• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasma Treatment Enhanced Magnetic Properties in Manganese Doped Titanium Nitride Thin Films

    2017-09-03 07:53:54DanLiLingmingXuShuweiLiXunZhou
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Dan Li,Ling-ming Xu,Shu-wei Li,Xun Zhou

    a.School of Physics&Electronics,Guizhou Normal University,Guiyang 550001,China

    b.State Key Laboratory of Optoelectronic Materials and Technologies,School of Materials Science and Engineering,Sun Yat-sen University,Guangzhou 512075,China

    Plasma Treatment Enhanced Magnetic Properties in Manganese Doped Titanium Nitride Thin Films

    Dan Lia,b,Ling-ming Xub,Shu-wei Lib,Xun Zhoua?

    a.School of Physics&Electronics,Guizhou Normal University,Guiyang 550001,China

    b.State Key Laboratory of Optoelectronic Materials and Technologies,School of Materials Science and Engineering,Sun Yat-sen University,Guangzhou 512075,China

    The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001)substrates.The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment.TiN(002)peak shifts toward low angle direction and TiN(111)peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films.The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface.The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce.The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.

    Epitaxial growth,Magnetic materials,Thin films,Solar energy materials

    I.INTRODUCTION

    The titanium nitride(TiN)is a potential functional material due to their metallic and covalent binding characteristics.It exhibits excellent compatibility with semiconductor industry and traditional silicon devices as diffusion barrier[1,2],Ohmic contact layer[3,4], gate electrodes[5],sensor material[6],spin electron materials[7],and transparent conductive layer in photovoltaic industry[8,9].TiN is of potential application for silicon and germanium semiconductor devices as electrode materials due to it low Ohmic contact and low Schottky barrier[4,10].Efforts have been made to search suitable materials for both spin injection and spin combination of traditional semiconductor technology[11,12].The materials with spin-dependent characteristics,electrical performance,and magnetic properties are strongly needed[13].Manganese(Mn)doped TiN thin films grown by plasma assisted molecular beam epitaxy(PAMBE)present even lower Schottky barrier height and remarkable magnetic behaviors[14]. Some studies emphasize the role of nitrogen on regulating the concentration of nitrogen vacancies to enhance its physical characteristics and electric behaviors.The nitrogen ions and the doped transition metal atoms tend to cluster together,which induces the large spin split acceptor in transition metal doped ZnO and TiO2,etc. [15,16].The sensing performance of TiN can be enhanced by adjusting of nitrogen pressure and post rapid temperature annealing[6].The nitrogen plasma treatment can reduce the nitrogen vacancies and promote the crystalline quality.Moreover,the nitrogen plasma treatment can change the magnetic properties in Mn doped GaN system[17,18].The post treatment enlarges the content of substantial component and therefore improves the magnetization finally.In this paper, we report nitrogen plasma treatment of Mn doped TiN films on MgO(001)substrates deposited by PAMBE. We study the structural and characteristic change before and after the plasma annealing treatment.

    II.EXPERIMENTS

    About 20 nm of Mn doped TiN films were grown in a PAMBE system(German Omicron Ltd.,Custombuilt)with a re flection high energy electron diffraction (RHEED)growth monitoring system.Post treatment was exerted on the as-prepared samples at 800?C and radio frequency of 200 W(Oxford applied RF plasma source),and under 700 mTorr of nitrogen pressure for 10 min.All measurements were measured before and after the post treatment under similar conditions. Atomic force microscope(AFM)was used for the surface topography of films.The X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS)were utilized for crystalline structure and chemical state respectively.The superconducting quantum interference device(SQUID)was used to test the ferromagnetic properties under in-plane magnetic fields from?60 kOe to 60 kOe.

    FIG.1 RHEED patterns of(A)Mg(001)substrate and (B)doped TiN on MgO(001).AFM of(C)as-prepared and (D)post-treated film.

    III.RESULTS AND DISCUSSION

    The evolution process of RHEED pattern demonstrates excellent crystalline quality of as-prepared samples.Clear streaky stripes of single crystal substrate accompanied with some Kikuchi lines and secondary diffraction lines could be seen from FIG.1(A).Obscure periodic bright spot array could be seen from posttreated sample as FIG.1(B)shows.The spot arrays hint that the film is single crystal even though the surface is somewhat rough,which keeps invariant before and after the post treatment.

    Apparently,the post-treated sample presents much smoother surface and bigger grain size according to FIG.1(C)and(D).The root mean square surface roughness is 5.435 nm for the as-prepared sample and 2.236 nm for the post-treated sample.Excepting for the surface topography change of the films,the inner structure is evidently affected by the post treatment process.A tiny peak for TiN(111)at 36.6?emerges in the curve of as-prepared films besides the peak for substrate and the main peak for TiN(002)at 42.64?(65?0565 Fm-3m).The TiN(111)phase probably originates from the lattice mismatch of substrate and epitaxial layer when the baffle of Ti source is suddenly turned away.The time is too short for the resultant to grow under chemical equilibrium state at the moment when plenty of Ti atoms arrive on the surface of MgO substrate.TiN(111)phase generates at the early stage of the growth since the crystal orientation of TiN has not been de fined.The epitaxial layer deforms to match the MgO(100)substrate lattice for the sake of system energy reduction.The peak position does not completely match the standard data due to the Mn doping and nitrogen vacancies.Nitrogen vacancies generate duringthe course of thin film growth,especially in the doped cases[19].The epitaxial layer XRD deviates to high angle side due to nitrogen vacancies in as-prepared films that could lead to compression in unit cells.TiN(002) peak shifts toward low angle and TiN(111)peak disappears after the post treatment.The peak deviating to low angle side is ascribed to the reduction of nitrogen vacancies and therefore the generation of expansion in unit cells.The nitrogen ions will recruit into the lattice again and cause reorganization in lattice during this course when the films undergo post treatment.Some nitrogen ions diffuse to the film-substrate interface and repair the deformed buffer layer since the thickness of TiN is merely 20 nm.The lattice atoms at the interface get enough kinetic energy and atomic mobility at 800?C thus enable the lattice atoms uniformly arrange according to the(100)orientation since the binding energy of(100)is higher than(111)and(110)[20].As a result,the TiN(111)orientated unit cells and corresponding XRD peak vanish under the driving force of Gibbs free energy while sample undergo post treatment.

    FIG.2 XRD of as-prepared and post-treated Mn doped TiN,inset is the lattice structure.

    The conduction band of TiN has essentially a titanium 3d character and shows 3d to 4s orbital hybridization character.In doped case,the Mn donates its one 3d and two 4s electrons to nitrogen for bonding.In asprepared sample(FIG.3(a)),the overlapped Ti 2p3/2peak is located at 455.0 eV,which is close to reported data 454.8 eV.The peak can be decomposed into two peaks of 454.85 and 459.1 eV,respectively,which is identi fied as Ti?N[21]and Ti?O?N[22].The Ti?N peak shifts slightly to the low binding energy side owing to the existence of nitrogen vacancies[23].The Ti?N peak shifts from 454.8 eV to 455.6 eV and the peak of the sum shifts from 455.0 eV to 455.9 eV,while the Ti?O?N peak shifts from 456.0 eV to 456.4 eV,which indicates that more Ti shift to higher value and vacancies decrease correspondingly.The Ti 2p3/2peak ispromoted to a higher value after the post treatment as FIG.3(b)shows.However,the spectra also present even stronger Ti?O?N peak because the samples are not in situ post treated.Some absorbed oxygen atoms will be collided into the lattice of TiN,leading to the generation of Ti?O?N.The even clear Mn2+peak indicates the further implantation of Mn element into the sites of titanium(FIG.3(c))[14].XPS measurements show that the atomic molar ratio of Ti:Mn:N in as-prepared films is about 0.9:0.1:0.9 while the atomic molar ratio is about 0.9:0.1:0.98 in post-treated film.One fact can be veri fied that the plasma treatment can reduce N vacancies according to measured data since the content of nitrogen in post-treated samples increases from 0.9 to 0.98 even though the XPS is not a precise measurement method.This might be a further evidence that the production of vacancies is suppressed by nitrogen plasma annealing[18].

    FIG.3 The XPS spectra of Ti 2p of(a)as-prepared sample and(b)post-treated sample,(c)Mn 2p of post-treated sample.

    The magnetic moment is plotted as a function of magnetic field strength at room temperature in FIG.4.Experimental data show that Mn doping into TiN lattice can generate ferromagnetism.The saturation moment of as-prepared samples is much lower than theoretical data 2?3μBper Mn[24].The magnetism is suppressed because the conduction band is pinned near the Fermi level due to the nitrogen vacancies at defect sites or interface[4,25,26].In another words,the Mn ions in asprepared samples are suppressed to a low spin state for about 1μBper Mn[14].However,the ferromagnetism of Mn doped TiN is obviously seen from the M-H curve even though the existence of suppression effects.The nitrogen atoms are seriously insufficient under very high vacuum,and therefore the generation of nitrogen vacancies is inevitable[27].The ferromagnetic ground state and the local magnetic moment abruptly decrease with nitrogen vacancies according to first-principles study [28].When the as-prepared samples are exposed to the nitrogen plasma at high temperature,Mn atoms can diffuse in the lattice through nitrogen vacancies during the course[29].The concentration of Mn that occupies the titanium sites can signi ficantly be increased as a result due to higher temperature and higher plasma energy.The diffusion interstitial Mn atoms are suppressed and further reduce the possible Mn?N anti-ferromagnetic compounds.The additional nitrogen ions are recruited into the TiN lattice until the nitrogen vacancies are mostly eliminated.The increase of Mn concentration at lattice sites can heighten the value of saturated magnetic moment[30].On the other hand,the elimination of nitrogen vacancies attenuates the pinning effect[31]. Compared with the as-prepared samples,ferromagnetic curve with much higher saturation magnetic moment of 2.5μBper Mn was obtained,which is consistent with theoretic calculation[32].

    FIG.4 Magnetism of(a)as-prepared and(b)post-treated samples.

    IV.CONCLUSION

    In summary,the morphology is optimized on the surface,and lattice is reincorporated inner the samples during the post plasma annealing treatment.The shift of Ti 2p peak to higher energy direction indicates more Ti atoms bond at higher value since the more oxidative atoms are recruited into lattice.The concentration of Mn atoms that occupy at titanium sites ascends and the amount of nitrogen vacancies descends after the plasma annealing treatment.The magnetism is suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface.The nitrogen plasma anneal treatment may reduce nitrogen vacancies and therefore attenuate the pinning effect.The magnetism is activated by the plasma implantation of nitrogen ions into the lattice along with nitrogen vacancies reduce.The concentration increase of Mn that is located at Ti sites as well as the concentration decrease of nitrogen vacancies would evidently lead to the enhancement of ferromagnetism.

    V.ACKNOWLEDGMENTS

    This work is supported by the Science and Technology Cooperation Plan of Guizhou Province(JLKS[2013]15),the 2012 Doctor Foundation of Guizhou Normal University of China(Xun Zhou)Scholars ofMinistryofEducation ofChina,Ph.D.Programs Foundation of Ministry of Education of China (No.20120171120011),the Open Fund of the State Key Laboratory on Integrated Optoelectronics of Jilin University(No.IOKL2013KF14),the National Natural Science Foundation of China(No.61273310).

    [1]M.Wittmerand H.Melchior,Thin Solid Films 93,397 (1982).

    [2]H.O.Pierson,Handbook of Refractory Carbides and Nitrides,William Andrew:Elsevierence,(1996).

    [3]M.Wittmer,J.Vac.Sci.Technol.A 3,1797(1985).

    [4]H.D.Wu,W.Huang,W.F.Lu,R.F.Tang,C.Li,H. K.Lai,S.Y.Chen,and C.L.Xue,Appl.Surf.Sci.284, 877(2013).

    [5]N.Ramanuja,R.A.Levy,S.N.Dharmadhikari,E. Ramos,C.W.Pearce,S.C.Menasian,P.C.Schamberger,and C.C.Collins,Mater.Lett.57,261(2002).

    [6]C.Ren,C.M.Yang,C.Lyu,C.Y.Hsu,T.C.Chen, H.C.Wang,H.Yang,W.T.Lin,P.C.Juan,C.H. Huang,D.G.Pijanowska,J.C.Wang,and J.R.Tsai, Vacuum 118,113(2015).

    [7]A.Sugihara,S.Osaki,and R.Nakatani,J.Jpn.Inst. Met.Mater.77,398(2013).

    [8]Y.Nishio,T.Yamaguchi,K.Nishio,and S.Hayase,J. Appl.Electrochem.46,551(2016).

    [9]G.Q.Wang and S.M.Liu,Mater.Lett.161,294 (2015).

    [10]J.Xing,H.Y.Hao,and Z.Y.Zheng,Opt.Adv.Mat. 5,1174(2011).

    [11]V.V.Osipov and A.M.Bratkovski,Spin Injection Devices 7164181(2005).

    [12]P.Borisov,A.Hochstrat,V.V.Shvartsman,W.Kleemann,and P.M.Hauck,Integr.Ferroelectr.99,69 (2008).

    [13]S.A.Wolf,D.D.Awschalom,R.A.Buhrman,J. M.Daughton,S.von Moln′ar,M.L.Roukes,A.Y. Chtchelkanova,and D.M.Treger,Science 294,1488 (2001).

    [14]S.X.Wu,Y.Q.Xia,X.L.Yu,Y.J.Liu,and S.W.Li, J.Appl.Phys.102,063911(2007).

    [15]K.R.Kittilstved,W.K.Liu,and D.R.Gamelin,Nat. Mater.5,291(2006).

    [16]S.Q.Ren,H.W.Qin,J.P.Bu,G.C.Zhu,J.H.Xie, and J.F.Hu,Appl.Phys.Lett.107,062404(2015).

    [17]J.M.Baik,Y.Shon,T.W.Kang,and J.L.Lee,Appl. Phys.Lett.89,152113(2006).

    [18]J.M.Baik,Y.Shon,T.W.Kang,and J.L.Lee,Appl. Phys.Lett.84,1120(2004).

    [19]L.Miao,S.Tanemura,H.Watanabe,Y.Mori,K. Kaneko,and S.Toh,J.Cryst.Growth 260,118(2004).

    [20]L.A.Zhang,S.Tong,H.N.Liu,Y.L.Li,and Z.Wang, Mater.Lett.171,304(2016).

    [21]I.V.Blinkov,A.O.Volkhonskii,and Y.V.Konyukhov, Russ.Metall.2012,599(2012).

    [22]S.Tanemura,L.Miao,Y.Kajino,M.Tanemura,S.Toh, K.Kaneko,and Y.Mori,Jpn.J.Appl.Phys.46,356 (2007).

    [23]N.Jiang,H.J.Zhang,S.N.Bao,Y.G.Shen,and Z. F.Zhou,Phys.B 352,118(2004).

    [24]A.Herwadkar and W.R.L.Lambrecht,Phys.Rev.B 72,235207(2005).

    [25]X.K.Ning,Z.J.Wang,and Z.D.Zhang,Sci.Rep.5, 8460(2015).

    [26]K.Yamane,K.Hamaya,Y.Ando,Y.Enomoto,K.Yamamoto,T.Sadoh,and M.Miyao,Appl.Phys.Lett. 96,162104(2010).

    [27]T.Priem,B.Beuneu,C.H.de Novion,R.Caudron,F. Solal,and A.N.Christensen,Solid State Commun.63, 929(1987).

    [28]V.V.Bannikov,I.R.Shein,N.I.Medvedeva,and A. L.Ivanovskii,J.Magn.Magn.Mater.321,3624(2009).

    [29]M.B.Haider,C.Constantin,H.Al-Brithen,H.Q. Yang,E.Trifan,D.Ingram,A.R.Smith,C.V.Kelly, and Y.Ijiri,J.Appl.Phys.93,5274(2003).

    [30]J.M.Baik,Y.Shon,T.W.Kang,and J.L.Lee,Appl. Phys.Lett.87,042105(2005).

    [31]S.G.Jeong,H.Y.Park,M.H.Lim,W.S.Jung,H.Y. Yu,Y.Roh,and J.H.Park,Org.Electron.13,1511 (2012).

    [32]S.X.Wu,Y.Q.Xia,X.L.Yu,Y.J.Liu,and S.W.Li, J.Appl.Phys.102,063911(2007).

    ceived on March 20,2017;Accepted on June 26,2017)

    ?Author to whom correspondence should be addressed.E-mail: hbkfy@gznu.edu.cn

    久久国产精品人妻蜜桃| 久久午夜综合久久蜜桃| 成人国语在线视频| 久99久视频精品免费| 在线观看免费日韩欧美大片| 日韩人妻精品一区2区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区三区综合在线观看| 亚洲精品美女久久久久99蜜臀| 99热只有精品国产| 国产91精品成人一区二区三区| 精品一区二区三卡| 国产不卡一卡二| 国产不卡av网站在线观看| 亚洲精品久久成人aⅴ小说| 精品一区二区三卡| 久久狼人影院| 久久亚洲精品不卡| 亚洲片人在线观看| 久久亚洲精品不卡| 久久中文看片网| 亚洲精品一二三| 丰满的人妻完整版| 精品一区二区三卡| 久久精品aⅴ一区二区三区四区| 午夜福利欧美成人| 国产av一区二区精品久久| 日韩精品免费视频一区二区三区| av在线播放免费不卡| 国产高清激情床上av| 国产蜜桃级精品一区二区三区 | 日本精品一区二区三区蜜桃| 欧美黑人欧美精品刺激| 亚洲熟妇中文字幕五十中出 | 男女床上黄色一级片免费看| 欧美日本中文国产一区发布| 老汉色av国产亚洲站长工具| 精品人妻熟女毛片av久久网站| 人妻一区二区av| 欧美黄色片欧美黄色片| 免费黄频网站在线观看国产| 成人特级黄色片久久久久久久| 亚洲精品国产区一区二| 身体一侧抽搐| 自线自在国产av| 村上凉子中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美一区二区三区在线观看 | 99国产精品一区二区蜜桃av | 欧美激情久久久久久爽电影 | 后天国语完整版免费观看| 欧美人与性动交α欧美精品济南到| 男人操女人黄网站| 亚洲欧美激情综合另类| 国产精品亚洲av一区麻豆| 老司机午夜福利在线观看视频| 校园春色视频在线观看| 久久影院123| 午夜免费鲁丝| 精品卡一卡二卡四卡免费| 国产精品免费视频内射| 一边摸一边抽搐一进一出视频| 一边摸一边抽搐一进一出视频| 侵犯人妻中文字幕一二三四区| 一边摸一边做爽爽视频免费| 国产99白浆流出| 身体一侧抽搐| 91字幕亚洲| 国产精品久久久人人做人人爽| 亚洲第一青青草原| 51午夜福利影视在线观看| 两性夫妻黄色片| 欧美色视频一区免费| 精品无人区乱码1区二区| 国产精品亚洲av一区麻豆| 法律面前人人平等表现在哪些方面| 久久ye,这里只有精品| 黄色a级毛片大全视频| 99久久99久久久精品蜜桃| 热99国产精品久久久久久7| 欧美日韩av久久| 不卡一级毛片| 国产野战对白在线观看| 欧美黑人精品巨大| 美女高潮喷水抽搐中文字幕| 美女高潮到喷水免费观看| 亚洲欧美一区二区三区黑人| 99riav亚洲国产免费| 久久久精品国产亚洲av高清涩受| 可以免费在线观看a视频的电影网站| 亚洲精品国产一区二区精华液| svipshipincom国产片| 黄色a级毛片大全视频| 亚洲成人手机| 女性被躁到高潮视频| 欧美 日韩 精品 国产| 久久国产乱子伦精品免费另类| 欧美av亚洲av综合av国产av| 国产高清激情床上av| 国产欧美日韩精品亚洲av| 久久久国产精品麻豆| 99国产精品一区二区蜜桃av | 在线十欧美十亚洲十日本专区| av免费在线观看网站| 动漫黄色视频在线观看| 欧美+亚洲+日韩+国产| 精品国产一区二区三区四区第35| 精品人妻在线不人妻| 在线天堂中文资源库| 69av精品久久久久久| 久久九九热精品免费| 精品一区二区三区四区五区乱码| 亚洲成国产人片在线观看| 99久久综合精品五月天人人| 黄色a级毛片大全视频| 一本综合久久免费| 麻豆成人av在线观看| 亚洲 国产 在线| 波多野结衣av一区二区av| 精品一品国产午夜福利视频| 亚洲少妇的诱惑av| 成人国产一区最新在线观看| 亚洲第一av免费看| 天堂√8在线中文| 国产成人精品无人区| 午夜精品久久久久久毛片777| 精品久久久久久电影网| www.精华液| 成人精品一区二区免费| 欧美日韩av久久| 飞空精品影院首页| 久久精品熟女亚洲av麻豆精品| 欧美激情极品国产一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩成人在线一区二区| 无人区码免费观看不卡| 亚洲欧洲精品一区二区精品久久久| 热re99久久国产66热| 不卡av一区二区三区| 美女国产高潮福利片在线看| 亚洲国产欧美日韩在线播放| 亚洲欧美色中文字幕在线| 欧美老熟妇乱子伦牲交| 精品国产一区二区三区久久久樱花| 夜夜爽天天搞| 日本一区二区免费在线视频| 欧美日韩亚洲国产一区二区在线观看 | 午夜亚洲福利在线播放| 久久性视频一级片| 国产麻豆69| 欧美另类亚洲清纯唯美| 男男h啪啪无遮挡| 亚洲欧美精品综合一区二区三区| 精品电影一区二区在线| av欧美777| 女性生殖器流出的白浆| 一级,二级,三级黄色视频| bbb黄色大片| av天堂久久9| 欧美精品啪啪一区二区三区| 黄色 视频免费看| 日韩 欧美 亚洲 中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 天堂中文最新版在线下载| 亚洲人成电影观看| 国产成人免费观看mmmm| 人人妻人人添人人爽欧美一区卜| 老司机亚洲免费影院| 超碰97精品在线观看| 日韩精品免费视频一区二区三区| 久久久国产欧美日韩av| 又紧又爽又黄一区二区| 老汉色av国产亚洲站长工具| 精品午夜福利视频在线观看一区| 岛国在线观看网站| 两个人免费观看高清视频| 亚洲片人在线观看| 亚洲精品国产精品久久久不卡| 国产成人精品无人区| 这个男人来自地球电影免费观看| 免费在线观看亚洲国产| 欧美精品av麻豆av| 午夜福利影视在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 精品一品国产午夜福利视频| 欧美日韩中文字幕国产精品一区二区三区 | 男女下面插进去视频免费观看| 成人黄色视频免费在线看| 国产精品久久电影中文字幕 | 十八禁高潮呻吟视频| 深夜精品福利| av网站免费在线观看视频| 美女 人体艺术 gogo| 午夜成年电影在线免费观看| www日本在线高清视频| 丝瓜视频免费看黄片| 国产不卡av网站在线观看| 国产亚洲精品久久久久5区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品永久免费网站| 久久精品亚洲精品国产色婷小说| 美女视频免费永久观看网站| 日韩欧美一区二区三区在线观看 | 99热网站在线观看| 亚洲精品久久午夜乱码| 一级黄色大片毛片| 亚洲国产精品sss在线观看 | 日韩制服丝袜自拍偷拍| 亚洲,欧美精品.| 69av精品久久久久久| 亚洲人成伊人成综合网2020| 国产99久久九九免费精品| 亚洲熟女毛片儿| 亚洲精品久久成人aⅴ小说| 天堂√8在线中文| 日韩大码丰满熟妇| 精品午夜福利视频在线观看一区| 天天躁日日躁夜夜躁夜夜| 老汉色∧v一级毛片| 人妻 亚洲 视频| 最近最新中文字幕大全免费视频| 日本wwww免费看| 怎么达到女性高潮| 亚洲中文字幕日韩| 久久天堂一区二区三区四区| 久久精品国产亚洲av高清一级| 亚洲欧美激情综合另类| 黄色毛片三级朝国网站| 久久久精品区二区三区| 人妻 亚洲 视频| 色精品久久人妻99蜜桃| 美女扒开内裤让男人捅视频| 欧美人与性动交α欧美软件| 男女午夜视频在线观看| 大香蕉久久网| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 麻豆成人av在线观看| avwww免费| 51午夜福利影视在线观看| 色婷婷av一区二区三区视频| 啦啦啦视频在线资源免费观看| 久久久久久人人人人人| 一区二区日韩欧美中文字幕| 性色av乱码一区二区三区2| 国产麻豆69| 热re99久久国产66热| 久久久久久人人人人人| 天堂动漫精品| 久久性视频一级片| 国产高清videossex| 一二三四在线观看免费中文在| 国产又色又爽无遮挡免费看| 欧美在线一区亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 王馨瑶露胸无遮挡在线观看| 久久精品国产a三级三级三级| 女人久久www免费人成看片| 亚洲五月婷婷丁香| 搡老乐熟女国产| 亚洲五月色婷婷综合| 他把我摸到了高潮在线观看| 久久天躁狠狠躁夜夜2o2o| www.精华液| 国产精品一区二区精品视频观看| 国产真人三级小视频在线观看| 国产亚洲精品久久久久5区| 亚洲精品乱久久久久久| 久久精品亚洲精品国产色婷小说| 国产男靠女视频免费网站| 国产有黄有色有爽视频| 99热网站在线观看| 欧美乱码精品一区二区三区| 99国产极品粉嫩在线观看| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| 欧美日韩国产mv在线观看视频| av天堂在线播放| 久久国产精品大桥未久av| 性少妇av在线| 美国免费a级毛片| 午夜影院日韩av| 久久99一区二区三区| 狂野欧美激情性xxxx| 欧美性长视频在线观看| 国产精品久久久av美女十八| 国产有黄有色有爽视频| 国产一区二区三区视频了| 黄色女人牲交| 嫁个100分男人电影在线观看| 国产aⅴ精品一区二区三区波| 国产精品亚洲一级av第二区| 黄色女人牲交| 一级,二级,三级黄色视频| 国产精品一区二区在线不卡| 日本黄色视频三级网站网址 | 校园春色视频在线观看| 亚洲专区国产一区二区| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 国产一区二区激情短视频| 久久这里只有精品19| 一本综合久久免费| 在线视频色国产色| 日本a在线网址| av网站在线播放免费| 欧美激情久久久久久爽电影 | 精品少妇久久久久久888优播| 久久久久久免费高清国产稀缺| 国产精品免费一区二区三区在线 | 国内久久婷婷六月综合欲色啪| 黄色成人免费大全| 国产av一区二区精品久久| 国产成人精品久久二区二区91| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 欧美激情 高清一区二区三区| 欧美乱妇无乱码| 黄片播放在线免费| 久久久久久人人人人人| 天天添夜夜摸| 亚洲熟女精品中文字幕| 国内久久婷婷六月综合欲色啪| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频| aaaaa片日本免费| 亚洲av成人一区二区三| 免费黄频网站在线观看国产| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮喷水抽搐中文字幕| 免费观看a级毛片全部| 日日爽夜夜爽网站| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 夜夜夜夜夜久久久久| 欧美乱色亚洲激情| 亚洲国产看品久久| 欧美日韩成人在线一区二区| 高潮久久久久久久久久久不卡| 亚洲国产欧美日韩在线播放| 久久精品人人爽人人爽视色| 国产麻豆69| 欧美精品啪啪一区二区三区| avwww免费| 黄片大片在线免费观看| 成人三级做爰电影| 久久精品国产综合久久久| 久久国产乱子伦精品免费另类| 欧美在线一区亚洲| 亚洲在线自拍视频| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| svipshipincom国产片| 美女视频免费永久观看网站| 亚洲av电影在线进入| 精品欧美一区二区三区在线| 水蜜桃什么品种好| 深夜精品福利| 很黄的视频免费| 国产精品99久久99久久久不卡| 免费在线观看完整版高清| 18禁黄网站禁片午夜丰满| 岛国在线观看网站| 人妻一区二区av| 精品无人区乱码1区二区| 91在线观看av| 亚洲片人在线观看| 国产成人av教育| 精品少妇一区二区三区视频日本电影| 18禁国产床啪视频网站| 青草久久国产| 成人永久免费在线观看视频| 丰满的人妻完整版| 国产欧美日韩综合在线一区二区| 99国产精品一区二区三区| 国产91精品成人一区二区三区| 美女 人体艺术 gogo| 欧美精品亚洲一区二区| 国产精品.久久久| 午夜成年电影在线免费观看| ponron亚洲| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 精品久久久久久,| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 香蕉国产在线看| 岛国在线观看网站| 久久精品人人爽人人爽视色| 麻豆国产av国片精品| 热99国产精品久久久久久7| 99国产精品免费福利视频| 最新在线观看一区二区三区| 国产精品1区2区在线观看. | 国产色视频综合| 在线观看舔阴道视频| 日韩欧美一区二区三区在线观看 | 成人精品一区二区免费| 精品国产一区二区三区四区第35| 99热国产这里只有精品6| 精品福利观看| videosex国产| 久久久久精品国产欧美久久久| 99久久人妻综合| 桃红色精品国产亚洲av| 咕卡用的链子| a级片在线免费高清观看视频| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| 欧美激情高清一区二区三区| 两个人看的免费小视频| 久久国产乱子伦精品免费另类| 在线观看免费日韩欧美大片| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 69av精品久久久久久| 少妇猛男粗大的猛烈进出视频| 欧美精品av麻豆av| tube8黄色片| 中文字幕人妻熟女乱码| 欧美精品亚洲一区二区| 国产一区二区三区在线臀色熟女 | 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 在线观看免费日韩欧美大片| 国产精品久久久久成人av| 午夜福利,免费看| 久久精品国产99精品国产亚洲性色 | 午夜精品国产一区二区电影| 亚洲av熟女| 在线十欧美十亚洲十日本专区| 天堂中文最新版在线下载| 午夜精品在线福利| www日本在线高清视频| 一二三四社区在线视频社区8| 美女扒开内裤让男人捅视频| 999久久久国产精品视频| 国产精品久久视频播放| 老司机深夜福利视频在线观看| 久久香蕉国产精品| 国内久久婷婷六月综合欲色啪| 久久久国产欧美日韩av| 在线观看日韩欧美| 一区二区三区激情视频| 亚洲av日韩在线播放| 一区二区三区国产精品乱码| 91麻豆精品激情在线观看国产 | 婷婷丁香在线五月| 男人舔女人的私密视频| 丝袜人妻中文字幕| 757午夜福利合集在线观看| 国产免费现黄频在线看| 黄色丝袜av网址大全| 国产精品久久久av美女十八| 99香蕉大伊视频| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av | 99在线人妻在线中文字幕 | 国产av一区二区精品久久| 操美女的视频在线观看| 12—13女人毛片做爰片一| 中国美女看黄片| av不卡在线播放| 91成年电影在线观看| 黄色a级毛片大全视频| 80岁老熟妇乱子伦牲交| 可以免费在线观看a视频的电影网站| 亚洲 国产 在线| 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av高清一级| 中文字幕高清在线视频| 99国产精品免费福利视频| 国内久久婷婷六月综合欲色啪| 亚洲av成人不卡在线观看播放网| 中文欧美无线码| 亚洲精品一卡2卡三卡4卡5卡| 大型av网站在线播放| 午夜91福利影院| 女人久久www免费人成看片| 高潮久久久久久久久久久不卡| 丰满的人妻完整版| 色综合欧美亚洲国产小说| 精品人妻1区二区| 日韩有码中文字幕| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 超碰成人久久| 日韩视频一区二区在线观看| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| 久久ye,这里只有精品| 亚洲欧美色中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 91字幕亚洲| 国产极品粉嫩免费观看在线| 超碰97精品在线观看| 桃红色精品国产亚洲av| 少妇 在线观看| 夜夜爽天天搞| 欧美精品啪啪一区二区三区| 大陆偷拍与自拍| 丝袜美足系列| 成人亚洲精品一区在线观看| 在线国产一区二区在线| 宅男免费午夜| 日韩欧美在线二视频 | 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 免费在线观看黄色视频的| 激情视频va一区二区三区| 日韩人妻精品一区2区三区| 下体分泌物呈黄色| 精品免费久久久久久久清纯 | 国产一区二区三区在线臀色熟女 | 国产成人精品久久二区二区免费| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 欧美黄色片欧美黄色片| 91老司机精品| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 丰满的人妻完整版| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| xxx96com| 欧美激情 高清一区二区三区| av天堂久久9| 人妻一区二区av| 一级毛片女人18水好多| www.999成人在线观看| 看免费av毛片| 亚洲成av片中文字幕在线观看| 淫妇啪啪啪对白视频| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区av网在线观看| 黄片小视频在线播放| 人人妻人人添人人爽欧美一区卜| 亚洲成人国产一区在线观看| 亚洲在线自拍视频| www.999成人在线观看| 精品国内亚洲2022精品成人 | 欧美日韩一级在线毛片| 三上悠亚av全集在线观看| 午夜精品久久久久久毛片777| 身体一侧抽搐| 99香蕉大伊视频| 天天躁夜夜躁狠狠躁躁| x7x7x7水蜜桃| 涩涩av久久男人的天堂| 久久久久视频综合| avwww免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲视频免费观看视频| 久久人妻av系列| 亚洲av成人av| 国产激情欧美一区二区| 亚洲av成人av| 日日摸夜夜添夜夜添小说| 欧美日本中文国产一区发布| 一区二区三区国产精品乱码| 大陆偷拍与自拍| 99国产精品一区二区三区| 交换朋友夫妻互换小说| 女同久久另类99精品国产91| 91国产中文字幕| 日韩免费av在线播放| 日本wwww免费看| 久久久国产欧美日韩av| 久久久国产一区二区| 麻豆国产av国片精品| 乱人伦中国视频| 精品久久蜜臀av无| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲男人天堂网一区| 啦啦啦在线免费观看视频4| 老司机影院毛片| 免费日韩欧美在线观看| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 久9热在线精品视频| 男人舔女人的私密视频| 很黄的视频免费| 一a级毛片在线观看| 高清在线国产一区| 一二三四社区在线视频社区8| 成人18禁高潮啪啪吃奶动态图| 精品国产亚洲在线| 黄片大片在线免费观看| 亚洲全国av大片| 色婷婷av一区二区三区视频| 美女午夜性视频免费| 久久久久精品国产欧美久久久| 亚洲成人国产一区在线观看| 精品一区二区三区av网在线观看| 90打野战视频偷拍视频| 免费日韩欧美在线观看| a级毛片在线看网站| 国产一区二区三区视频了| aaaaa片日本免费| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡| 天堂动漫精品| 午夜日韩欧美国产| 国产精品久久久久久人妻精品电影| 中文亚洲av片在线观看爽 | 精品一区二区三区视频在线观看免费 |