have received much more attentions[18–20]. For formic acid/formate salt,it is mostly utilized upon the homogeneous catalysts, such as Ir,Ru or Fe organometallic pincer complexes [19,21,22].However,the separation and reusability of catalysts are the major concerns which are needed to be addressed.Additionally,the analysis of products is difficult as gas-chromatography is sensitive to minimal salts.In contrast to formic acid/formate salt, 2-propanol is commonly employed in the heterogeneous catalysis system.These hydrogenation reactions have been carried out with various supported catalysts,including active graphite carbon nitride,metal oxides,zeolites,and hydrotalcite[18,23–25].The catalytic activity and selectivity in the transfer hydrogenation of acetophenone can be adjusted by changing calcination temperature of alumnosilicate.The 94%yield toward phenethyl alcohol is achieved over nickel aluminosilicate nanocomposite calcined at 800?C under the mild conditions of 90?C for 3 h[26].The Pt/TiO2catalyst, which is prepared by impregnation method and further reduced under flowing H2at 773 K,shows the excellent catalytic performance with 91%yield of phenethyl alcohol under the conditions of 76?C for 2 h.Nevertheless, the yield is decreased to 3%after five successive recycles because of the formation of CO and carbonaceous[27]. Meanwhile,the employment of KOH is mandatory in these catalytic systems.It has also been reported that the catalytic activity of transfer hydrogenation of acetophenone is relatively poor in the absence of alkaline promoters[27].However,the alkaline medium will lead to irreversible corrosion of the reaction device,and the residual alkaline needs to be neutralized by inorganic acid at the end of reaction.Thus,it is necessary to develop and design a rational catalyst,which can be synthesized by a facile method and be applied in a simple and clean system of transfer hydrogenation without any alkaline additives.

    Herein,a variety of charcoal supported Pt/Fe3O4composites are prepared by a flexible redox method using the different reduction potential between Pt and Fe precursors.The electronic structure of this composite is investigated by XPS technique.The activity test shows that a high chemoselectivity towards cinnamyl alcohol with 95%in the transfer hydrogenation of cinnamaldehyde can be obtained.Besides,this composite can be rapidly separated from the reaction mixture by using its inherent magnetism upon the application of magnetic field.

    II.EXPERIMENTS

    A.Materials

    H2PtCl6·6H2O(AR,≥37.5%Pt)and cinnamaldehyde(GC,≥95%)are purchased from Aladdin Chemical Reagent Co. Ltd. Analytical grade methanol, propanol,2-propanol,2-butanol,pentanol,n-octanol, potassium chloride(KCl),ferrous sulfate heptahydrate (FeSO4·7H2O),and sodium hydroxide(NaOH)are purchased from Sinopharm Chemical Reagent Co.Ltd.All the reagents are used directly without further any puri fication treatment.Deionized water(18 M?·cm)is produced by a Milli-Q(Millipore,USA).

    B.Catalyst preparation

    Here,the activated charcoal has been firstly washed by diluted acid and deionized water for several times. Then it is dried in an oven at 60?C for overnight.Finally,it is crushed into powder with a size of 20 mesh for further treatment.A series of activated charcoal supported Pt/Fe3O4catalysts have been prepared by a flexible redox method using different reduction potential between metal and support precursor.In a typical procedure,the calculated NaOH aqueous solution is added into FeSO4·7H2O aqueous solution under N2protection, followed by the addition of H2PtCl6·6H2O aqueous solution.Then the solution is heated at 70?C for 1.8 h, and the activated charcoal powder is then added into the mixture.After treated at 70?C for another 2 h, the sample is rapidly separated from the slurry by a rectangle magnet.It is washed with deionization water and ethanol for several times,respectively,and then dried at 60?C overnight in a vacuum oven.The asobtained catalyst are denoted as xPt/Fe3O4-AC,where x represents Pt mass loading(0.83?4.81 wt%).

    C.Catalyst characterization

    Transmission electron microscopy(TEM)and high resolution transmission electron microscopy(HRTEM) images are recorded on a JEOL-2010 EX instrument operating at 200 kV.The scanning transmission electron microscopy(STEM)images and energy dispersive X-ray spectra(EDS)data are collected on a FEI Titan STEM instrument with a high-angle annular darkfield(HAADF)detector and an EDAX SiLi detector operated at 200 kV,respectively.The crystal phase structure of sample is analyzed by powder X-ray diffraction(PXRD)equipped with Cu Kα(λ=0.154 nm)radiation operating at 40 kV and 40 mA for 2θ angles ranging from 10?to 75?.X-ray photoelectron spectra(XPS)measurement is recorded on an ESCALAB 250 photoelectron spectrometer(Thermo-VG Scienti fic Co.,LTD)with Al Kα X-ray radiation as the X-ray source for excitation.The bonding energy of C 1s peak (284.8 eV)is referenced as a calibration.

    D.Catalytic activity test

    Typically,60 mg of cinnamaldehyde(CAL),30 mg of catalyst,and 8 mL of solvent(hydrogen transferdonor)have been mixed and sealed in a 25-mL Te flonlined steel autoclave vessel.The mixture is heated to a targeted temperature under a flow of N2for several hours.After reaction,the liquid products have been identi fied by gas chromatography mass spectrometry (GC-MS,Thermo Fisher Scienti fic-TXQ),and quantitatively analyzed by GC(Shimadzu,GC-2010 Plus) using n-octanol as an internal standard.As outlined in Scheme 1,the transferred hydrogen atoms can attack the C=C or C=O bond of CAL to form hydrocinnamaldehyde(HCAL)or cinnamyl alcohol(COL),respectively. Hydrocinnamyl alcohol(HCOL)can be formed by the deep hydrogenation of both C=O and C=C bonds.In some case,1-cinnamyl-2-propyl ether (CPE)can also be obtained from etheri fication of formed COL with 2-propanol. The other possible byproducts(e.g.,methylstyrene,phenylpropane)are not detected in this work.

    The carbon balance has been checked in every run and it is found to be higher than 90%.Conversion of CAL and selectivities of products are calculated using the following equation:

    III.RESULTS AND DISCUSSION

    A.Characterization of catalyst

    FIG.1 displays the TEM images of 2.46 wt%Pt/ Fe3O4-AC sample.As can be seen,it presents welldispersed sphere-shape hybrids with an average diameter of~100 nm.The composite is formed by the selfassembly between Pt and Fe3O4nanoparticles(NPs) via the driving force of different reduction potential, where the Pt NPs may be entrapped into the matrix of Fe3O4NPs.To more clearly recognize the distribution of element component between Pt and Fe3O4NPs, the HADDF-STEM and corresponding EDX mapping have also been investigated.The interplanar spacing of 0.22 nm is matched well with the(111)crystal plane of Pt NPs on the surface of Fe3O4NPs,as indicated in inserted HRTEM image of FIG.1(c)and marked by black arrows in FIG.2(a).The uniform distribution of Pt NPs is further con firmed by the corresponding EDX mapping in FIG.2(b)?(d).

    Scheme 1 Hydrogen transfer reaction network of CAL.

    The PXRD patterns of Pt/Fe3O4-AC catalysts are shown in FIG.3. For all the samples,main shape diffraction patterns positioned at 2θ of~30.1?,35.5?, and 62.6?can be indexed to the characteristic peaks of cubic Fe3O4phase(JCPDS 88-0866).A board scattering pattern located at 2θ of~23?can be attributed to the peak of amorphous activated charcoal.At low Pt content,like the samples of 0.83 wt%Pt/Fe3O4-AC and 1.26 wt%Pt/Fe3O4-AC,no obvious diffraction peak of Pt can be observed due to the low Pt loading.As Pt loading increasing to 2.46 wt%and 4.81 wt%(2.46 wt%Pt/Fe3O4-AC and 4.81 wt%Pt/Fe3O4-AC),a very faint broad peak of cubic Pt(111)located at 2θ of~40?has been detected[28].It is indicated that the complete redox reaction between Pt(IV)and Fe(II)precursors to accelerate the formation of Pt nanocrystallites.Moreover,the aggregation of Pt nanocrystallites can be effectively prevented by the separation and dispersion of Fe3O4NPs.This result is in agreement with the result of HADDF-STEM image,as displayed in FIG.2.

    The surface chemical environment of Pt/Fe3O4-AC sample is also investigated by XPS measurement.As shown in FIG.4(a),two obvious satellite peaks positioned at 71.5 and 74.8 eV are attributed to the characteristic peaks of Pt 4f7/2and Pt 4f5/2,respectively. It indicates the existence of metallic Pt in the sample, which is derived from the redox reaction of Pt(IV)and Fe(II)precursors during synthesis process.In comparison with previous supported Pt catalyst,the value is slightly lower by~0.6 eV[29].The peak of metallic Pt shifting to lower level may be caused by electron donating effect from Fe3O4NPs due to its variable valence between Fe2+and Fe3+.This phenomenon can also be affirmed by the shift of Fe3O4peaks.In the Fe 2p XPS spectrum exhibited in FIG.4(b),a couple peaks of Fe 2p3/2and Fe 2p1/2with binding energy of 711.7 and 725.2 eV,are higher by~0.4 eV than that of pure of Fe3O4NPs prepared by solvothermalmethod[30].This intimate electron interaction between Pt and Fe3O4would induce the activation of terminal C=O bond of CAL,leading to high selectivity toward COL[3].

    FIG.1 TEM with different magni fication and inserted HRTEM images of 2.46 wt%Pt/Fe3O4-AC catalyst.

    FIG.2(a)HADDF-STEM image and EDX mapping of 2.46 wt%Pt/Fe3O4-AC catalyst((b)Fe,(c)O,(d)Pt).

    FIG.3 PXRD patternsofPt/Fe3O4-AC catalysts. (a)0.83 wt%Pt/Fe3O4-AC,(b)1.24wt%Pt/Fe3O4-AC, (c)2.46 wt%Pt/Fe3O4-AC,and(d)4.81 wt%Pt/Fe3O4-AC.

    B.Catalytic evaluation

    The screening of Pt/Fe3O4-AC catalysts has been performed for the transfer hydrogenation of CAL under the conditions of 120?C for 6 h.The CAL conversion and products selectivity as the function of Pt loading have been investigated and the result is displayed in FIG.5.It is obviously found that the CAL conversion gradually increases from 15.1%to 48.2%with the increase of Pt loading from 0.83 wt%to 2.46 wt%.Theenhanced CAL conversion can be ascribed to more available Pt active sites on the surface of catalyst.Meanwhile,the selectivity for the desired product of COL is maintained higher than 95%for all the samples of 0.83 wt%Pt/Fe3O4-AC,1.24 wt%Pt/Fe3O4-AC,and 2.46 wt%Pt/Fe3O4-AC.Although the CAL conversion is raised up to 61.3%when Pt loading of Pt/Fe3O4-AC catalyst increased to 4.81 wt%(4.81 wt%Pt/Fe3O4-AC),the selectivity of COL reduces to 82.3%following with the increase of HCAL selectivity.It suggests that the hydrogenation of C=C bond is induced andtriggered over the Pt/Fe3O4-AC catalyst with high Pt loading,leading to decrease of COL selectivity.Thus, the 2.46 wt%Pt/Fe3O4-AC sample is selected as the optimal catalyst for the further investigation.

    FIG.4XPS spectra of(a)Pt 4f and(b)Fe 2p over 2.46 wt%Pt/Fe3O4-AC catalyst.

    FIG.5 Catalytic performance of transfer hydrogenation of CAL over Pt/Fe3O4-AC catalysts. Reaction conditions: mass ratio of catalyst to CAL=0.5,120?C,6 h,8 mL 2-propanol as hydrogen donor.

    Generally,the catalytic performance of heterogeneous catalyst highly depends on the experimental reaction conditions,such as reaction time and temperature.Therefore,the in fluence of reaction conditions on CAL conversion and products selectivity over 2.46 wt%Pt/Fe3O4-AC catalyst has been investigated and the results are summarized in Table I.As can be seen,the transfer hydrogenation of CAL does not take place efficiently at low reaction temperature of 90?C due to a quite low reaction rate.Although the conversion of CAL is only 22.6%after 18 h,CAL can convert into COL with almost 100%selectivity(entry 4,Table I).With the reaction temperature elevating from 90?C to 180?C,the reaction rate of transfer hydrogenation increases signi ficantly and 92.1%of CAL conversion can be obtained at 180?C after 18 h(entry 16,Table I). However,the reaction rate for side reactions,like hydrogenation of C=C bonds,also increases signi ficantly giving rise to the obvious change in the selectivity of products.The selectivity for the desired product of COL reduces to 17.9%at 180?C after 18 h reaction.It can be deduced that the very high activity of transfer hydrogenation over the Pt/Fe3O4-AC catalyst causes the hydrogenation of C=C and C=O bonds simultaneously.

    In addition,the hydrogen donors and mass ratio of catalyst to substrate can also in fluence catalytic activity and selectivity in the transfer hydrogenation of CAL over Pt/Fe3O4-AC catalyst.The electronic properties of the hydrogen donor may play an important role in transfer hydrogenation reactions because the product formation strongly depends on the adsorption and activation of hydrogen donor on the surface of catalyst.Generally,the aliphatic secondary alcohol has agood reducibility because the corresponding alkyl diketone has a high reduction potential[31].For example, Di Cosimo reported that aliphatic 2-propanol is better than propanol for the gas-phase transfer hydrogenation of mesityl oxide on MgO catalyst[32].

    TABLE I Effect of reaction temperature and time on CAL conversion and COL selectivity over 2.46 wt%Pt/Fe3O4-AC catalyst. Reaction conditions:mass ratio of catalyst to CAL=0.5,8 mL 2-propanol as hydrogen donor.

    Table II summarizes the catalytic performance of 2.46 wt%Pt/Fe3O4-AC catalyst with different aliphatic alcohols as hydrogen donors.As can be seen,the use of methanol results in a poor CAL conversion(0.9%) and HCAL is the sole product(entry 1,Table II).This may be put down to the feeble capability of transferring hydrogen due to the extremely strong binding effect of hydroxyl group.With the growth of carbon chain, the binding effect of hydroxyl group is weakened,giving rise to an improved CAL conversion(entry 2 and entry 3,Table II).However,the byproduct of ether becomes main product resulting in a sharp decrease of COL selectivity when using pentanol as hydrogen donor (entry 3,Table II).For the secondary alcohol,it shows an obvious improvement on CAL conversion and COL selectivity comparing with primary alcohols.Interestingly,2-propanol shows a comparable catalytic activity and selectivity in comparison with 2-butanol(entry 4 and entry 5,Table II).It may be attributed to similar reduction potential between the methyl ethyl ketone (productof 2-butanol oxidation)and acetone(product of 2-propanoloxidation)[31].However,2-propanol is safer,cheaper and more environment-benign than 2-butanol.Therefore,2-propanol is selected as hydrogen donor for studying the effect of mass ratio of catalyst to substrate on catalytic performance.

    TABLE II Effect of different hydrogen donors on CAL conversion and COL selectivity over 2.46 wt%Pt/Fe3O4-AC catalyst. Reaction conditions:mass ratio of catalyst to CAL=0.5,120?C,6 h.

    FIG.6 Effect of mass ratio of catalyst to CAL on CAL conversion and COL selectivity over 2.46 wt%Pt/Fe3O4-AC catalyst.Reaction conditions:120?C,6 h,8 mL 2-propanol as hydrogen donor.

    As shown in FIG.6,the CAL conversion is linearly related to the mass ratio of catalyst to substrate.It gradually increases from 22.4%to 63.1%as the mass ratio ranges from 0.125 to 0.75.However,the selectivity towards COL declines from 96.1%to 85.6%.It is worth noting that the selectivity towards COL is beyond 95% when the mass ratio is lower than 0.5.From the experimental results we can infer that the chemoselective transfer hydrogen of C=O bond of CAL is superior than C=C bond over the 2.46 wt%Pt/Fe3O4-AC catalyst. The side reactions for the hydrogenation of C=O bond and/or C=C bond are induced by the redundant available active sites when the mass ratio increases to 0.75, resulting in a decrease of selectivity towards COL.Thus, the optimal mass ratio of catalyst to substrate is fixed at 0.5 for further investigation.

    We further explore the reusability of 2.46 wt%Pt/ Fe3O4-AC catalyst(FIG.7).The used catalyst is collected by an external magnet,washed with deionized water and ethanol,and then dried overnight at 60?C in a vacuum oven.Although the catalyst deactivates in the 5th run,the selectivity towards COL is still reasonably high,suggesting a good reusability.

    FIG.7 Reusability test of 2.46 wt%Pt/Fe3O4-AC catalyst. Reaction conditions:120?C,6 h,8 mL 2-propanol as hydrogen donor.

    Scheme 2 Probable mechanism of hydrogen transfer reaction of CAL over Pt/Fe3O4-AC catalyst.

    C.Mechanism of hydrogenation transfer reduction

    The Meerwein-Ponndorf-Verley(MPV)reaction provides a convenient and feasible route which can selectively reduce unsaturated aldehydes into the corresponding alcohols by hydrogen transfer donor,such as isopropanol[33,34].The hydrogen transfer reaction includes an intermediate state where hydrogen atom derived from isopropanol is transferred to the C=O bond of CAL.It probably involves cyclic six-membered transition stats,which has been proposed upon potassium phosphate,magnesium oxide,and so forth[33,35].In view of the previous literature and XPS measurement, we propose a plausible mechanism of hydrogen transfer.As depicted in Scheme 2,the electron-enriched Ptis responsible for CAL adsorption via terminal C=O bond and 2-propanol adsorption by-OH group.Then it triggers hydrogen transfer reaction,where the hydrogen atom of OH and CH group is activated to attack aldehyde group of CAL,leading to formation of transition intermediate compound.Finally,the targeted product of COL can be obtained after the removal of acetone.

    IV.CONCLUSION

    In summary,a variety of sphere-shape Pt/Fe3O4-AC catalysts with regular morphology and uniform element distribution have been prepared by a redox between Pt(IV)and Fe(II)precursors.The PXRD analysis shows that both main cubic Fe3O4phase and faint cubic Pt phase are observed,inferring the occurrence of redox reaction.The highly dispersed Pt NPs on the surface or entrance into Fe3O4matrix is bene ficial to the adsorption of substrate and hydrogen donor.It is worth noting that the electron-enriched Pt NPs donating from variable Fe3O4NPs promote and activate the terminal C=O bond of CAL.This composite Pt/Fe3O4-AC catalysts show a good selectivity towards COL in the transfer hydrogenation reaction of CAL.The best selectivity towards COL(94.8%)can be obtained over Pt/Fe3O4-AC with 2.46 wt%Pt loading under the optimal conditions of 120?C,6 h,and using 2-propanol as a hydrogen donor.Additionally,it shows a good reusability pro fiting from rapid separation from the mixture via a magnet due to its natural magnetism.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.51372248,No.51432009 and No.51502297),Instrument Developing Project of the Chinese Academy of Sciences(No.yz201421),the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences,China.

    [1]S.Bzhogeswararao and D.Srinivas,J.Catal.285,31 (2012).

    [2]C.H.Hao,X.N.Guo,Y.T.Pan,S.Chen,Z.F.Jiao, H.Yang,and X.Y.Guo,J.Am.Chem.Soc.138,9361 (2016).

    [3]T.N.Ye,J.Li,M.Kitano,M.Sasase,and H.Hosono, Chem.Sci.7,5969(2016).

    [4]E.Plessers,D.E.De Vos,and M.B.J.Roeffaers,J. Catal.340,136(2016).

    [5]Y.Gu,Y.Zhao,P.Wu,B.Yang,N.yang,and Y.Zhu, Nanoscale 8,10896(2016).

    [6]T.Szumelda,A.Drelinkiewicz,R.Kosydar,and J.Gurgul,Appl.Catal.A 487,1(2014).

    [7]M.Kolodziej,A.Drelinkiewicz,E.Lalik,J.Gurgul,D. Duraczy′nska,and R.Kosydar,Appl.Catal.A 515,60 (2016).

    [8]A.Yepez,J.M.Hidalgo,A.Pineda,R.ˇCern′y,P.J′?ˇsa, A.Garcia,A.A.Romero,and R.Luque,Green Chem. 17,565(2015).

    [9]L.X.Dai,W.Zhu,M.Lin,Z.P.Zhang,J.Gu,Y.H. Wang,and Y.W.Zhang,Inorg.Chem.Front.2,949 (2015).

    [10]I.Cano,A.M.Chapman,A.Urakawa,and P.W.N. M.van Leeuwen,J.Am.Chem.Soc.136,2520(2014).

    [11]M.G.Prakash,R.Mahalakshmy,K.R.Krishnamurthy, and B.Viswanathan,Catal.Today 263,105(2016).

    [12]Y.Wang,Z.Rong,Y.Wang,P.Zhang,Y.Wang,and J.Qu,J.Catal.329,95(2015).

    [13]E.Bus,R.Prins,and J.A.van Bokhoven,Catal.Commun.8,1397(2007).

    [14]C.Milone,R.Ingoglia,L.Schipilliti,C.Crisafulli,G. Neri,and S.Galvagno,J.Catal.236,80(2005).

    [15]H.Liu,L.Chang,L.Chen,and Y.Li,ChemCatChem. 8,946(2016).

    [16]Q.Wu,C.Zhang,B.Zhang,X.Li,Z.Ying,T.Liu,W. Lin,Y.Yu,H.Cheng,and F.Zhao,J.Colloid.Interface Sci.463,75(2016).

    [17]M.J.Gilkey and B.Xu,ACS Catal.6,1420(2016).

    [18]J.F.Mi?nambres,A.Marinas,J.M.Marinas,and F.J. Urbano,J.Catal.295,242(2012).

    [19]J.Li,Y.Zhang,D.Han,G.Jia,J.Gao,L.Zhong,and C.Li,Green Chem.10,608(2008).

    [20]X.Wu,J.Liu,X.Li,A.Zanotti-Gerosa,F.Hancock, D.Vinci,J.Ruan,and J.Xiao,Angew.Chem.Int.Ed. Engl.45,6718(2006).

    [21]I.Szatm′ari,G.Papp,F.Jo′o,and′A.Kath′o,Catal. Today 247,14(2015).

    [22]S.Mazza,R.Scopelliti,and X.Hu,Organometallics 34, 1538(2015).

    [23]P.Sharma and Y.Sasson,Green Chem.19,844(2017).

    [24]Y.Zhu,G.Chuah,and S.Jaenicke,J.Catal.241,25 (2006).

    [25]M.a.A.Aramend′?a,V.Borau,C.Jim′enez,J.M.Marinas,J.R.Ruiz,and F.Urbano,Appl.Catal.A 249,1 (2003).

    [26]N.Neelakandeswari,G.Sangami,P.Emayavaramban, S.Ganesh Babu,R.Karvembu,and N.Dharmaraj,J. Mol.Catal.A 356,90(2012).

    [27]F.Alonso,P.Riente,F.Rodr′?guez-Reinoso,J.Ruiz-Mart′?nez,A.Sep′ulveda-Escribano,and M.Yus,J. Catal.260,113(2008).

    [28]Z.Rong,J.Lv,Z.Sun,Y.Wang,and Y.Wang,Catal. Lett.144,980(2014).

    [29]Z.Tian,Q.Li,Y.Li,and S.Ai,Catal.Commun.61, 97(2015).

    [30]J.Lu,X.Jiao,D.Chen,and W.Li,J.Phys.Chem.C. 113,4012(2009).

    [31]C.F.d.Graauw,J.A.Peters,H.v.Bekkum,and J. Huskens,Synthesis 10,1007(1994).

    [32]J.I.Di Cosimo,A.Acosta,and C.R.Apestegu′?a,J. Mol.Catal.A 234,111(2005).

    [33]R.Radhakrishan,D.M.Do,S.Jaenicke,Y.Sasson,and G.K.Chuah,ACS Catal.1,1631(2011).

    [34]S.H.Liu,S.Jaenicke,and G.K.Chuah,J.Catal.206, 321(2002).

    [35]T.Pasini,A.Lolli,S.Albonetti,F.Cavani,and M. Mella,J.Catal.317,206(2014).

    ceived on March 29,2017;Accepted on May 29,2017)

    ?Authors to whom correspondence should be addressed.E-mail: h.zhao@griffith.edu.au,chenchun2013@issp.ac.cn

    小说图片视频综合网站| 国产精品久久视频播放| 亚洲精品国产成人久久av| 精品午夜福利在线看| 久久精品国产清高在天天线| 国内揄拍国产精品人妻在线| 欧美日韩精品成人综合77777| 日韩中字成人| 男人舔女人下体高潮全视频| 婷婷色综合大香蕉| 草草在线视频免费看| av在线观看视频网站免费| 亚洲精品一区av在线观看| av国产免费在线观看| 此物有八面人人有两片| 悠悠久久av| 又粗又爽又猛毛片免费看| 亚洲中文字幕一区二区三区有码在线看| 看免费成人av毛片| 国产精品亚洲美女久久久| 久久久久免费精品人妻一区二区| 人人妻人人看人人澡| 亚洲在线自拍视频| 美女被艹到高潮喷水动态| 精品一区二区三区av网在线观看| 亚洲丝袜综合中文字幕| 中文资源天堂在线| 成人一区二区视频在线观看| 99热精品在线国产| 波多野结衣巨乳人妻| 亚洲天堂国产精品一区在线| 欧洲精品卡2卡3卡4卡5卡区| 最近在线观看免费完整版| 高清毛片免费观看视频网站| 日本a在线网址| 3wmmmm亚洲av在线观看| 婷婷精品国产亚洲av在线| 一个人看的www免费观看视频| 亚洲国产精品合色在线| 大香蕉久久网| 99久久九九国产精品国产免费| 99久久九九国产精品国产免费| 人人妻人人澡人人爽人人夜夜 | 欧美极品一区二区三区四区| 人妻少妇偷人精品九色| 少妇人妻精品综合一区二区 | 美女xxoo啪啪120秒动态图| 最近中文字幕高清免费大全6| 男女之事视频高清在线观看| 99国产精品一区二区蜜桃av| 欧美激情在线99| 少妇丰满av| 亚洲精品国产成人久久av| 欧美性感艳星| 成年女人看的毛片在线观看| a级一级毛片免费在线观看| 国产精品日韩av在线免费观看| 深夜a级毛片| 三级国产精品欧美在线观看| 色哟哟哟哟哟哟| 日韩一本色道免费dvd| 久久久午夜欧美精品| 男人舔女人下体高潮全视频| 久久久久久久久久黄片| 一区福利在线观看| 亚洲av美国av| 91久久精品国产一区二区三区| 国产高清有码在线观看视频| 黄色视频,在线免费观看| 日本a在线网址| 91久久精品国产一区二区成人| 亚洲欧美精品自产自拍| 国产精品不卡视频一区二区| 天天一区二区日本电影三级| 久久久久久久久中文| 国产午夜精品论理片| 久久精品国产亚洲网站| 国产中年淑女户外野战色| 国产日本99.免费观看| 亚洲国产高清在线一区二区三| 91在线观看av| .国产精品久久| 三级国产精品欧美在线观看| 此物有八面人人有两片| 中文字幕av成人在线电影| av中文乱码字幕在线| 搡老岳熟女国产| 搡老岳熟女国产| 99热网站在线观看| 国产欧美日韩精品亚洲av| 我要看日韩黄色一级片| 国产精品久久视频播放| 一进一出抽搐动态| 色av中文字幕| 蜜桃久久精品国产亚洲av| 国产乱人偷精品视频| 久久久久久久亚洲中文字幕| 97超碰精品成人国产| 国产成人freesex在线 | 床上黄色一级片| 淫秽高清视频在线观看| 亚洲国产精品成人久久小说 | 欧美高清性xxxxhd video| 日本一本二区三区精品| 欧美一级a爱片免费观看看| 老女人水多毛片| 国产在线男女| 免费av不卡在线播放| 人妻夜夜爽99麻豆av| 日本黄大片高清| 久久热精品热| 婷婷色综合大香蕉| 国产av不卡久久| 国产亚洲91精品色在线| 国产成人福利小说| 免费看美女性在线毛片视频| 我要看日韩黄色一级片| 国产精华一区二区三区| 99久国产av精品| 国产在线精品亚洲第一网站| 国产亚洲精品综合一区在线观看| 日韩,欧美,国产一区二区三区 | 少妇丰满av| 精品人妻视频免费看| 亚洲美女视频黄频| 久久中文看片网| 嫩草影院精品99| videossex国产| 国产淫片久久久久久久久| 精品日产1卡2卡| 亚洲在线观看片| 真人做人爱边吃奶动态| 不卡视频在线观看欧美| 22中文网久久字幕| 搡女人真爽免费视频火全软件 | 最近的中文字幕免费完整| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣巨乳人妻| 国产黄片美女视频| 国产高清不卡午夜福利| 午夜影院日韩av| 丰满人妻一区二区三区视频av| 天美传媒精品一区二区| 18禁裸乳无遮挡免费网站照片| 熟女人妻精品中文字幕| 欧美色欧美亚洲另类二区| 桃色一区二区三区在线观看| av黄色大香蕉| 国产在线精品亚洲第一网站| 国产成人一区二区在线| 日韩欧美在线乱码| 一级毛片aaaaaa免费看小| 黄色一级大片看看| 久久久午夜欧美精品| 亚洲国产欧洲综合997久久,| 九色成人免费人妻av| 91久久精品国产一区二区三区| 午夜福利在线观看吧| 国产精品永久免费网站| 久久亚洲国产成人精品v| 国产黄片美女视频| 寂寞人妻少妇视频99o| 菩萨蛮人人尽说江南好唐韦庄 | 国产大屁股一区二区在线视频| 特级一级黄色大片| 国产一级毛片七仙女欲春2| 搡老岳熟女国产| 色综合站精品国产| 一级毛片我不卡| 国产视频内射| 老司机午夜福利在线观看视频| 亚洲在线观看片| 亚洲,欧美,日韩| 我的老师免费观看完整版| 在线观看av片永久免费下载| 一a级毛片在线观看| 乱人视频在线观看| 色播亚洲综合网| 欧美xxxx黑人xx丫x性爽| 可以在线观看的亚洲视频| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 免费看光身美女| 欧美日韩综合久久久久久| 亚洲人与动物交配视频| 国产成人影院久久av| 国产视频内射| 成熟少妇高潮喷水视频| 亚洲三级黄色毛片| 精品不卡国产一区二区三区| 成人毛片a级毛片在线播放| 日韩欧美一区二区三区在线观看| 国产一区二区亚洲精品在线观看| 女人十人毛片免费观看3o分钟| 在现免费观看毛片| 亚洲久久久久久中文字幕| 联通29元200g的流量卡| 一级黄色大片毛片| 日日啪夜夜撸| 国产男人的电影天堂91| 国产精品久久视频播放| 美女高潮的动态| 免费观看精品视频网站| 亚洲一区二区三区色噜噜| 国产 一区精品| 长腿黑丝高跟| 成人无遮挡网站| 久久人人爽人人片av| 国产久久久一区二区三区| 天堂影院成人在线观看| 伦理电影大哥的女人| 国产真实伦视频高清在线观看| 成年女人永久免费观看视频| 久久天躁狠狠躁夜夜2o2o| 欧美国产日韩亚洲一区| 午夜视频国产福利| 日本成人三级电影网站| av天堂在线播放| 亚洲av一区综合| 精品人妻熟女av久视频| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看 | 国产精品野战在线观看| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 欧美一区二区亚洲| 久久久国产成人精品二区| 日韩大尺度精品在线看网址| 欧美绝顶高潮抽搐喷水| 久久久久久久久久成人| 亚洲乱码一区二区免费版| 哪里可以看免费的av片| 嫩草影院精品99| 99九九线精品视频在线观看视频| 高清毛片免费观看视频网站| 久久久久国内视频| 亚洲在线观看片| 变态另类成人亚洲欧美熟女| 美女免费视频网站| 国产一区二区三区在线臀色熟女| 一本一本综合久久| 亚洲国产精品国产精品| 精品不卡国产一区二区三区| 国产真实伦视频高清在线观看| 天美传媒精品一区二区| 久久久国产成人精品二区| 精品国内亚洲2022精品成人| 91午夜精品亚洲一区二区三区| 综合色丁香网| 内地一区二区视频在线| .国产精品久久| 国产伦精品一区二区三区视频9| АⅤ资源中文在线天堂| 狠狠狠狠99中文字幕| 男人狂女人下面高潮的视频| av在线亚洲专区| 国产精品无大码| 校园人妻丝袜中文字幕| 亚洲欧美中文字幕日韩二区| 国产色婷婷99| 亚洲一区二区三区色噜噜| 中文字幕av成人在线电影| 亚洲av美国av| 一本久久中文字幕| 日本一本二区三区精品| 国产伦精品一区二区三区四那| 亚洲av五月六月丁香网| 又粗又爽又猛毛片免费看| 色综合亚洲欧美另类图片| 99国产精品一区二区蜜桃av| 午夜福利成人在线免费观看| 色5月婷婷丁香| 精品人妻视频免费看| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 特级一级黄色大片| 欧美一区二区精品小视频在线| 天堂√8在线中文| 麻豆成人午夜福利视频| 男女那种视频在线观看| 在线a可以看的网站| 久久久成人免费电影| 超碰av人人做人人爽久久| 极品教师在线视频| 精品福利观看| 菩萨蛮人人尽说江南好唐韦庄 | 成人欧美大片| 国产熟女欧美一区二区| 黑人高潮一二区| 亚洲av免费高清在线观看| 99热精品在线国产| 高清午夜精品一区二区三区 | 国产精品免费一区二区三区在线| 男插女下体视频免费在线播放| 蜜桃久久精品国产亚洲av| 国产午夜精品论理片| 一级黄色大片毛片| 亚洲美女视频黄频| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 男女那种视频在线观看| 欧美最新免费一区二区三区| 国产不卡一卡二| 中文字幕熟女人妻在线| 国产精品嫩草影院av在线观看| 亚洲人成网站高清观看| 小说图片视频综合网站| 久久99热这里只有精品18| 深爱激情五月婷婷| 国产单亲对白刺激| 久久久久国产精品人妻aⅴ院| 搡女人真爽免费视频火全软件 | 真实男女啪啪啪动态图| 天天一区二区日本电影三级| 精品人妻偷拍中文字幕| 亚洲内射少妇av| 久99久视频精品免费| 欧美日本视频| ponron亚洲| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 黄色日韩在线| 日韩中字成人| videossex国产| 小蜜桃在线观看免费完整版高清| 国产免费一级a男人的天堂| 国产一区二区在线av高清观看| 最新在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| АⅤ资源中文在线天堂| 男插女下体视频免费在线播放| 日本三级黄在线观看| 老熟妇仑乱视频hdxx| 亚洲av第一区精品v没综合| 99热这里只有精品一区| 久久精品91蜜桃| 中文字幕熟女人妻在线| 别揉我奶头~嗯~啊~动态视频| 特级一级黄色大片| 搡女人真爽免费视频火全软件 | 亚洲国产精品国产精品| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 欧美日本视频| 午夜影院日韩av| 亚洲精品久久国产高清桃花| 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| 精品午夜福利在线看| 免费在线观看成人毛片| 国产亚洲精品av在线| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 亚洲三级黄色毛片| 国产午夜精品久久久久久一区二区三区 | 国产精品国产三级国产av玫瑰| 人妻少妇偷人精品九色| 两性午夜刺激爽爽歪歪视频在线观看| 久久国产乱子免费精品| 少妇猛男粗大的猛烈进出视频 | 日韩欧美精品免费久久| 日韩一区二区视频免费看| 最好的美女福利视频网| 亚洲精品影视一区二区三区av| 日韩欧美国产在线观看| 国产视频一区二区在线看| 国产精品爽爽va在线观看网站| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 全区人妻精品视频| 免费看av在线观看网站| 中国美白少妇内射xxxbb| 夜夜看夜夜爽夜夜摸| 最近手机中文字幕大全| 亚洲天堂国产精品一区在线| 欧美性猛交╳xxx乱大交人| 久久久色成人| 97超碰精品成人国产| 精品乱码久久久久久99久播| 国产视频内射| 网址你懂的国产日韩在线| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| av在线蜜桃| 日韩三级伦理在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 一个人观看的视频www高清免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 日本精品一区二区三区蜜桃| 精品久久久久久成人av| 人妻夜夜爽99麻豆av| 美女黄网站色视频| 国内精品宾馆在线| 搡老熟女国产l中国老女人| 国产高清视频在线观看网站| 99热这里只有精品一区| 亚洲自拍偷在线| 日韩 亚洲 欧美在线| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 在线播放国产精品三级| 国产一区二区三区av在线 | 精品不卡国产一区二区三区| 国产伦一二天堂av在线观看| 久久婷婷人人爽人人干人人爱| 老司机影院成人| 免费看光身美女| 日韩三级伦理在线观看| 又爽又黄无遮挡网站| 黄色日韩在线| 一进一出好大好爽视频| 美女 人体艺术 gogo| 亚洲成人av在线免费| 久久精品综合一区二区三区| 夜夜夜夜夜久久久久| 国产熟女欧美一区二区| 俄罗斯特黄特色一大片| 亚洲第一电影网av| 永久网站在线| 岛国在线免费视频观看| 极品教师在线视频| 久久精品91蜜桃| 嫩草影院新地址| 欧美一级a爱片免费观看看| 亚洲激情五月婷婷啪啪| 成人午夜高清在线视频| 亚洲国产精品久久男人天堂| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av美国av| 成年av动漫网址| 人人妻,人人澡人人爽秒播| 精品久久久久久久末码| 联通29元200g的流量卡| 亚洲美女黄片视频| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 天天躁夜夜躁狠狠久久av| 岛国在线免费视频观看| 精品久久久噜噜| www日本黄色视频网| 男人的好看免费观看在线视频| 国产成人一区二区在线| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 成人性生交大片免费视频hd| 欧美不卡视频在线免费观看| 亚洲乱码一区二区免费版| 一级毛片我不卡| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| 热99re8久久精品国产| 国产亚洲精品久久久久久毛片| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 少妇人妻一区二区三区视频| 亚洲四区av| 成人亚洲欧美一区二区av| 久久久精品欧美日韩精品| 青春草视频在线免费观看| 国产成人91sexporn| 99热这里只有是精品在线观看| 国产极品精品免费视频能看的| 国产一区二区在线av高清观看| 国产在视频线在精品| 国产真实伦视频高清在线观看| 三级毛片av免费| 成人亚洲欧美一区二区av| 乱人视频在线观看| 亚洲av成人精品一区久久| 精品人妻偷拍中文字幕| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添小说| 精品国产三级普通话版| 亚洲欧美中文字幕日韩二区| 熟妇人妻久久中文字幕3abv| 国产精品av视频在线免费观看| 日本一二三区视频观看| 免费一级毛片在线播放高清视频| 婷婷精品国产亚洲av在线| 精品欧美国产一区二区三| 国产精品不卡视频一区二区| 国产蜜桃级精品一区二区三区| 女人被狂操c到高潮| ponron亚洲| 美女cb高潮喷水在线观看| 亚洲最大成人中文| 国产高清视频在线观看网站| 亚洲av不卡在线观看| 波多野结衣高清无吗| 欧美激情在线99| 久久久欧美国产精品| 亚洲av成人av| 亚洲图色成人| 欧美日本亚洲视频在线播放| 午夜福利视频1000在线观看| 在线播放无遮挡| 国产精品一区二区三区四区久久| 国产精品一二三区在线看| 日本-黄色视频高清免费观看| 亚洲av熟女| 在线国产一区二区在线| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 亚洲av中文av极速乱| 亚洲精品国产av成人精品 | 成人特级黄色片久久久久久久| 夜夜爽天天搞| 麻豆国产av国片精品| 亚洲av五月六月丁香网| 综合色丁香网| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 午夜激情福利司机影院| 国产老妇女一区| 日本免费a在线| 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 最近的中文字幕免费完整| 亚洲国产高清在线一区二区三| 少妇裸体淫交视频免费看高清| 别揉我奶头 嗯啊视频| 日本色播在线视频| 午夜激情福利司机影院| av.在线天堂| videossex国产| 国产白丝娇喘喷水9色精品| 亚洲婷婷狠狠爱综合网| 女同久久另类99精品国产91| 性色avwww在线观看| 色综合色国产| 天天躁日日操中文字幕| 特级一级黄色大片| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 91麻豆精品激情在线观看国产| 国产精品永久免费网站| 我的女老师完整版在线观看| 成人综合一区亚洲| 深夜精品福利| 丝袜喷水一区| 欧美精品国产亚洲| 成人一区二区视频在线观看| 国产成年人精品一区二区| 真实男女啪啪啪动态图| 国产私拍福利视频在线观看| 欧美高清性xxxxhd video| 久久久成人免费电影| 国产91av在线免费观看| 国产精品久久久久久精品电影| 又爽又黄a免费视频| 亚州av有码| 一级毛片aaaaaa免费看小| 成人特级av手机在线观看| 亚洲人成网站高清观看| 91麻豆精品激情在线观看国产| 国产又黄又爽又无遮挡在线| 色综合亚洲欧美另类图片| av黄色大香蕉| 国产蜜桃级精品一区二区三区| 国产色爽女视频免费观看| 国产欧美日韩精品亚洲av| 久久久欧美国产精品| 亚洲av一区综合| 婷婷亚洲欧美| 两个人视频免费观看高清| 99久久九九国产精品国产免费| 午夜福利在线观看吧| 不卡一级毛片| 国产成人aa在线观看| 日韩一本色道免费dvd| 日本撒尿小便嘘嘘汇集6| 国产 一区精品| 久久精品国产亚洲av天美| av免费在线看不卡| 精品久久久噜噜| 久久久久久国产a免费观看| 欧美高清成人免费视频www| 国产精品精品国产色婷婷| 久久久久久久久久成人| 亚洲国产精品成人综合色| 欧美日韩综合久久久久久| 国产淫片久久久久久久久| 久久久午夜欧美精品| 能在线免费观看的黄片| 欧美三级亚洲精品| 国产成人a∨麻豆精品| 亚洲人成网站在线播放欧美日韩| 春色校园在线视频观看| 国产极品精品免费视频能看的| 最近手机中文字幕大全| 大香蕉久久网| 深爱激情五月婷婷| 大香蕉久久网| 精品久久久久久久末码| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 亚洲中文日韩欧美视频| 深爱激情五月婷婷| 波野结衣二区三区在线| 亚洲四区av| 国产三级中文精品| 成人鲁丝片一二三区免费| 18禁黄网站禁片免费观看直播| 91精品国产九色| 丰满的人妻完整版| 黄色欧美视频在线观看| a级毛片免费高清观看在线播放| 久久久久久久久久成人| 女人十人毛片免费观看3o分钟| 国产高清不卡午夜福利| 麻豆国产av国片精品| 色在线成人网| 国产精品永久免费网站|