• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study

    2017-09-03 07:53:55LiyaLuYingjieZhangJiejieChenZhonghuaTong
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Li-ya Lu,Ying-jie Zhang,Jie-jie Chen,Zhong-hua Tong

    CAS Key Laboratory of Urban Pollutant Conversion,Department of Chemistry,University of Science and Technology of China,Hefei 230026,China

    Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study

    Li-ya Lu,Ying-jie Zhang,Jie-jie Chen,Zhong-hua Tong?

    CAS Key Laboratory of Urban Pollutant Conversion,Department of Chemistry,University of Science and Technology of China,Hefei 230026,China

    Due to the large number of ionic liquids(ILs)and their potential environmental risk,assessing the toxicity of ILs by ecotoxicological experiment only is insufficient.Quantitative structureactivity relationship(QSAR)has been proven to be a quick and effective method to estimate the viscosity,melting points,and even toxicity of ILs.In this work,the LC50values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal.Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R2value of 0.938.The predicted lgLC50in this work are in agreement with the experimental values,indicating that the model has good stability and predictive ability.Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.

    Imidazolium-based ionic liquids,Caenorhabditis elegans,Toxicity,Quantitative structure-activity relationship

    I.INTRODUCTION

    Ionic liquids(ILs)are a class of compounds consisting of two oppositely charged ions[1].To date,ILs are considered as promising alternatives to traditional organic solvents due to their bene ficial and tunable physicochemical properties such as weak volatility,low melting points(<100?C),broad solvation capacity,wide range of fluidity,thermal and electrochemical stabilities and the designability of ionic liquids[2?4].Owing to the superiority that ILs can combine various cations and anions to freely manipulate their characteristics,there are well over one million ILs that can be synthesized to meet speci fic requirements for different applications, such as gas compression,sensors,lithium-ion batteries, dye-sensitized solar cells or potential pharmaceutical ingredients[5,6].However,the poor biodegradability and high water solubility imply the potential environmental risks of ILs,especially to aquatic ecosystem[7,8].At present,there have been numerous reports on the toxicity of ILs to bacteria,cells,enzyme systems,plants and aquatic organisms,like Vibrio fischeri,Daphnia magna and algae,etc.[9?12].Furthermore,the huge quantity and variety of ILs make it a great signi ficance to estimate their environmental effects by building a rapid and effective method instead of the time-and materialconsuming ecotoxicological assays[13].

    Quantitative structure-activity relationship(QSAR) has been used to establish a correlation between the biological activities and structural properties of given molecules[14].In recent years,there have been a few QSAR models based on the acute toxicity data.A review article regarding different QSAR studies performed on the toxicity of ILs was published recently[1]. Luis et al.[13]established a QSAR model(R2=0.925) by using a novel group contribution method and Vibrio fischeri as a model organism to evaluate ecotoxicity of 43 ionic liquids,and toxicity contributions of anion, cation and alkyl substitutions were calculated.In another study,Alvarez-Guerra and Irabien[15]developed a QSAR model using partial least squares-discriminant analysis(PLS-DA)to assess toxicity of 148 ionic liquids comprising a varying combination of different cation and anion species.A QSAR model(R2pred=0.739)was developed by Das and Roy[16]to evaluate toxicity of ionic liquids on bacteria by using several approaches, such as multiple linear regression(MLR)and partial least squares(PLS).The developed model underwent extensive validation and was acceptable in terms of robustness and predictivity.

    Other test organisms such as green algae and Daphnia magna were also used for toxicity studies[6,17, 18].Due to its small size,rapid life cycle and ease of cultivation,Caenorhabditis elegans(C.elegans)as a multicellular animal has been widely used as a model organism in the field of developmental biology,genetics, biomedical and environmental toxicology[19,20].With at least 40%of the genes in C.elegans have orthologs in the human genome[21],it is of great signi ficance thatC.elegansis applied in the risk assessment of ILs integrated with QSAR analysis.

    In this study,the 50%effective concentration of selected imidazolium-based ionic liquids on C.elegans was determined using 24-h acute toxicity bioassays.Then these experimental data were used to build a predictive toxicity model based upon quantitative structure-activity relationship modeling(QSAR)methods with genetic function approximation(GFA)used for feature selection and MLR for model construction. Valuable information can be obtained from this model to help designing ILs with minimal toxicity to the environment and human health.

    II.EXPERIMENTS

    A.Ionic liquids

    The 30 imidazolium-based ionic liquids used in the experimental study are presented in Table I.The cations of these ionic liquids were imidazole rings with different alkyl side chain length.The anions were common anions,such as bromide,chloride,acetate,nitrate, and some uncommon anions like tetra fluoroborateion and thiocyanate.These ILs(more than 99%purity) were purchased from Lanzhou Zhong Ke Kai Te Co., China.Stock solutions were prepared by dissolving the ILs in sterile water at appropriate concentrations followed by passing through 0.22μm pore-size filters for sterilization.

    B.Toxicity tests

    Wild-type N2worms were cultured according to Brenner[22]at 20?C.Age-synchronized L4 larvae worms were prepared and(20±1)L4 larvae were transferred to a well in 24-well costar plates.Each ionic liquid was diluted with K medium(containing 52 mmol/L NaCl and 32 mmol/L KCl)at a proper concentration range and 1 mL of the solution was added into a well. One mL of K medium was used as a negative control. After 24 h exposure,dead worms were scored under a dissecting microscope(Olympus SZX7,Japan).The mortality data of each ionic liquid were subjected to probit analysis to estimate the median of lethal concentration(LC50).Two independent trails were tested for each ionic liquid.In each trail,at least three replicates were tested for each dilution.

    C.QSAR studies

    FIG.1 Experimental LC50values of the ILs composed of halide anions and the imidazolium cation with different linear alkyl chain length.

    The LC50values of ILs on C.elegans were logtansformed(lgLC50)and used for the following QSAR modelling(Table I)which contains several steps,including alignment of molecular structure,the calculation of descriptors,initial data analysis,and generation and validation of structure-activity relationship or model.The geometry structures of ILs were constructed and optimized based on density functional theory(DFT).The DFT calculations were performed with the Perdew,Burke,and Ernzerhof(PBE)functional [23]of generalized gradient approximation(GGA)[24] for the exchange-correlation term implemented in the DMol3code[25,26].Double precision numerical basis sets combined with p polarization(DNP)were adopted. The training set contains 26 ILs as shown in Table I.As all the cations of ILs in the dataset have the same imidazolium core,this core is aligned to a speci fic axis,and then all the cations are superposed over the core.Molecular descriptors,including conformational,electrotopological,electronic,information-content,quantum mechanical,spatial,structural,thermodynamic,and topological information,were calculated after the optimization.Four molecular descriptors that most closely related to the LC50values were screened by using GFA [27].Another 4 ILs tested in this work and 5 data from our previous work[28]were used to validate the QSAR model of IL toxicity.

    III.RESULTS AND DISCUSSION

    This study investigated the acute lethal toxicity of selected imidazolium based ILs with different alkyl chain length and anion type.The LC50values are shown in Table I,and differences of more than four orders of magnitude were observed.The LC50data ranged from 2.35×10?5mol/L to 2.89×10?1mol/L.As shown in FIG.1,the LC50values,for both ionic liquids with chloride and bromide anions,decreased with the increase of linear alkyl chain length,indicating that ILs with longer alkyl side chains exhibit higher toxicity,which is consistent with the results reported previously[29].ILs with longer alkyl chain are generally more lipophilic and can be easily incorporated into and ultimately disrupt the cell membranes.Some studies have demonstrated that enhanced membrane permeability may lead to increasedtoxicity of longer ILs[30,31].

    TABLE I Experimental and predicted toxicity results for selected imidazolium ionic liquids.

    FIG.1 also shows that the bromide moiety was more active than the chloride moiety in acute lethal toxicity for the ILs with shorter alkyl chain.The in fluence of the anion moiety gets weaker as the alkyl chain length increases,suggesting the dominant intrinsic effect of the imidazolium cation moiety[32].Cho et al.[33]have also shown that the halide anions have only a little effect.The lgLC50was used as the dependent variable and molecular descriptor of IL structure as independent variables to construct the QSAR equation.Four molecular descriptors,including Chi-1,IC,Q,and Dipole-Y,that most closely related to the LC50values were screened by using GFA.The multiple linear equation is as follows:

    Ntraining=26,Ntest=9,R2=0.938,adjusted R2=0.926,F-value=79.381.

    Comparing these validation parameters with those of the QSAR study on IL toxicity to other organisms[34, 35],the values of R2,adjustedand F-value for external validation are high indicating that Eq.(1) fits the training set data very well and contains additional molecular characteristics and their physicochemical properties which can help to elucidate the important features responsible for toxicity.Q2Loois the leave-oneout(LOO)cross-validation squared correlation coefficient and was used to internally validate the developed model.The Q2LOOvalue was close to 1,indicating that the model had very good stability and predictive ability. The p values(<0.05)of the descriptors in the multiple linear equation including Chi-1,IC,Q,and Dipole-Y are 0.000,0.004,0.006,and 0.000,respectively,which indicate that the selected molecular descriptors play important roles in predicting the IL toxicity to C.elegans.

    One of the molecular descriptor,Chi-1,is an atomic connectivity index(order 1)[36].This is a topological descriptor which helps to differentiate molecules according to their overall shape,degree of branching,size,and flexibility.

    The property δ is the number of its electrons in sigma bonds to skeletal neighbors.The property of σ is the number of electrons in σ bonds to all neighbors and h is the number of H atoms bonded to atom i.In this case, the value of Chi-1 depends on the length of the alkyl chain substituted on the imidazolium in the cation of ILs.The Chi-1 becomes larger with the longer alkyl chain for more carbon atoms connected.This descriptor is preceded by a negative coefficient,indicating that the ILs with larger Chi-1 values lead to higher toxicity.

    To determine IC,the information-content descriptors, molecules are viewed as structures that can be partitioned into subsets of equivalent elements.The modifications of IC are shown as bonding information content(BIC),structural information content(SIC)and information content(CIC)[37].This indicates that IC is related to the number of bonds and vertices,which also depends on the alkyl chain length in the cation. The longer alkyl chain contains more bonds and vertices.The coefficient of IC with the largest absolute value has the greatest impact on the toxicity,suggesting that the cation is a major factor determining the toxicity of ILs,which is consistent with the results of other reports[38,39].

    Q is the heat of formation descriptor(kcal/mol)calculated from the VAMP electrostatics model,indicating conformational stability or the energy required to ionize the valence electrons of the atoms in the cation and anion of ILs.The positive coefficient of Q indicates that the stable ILs will have high toxicity,which is reasonable.This indicates that the model based on Eq.(1)is suitable to describe the toxicity of ILs to C.elegans.

    FIG.2 Chemical structures of cations and anions of imidazolium-based ionic liquids.

    Dipole is the dipole moment descriptor,a 3D electronic descriptor related to the strength and orientation behavior of cation and anion in an electrostatic field. The magnitudes of dipole along x,y,and z axes are calculated,and the toxicity of IL is related to Dipole-Y.The attraction between cations and anions is predicted by utilizing partial atomic charges and atomic coordinates.The descriptor uses Debyes units.

    The LC50of the ILs with the same cation and different anion were also investigated,and the structures of anions are shown in FIG.2.For the same cation of 1-butyl-3-methylimidazolium,the ILs with tetra fluoroborate(BF4?)and dibutyl-phosphate have much smaller lgLC50than others from the experimental measurements(FIG.3).This indicates that the Dipole for these two ILs are smaller than the other ILs when the cation is 1-butyl-3-methyl-imidazolium,and the toxicity of these two ILs is higher than the other 1-butyl-3-methylimidazolium ILs. The lower Dipole reveals the lower interaction strength between cation and anion. For the anion of BF4?,the lower Dipole may result from the hydrolyzation,which causes less number of LC50than cation.And the hydrolysis products may also increase the toxicity[40].For the anion ofdibutyl-phosphate,the lower interaction with cation is owing to the steric effect of the dibutyl chain(FIG.2). The dipole-dipole attraction as one of the nondispersive forces among cation and anion might be responsible for the surface tension of liquids[40].ILs with low surface tension will easily penetrate through the cell membrane, which might result in the high toxicity to C.elegans. Thus,the Dipole descriptor is related to the ability of membrane penetration of ILs,and the positive coefficient indicates that low Dipole causes high toxicity.

    FIG.3 Experimental lgLC50values of the ILs with the same cation(1-butyl-3-methylimidazolium)but different anions, IL with the anion of BF4?and dibutyl-phosphate presents the lower lgLC50.

    External validation was performed by using the data of the test set.The predicted lgLC50could be obtained from the above QSAR model(Eq.(1)).As shown in FIG.4,both the values of the training and test sets are located around the diagonal of the chart,indicating that the calculated values obtained from the QSAR model are very close to the experimental data.This model has appropriate reliability and good predictive capability.

    Application of predictive toxicology model permits us to estimate the potential toxicity of ILs with different sub-structures.In recent years,considerable models have been developed based on the toxicity data of different test organisms and have provided valuable information on the structural features that are important for the toxicity of ILs[15,17,18,35].Toxicity assays in C.elegans are fast and inexpensive,and previous studies have shown that assay results in C.elegans could be successfully used in predicting chemical activities in mammals[41,42].This study used the nematode C.elegans as an in vivo animal model for toxicity assay and a QSAR model was constructed based on four molecular descriptors selected by GFA algorithm.The results in our work suggest that rigorous control of different assembling from various cation and anion species is demanded to maintain the IL products classi fied as green solvents.For instance,the adoption of the anions with the characteristics of facile hydrolysis and steric effect should be minimized in the practical applications.The possible reason is that ILs with weak interionic attraction between cation and anion might result in higher toxicity.It is also important to pay attention to the possible ripple effect from the toxicological interactions of ILs with other environmental pollutants[43].Precautions should be taken in all the fields of applications during handling the ILs for their potential health threat over flora and fauna,especially for modulating effect at a genetic level[44].Our results may provide useful information for predicting environmental and human health toxicity of existing and potential ILs.

    FIG.4 Comparison of the experimental data of C.elegans and the predicted ones from the QSAR model based on Eq.(1).

    IV.CONCLUSION

    In this work,a QSAR model was successfully developed to predict the toxicity of ILs on C.elegans.On the basis of the toxicity data of ILs covering different cation alkyl chain length and diverse anions,four molecular descriptors were selected by GFA method.The descriptors in this model re flect the alkyl chain of the cation,heat of formation,and the strength and orientation behavior of cation and anion(or the surface tension of ILs).The external and internal validations for this model by the test set demonstrate that the predicted toxicity is consistent with the experimental data.The results prove that this QSAR model has the reliable ability to predict the toxicity of ILs on C.elegans.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21477121),and the Fundamental Research Funds for the Central Universities for the support of this work.The numerical calculations were performed on the super computing system in the Supercomputing Center at the University of Science and Technology of China.

    [1]R.N.Das and K.Roy,Mol.Divers.17,151(2013).

    [2]M.Armand,F.Endres,D.R.MacFarlane,H.Ohno, and B.Scrosati,Nat.Mater.8,621(2009).

    [3]S.P.M.Ventura,A.M.M.Goncalves,T.Sintra,J.L. Pereira,F.Goncalves,and J.A.P.Coutinho,Ecotoxicology 22,1(2013).

    [4]C.Wang,Z.B.Wei,L.S.Wang,P.Sun,and Z.Y. Wang,Ecotox.Environ.Safe.115,112(2015).

    [5]S.Stolte,S.Steudte,O.Areitioaurtena,F.Pagano,J. Th¨oming,P.Stepnowski,and A.Igartua,Chemosphere 89,1135(2012).

    [6]K.Roy,R.N.Das,and P.L.A.Popelier,Chemosphere 112,120(2014).

    [7]C.Samori`?,G.Sciutto,L.Pezzolesi,P.Galletti,F. Guerrini,R.Mazzeo,R.Pistocchi,S.Prati,and E. Tagliavini,Chem.Res.Toxicol.24,392(2011).

    [8]F.Y.Yan,Q.Shang,S.Q.Xia,Q.Wang,and P.S. Ma,J.Hazard.Mater.286,410(2015).

    [9]T.P.Pham,C.W.Cho,and Y.S.Yun,Water Res.44, 352(2010).

    [10]M.McLaughlin,M.J.Earle,M.A.Gilea,B.F. Gilmore,S.P.Gorman,and K.R.Seddon,Green Chem.13,2794(2011).

    [11]S.P.M.Ventura,C.S.Marques,A.A.Rosatella,C. A.M.Afonso,F.Goncalves,and J.A.P.Coutinho, Ecotox.Environ.Safe.76,162(2012).

    [12]T.Liu,L.S.Zhu,J.H.Wang,J.Wang,J.Zhang,X. Sun,and C.Zhang,Sci.Rep.5,18444(2015).

    [13]P.Luis,I.Ortiz,R.Aldaco,and A.Irabien,Ecotox. Environ.Safe.67,423(2007).

    [14]S.Bruzzone,C.Chiappe,S.E.Focardi,C.Pretti,and M.Renzi,Chem.Eng.J.175,17(2011).

    [15]M.Alvarez-Guerra and A.Irabien,Green Chem.13, 1507(2011).

    [16]R.N.Das and K.Roy,Toxicol.Res.1,186(2012).

    [17]R.N.Das and K.Roy,Chemosphere 104,170(2014).

    [18]K.Roy,R.N.Das,and P.L.A.Popelier,Environ.Sci. Pollut.Res.22,6634(2015).

    [19]M.C.K.Leung,P.L.Williams,A.Benedetto,C.Au, K.J.Helmcke,M.Aschner,and J.N.Meyer,Toxicol. Sci.106,5(2008).

    [20]S.Hoss,K.Schlottmann,and W.Traunspurger,Environ.Sci.Technol.45,10219(2011).

    [21]P.W.Sternberg,Cell 105,173(2001).

    [22]S.Brenner,Genetics 77,71(1974).

    [23]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [24]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson, M.R.Pederson,D.J.Singh,and C.Fiolhais,Phys. Rev.B 46,6671(1992).

    [25]B.Delley,J.Chem.Phys.92,508(1990).

    [26]B.Delley,J.Chem.Phys.113,7756(2000).

    [27]D.Rogers and A.J.Hop finger,J.Chem.Inf.Comp. Sci.34,854(1994).

    [28]X.Wu,Z.H.Tong,L.L.Li,and H.Q.Yu,Chemosphere 93,2399(2013).

    [29]J.M.Ma,L.L.Cai,B.J.Zhang,L.W.Hu,X.Y. Li,and J.J.Wang,Ecotoxicol.Environ.Saf.73,1465 (2010).

    [30]J.Ranke,K.Molter,F.Stock,U.Bottin-Weber,J.Poczobutt,J.Hoffmann,B.Ondruschka,J.Filser,and B. Jastor ff,Ecotoxicol.Environ.Saf.58,396(2004).

    [31]A.Latala,P.Stepnowski,M.Nedzi,and W.Mrozik, Aquat.Toxicol.73,91(2005).

    [32]S.Stolte,J.Arning,U.Bottin-Weber,M.Matzke,F. Stock,K.Thiele,M.Uerdingen,U.Welz-Biermann,B. Jastor ff,and J.Ranke,Green Chem.8,621(2006).

    [33]C.W.Cho,T.P.T.Pham,Y.C.Jeon,and Y.S.Yun, Green Chem.10,67(2008).

    [34]D.J.Couling,R.J.Bernot,K.M.Docherty,J.K. Dixona,and E.J.Maginn,Green Chem.8,82(2006). [35]R.N.Das,T.E.Sintra,J.A.P.Coutinho,S.P.M. Ventura,K.Roy,and P.L.A.Popelier,Toxicol.Res. 5,1388(2016).

    [36]A.K.Ghose and G.M.Crippen,J.Comput.Chem.7, 565(1986).

    [37]A.R.Katritzky and E.V.Gordeeva,J.Chem.Inf. Comput.Sci.33,835(1993).

    [38]A.Latala,M.Nedzi,and P.Stepnowski,Green Chem. 11,580(2009).

    [39]C.Pretti,C.Chiappe,I.Baldetti,S.Brunini,G.Monni, and L.Intorre,Ecotoxicol.Environ.Safe.72,1170 (2009).

    [40]M.Fakhraee and M.R.Gholami,Ind.Eng.Chem.Res. 54,11678(2015).

    [41]Y.Li,S.Gao,H.Jing,L.Qi,J.Ning,Z.Tan,K.Yang, C.Zhao,L.Ma,and G.Li,Toxicol.Res.2,403(2013).

    [42]P.H.Harlow,S.J.Perry,S.Widdison,S.Daniels,E. Bondo,C.Lamberth,R.A.Currie,and A.J.Flemming, Sci.Rep.6,22965(2016).

    [43]L.Feng,S.S.Liu,K.Li,H.X.Tang,and H.L.Liu,J. Hazard.Mater.327,11(2017).

    [44]T.Kaletta and M.O.Hengartner,Nat.Rev.Drug Discov.5,387(2006).

    ceived on March 29,2017;Accepted on May 22,2017)

    ?Author to whom correspondence should be addressed.E-mail: zhtong@ustc.edu.cn

    国产v大片淫在线免费观看| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区| 真人一进一出gif抽搐免费| 亚洲av电影不卡..在线观看| 无限看片的www在线观看| 精品电影一区二区在线| 亚洲国产欧洲综合997久久,| 一级作爱视频免费观看| 国产av一区在线观看免费| 在线观看舔阴道视频| 久久香蕉精品热| 亚洲欧美日韩无卡精品| 丰满人妻一区二区三区视频av | 五月玫瑰六月丁香| 琪琪午夜伦伦电影理论片6080| 国产精品精品国产色婷婷| 久久精品影院6| 露出奶头的视频| 免费看美女性在线毛片视频| 色播亚洲综合网| 午夜免费激情av| 亚洲人成伊人成综合网2020| 校园春色视频在线观看| 制服人妻中文乱码| 国产一级毛片七仙女欲春2| 婷婷六月久久综合丁香| 18禁裸乳无遮挡免费网站照片| 法律面前人人平等表现在哪些方面| 国产伦在线观看视频一区| 999久久久国产精品视频| 波多野结衣高清作品| 男插女下体视频免费在线播放| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| av视频在线观看入口| 欧美中文日本在线观看视频| 亚洲一区中文字幕在线| av国产免费在线观看| 香蕉丝袜av| 最新在线观看一区二区三区| 色老头精品视频在线观看| 女人高潮潮喷娇喘18禁视频| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品久久成人aⅴ小说| 岛国在线免费视频观看| 亚洲第一电影网av| 妹子高潮喷水视频| 久久久久久国产a免费观看| 欧美人与性动交α欧美精品济南到| 久久久精品大字幕| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 国产成人av教育| 男男h啪啪无遮挡| 日韩欧美国产一区二区入口| 久久久久久大精品| 成人国语在线视频| 老司机深夜福利视频在线观看| 丁香欧美五月| 久久精品成人免费网站| 免费观看精品视频网站| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 国产成人av教育| www.精华液| 国产亚洲精品av在线| 精品国产超薄肉色丝袜足j| av中文乱码字幕在线| 成在线人永久免费视频| 欧美极品一区二区三区四区| 欧美成人午夜精品| 久久中文看片网| 亚洲五月婷婷丁香| 日日爽夜夜爽网站| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区三| 这个男人来自地球电影免费观看| 欧美最黄视频在线播放免费| 久久精品人妻少妇| 亚洲一码二码三码区别大吗| 精品第一国产精品| 人妻夜夜爽99麻豆av| 19禁男女啪啪无遮挡网站| 国产精品美女特级片免费视频播放器 | 亚洲中文日韩欧美视频| 色在线成人网| 中国美女看黄片| 久久国产精品人妻蜜桃| 18禁观看日本| 日本免费a在线| 老司机福利观看| 国产精品99久久99久久久不卡| 一进一出好大好爽视频| 在线观看日韩欧美| 亚洲自偷自拍图片 自拍| 国产一区在线观看成人免费| 国产成人影院久久av| 50天的宝宝边吃奶边哭怎么回事| 天天躁夜夜躁狠狠躁躁| 国产高清有码在线观看视频 | 日韩成人在线观看一区二区三区| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 日本黄色视频三级网站网址| 中文字幕熟女人妻在线| √禁漫天堂资源中文www| 女同久久另类99精品国产91| 一二三四社区在线视频社区8| av福利片在线| 欧美日韩国产亚洲二区| 宅男免费午夜| 久久久久性生活片| 国产精品1区2区在线观看.| 免费在线观看完整版高清| 欧美色视频一区免费| 一级毛片高清免费大全| 国产又色又爽无遮挡免费看| 一本一本综合久久| 黑人操中国人逼视频| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 国产aⅴ精品一区二区三区波| 12—13女人毛片做爰片一| 露出奶头的视频| 精品欧美一区二区三区在线| 日韩中文字幕欧美一区二区| 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| av天堂在线播放| 亚洲精品中文字幕一二三四区| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 久久人妻福利社区极品人妻图片| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 一个人免费在线观看电影 | 一级黄色大片毛片| 国产午夜精品久久久久久| 亚洲成a人片在线一区二区| 色老头精品视频在线观看| 黄片小视频在线播放| 成人av在线播放网站| 欧美日本视频| 久久99热这里只有精品18| 香蕉国产在线看| 国产免费av片在线观看野外av| 91国产中文字幕| 国产成人精品久久二区二区免费| 黄色女人牲交| 操出白浆在线播放| 欧美精品啪啪一区二区三区| 长腿黑丝高跟| 国产97色在线日韩免费| 欧美三级亚洲精品| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| 天天躁夜夜躁狠狠躁躁| 国模一区二区三区四区视频 | 又粗又爽又猛毛片免费看| 一个人免费在线观看电影 | 亚洲 欧美 日韩 在线 免费| 亚洲av第一区精品v没综合| 91大片在线观看| 久久欧美精品欧美久久欧美| 麻豆av在线久日| 一级毛片精品| 久久99热这里只有精品18| 亚洲人成电影免费在线| 欧美激情久久久久久爽电影| 欧美日韩中文字幕国产精品一区二区三区| 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 香蕉丝袜av| 国产人伦9x9x在线观看| 久久久国产欧美日韩av| 亚洲五月婷婷丁香| 国产午夜精品论理片| 久久精品aⅴ一区二区三区四区| 精品欧美国产一区二区三| 亚洲午夜理论影院| 国产私拍福利视频在线观看| www国产在线视频色| 国产精品亚洲一级av第二区| 免费观看人在逋| 日韩欧美国产在线观看| 男人舔奶头视频| a级毛片在线看网站| 日日夜夜操网爽| 97人妻精品一区二区三区麻豆| 成人手机av| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 搞女人的毛片| 视频区欧美日本亚洲| 欧美极品一区二区三区四区| 欧美又色又爽又黄视频| 一边摸一边抽搐一进一小说| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 亚洲天堂国产精品一区在线| 一a级毛片在线观看| 成人av在线播放网站| 激情在线观看视频在线高清| 欧美一区二区国产精品久久精品 | 2021天堂中文幕一二区在线观| 1024视频免费在线观看| 在线十欧美十亚洲十日本专区| 99精品欧美一区二区三区四区| 欧美中文日本在线观看视频| 欧美+亚洲+日韩+国产| 麻豆av在线久日| netflix在线观看网站| 久久天堂一区二区三区四区| 色av中文字幕| 99国产极品粉嫩在线观看| 丝袜人妻中文字幕| 在线十欧美十亚洲十日本专区| 国产av不卡久久| 美女扒开内裤让男人捅视频| 日韩欧美精品v在线| 午夜福利视频1000在线观看| 精品福利观看| 亚洲av第一区精品v没综合| 一级毛片女人18水好多| 久久99热这里只有精品18| 在线看三级毛片| 欧美成人午夜精品| 男女视频在线观看网站免费 | 久久久久久久午夜电影| 国产成人av教育| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 国产一区二区三区在线臀色熟女| 两人在一起打扑克的视频| 国产熟女xx| 国产精品,欧美在线| 精品久久蜜臀av无| 人人妻人人澡欧美一区二区| 亚洲成av人片免费观看| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| 国产又黄又爽又无遮挡在线| 国产高清激情床上av| 国内精品久久久久久久电影| 亚洲成人免费电影在线观看| 中亚洲国语对白在线视频| 国产熟女xx| 老汉色av国产亚洲站长工具| 国产精品永久免费网站| av在线播放免费不卡| 亚洲人成伊人成综合网2020| 精品电影一区二区在线| 亚洲精品久久国产高清桃花| 免费无遮挡裸体视频| 91成年电影在线观看| 制服人妻中文乱码| 日韩欧美一区二区三区在线观看| 色综合欧美亚洲国产小说| 一区二区三区高清视频在线| 国产av又大| 国产精品免费视频内射| 亚洲精品中文字幕一二三四区| 日日摸夜夜添夜夜添小说| 精品国产美女av久久久久小说| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 午夜激情福利司机影院| 日韩欧美 国产精品| www.www免费av| 老司机深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 精品国内亚洲2022精品成人| 国产精品久久久人人做人人爽| 久久精品国产99精品国产亚洲性色| 亚洲成人久久性| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 亚洲人成77777在线视频| 免费观看精品视频网站| 中文字幕人妻丝袜一区二区| 男女那种视频在线观看| 亚洲成人国产一区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品青青久久久久久| 久久九九热精品免费| 777久久人妻少妇嫩草av网站| 少妇裸体淫交视频免费看高清 | 国产私拍福利视频在线观看| 级片在线观看| 国产精品久久久久久精品电影| 国产成人欧美在线观看| 女人高潮潮喷娇喘18禁视频| 在线看三级毛片| 久久久久久人人人人人| 欧美色视频一区免费| 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 女人爽到高潮嗷嗷叫在线视频| 变态另类丝袜制服| 制服人妻中文乱码| 精品乱码久久久久久99久播| 日本一本二区三区精品| 免费电影在线观看免费观看| 久久久久精品国产欧美久久久| 成人三级黄色视频| 精品欧美一区二区三区在线| 午夜福利18| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久人妻蜜臀av| 黄片小视频在线播放| 色尼玛亚洲综合影院| 一a级毛片在线观看| 少妇的丰满在线观看| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 夜夜看夜夜爽夜夜摸| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看 | 国产精品免费视频内射| 国产精品久久久久久人妻精品电影| 欧美日韩国产亚洲二区| 日本免费a在线| 中文资源天堂在线| 极品教师在线免费播放| 国产伦一二天堂av在线观看| 叶爱在线成人免费视频播放| 又黄又粗又硬又大视频| videosex国产| 精品国产乱子伦一区二区三区| 国产私拍福利视频在线观看| 亚洲第一电影网av| 99国产极品粉嫩在线观看| 这个男人来自地球电影免费观看| 人妻丰满熟妇av一区二区三区| 日韩免费av在线播放| 69av精品久久久久久| 黑人欧美特级aaaaaa片| 亚洲成人久久性| 精品免费久久久久久久清纯| 中文字幕最新亚洲高清| 成人国产一区最新在线观看| 大型av网站在线播放| 中文字幕av在线有码专区| 99在线人妻在线中文字幕| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 国产精品九九99| 脱女人内裤的视频| 久久久久久久午夜电影| 91在线观看av| 精品免费久久久久久久清纯| 欧美不卡视频在线免费观看 | 老汉色∧v一级毛片| 国产亚洲av嫩草精品影院| 一区二区三区激情视频| 久久香蕉激情| 嫩草影视91久久| 国产麻豆成人av免费视频| 日本免费一区二区三区高清不卡| 免费在线观看黄色视频的| 18禁观看日本| 两人在一起打扑克的视频| 男女午夜视频在线观看| 99久久综合精品五月天人人| 久久这里只有精品中国| 亚洲天堂国产精品一区在线| 中文字幕人妻丝袜一区二区| 国产激情偷乱视频一区二区| 精品久久久久久久毛片微露脸| 亚洲成av人片在线播放无| 成在线人永久免费视频| 亚洲最大成人中文| 99久久无色码亚洲精品果冻| 久久香蕉精品热| 午夜福利视频1000在线观看| 久久久久久人人人人人| 国产日本99.免费观看| 99国产极品粉嫩在线观看| 欧美色欧美亚洲另类二区| 精品人妻1区二区| 日本撒尿小便嘘嘘汇集6| 男女午夜视频在线观看| 成人亚洲精品av一区二区| 国产又色又爽无遮挡免费看| 天堂影院成人在线观看| 国产高清视频在线观看网站| 男男h啪啪无遮挡| 嫩草影院精品99| 香蕉久久夜色| 免费人成视频x8x8入口观看| 国产精品免费视频内射| 香蕉国产在线看| 久久久久久人人人人人| 桃色一区二区三区在线观看| 美女午夜性视频免费| 欧美极品一区二区三区四区| 国产精品久久久人人做人人爽| 国产区一区二久久| 午夜福利高清视频| 97超级碰碰碰精品色视频在线观看| www.自偷自拍.com| 久久久国产成人免费| 一级黄色大片毛片| 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| x7x7x7水蜜桃| 99re在线观看精品视频| 中文在线观看免费www的网站 | 香蕉久久夜色| 亚洲黑人精品在线| 亚洲精品在线美女| 99热6这里只有精品| 最好的美女福利视频网| 国产成人啪精品午夜网站| 免费电影在线观看免费观看| 黄色毛片三级朝国网站| 国内毛片毛片毛片毛片毛片| 婷婷亚洲欧美| 午夜福利视频1000在线观看| 男人舔奶头视频| 少妇的丰满在线观看| 国产主播在线观看一区二区| 男女那种视频在线观看| a级毛片a级免费在线| 最近视频中文字幕2019在线8| 中文字幕高清在线视频| 黄频高清免费视频| 在线观看66精品国产| 青草久久国产| 午夜福利在线在线| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影| 国产成人av激情在线播放| 视频区欧美日本亚洲| 国产免费男女视频| 中国美女看黄片| 黄色 视频免费看| 美女 人体艺术 gogo| 国产精品久久久av美女十八| 国产片内射在线| 亚洲18禁久久av| 在线国产一区二区在线| 69av精品久久久久久| 亚洲成人免费电影在线观看| 美女 人体艺术 gogo| 美女免费视频网站| 久久国产精品人妻蜜桃| 久久久久久国产a免费观看| 亚洲专区字幕在线| 精品久久久久久久末码| 每晚都被弄得嗷嗷叫到高潮| 女人被狂操c到高潮| 国产av一区二区精品久久| 精品国产乱子伦一区二区三区| 精品久久久久久久毛片微露脸| 欧美日韩瑟瑟在线播放| 91国产中文字幕| 波多野结衣高清无吗| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三| 成人欧美大片| 18禁美女被吸乳视频| 亚洲专区国产一区二区| 在线观看免费午夜福利视频| 啦啦啦免费观看视频1| 成人18禁高潮啪啪吃奶动态图| 久久久久久国产a免费观看| 日韩国内少妇激情av| 国模一区二区三区四区视频 | 亚洲av日韩精品久久久久久密| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看舔阴道视频| 99久久无色码亚洲精品果冻| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 午夜免费观看网址| 日韩欧美在线乱码| 亚洲五月天丁香| ponron亚洲| 99久久综合精品五月天人人| 男女床上黄色一级片免费看| 国产精品亚洲美女久久久| 日韩高清综合在线| 嫩草影视91久久| 美女扒开内裤让男人捅视频| 日韩三级视频一区二区三区| 欧美精品啪啪一区二区三区| 精品欧美国产一区二区三| 国产野战对白在线观看| 最新美女视频免费是黄的| 亚洲无线在线观看| 国产精品98久久久久久宅男小说| 一级作爱视频免费观看| 欧美av亚洲av综合av国产av| 精品日产1卡2卡| avwww免费| 两性夫妻黄色片| 国产区一区二久久| 999久久久国产精品视频| 亚洲欧美日韩高清专用| 又粗又爽又猛毛片免费看| 国产视频内射| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 日韩欧美国产一区二区入口| 午夜激情福利司机影院| 国产av在哪里看| 精品无人区乱码1区二区| 18禁观看日本| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆| 亚洲avbb在线观看| 日韩欧美三级三区| 最新美女视频免费是黄的| 十八禁网站免费在线| 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 欧美黑人巨大hd| 成人特级黄色片久久久久久久| 男插女下体视频免费在线播放| 黄色 视频免费看| 久久性视频一级片| 一区二区三区高清视频在线| 午夜老司机福利片| 男女午夜视频在线观看| 亚洲欧美精品综合久久99| 香蕉av资源在线| 日韩大尺度精品在线看网址| 露出奶头的视频| 欧美 亚洲 国产 日韩一| 制服丝袜大香蕉在线| 免费无遮挡裸体视频| 日韩高清综合在线| 国产爱豆传媒在线观看 | 老熟妇乱子伦视频在线观看| 18美女黄网站色大片免费观看| 久久久久久免费高清国产稀缺| 精品欧美国产一区二区三| 一进一出抽搐gif免费好疼| 国产区一区二久久| 亚洲美女视频黄频| 最新美女视频免费是黄的| 亚洲18禁久久av| 精品高清国产在线一区| 国产高清有码在线观看视频 | 欧美黄色片欧美黄色片| 久久久久久久久免费视频了| 日韩三级视频一区二区三区| 午夜日韩欧美国产| 九九热线精品视视频播放| 国产免费男女视频| 欧美黑人巨大hd| 久久精品91蜜桃| 亚洲成人久久爱视频| www.自偷自拍.com| 精品日产1卡2卡| 国产精品香港三级国产av潘金莲| 精品久久久久久成人av| 在线永久观看黄色视频| 国产精品一区二区免费欧美| 国产高清视频在线观看网站| 日日摸夜夜添夜夜添小说| 天天添夜夜摸| 国内精品一区二区在线观看| 中亚洲国语对白在线视频| 欧美三级亚洲精品| 欧美日韩福利视频一区二区| 此物有八面人人有两片| 99久久综合精品五月天人人| 久久99热这里只有精品18| 高潮久久久久久久久久久不卡| 久久久久久国产a免费观看| 亚洲专区字幕在线| 欧美黑人巨大hd| 久久婷婷成人综合色麻豆| 久久久精品国产亚洲av高清涩受| 2021天堂中文幕一二区在线观| 亚洲精品国产一区二区精华液| 国产精品一及| 可以在线观看毛片的网站| 成在线人永久免费视频| 欧美日韩瑟瑟在线播放| 久久九九热精品免费| 在线观看一区二区三区| 一区二区三区国产精品乱码| 在线观看免费日韩欧美大片| 色噜噜av男人的天堂激情| 黑人操中国人逼视频| 亚洲欧美日韩高清专用| 国产av一区二区精品久久| 特级一级黄色大片| 女警被强在线播放| 精品乱码久久久久久99久播| 成人国产综合亚洲| 国产视频内射| 久久天堂一区二区三区四区| 国产1区2区3区精品| 51午夜福利影视在线观看| 日本成人三级电影网站| 亚洲欧美日韩高清专用| 国产男靠女视频免费网站| 蜜桃久久精品国产亚洲av| 深夜精品福利|