• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tailoring the Self-assembly of Melamine on Au(111)via Doping with Cu Atoms

    2017-09-03 07:53:57HexiaShiWenyuanWangZheLiLiWangXiangShao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    He-xia Shi,Wen-yuan Wang,Zhe Li,Li Wang,Xiang Shao

    Department of Chemical Physics,CAS Key Laboratory of Urban Pollutant Conversion,Synergetic, Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Tailoring the Self-assembly of Melamine on Au(111)via Doping with Cu Atoms

    He-xia Shi,Wen-yuan Wang,Zhe Li,Li Wang,Xiang Shao?

    Department of Chemical Physics,CAS Key Laboratory of Urban Pollutant Conversion,Synergetic, Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    The doping effect of Cu on the self-assembly film of melamine on an Au(111)surface has been investigated with scanning tunneling microscopy(STM).The evaporated Cu adatoms occupy the positions underneath the amino groups and change the hydrogen bonding pattern between the melamine molecules.Accordingly,the self-assembly structure has changed stepwise from a well-de fined honeycomb into a track-like and then a triangular structure depending on the amount of Cu adatoms.The interaction between Cu adatom and melamine is moderate thus the Cu adatoms can be released upon mild heating to around 100?C.These findings are different from previous observations of either the coordination assembly or the physically trapped metal adatoms.

    Melamine,Self-assembly,Scanning tunneling microscopy,Cu adatoms,Hydrogen bonding

    I.INTRODUCTION

    Molecular self-assemblies(SAM)on metals have retained large research interests for decades due to its spontaneity,designability and functionality,which constitute a fascinating strategy for constructing variously functionalized nanostructures[1?3].Generally,on the active metals the ordering of the molecules is governed by the strong adsorbate-substrate interactions, whereas on the inert metals by various intermolecular interactions including van der Waals interaction,hydrogen bonding[4?6],metal coordination[7,8],halogen bonding[9,10],as well as indirect intermolecular interactions mediated by the strong surface states of the substrate[11].The metal adatoms,either intrinsically existing on the substrate or dosed intentionally, are frequently found participating and tailoring the selfassembly structures[8,12,13].On these occasions, metal adatoms are strongly involved in the chemical reactions of the molecules by initiating the covalent bond breaking as well as the coordinating bond formation [14?19].In other cases,they may also be trapped by the assembly frameworks,leaving no apparent in fluence on the assembly structures[5,20].Here we report another example wherein the dosed metal shows relatively weak interaction with the assembled molecules,but can signi ficantly change the assembly pattern by tailoring the existing intermolecular interactions.

    Melamine(1,3,5-triazine-2,4,6-triamine)contains a triazine core with three terminal amino groups,and is widely applied as building block of hydrogen bonding networks[5,21].On coinage metals such as Au(111) [22,23]and Ag(111)[24],melamine has been reported to form highly ordered honeycomb structures,mediated by the ideal hydrogen bonding networks between the flat-lying molecules.Whereas on more active transition metals such as Ni(111)[25]and Pd(111)[26],dehydrogenation occurs upon depositing melamine at room temperature thus the assembly structure is governed by the π-π stacking of the vertically adsorbed radicals.Cu substrate is somehow an intermediate case which shows physisorption-to-chemisorption transition around room temperature[27?30].In a recent work of our group,we have carefully investigated the adsorption and assembling of melamine on the evaporated Cu/Au(111) films as a function of film thickness[30].A gradual transition of melamine from physisorption to chemisorption was clearly demonstrated and the effects of Cu adatoms were discussed in tuning the melamine assemblies on the exposed Au(111)surface.

    In this work,we intentionally dosed Cu onto the Au(111)surface which was pre-covered with melamine assembly,and evidenced the changes of the molecular arrangements as functions of the amount of the dosed Cu.We found the interactions between Cu adatom and melamine molecule were moderate and could not lead to coordinative assembly on the Au(111)surface,but their incorporation already caused the changes of the hydrogen bonding patterns of melamine.These findings areexpected to shed new lights on the role of metal adatoms in organic self-assemblies.

    II.EXPERIMENTS

    All experiments were carried out on a Createc lowtemperature scanning tunneling microscope(LT-STM) housed in an ultra-high vacuum(UHV)system with base pressure of 1×10?10mbar. The Au(111)single crystal was cleaned by repeated Ar+sputtering and subsequent radiative heating at 800 K.Melamine (>98%)molecule was purchased from Sigma Aldrich and used without further puri fication before passed into the UHV chamber.Evaporation of melamine was conducted at~100?C with a pre-degassing for 10 h before depositing onto the surface which was held at room temperature(RT).The home-made copper evaporator was constructed by wrapping a high-purity copper wire (99.99%,1 mm thick,Sigma-Aldrich)around the tungsten filament of a commercial bulb(Phillip). Electrochemically etched tungsten tips were used to obtain constant current images at liquid nitrogen(LN2) temperature with the bias voltage applied to the sample.All STM images were treated with WSxM software (ver.5.0)[31].

    III.RESULTS AND DISCUSSION

    The self-assembly of melamine on Au(111)at room temperature has been extensively studied previously [15,16].It is revisited as a reference for revealing the doping effect of the Cu adatom.FIG.1(a)shows the clean Au(111)surface with herringbone structure far before doping with any metals.A clear and periodicreconstruction pattern can be viewed.The inserted atomic resolution image also demonstrates that the surface is free of contaminations.After depositing 0.7 ML of melamine at RT,the highly ordered honeycomb structure is immediately developed with large domain size of tens to hundreds of nanometers.Only few antiphase domain boundaries can be observed,which is actually corresponding to close-packed structure.At the meantime,the substrate herringbone textures can still be visible,without any disturbance in comparison with the clean surface,manifesting the weak interactions between melamine and the Au(111)surface.The zoom-in image in FIG.1(c)in combination with the model in FIG.1(d)shows clearly that all the melamine molecules lie flat on the surface and assemble into honeycomb structure via the N?H···H hydrogen bonds between neighboring molecules.The rhombic unit cell is measured as a=b=1.19±0.05 nm,θ=60?.Notice here we only show the clockwise assembly.Its enantiomer can be found on the surface with equal probability.

    FIG.1(a)Clean surface of Au(111).Inserted is the atomic resolution image.(b)STM image of 0.7 ML melamine on Au(111)deposited at room temperature.(c)High resolution STM image of honeycomb structure of melamine.The lattice parameters outlined in inset of(c)were measured to be a=b=(1.19±0.05)nm,θ=60?.(d)Molecular model of the honeycomb structure.In the model N,H and C are respectively represented by blue,white and grey balls.Tunneling parameters:(a)I=730 pA,U=?1.08 V;(b)I=140 pA, U=?1.01 V;(c)I=170 pA,U=?0.80 V.

    On the basis of the clean Au(111)substrate,we prepared a Cu-doped surface by depositing small amount of Cu followed by annealing to~400?C.With this treatment,a lightly Cu-doped Au(111)surface can be obtained. As shown in FIG.2(a),there are many shallow depressions observed,mostly positioned at the ridges(bright lines)of the reconstructed Au(111)surface,while the whole herringbone pattern retains unchanged.In the atomically resolved image as shown in FIG.2(b),these atomic-sized depressions are found occupying one to a few atomic lattice.According to previous studies of Cu films on Au,we assign these dark species as the doped Cu atoms that are positioned at the subsurface region of Au(111)[32,33].Here we notice that the local empty states around the Cu dopants may be suppressed based on the dark contrast under positive biases.However,their local filled states seem to be signi ficantly enhanced thus presenting as bright spots under negative biases,as shown in FIG.S1 in supplementary materials.Upon depositing melamine onto this surface,exactly the same honeycomb assembly structure as on the undoped Au(111)was formed,as shown in FIG.2(c)and the inserted image.Additionally many bright spots were observed positioning at the ridges of the Au substrate.We propose that these bright spots are formed due to the residing of melamine on top of the subsurface Cu atoms[20,34].Apparently,thesedoped Cu atoms did not cause any disturbance to the HB networks of the assembly,indicating a weak interaction with surface melamine molecules.On the other hand,if these Cu atoms are located at the surface layer, a stronger interaction with melamine can be expected which should affect the assembly structure of melamine [35].

    FIG.2 Cu-doped Au(111)surface before(a,b)and after(c)depositing 0.7 ML melamine.The doped Cu atoms are imaged as dark species under positive biases but bright spots under negative biases.Their combination with melamine lead to the formation of brighter triangles imbedded in the honeycomb network and seen at negative biases.Tunneling conditions: (a)I=790 pA,U=1.08 V;(b)I=8 nA,U=?13.6 mV;(c)I=370 pA,U=?1.50 V.

    FIG.3 STM images of the emergence of the Track-like structure upon depositing(a)0.005 ML and(b)0.01 ML of Cu onto the honeycomb assembly of melamine at RT.The black lines de fine the three equivalent orientations of the TK domains. (c)High resolution STM image of the TK structure.The unit cell is de fined by the black parallelogram.a=(2.92±0.03)nm, b=(2.79±0.04)nm,θ=83?.(d)Tentative model of the repeating building block de fined by the shadowed parallelogram in (c).Four triangular molecular clusters are de fined by the dashed triangles.N,H,C and Cu atoms are represented by blue, white,grey and yellow balls,respectively.Scanning conditions:(a)I=90 pA,U=1.16 V;(b)I=150 pA,U=0.40 V;(c) I=240 pA,U=0.71 V.

    With these fundamental knowledge in mind,we start to consider the effect of dosing Cu atoms on the assembled melamine film on Au(111).As shown in FIG.3(a), upon depositing about 0.005 ML Cu onto the 0.7 ML honeycomb film of melamine at room temperature,a new track-like structure(termed as TK structure)immediately emerged coexisting with the remained honeycomb structure. Continuing dosing Cu to about 0.01 ML,the honeycomb network completely disappeared and only the TK structure was left on the surface,as shown in FIG.3(b).Meantime coexisting were the scattered large holes that are imbedded in the assembled film. The primary axes(the black lines in FIG.3(b)of the TK structure)are basically parallel to three equivalent〈1ˉ10〉directions of the Au(111)surface, thus forming three differently orientated domains based on the symmetry.A high-resolution image is shown in FIG.3(c),wherein the periodic unit cell is marked by the black parallelogram and the repeating molecular cluster is highlighted by the shadowed parallelogram.The unit cell is measured as a=(2.92±0.03)nm, b=(2.79±0.04)nm,θ=83?,and contains 16 protrusions. Accordingly,the repeating unit also contains 16 protrusions,12 of which can be clearly identi fied with triangular shape and the other four basically triangular but with greater brightness than the others.We tentatively attribute the well-shaped triangular protrusions to the flat-lying melamine molecules which are analogous to those in the honeycomb structure,whereas those brighter asymmetric triangular species to the complex of a melamine molecule with a Cu adatom.An arbitrary model is shown in FIG.3(d),wherein each melamine molecule also forms three N?H···H HB pairs with neighboring molecules but the HBs are arranged in the unsymmetrical pattern.More importantly,four Cu adatoms are arbitrarily positioned under the amino groups, fitting with the observed four brighter protrusions.Such assumption can find supports from our recent work[21]where the Cu-underneath-NH2con figuration is a metastable position for isolated molecules but largely favored for the construction of HB network. However,why only four Cu adatoms can be incorporated in the structure cannot be fully understood.The repeating unit shown in FIG.3(d)can be further divided into four triangular melamine clusters(TMCs), each containing six melamine molecules and one Cu adatom. As marked by the dashed triangles,these TMCs connect each other by sharing their sides or the vortexes, finally spreading into the TK structure.

    FIG.4(a)STM image of the coexisting Triangle structure and the Cu islands formed upon depositing 0.05 ML Cu onto the honeycomb assembly of melamine at RT.(b)High resolution STM image of Triangle structure.The unit cell is marked by black rhombus,and measured as a=b=(1.92±0.03)nm,θ=60?.Dashed triangle highlights the building block.(c)Arbitrary model of the triangular molecular cluster.In the model N,H,C and Cu are respectively represented by blue,white,grey and yellow balls.Tunneling conditions:(a)I=140 pA,U=?1.68 V;(b)I=540 pA,U=?0.93 V.

    Increasing the Cu dosage to about 0.05 ML,the assembly structure changes again.As shown in FIG.4(a), a new structure with hexagonal symmetry was formed and aggregated into large islands.Coexisting with these islands are the small Cu patches formed by the excessive Cu atoms.Their existence also implies that no other new assembly structures would be formed with even more Cu deposited,which is exactly what we found at higher Cu dosages.FIG.4(b)shows the high resolution STM image of this new assembly structure,wherein dim triangular species together with brighter protrusions can be clearly identi fied.The triangles can be assigned as flat-lying melamine molecules as in other assembly structures while the brighter protrusions as complexes of melamine and Cu adatoms.Obviously here the bright protrusions have arranged into a hexagonal pattern which naturally de fine the periodic unit cell,as shown by the black rhombus in FIG.4(b).The measured unit cell(marked by black rhombus)is superimposed on the high resolution STM image and the lattice parameters are measured as a=b=1.92±0.03 nm, θ=60?.A closer look at the image reveals that the repeating building block of the assembly is actually the molecular cluster enveloped by the dashed triangle in FIG.4(b).Therefore,we term this new structure as Triangle structure(shorted as TA).FIG.4(c)shows the arbitrary model that we have proposed,where six melamine molecules and one Cu adatom are involved. In such cluster three melamine molecules are symmetrically placed at the inner shell with their amino groups pointing to the center,whereas the other three molecules are orientated antiparallel and symmetrically placed at the outer shell.The Cu adatom is proposed to be located under one of the three amino groups of the inner melamine molecules.Such proposition is based on similar arguments to those for the TK structure discussed above.However,an unavoidable question remains for the number of the Cu adatoms in the cluster, which is still beyond our understanding at the current stage.On the other side,we frequently observed more than one bright spots in the triangular molecular cluster,as can be found at the left bottom of FIG.4(b) (please also see FIG.S2 in supplementary materials). Such two-or three-bright-spots may imply that more Cu adatoms are incorporated in the assembly.Nevertheless,the majority of the film is still dominated by the domains consisting one Cu adatom per cluster.

    IV.DISCUSSION

    The above all experimental results have clearly demonstrated that upon dosing Cu onto the half monolayer melamine on Au(111)the assembly structure has drastically changed and presented an obvious dependence on the dosing amount of Cu.The newly emerged structures,i.e.the TK and TA types of structures are therefore proposed to be the co-assemblies of melaminewith different number of Cu adatoms.Such proposition was based on the consideration of the potential interactions between melamine and the Cu adatoms.It also found concreate supports from our experimental observations of the same assembly structures of melamine on a Cu/Au(111) film[21].On the basis of these models,we may brie fly discuss the formation mechanism of these assembly structures as well as the connections between them.

    TABLE I Structural parameters of the three assembly structures of melamine.

    FIG.5 Illustrative cartoon for the mechanism of phase transition from the pure melamine assembly to the Cu-melamine co-assembly.The white,blue,grey and yellow balls represent the hydrogen,nitrogen,carbon and Cu atoms,respectively. The dashed red lines represent the intermolecular hydrogen bonds.

    Firstly,we look at the interaction between Cu adatom and melamine molecule.Previous studies of melamine on Cu(111)and Cu(100)have demonstrated a strong interaction between melamine and bulk Cu surfaces. Upon depositing at room temperature,melamine would dehydrogenate and form strong chemical bonds with the Cu surfaces.Such chemisorption is so strong that the adsorbed molecules would not desorb even after heated to above 700 K.However,for the singly dispersed Cu atoms,the situation may be different.The STM images in FIG.2 clearly demonstrate that the melamine molecules maintain their honeycomb structure on an Au(111)surface doped with diluted Cu atoms.This fact manifests that melamine has little tendency to drag Cu atoms from the subsurface to the top surface.In addition,our thermal treatments of the Cu-melamine co-assemblies(TK and TA structures)lead to the same desorption behavior upon mild heating,indicating that the interactions between Cu adatom and the melamine cannot be that strong.Both arguments would support our assumption of the complex of Cu adatom with the melamine molecules,among which the latter keeps undissociated state.

    Concerning the phase transition of the assembly films,in most cases it is driven by formation of a thermodynamically more stable structure.The principle may be applied to the co-assembly of melamine and Cu adatom in the present study as well.Table I lists the structural parameters of the three types of assembly structures of melamine with and without Cu adatoms. It can be found that upon forming the co-assembled structure the melamine density increased from 1.63 nm?2in the honeycomb structure to 2.04 nm?2in the TK structure and 1.87 nm?2in the TA structure,respectively.The density of hydrogen bonds is also increased correspondingly since in all three assemblies each melamine molecule forms six hydrogen bonds with three neighboring molecules.Such increment demonstrates that both TK and TA structures have lower energy than the honeycomb structure, thus being the favored phases with the presence of Cu adatoms.It is noticed that the TA structure was formed on the basis of TK structure with more Cu adatoms deposited,yet it has slightly lower densities of both melamine and hydrogen bond compared to the latter. We assume such disadvantage may be compensated by the number of density of Cu adatoms in the assembly structure considering that the incorporation of each Cu adatom with the amino group would induce an en-ergy drop.In FIG.4 we present a model with only one Cu adatom in a melamine triangular cluster.As a matter of fact,we frequently found that two or three bright protrusions aggregate together close to the middle of the triangular cluster(see FIG.S2 in supplementary materials),suggesting more than one Cu adatoms can be co-assembled in the structure.As a result,the averaged Cu adatom density in the TA structure can be estimated around 0.62 nm?2(corresponding to two Cu adatoms per triangular molecular cluster),becoming slightly larger than 0.51 nm?2in the TK structure. And the induced energy gain should be able to compensate the loss caused by the dilution of the melaminesubstrate interactions and the hydrogen bonds.

    Finally,let us brie fly discuss the formation mechanism of the Cu-melamine co-assembly.As shown in FIG.4,the TA structure is composed of many identical triangular melamine clusters.Actually,the repeating unit of the TK structure can also be divided into similar triangular cluster each containing one Cu adatom, as shown in FIG.3(d).In this regard,in TK structure the triangles have to share their sides with neighboring triangles,making large difference from the TA structures.In addition,the detailed structure of the triangular cluster of TK is not identical with that in TA. Nevertheless,both TK and TA structures contain similar hydrogen bonding network,particularly around the melamine molecule with one Cu adatom underneath,as shown in FIG.5(b).Such common substructure of Cumelamine co-assemblies presents drastic difference from that in the honeycomb structure of solely melamine.

    As shown in FIG.5,in the honeycomb structure the hydrogen bonds around each melamine form a pin-wheel pattern with three-fold rotational symmetry.Upon depositing Cu onto the honeycomb film,the Cu adatoms may attach to the N atom of either the triazine cycle or the amino group.But the former would only take place at the periphery melamine molecule of the assembly domain,as the tiazine-N is fully occupied by the hydrogen bonds.While the latter becomes more feasible since the bonded melamine can just shift by one N atom and form new hydrogen bonds,as shown in FIG.5(b).By doing so,the molecular interdistances become reduced while keeping the number of hydrogen bonds.As a result,the density of the melamine molecule as well as the hydrogen bonds is increased,in combination with the added Cu-melamine interactions.In this way,the honeycomb structure can be gradually transformed into the tracklike or triangular structures,depending on the number of the incorporated Cu adatoms as well as the spreading pattern of the triangular melamine clusters.

    V.CONCLUSION

    We have researched the regulation effect of Cu adatoms on the self-assembly structures of melamine on an Au(111)surface with STM.It is found that the evaporated Cu adatoms incorporate into the melamine assembly by accommodating the underneath positions of the amino groups. The interaction between the Cu adatom and melamine molecule is moderate,yet it signi ficantly modulates the hydrogen bond patterns from a three-fold rotationally symmetrical pattern to an unsymmetrical pattern.Such metal-incorporated selfassembly may potentially serve as a reservoir for metal atoms,the latter may get involved and thus play important roles in various surface reactions.

    Supplementary materials:Additional STM images of the Cu-doped bare Au(111)surface(FIG.S1),the TA structure incorporating two or three Cu adatoms (FIG.S2),and the coexistence of TK and TA structures (FIG.S3)are given.

    VI.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.91545128,No.21333001, No.91227117)and Ministry of Science and Technology of China(No.2011CB808702),the Fundamental Research Funds for the Central Universities and the Thousand Talent Program for Young Outstanding Scientists of the Chinese Government,and the“Strategic Priority Research Program”of the Chinese Academy of Sciences (XDB01020100).

    [1]X.H.Liu,Y.P.Mo,J.Y.Yue,Q.N.Zheng,H.J.Yan, D.Wang,and L.J.Wan,Small 10,4934(2014).

    [2]L.Niu,X.Ma,L.Liu,X.Mao,D.Wu,Y.Yang,Q. D.Zeng,and C.Wang,Phys.Chem.Chem.Phys.12, 11683(2010).

    [3]H.Shi,Y.Liu,Q.Zeng,Y.Yang,C.Wang,and X.Lu, Phys.Chem.Chem.Phys.19,1236(2017).

    [4]R.Madueno,M.T.R¨ais¨anen,C.Silien,and M.Buck, Nature 454,618(2008).

    [5]L.Wang,Q.Chen,H.Shi,H.Liu,X.Ren,B.Wang,K. Wu,and X.Shao,Phys.Chem.Chem.Phys.18,2324 (2016).

    [6]Y.Ye,W.Sun,Y.Wang,X.Shao,X.Xu,F.Cheng, and K.Wu,J.Phys.Chem.C 111,10138(2007).

    [7]J.Liu,T.Lin,Z.Shi,F.Xia,L.Dong,P.N.Liu,and N.Lin,J.Am.Chem.Soc.133,18760(2011).

    [8]T.Lin,X.S.Shang,J.Adisoejoso,P.N.Liu,and N. Lin,J.Am.Chem.Soc.135,3576(2013).

    [9]Q.N.Zheng,X.H.Liu,T.Chen,J.H.Yan,T.Cook, D.Wang,P.J.Stang,and L.J.Wan,J.Am.Chem. Soc.137,6128(2015).

    [10]J.Shang,Y.Wang,M.Chen,J.Dai,X.Zhou,J.Kuttner,G.Hilt,X.Shao,J.M.Gottfried,and K.Wu, Nat.Chem.7,389(2015).

    [11]Y.Wang,X.Ge,C.Manzano,J.Kr¨oger,R.Berndt,W. A.Hofer,H.Tang,and J.Cerda,J.Am.Chem.Soc. 131,10400(2009).

    [12]M.A.Lingenfelder,H.Spillmann,A.Dmitriev,S. Stepanow,N.Lin,J.V.Barth,and K.Kern,Chem. Eur.J.10,1913(2004).

    [13]K.J.Shi,X.Zhang,C.H.Shu,D.Y.Li,X.Y.Wu, and P.N.Liu,Chem.Commun.52,8726(2016).

    [14]M.Chen,J.Shang,Y.Wang,K.Wu,J.Kuttner,G. Hilt,W.Hieringer,and J.M.Gottfried,ACS Nano.11, 134(2017).

    [15]A.Dmitriev,H.Spillmann,N.Lin,J.V.Barth,and K. Kern,Angew.Chem.Int.Ed.115,2774(2003).

    [16]S.Stepanow,M.Lingenfelder,A.Dmitriev,H.Spillmann,E.Delvigne,N.Lin,X.B.Deng,C.Z.Cai,J. V.Barth,and K.Kern,Nat.Mater.3,229(2004).

    [17]H.Spillmann,A.Dmitriev,N.Lin,P.Messina,J.V. Barth,and K.Kern,J.Am.Chem.Soc.125,10725 (2003).

    [18]R.Zhang,G.Lyu,D.Y.Li,N.P.Liu,and N.Lin, Chem.Commun.53,1731(2017).

    [19]Y.L.Zhao,W.Wang,F.Qi,J.Li,G.Kuang,R.Zhang, R.Q.Zhang,N.Lin,and M.A.Van Hove,Langmuir 33,451(2017).

    [20]V.Iancu,K.F.Braun,K.Schouteden,and C.Van Haesendonck,Phys.Rev.Lett.113,106102(2014).

    [21]L.Wang,H.X.Shi,W.Y.Wang,H.Shi,and X.Shao, Acta Phys.Chim.Sin.33,393(2017).

    [22]F.Silly,A.Q.Shaw,M.R.Castell,G.A.D.Briggs,M. Mura,N.Martsinovich,and L.Kantorovich,J.Phys. Chem.C 112,11476(2008).

    [23]M.Mura,F.Silly,V.Burlakov,M.R.Castell,G.A.D. Briggs,and L.N.Kantorovich,Phys.Rev.Lett.108, 176103(2012).

    [24]C.H.Schmitz,J.Ikonomov,and M.Sokolowski,Surf. Sci.605,1(2011).

    [25]J.Greenwood,H.A.Fru¨chtl,and C.J.Baddeley,J. Phys.Chem.C 116,6685(2012).

    [26]J.Greenwood,H.A.Fru¨chtl,and C.J.Baddeley,J. Phys.Chem.C 117,22874(2013).

    [27]A.Ferral,P.Paredes-Olivera,V.A.Macagno,and E. M.Patrito,Surf.Sci.525,85(2003).

    [28]J.C.Cook and E.M.McCash,Surf.Sci.356,445 (1996).

    [29]M.C.Lu,R.B.Wang,A.Yang,and S.Duhm,J.Phys.: Condens.Matter 28,094005(2016).

    [30]L.Wang,P.Li,H.Shi,Z.Li,K.Wu,and X.Shao,J. Phys.Chem.C 121,7977(2017).

    [31]I.Horcas,R.Fern′andez,J.M.Gomez-Rodriguez,J. Colchero,J.W.S.X.M.G′omez-Herrero,and A.M. Baro,Rev.Sci.Instrum.78,013705(2007).

    [32]X.Zhao,P.Liu,J.Hrbek,J.A.Rodriguez,and M. Perez,Surf.Sci.592,25(2005).

    [33]F.Grillo,H.Fru¨chtl,S.M.Francis,and N.V.Richardson,New J.Phys.13,013044(2011).

    [34]O.M.Magnussen,J.Hotlos,R.J.Nichols,D.M.Kolb, and R.J.Behm,Phys.Rev.Lett.64,2929(1990).

    [35]Y.P.Lin,O.Ourdjini,L.Giovanelli,S.Clair,T.Faury, Y.Ksari,and M.Abel,J.Phys.Chem.C 117,9895 (2013).

    ceived on April 21,2017;Accepted on May 22,2017)

    ?Author to whom correspondence should be addressed.E-mail: shaox@ustc.edu.cn

    国产老妇伦熟女老妇高清| 卡戴珊不雅视频在线播放| 一级毛片电影观看| 一级毛片 在线播放| 少妇人妻久久综合中文| 又大又黄又爽视频免费| 亚洲欧美成人综合另类久久久| 两性夫妻黄色片 | 一级片免费观看大全| 亚洲精品久久久久久婷婷小说| 两性夫妻黄色片 | 精品国产国语对白av| 欧美国产精品va在线观看不卡| 国产 精品1| 久热久热在线精品观看| 午夜影院在线不卡| 成人亚洲精品一区在线观看| 亚洲天堂av无毛| av一本久久久久| 成年人午夜在线观看视频| av黄色大香蕉| 黄色配什么色好看| 久久99精品国语久久久| 亚洲欧洲日产国产| 2021少妇久久久久久久久久久| 自线自在国产av| 亚洲国产日韩一区二区| 日本av免费视频播放| 国产亚洲欧美精品永久| 一区二区三区乱码不卡18| 九九爱精品视频在线观看| 久久久久精品人妻al黑| freevideosex欧美| 热re99久久国产66热| 成人二区视频| a级片在线免费高清观看视频| 美女大奶头黄色视频| 日韩三级伦理在线观看| 丰满少妇做爰视频| 亚洲精品国产av蜜桃| 高清视频免费观看一区二区| 亚洲av国产av综合av卡| 国产男人的电影天堂91| 午夜老司机福利剧场| 亚洲国产精品国产精品| 国产一区二区激情短视频 | 国产高清国产精品国产三级| av免费在线观看网站| 午夜福利欧美成人| 黄频高清免费视频| 国产亚洲欧美98| 国产成人免费无遮挡视频| 美女国产高潮福利片在线看| 国产精品98久久久久久宅男小说| 精品少妇一区二区三区视频日本电影| 天堂俺去俺来也www色官网| 999久久久精品免费观看国产| 亚洲国产欧美日韩在线播放| 自线自在国产av| 精品久久久久久,| 国产不卡一卡二| 久久久精品免费免费高清| 午夜免费观看网址| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频| 丝袜美腿诱惑在线| cao死你这个sao货| 嫁个100分男人电影在线观看| 99精品久久久久人妻精品| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久人人人人人| 天堂√8在线中文| 一区在线观看完整版| 精品国内亚洲2022精品成人 | 亚洲五月天丁香| 国产精品免费大片| 亚洲一区中文字幕在线| 亚洲片人在线观看| 欧美在线一区亚洲| 国产麻豆69| 久久热在线av| 91在线观看av| 精品少妇一区二区三区视频日本电影| 黑人巨大精品欧美一区二区蜜桃| 欧美黑人精品巨大| 亚洲成人国产一区在线观看| 国产男女超爽视频在线观看| 一边摸一边抽搐一进一小说 | 一进一出抽搐gif免费好疼 | 国产免费现黄频在线看| 母亲3免费完整高清在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲免费av在线视频| xxx96com| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲| 五月开心婷婷网| 色精品久久人妻99蜜桃| 午夜久久久在线观看| 久久精品亚洲熟妇少妇任你| 久久久久久人人人人人| 国产精品久久久人人做人人爽| 大陆偷拍与自拍| 欧美色视频一区免费| 多毛熟女@视频| www.熟女人妻精品国产| videosex国产| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看 | 在线播放国产精品三级| 国产免费男女视频| 久久久国产欧美日韩av| 欧美日韩亚洲综合一区二区三区_| 18禁裸乳无遮挡免费网站照片 | 超色免费av| 一级片'在线观看视频| 国产1区2区3区精品| 久久久久国产精品人妻aⅴ院 | 波多野结衣一区麻豆| 国产精品秋霞免费鲁丝片| 久久热在线av| 侵犯人妻中文字幕一二三四区| 女人高潮潮喷娇喘18禁视频| 在线免费观看的www视频| 国产精品一区二区在线观看99| 天天操日日干夜夜撸| 日韩有码中文字幕| √禁漫天堂资源中文www| 中文字幕高清在线视频| 妹子高潮喷水视频| 在线免费观看的www视频| 国产成人影院久久av| 自拍欧美九色日韩亚洲蝌蚪91| 91国产中文字幕| 亚洲精品美女久久久久99蜜臀| 日韩欧美免费精品| 无人区码免费观看不卡| 免费少妇av软件| 在线视频色国产色| 国产精品九九99| 亚洲av日韩在线播放| 69精品国产乱码久久久| 国产精品欧美亚洲77777| 91九色精品人成在线观看| 婷婷成人精品国产| 久久亚洲精品不卡| 人人妻人人澡人人爽人人夜夜| 两性夫妻黄色片| av一本久久久久| 欧美国产精品va在线观看不卡| www.自偷自拍.com| 日本精品一区二区三区蜜桃| 中文字幕人妻丝袜制服| 国产区一区二久久| 中文字幕高清在线视频| 久久国产精品男人的天堂亚洲| 一边摸一边抽搐一进一小说 | 久久中文看片网| 午夜精品在线福利| 女人爽到高潮嗷嗷叫在线视频| 国产精品香港三级国产av潘金莲| 国产精品成人在线| 热re99久久国产66热| 国产真人三级小视频在线观看| 最新的欧美精品一区二区| 中文字幕av电影在线播放| 欧美av亚洲av综合av国产av| 99riav亚洲国产免费| 在线观看免费高清a一片| 欧美精品高潮呻吟av久久| 1024视频免费在线观看| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 在线观看午夜福利视频| 成人精品一区二区免费| 巨乳人妻的诱惑在线观看| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 国产淫语在线视频| 波多野结衣一区麻豆| 久久精品亚洲精品国产色婷小说| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| www日本在线高清视频| 热99久久久久精品小说推荐| 一级作爱视频免费观看| 久久精品亚洲熟妇少妇任你| 亚洲av美国av| 国产成人免费观看mmmm| 国产视频一区二区在线看| 露出奶头的视频| 日韩欧美在线二视频 | 777米奇影视久久| 在线观看www视频免费| 极品教师在线免费播放| 国产精品永久免费网站| 999久久久国产精品视频| 狠狠狠狠99中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲美女黄片视频| 69av精品久久久久久| 久久青草综合色| 国产在线观看jvid| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 99久久精品国产亚洲精品| 黄色成人免费大全| 久久久国产精品麻豆| 成人18禁在线播放| 欧美+亚洲+日韩+国产| 久久亚洲真实| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看 | 欧美成人午夜精品| 天天添夜夜摸| 正在播放国产对白刺激| 亚洲少妇的诱惑av| 男人的好看免费观看在线视频 | 午夜福利视频在线观看免费| 超色免费av| 国产在视频线精品| 亚洲久久久国产精品| 大码成人一级视频| 午夜视频精品福利| 欧美在线一区亚洲| 亚洲成人手机| 亚洲第一青青草原| 国产精品亚洲av一区麻豆| 久久久久久免费高清国产稀缺| 亚洲九九香蕉| 午夜免费鲁丝| 日韩精品免费视频一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线免费观看网站| 久久国产精品人妻蜜桃| 午夜影院日韩av| 成人手机av| 王馨瑶露胸无遮挡在线观看| 久久中文看片网| 狂野欧美激情性xxxx| 丝袜在线中文字幕| 电影成人av| 亚洲成人手机| 亚洲av美国av| 一级片'在线观看视频| 丝瓜视频免费看黄片| 国产成人影院久久av| 无限看片的www在线观看| 91精品三级在线观看| 欧美日韩亚洲国产一区二区在线观看 | 99热只有精品国产| 大码成人一级视频| 自线自在国产av| 桃红色精品国产亚洲av| 757午夜福利合集在线观看| 黄色视频不卡| 国产高清videossex| 波多野结衣av一区二区av| 99香蕉大伊视频| 久热爱精品视频在线9| 欧美激情高清一区二区三区| 国产精品电影一区二区三区 | 精品高清国产在线一区| 99热只有精品国产| 免费久久久久久久精品成人欧美视频| 伊人久久大香线蕉亚洲五| 欧美日韩成人在线一区二区| 成年人午夜在线观看视频| 露出奶头的视频| 人人澡人人妻人| 国产不卡一卡二| e午夜精品久久久久久久| 久久婷婷成人综合色麻豆| 电影成人av| 亚洲专区字幕在线| 大香蕉久久网| 丰满迷人的少妇在线观看| 天天影视国产精品| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| 精品福利永久在线观看| 成人永久免费在线观看视频| av有码第一页| 9色porny在线观看| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 99久久精品国产亚洲精品| 亚洲国产欧美日韩在线播放| a在线观看视频网站| 亚洲午夜精品一区,二区,三区| 国产av精品麻豆| 精品少妇久久久久久888优播| 欧美黑人精品巨大| 久久久久国产一级毛片高清牌| 日韩制服丝袜自拍偷拍| 久9热在线精品视频| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 欧美乱色亚洲激情| 国产成人精品在线电影| 欧美最黄视频在线播放免费 | 国产男女超爽视频在线观看| 国产精品电影一区二区三区 | 丁香六月欧美| 亚洲av美国av| 国产人伦9x9x在线观看| 午夜福利乱码中文字幕| 中文字幕色久视频| 男女午夜视频在线观看| bbb黄色大片| 999精品在线视频| 欧美亚洲 丝袜 人妻 在线| 手机成人av网站| 欧美日韩乱码在线| 精品久久久精品久久久| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| 日韩欧美三级三区| 成人影院久久| 日韩欧美一区视频在线观看| 老司机午夜福利在线观看视频| av天堂在线播放| 国产国语露脸激情在线看| 身体一侧抽搐| 91国产中文字幕| 黑人巨大精品欧美一区二区mp4| 最近最新中文字幕大全免费视频| 欧美乱色亚洲激情| 国产av精品麻豆| 亚洲成人手机| 成人免费观看视频高清| 怎么达到女性高潮| 国产精品免费一区二区三区在线 | 久久久国产欧美日韩av| av片东京热男人的天堂| 成人国产一区最新在线观看| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 91国产中文字幕| 国产视频一区二区在线看| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 亚洲国产精品一区二区三区在线| 欧美性长视频在线观看| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 一个人免费在线观看的高清视频| 成人精品一区二区免费| 国产精品.久久久| 最新美女视频免费是黄的| 日韩免费av在线播放| 视频在线观看一区二区三区| 国产精品免费视频内射| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 国产精品一区二区在线观看99| √禁漫天堂资源中文www| 国产真人三级小视频在线观看| 国产精品秋霞免费鲁丝片| av免费在线观看网站| 中文字幕人妻丝袜制服| 老司机深夜福利视频在线观看| 香蕉丝袜av| 咕卡用的链子| 国产有黄有色有爽视频| 好看av亚洲va欧美ⅴa在| 久久中文字幕人妻熟女| 亚洲专区字幕在线| 久久人妻熟女aⅴ| 99国产精品一区二区三区| 51午夜福利影视在线观看| av电影中文网址| 国产有黄有色有爽视频| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜制服| 国产精品乱码一区二三区的特点 | 国产成人精品在线电影| 黑人操中国人逼视频| 老司机影院毛片| 王馨瑶露胸无遮挡在线观看| 极品教师在线免费播放| 中文字幕精品免费在线观看视频| 日本a在线网址| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人| 老司机亚洲免费影院| 久久久久久久精品吃奶| 国产精品98久久久久久宅男小说| 亚洲一区二区三区欧美精品| 亚洲成人免费电影在线观看| 香蕉国产在线看| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费午夜福利视频| 成人国产一区最新在线观看| 99久久精品国产亚洲精品| 91成人精品电影| 老司机午夜福利在线观看视频| 亚洲第一av免费看| √禁漫天堂资源中文www| 国产欧美日韩一区二区三| 国产日韩一区二区三区精品不卡| 91精品三级在线观看| 亚洲色图综合在线观看| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 757午夜福利合集在线观看| 亚洲黑人精品在线| 欧美成人午夜精品| 欧美日韩视频精品一区| 飞空精品影院首页| x7x7x7水蜜桃| 村上凉子中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 久久99一区二区三区| 9热在线视频观看99| 国产精品 国内视频| 午夜两性在线视频| 午夜精品久久久久久毛片777| 天天躁夜夜躁狠狠躁躁| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 精品午夜福利视频在线观看一区| 国产免费av片在线观看野外av| xxx96com| 女人久久www免费人成看片| 在线国产一区二区在线| 精品免费久久久久久久清纯 | 久久香蕉激情| 日本五十路高清| 可以免费在线观看a视频的电影网站| 成年动漫av网址| 成人影院久久| 19禁男女啪啪无遮挡网站| 色综合婷婷激情| 午夜亚洲福利在线播放| av免费在线观看网站| 国产色视频综合| 精品电影一区二区在线| 成人国语在线视频| 两个人免费观看高清视频| av天堂久久9| 国产欧美日韩精品亚洲av| 在线国产一区二区在线| 最近最新中文字幕大全免费视频| 麻豆乱淫一区二区| 99热国产这里只有精品6| 午夜影院日韩av| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品第一综合不卡| 国产精品 欧美亚洲| 日韩欧美三级三区| 亚洲国产欧美网| 18禁美女被吸乳视频| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 婷婷精品国产亚洲av在线 | 亚洲久久久国产精品| 在线国产一区二区在线| cao死你这个sao货| 亚洲精品中文字幕在线视频| 亚洲免费av在线视频| 亚洲精品国产色婷婷电影| 精品乱码久久久久久99久播| 国产成人精品久久二区二区免费| 欧美在线一区亚洲| 国产成人欧美| 女人被狂操c到高潮| 两个人免费观看高清视频| 亚洲欧美日韩高清在线视频| 俄罗斯特黄特色一大片| 久热爱精品视频在线9| 69精品国产乱码久久久| 欧美精品高潮呻吟av久久| 国产高清videossex| 欧美激情极品国产一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精华国产精华精| 悠悠久久av| 十分钟在线观看高清视频www| 人妻 亚洲 视频| 脱女人内裤的视频| 久久人妻熟女aⅴ| 久久香蕉精品热| 热99re8久久精品国产| 国产又爽黄色视频| 我的亚洲天堂| 狠狠婷婷综合久久久久久88av| 麻豆成人av在线观看| bbb黄色大片| 精品国产一区二区三区四区第35| xxx96com| 久久中文字幕一级| 变态另类成人亚洲欧美熟女 | 搡老岳熟女国产| 十分钟在线观看高清视频www| 日本五十路高清| 成人国语在线视频| 国产成人系列免费观看| 99热网站在线观看| 国产野战对白在线观看| 最新在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 无人区码免费观看不卡| 每晚都被弄得嗷嗷叫到高潮| 亚洲色图 男人天堂 中文字幕| 国产亚洲一区二区精品| 18禁裸乳无遮挡免费网站照片 | 少妇 在线观看| 99国产精品一区二区蜜桃av | 最近最新中文字幕大全免费视频| 人妻丰满熟妇av一区二区三区 | 91国产中文字幕| 亚洲一区中文字幕在线| 亚洲精品美女久久久久99蜜臀| av一本久久久久| 一进一出好大好爽视频| av一本久久久久| 国产欧美日韩一区二区三| 午夜久久久在线观看| 国产av一区二区精品久久| 国产精品永久免费网站| 久久天堂一区二区三区四区| 亚洲av片天天在线观看| 久久久久国内视频| 男女午夜视频在线观看| xxx96com| 黄频高清免费视频| 丝袜在线中文字幕| 欧美另类亚洲清纯唯美| 国产精品.久久久| 欧美精品亚洲一区二区| 国产精品秋霞免费鲁丝片| 久久精品国产亚洲av香蕉五月 | 国产精品久久久久久人妻精品电影| 亚洲精品国产区一区二| 中出人妻视频一区二区| 欧美日本中文国产一区发布| www日本在线高清视频| 69精品国产乱码久久久| 精品一品国产午夜福利视频| 久久 成人 亚洲| 亚洲黑人精品在线| 日韩欧美国产一区二区入口| 成人影院久久| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久精品古装| 大码成人一级视频| 国产精品九九99| 国产精品一区二区精品视频观看| x7x7x7水蜜桃| 黄片小视频在线播放| 老司机深夜福利视频在线观看| 后天国语完整版免费观看| 99re在线观看精品视频| 在线观看免费高清a一片| 一级,二级,三级黄色视频| av中文乱码字幕在线| 亚洲情色 制服丝袜| 精品免费久久久久久久清纯 | 亚洲 欧美一区二区三区| 交换朋友夫妻互换小说| av线在线观看网站| 中文字幕最新亚洲高清| 午夜亚洲福利在线播放| 每晚都被弄得嗷嗷叫到高潮| √禁漫天堂资源中文www| 国产一区二区三区在线臀色熟女 | 男女床上黄色一级片免费看| 欧美日韩瑟瑟在线播放| 亚洲人成电影免费在线| 他把我摸到了高潮在线观看| 一本大道久久a久久精品| 亚洲熟女精品中文字幕| 在线观看免费视频网站a站| 精品卡一卡二卡四卡免费| 国产精品偷伦视频观看了| 日本欧美视频一区| 成人精品一区二区免费| 嫁个100分男人电影在线观看| 搡老岳熟女国产| 真人做人爱边吃奶动态| 高清毛片免费观看视频网站 | 美女高潮喷水抽搐中文字幕| 久久久久国产精品人妻aⅴ院 | 欧美黑人精品巨大| 91九色精品人成在线观看| 亚洲熟女精品中文字幕| 日韩欧美一区视频在线观看| 午夜91福利影院| 成年人黄色毛片网站| 一区福利在线观看| 欧美乱码精品一区二区三区| 男人操女人黄网站| 国产免费av片在线观看野外av| 欧美乱色亚洲激情| 操出白浆在线播放| 亚洲第一青青草原| 激情在线观看视频在线高清 | 国产精品国产av在线观看| 一本大道久久a久久精品| 免费在线观看黄色视频的| 国产精品免费一区二区三区在线 | 黄色视频,在线免费观看| 久久久久久免费高清国产稀缺| 免费久久久久久久精品成人欧美视频| 老司机影院毛片| 免费在线观看影片大全网站| 高清在线国产一区|