• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides

    2017-09-03 07:53:54QiongWuBoKouZewuZhangZushengHangWeihuaZhu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期
    關(guān)鍵詞:環(huán)保型水產(chǎn)養(yǎng)殖戶

    Qiong Wu,Bo Kou,Ze-wu Zhang,Zu-sheng Hang,Wei-hua Zhu

    a.School of Materials Science and Engineering,Nanjing Institute of Technology,Nanjing 211167, China

    b.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology,Nanjing 211167,China

    c.Institute for Computation in Molecular and Materials Science and Department of Chemistry,Nanjing University of Science and Technology,Nanjing 210094,China

    Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides

    Qiong Wua,b?,Bo Koua,b,Ze-wu Zhanga,b,Zu-sheng Hanga,b,Wei-hua Zhuc

    a.School of Materials Science and Engineering,Nanjing Institute of Technology,Nanjing 211167, China

    b.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology,Nanjing 211167,China

    c.Institute for Computation in Molecular and Materials Science and Department of Chemistry,Nanjing University of Science and Technology,Nanjing 210094,China

    Based on the parent tetrazole 2N-oxide,six series of novel carbon-linked ditetrazole 2N-oxides with different energetic substituent groups(-NH2,-N3,-NO2,NF2,-NHNO2)and energetic bridge groups(-CH2-,-CH2?CH2-,-NH-,-N=N-,-NH?NH-)were designed.The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods.The results showed that most of designed compounds have oxygen balance around zero,high heats of formation,high density,high energy,and acceptable sensitivity,indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds,even only combined with some very common energetic substituent groups and bridge groups.Comprehensively considering the effects on energy and sensitivity,the-NO2,-NF2,-NH-and-NH?NH-are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds,while-NH2, -N3,-CH2?CH2-,and-N=N-are inappropriate.

    Tetrazole,N-oxide,High energy,Bridge group,Density functional theory

    I.INTRODUCTION

    Seeking for novel advanced energetic materials with better energy properties and sensitivity performance is an everlasting topic and challenge for researchers.In the past several years,many studies have been done to theoretically design and synthesize new kinds of energetic molecules[1?4],salts[5?7],co-crystals[8?10], and metal-organic frameworks[11?13].Among them, tetrazole N-oxide-based compounds[14?19]attracted lots of attention lately,because of their high oxygen balance(OB),high detonation properties(detonation velocity D and detonation pressure P),good thermal stability or low sensitivity. For instance,Fischer et al.[14]synthesized the hydroxylammonium and ammonium salts of aminotetrazole 1N-oxide,these compounds have obvioulsy lower impact sensitivity,friction sensitivity,and electrostatic discharge sensitivity than two very famous high explosives 1,3,5-trinitro-1,3,5-triazinane(RDX)and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX),and their energies are close to RDX.Then,a series of 5,5′-bis(tetrazole 1N-oxide)salts [15]were prepared,including a very powerful representative with low toxicity:dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate(TKX-50)[15?18],whose D and P are around 9.7 km/s and 42.4 GPa,respectively,which are obviously higher than HMX.Besides, TKX-50 also has lower impact sensitivity(20 J)and IF (120 N)than HMX.The excellent overall performance makes TKX-50 be a possible replacement for RDX and HMX,and it shows the high research worth of tetrazole N-oxide-based energetic compounds.Many 5,5′-bis(tetrazole 2N-oxide)salts[19]were also synthesized successfully,among them,3-amino-1-nitroguanidinium salt has comparable energy and sensitivity with HMX, the hydroxylammonium salt possesses close performance to RDX,while the guanidinium salt is high thermally stable and insensitive. Five azotetrazole-1,1′-dioxide salts with high energy were prepared through the oxidation of hydroxylammonium aminotetrazole 1-oxide[14],these compounds also have better detonation properties than RDX,especially for the dipotassium salt,whose D and P are close to TKX-50 but its IF and electrostatic discharge sensitivity are higher than TKX-50.By oxidizing the 5-azidotetrazolate an-ion at the mild aqueous conditions,a series of azidotetrazolate 2N-oxide salts were synthesized successfully, among them,the ammonium and aminoguanidinium salts have comparative D with RDX while the sodium salt is more insensitive than RDX.Furthermore,these salts possess better D than their corresponding azidotetrazolates that lack an N-oxide.

    From these above analyses,it can be found that some good tetrazole N-oxide-based compounds with high energetic performance and low sensitivity have been synthesized successfully.The introduction of N-oxide into tetrazole are feasible. Because of the introduction of N-oxide,some of these tetrazole N-oxide-based compounds have OB close to zero without possessing too much oxygen-rich energetic substituent groups like -NO2or-ONO2.Generally,the most ideal OB value is zero,which could release the maximum energy when detonating.A negative OB value means that C and H atoms could not be oxidized completely,while a positive OB value indicates that extra O2would be formed from the needless oxygen.These two cases would both decrease the heat released,and may generate some toxic gases like CO too.Besides,the existing of N-oxide could be helpful for forming hydrogen-bond to increase the thermal stability and decrease the sensitivity,this is may be one reason why many of these synthesized tetrazole N-oxide-based compounds possess lower sensitivity than RDX.These above analyses show the high research worth of tetrazole N-oxides.However,the number of synthesized tetrazole N-oxides is limited and most of them are energetic slats in the past decade,more systematic studies are needed.

    In the present study,based on the parent tetrazole 2N-oxide,we designed six series of novel carbonlinked ditetrazole 2N-oxides with different energetic substituent groups(-NH2,-N3,-NO2,NF2,-NHNO2) and energetic bridge groups(-CH2-,-CH2?CH2-,-NH-, -N=N-,-NH?NH-)with OB around zero.Molecular structures of six series of designed compounds are shown in FIG.1.The effects of different energetic substituent groups and energetic bridge groups on the performance were investigated.Density functional theory(DFT)and electrostatic potential(ESP)were employed to study the molecular and electronic structures,heats of formation(HOF),density,detonation properties,and sensitivity.And a good combination among the parent compound,bridge group,and substituent group with good overall properties was found.

    II.COMPUTATIONAL METHODS

    D and P are two important parameters used for judging the energy level of energetic materials,in this study, we employed Kamlet-Jacobs equations[20]to calculate them:

    FIG.1 Molecular frameworks of six series of designed compounds.

    Density(ρ)and heats of formation(HOF)are two key parameters related with D and P,we calculated ρ (Eq.(3))in solid-phase using the ESP method[21]proposed by Politzer et al.at B3PW91/6-31G(d,p)level, and the HOF in solid-phase(?Hf,solid)at 298 K by using a compositive method[22,23]based on the Hess’s law(Eq.(4)and Eq.(6))is used for predicting heat of sublimation(?Hsub)at B3LYP/6-31G(d,p)level. Isodesmic reaction used for predicting gas-phased HOF:?Hf,gas)is shown in Scheme 1.

    The free space per molecule in the unit cell(?V)is an common ESP method[24,25]used for estimating the impact sensitivity of energetic materials,which is proposed by the Politzer group,calculated at B3PW91/6-31G(d,p):

    Molecular and electronic structures calculations were performed on Gaussian program[26]at B3LYP/6-31G(d,p).

    Scheme 1 Isodesmic reaction used for predicting gas-phased HOF.

    FIG.2 Oxygen balance of 36 designed compounds.

    III.RESULTS AND DISCUSSION

    A.Oxygen balance and heats of formation

    OB is a parameter related with the energy of high explosives,generally,the more the OB close zero,the higher the energy.The OBs of designed compounds were calculated and displayed in FIG.2.It is found that among these 36 designed compounds,there are about 26 compounds(A1,A3?A6,B3?B6,C4,C6, D1,D3?D6,E1?E6,F3?F6)have OB between?30% and 30%,showing the relative ideal OB value is close to zero,which is a good basis for obtaining high detonation performance.The relative higher OB values of these compounds are mainly from the oxygen-rich tetrazole N-oxide,though all compounds only have no more than two energetic substituent groups.There are seven compounds with OB more than zero and one(F6)with the most ideal value 0%.In addition,series B(-CH2-bridged)and C(-CH2-CH2-bridged)have the lowest while-NO2and-NHNO2substituted derivatives possess the highest OB values.

    FIG.3 Comparison of heats of formation in gas-phase and solid-phase of 36 designed compounds.

    HOF is another important parameter associated with energetic properties,usually,the higher the HOF,the better the energetic properties.The HOFs in gas-phase and solid-phase of designed compounds were predicted, as depicted in FIG.3.It is seen that gas-phase HOFs are higher than solid-phase HOFs in general,and their variation tendency is similar.27 designed compounds have higher solid-phase HOF than one of most powerful CHNO explosives octanitrocubane[27](ONC,solidphase HOF=594 kJ/mol),eight compounds even possess solid-phase HOF more than 1000 kJ/mol,and all compounds have obvious higher solid-phase HOF than RDX and HMX.These indicate the outstanding HOF property of designed compounds,which is also a good base for acquiring high energy.A comparison of the effects of substituent groups and bridge groups on solidphase HOF is displayed in FIG.4.It is seen that-N3, -NO2,-NF2and-NHNO2substituted derivatives possess higher HOF than those of unsubstituted ones while -NH2substituted compounds have the lowest value, showing that-N3,-NO2,-NF2,and-NHNO2groups are helpful for improving HOF,especially for-N3,while -NH2group just has the opposite effect.Then,series E has the highest HOF,followed by series F,while the other series have close value,indicating that-N=N-and-NH-NH-groups increase the HOF,especially for -N=N-group.

    B.Density and detonation performance

    FIG.4 Comparison of solid-phase heats of formation of 36 designed compounds.

    FIG.5 Density of 36 designed compounds.

    Density is also a key parameter connected with detonation performance,a high density would be very helpful for enhancing the detonation performance.The densities in solid-phase of designed compounds were estimated and compared in FIG.5.First,there are 34, 19,and 8 compounds with higher density than RDX, HMX,and ONC,respectively,seven of them even possess density more than 2.00 g/cm3,indicating the good density property of designed molecules[28?30].Then, series D and series B/C have higher and lower density than series A,while series E/F have comparable density with series A,showing that-NH-group and-CH2-/-CH2?CH2-increase and reduce the density,respectively,while-NH-NH-and-N=N-groups have little effects on density.Finally,-NF2,-NHNO2,and-NO2substituted derivatives have higher density while-N3and -NH2substituted ones possess lower density than unsubstituted compounds,showing that the former groups enhance the density,especially for-NF2group,while -N3and-NH2have the opposite in fluence.

    FIG.6 Detonation velocity of 36 designed compounds.

    FIG.7 Detonation pressure of 36 designed compounds.

    Since most of the designed compounds have relative ideal OB,high HOF,and high density,it may be expected that these molecules would have better detonation performance.D and P are two most common and important parameters used for judging the detonation properties of energetic compounds. They were calculated and depicted in FIG.6(D) and FIG.7(P). From them,it can be seen that, first of all,D and P decrease with the order of-NF2>-NHNO2≈-NO2>-N3>-H(unsubstituted)>-NH2substituted derivatives,showing that these former four energetic substituent groups are helpful for increasing the detonation performance while-NH2group has the opposite effect. Then,generally,D and P increase with the order of-CH2?CH2-,-CH2-, -(directly linked)≈-N=N-≈-NH?NH-<-NH-, indicating that-CH2?CH2-and-CH2-bridge groups decrease and-NH-bridge group increases the detonation performance,respectively,while-N=N-and-NH-NH-make little in fluence on them. Finally,27,21,and 8 designed compounds have better both D and P than RDX,HMX,and ONC,respectively,which shows the outstanding energy performance of designed molecules. This also indicates that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds,even only combined with some very common energetic substituent groups and bridge groups.

    C.Sensitivity and electronic structure

    FIG.8 Free space per molecule in the unit cell of 36 designed compounds.

    FIG.9 A comparison of energy gap of designed compounds.

    FIG.10 Energy gap of 36 designed compounds calculated by the B3LYP/6-31G(d,p)and B3PW91/6-31G(d,p)methods.

    FIG.11 HOMO and LUMO of 36 designed compounds.

    To study the sensitivity,the free space per molecule in the unit cell(?V)is used[24,25].Generally,a larger?V value means a higher sensitivity.For instance,the?V values[25]of hexanitrohexaazaisowurtzitane(CL-20)and HMX are 86 and 49?A3,respectively,while their h50(impact sensitivity)[31]are 14 and 29 cm,respectively. The?V of designed compounds were calculated and displayed in FIG.8. First,it is seen that the?V increases with the order of-H(unsubstituted)<-NH2<-NF2<<-NO2<-N3<-NHNO2substituted compounds,showing that all substituted groups increase the sensitivity,especially for -N3and-NHNO2group. Then,the?Vincreases with the sequence of-(directly linked)<-NH-<-CH2-<-NH?NH-<-N=N-<-CH2-CH2-bridged compounds, suggesting that all bridge groups increase the sensitivity,especially for-N=N-and-CH2-CH2-bridge groups. Finally,these compounds have?V values ranged from 38?A3to 65?A3,lower than that of CL-20 and close to HMX,showing the sensitivity of them is acceptable.

    The energy gap between highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)energies has been also used to investigate the activity and sensitivity of energetic compounds[32?34].Generally,the larger the gap is,the less activity or sensitivity the compound. The energy gap values of designed compounds were calculated and depicted in FIG.9.It can be seen that the gap decreases with the order of-N3>-NO2>-NHNO2>-NF2>-NH2≈-H substituted compounds,indicating that the energetic substituent groups increase the activity and sensitivity in general,which is consistent with the?V result. Then,the gap decreases with the sequence of-NH?NH->-NH-≈-CH2-≈-(directly linked)>-CH2?CH2->-N=N-bridged compounds,showing that-CH2-CH2-and-N=N-bridge groups increase the activity and sensitivity obviously, which is in agreement with the?V result mainly.This above analysis shows that-N3substituent group and -CH2-CH2-and-N=N-bridge groups may be not suitable for combining with tetrazole N-oxide to design new energetic compounds with good overall properties,since they would increase the sensitivity obviously.FIG.10 depicts the energy gap calculated by the B3LYP/6-31G(d,p)and B3PW916-31G(d,p)methods,it can be seen that predicted values of each compound by two methods are very close and the overall variation tendency are the same.A further comparison of the effects of different bridge groups on HOMO and LUMO is displayed in FIG.11.It is seen that-CH2-CH2-bridged compounds(series C)and-N=N-bridged groups(series E)have the highest HOMO and lowest LUMO,respec-tively,showing that the former bridge group increase the HOMO while the later one decrease the LUMO of tetrazole N-oxide obviously,this is a main reason why these two series have the lowest energy gap and highest activity and sensitivity.

    TABLE I The effects of different substituent groups and bridge groups on the HOF,ρ,D,P and sensitivity.

    A overall summary for the effects of different substituent groups and bridge groups on the HOF,ρ,D, P and sensitivity compared to unsubstituted and directly linked compounds,is listed in Table I.Comprehensively considering,-NO2and-NF2are two appropriate substituent groups used for combining tetrozale N-oxide to design new energetic compounds while-NH2and-N3are inappropriate.For the-NHNO2group,it is a debatable group since it would both increase the sensitivity and detonation performance.The-NH-and -NH-NH-are two appropriate bridge groups used to link two tetrazole N-oxide rings,while-CH2-,-CH2-CH2-and-N=N-are inappropriate.In addition,the directly linked derivatives also possess good overall performance,thus,two tetrazole N-oxide rings being linked directly may be an available alternative.

    IV.CONCLUSION

    We designed six series of new carbon-linked ditetrazole 2N-oxides with different energetic substituent groups(-NH2,-N3,-NO2,NF2,-NHNO2)and energetic bridge groups(-CH2-,-CH2?CH2-,-NH-,-N=N-,-NH?NH-)with OB around zero.The effects of different energetic substituent groups and energetic bridge groups on the performance were studied by using the DFT and ESP methods. The results show that, first of all,most of designed compounds have OB between?30%and 30%and HOF higher than ONC; furthermore,-N3,-NO2,-NF2,-NHNO2,-N=N-and-NH?NH-groups are helpful for improving HOF.Then, most of them have higher density and better detonation performance than RDX and HMX,some of them even possess comparable energetic properties with ONC.The -NF2,-NHNO2,-NO2and-NH-groups are very helpful for increasing the detonation performance.Finally, the designed compound have receivable sensitivity and -N3,-N=N-and-CH2?CH2-could greatly increase the sensitivity and activity.In a word,-NO2,-NF2,-NH-and-NH?NH-are four appropriate substituent groups used for combining tetrozale N-oxide to design new energetic compounds while-NH2,-N3,-CH2?CH2-and -N=N-are inappropriate.

    V.ACKNOWLEDGMENTS

    This work was supported by the Natural Science Foundation of Nanjing Institute of Technology (YKJ201507,CKJA201603)and the Youth Natural Science Foundation of Jiangsu Province(BK20160774), and Outstanding Scienti fic and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

    [1]X.X.Zhao,S.H.Li,Y.Wang,Y.C.Li,F.Q.Zhao, and S.P.Pang,J.Mater.Chem.A 4,5495(2016).

    [2]M.Zheng,X.H.Li,H.L.Cui,and R.Z.Zhang,Chin. J.Chem.Phys.29,349(2016).

    [3]Q.Wu,W.H.Zhu,and H.M.Xiao,J.Mater.Chem. A 2,13006(2014).

    [4]J.H.Zhang and J.M.Shreeve,J.Am.Chem.Soc.136, 4437(2014).

    [5]J.H.Zhang,Q.M.Zhang,T.T.Vo,D.A.Parrish,and J.M.Shreeve,J.Am.Chem.Soc.137,1697(2015).

    [6]T.M.Klap¨otke,P.C.Schmid,S.Schnell,and J.Stierstorfer,J.Mater.Chem.A 3,2658(2015).

    [7]P.Yin and J.M.Shreeve,Angew.Chem.Int.Ed.54, 14513(2015).

    [8]C.B.Aaker¨oy,T.K.Wijethunga,and J.Despe,Chem. Eur.J.21,11029(2015).

    [9]C.Y.Zhang,X.G.Xue,Y.F.Cao,J.H.Zhou,A. B.Zhang,H.Z.Li,Y.Zhou,R.J.Xu,and T.Gao CrystEngComm 16,5905(2014).

    為了促進水產(chǎn)養(yǎng)殖行業(yè)的健康發(fā)展,生產(chǎn)出更多綠色無污染的產(chǎn)品,在實際工作中,養(yǎng)殖戶要在自動化養(yǎng)殖的基礎(chǔ)上,融入環(huán)保理念,減少藥物的應(yīng)用。此外,還可以研發(fā)和使用綠色環(huán)保型藥物,減少水產(chǎn)養(yǎng)殖中水體污染問題的發(fā)生,保證水體質(zhì)量。目前,我國已經(jīng)在綠色環(huán)保型藥物的研究上取得了一定的成績,這將會進一步推動水產(chǎn)養(yǎng)殖行業(yè)健康發(fā)展[2]。

    [10]D.Hong,Y.Li,S.Zhu,L.Zhang,and C.Pang,Cent. Eur.J.Energ.Mater.12,47(2015).

    [11]Q.H.Zhang and J.M.Shreeve,Angew.Chem.Int.Ed. 53,2540(2014).

    [12]Y.Shang,B.Jin,R.F.Peng,Q.Q.Liu,B.S.Tan,and Z.C.Guo,J.Zhao,and Q.C.Zhang,Dalton Trans. 45,13881(2016).

    [13]Q.Yang,X.X.Song,G.W.Zhao,G.L.Yang,L.L. Yang,Q.Wei,G.Xie,S.P.Chen,and S.L.Gao,Eur. J.Inorg.Chem.31,5052(2016).

    [14]D.Fischer,T.M.Klap¨otke,D.G.Piercey,and J. Stierst¨orfer,Chem.Eur.J.19,4602(2013).

    [15]N.Fischer,D.Fischer,T.M.Klap¨otke,D.G.Piercey, and J.Stierst¨orfer,J.Mater.Chem.22,20418(2012).

    [16]B.Yuan,Z.J.Yu,and E.R.Bernstein,J.Phys.Chem. A 119,2965(2015).

    [17]Q.An,T.Cheng,W.A.Goddard III,and S.V.Zybin, J.Phys.Chem.C 119,2196(2015).

    [18]V.P.Sinditskii,S.A.Filatov,V.I.Kolesov,K.O. Kapranov,A.F.Asachenko,M.S.Nechaev,V.V. Lunin,and N.I.Shishov,Thermochim.Acta 614,85 (2015).

    [19]N.Fischer,L.Gao,T.M.Klap¨otke,and J.Stierst¨orfer, Polyhedron 51,201(2013).

    [20]M.J.Kamlet and S.J.Jacobs,J.Chem.Phys.48,23 (1968).

    [21]P.Politzer,J.Martinez,J.S.Murray,M.C.Concha, and A.Toro-Labb′e,Mol.Phys.107,2095(2009).

    [22]P.W.Atkins,Physical Chemistry,Oxford:Oxford University Press,(1982).

    [23]E.F.C.Byrd and B.M.Rice,J.Phys.Chem.A 110, 1005(2006).

    [24]M.Posp′?ˇs′?l,P.V′avra,M.C.Concha,J.S.Murray,and P.Politzer,J.Mol.Model.17,2569(2011).

    [25]P.Politzer and J.S.Murray,J.Mol.Model.20,2223 (2014).

    [26]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,V.G.Zakrzewski,J. A.Montgomery,R.E.Stratmann,J.C.Burant,S.Dapprich,J.M.Millam,A.D.Daniels,K.N.Kudin,M.C. Strain,O.Farkas,J.Tomasi,V.Barone,M.Cossi,R. Cammi,B.Mennucci,C.Pomelli,C.Adamo,S.Clifford,J.Ochterski,G.A.Petersson,P.Y.Ayala,Q. Cui,K.Morokuma,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.Cioslowski,J.V.Ortiz,A.G.Baboul,B.B.Stefanov,G.Liu,A.Liashenko, P.Piskorz,I.Komaromi,R.Gomperts,R.L.Martin, D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A. Nanayakkara,C.Gonzalez,M.Challacombe,P.M.W. Gill,B.Johnson,W.Chen,M.W.Wong,J.L.Andres, C.Gonzalez,M.Head-Gordon,E.S.Replogle,and J. A.Pople,Gaussian 09,Revision A.01.Pittsburgh,PA: Gaussian,Inc.(2009).

    [27]A.M.Astakhov,R.S.Stepanov,and A.Y.Babushkin, Combust.Explos.Shock Waves 34,85(1998).

    [28]W.A.Trzcin′ski,S.Cudzilo,Z.Chylek,and L. Szyman′czyk,J.Hazard.Mater.157,605(2008).

    [29]Q.Wu,W.H.Zhu,and H.M.Xiao,RSC Adv.4,3789 (2014).

    [30]M.X.Zhang,P.E.Eaton,and R.Gilardi,Angew. Chem.Int.Ed.39,401(2000).

    [31]B.M.Rice and J.J.Hare,J.Phys.Chem.A 106,1770 (2002).

    [32]W.H.Zhu and H.M.Xiao,Struct.Chem.21,657 (2010).

    [33]Q.Wu,W.H.Zhu,and H.M.Xiao,J.Mol.Model.19, 4039(2013).

    [34]Q.Wu,W.H.Zhu,and H.M.Xiao,J.Phys.Chem.C 117,16830(2013).

    ceived on March 27,2017;Accepted on June 3,2017)

    ?Author to whom correspondence should be addressed.E-mail: clx@njit.edu.cn,Tel.:+86-25-86118274

    猜你喜歡
    環(huán)保型水產(chǎn)養(yǎng)殖戶
    旗開得勝!5畝養(yǎng)出過萬斤金剛蝦,蝦中60元抓蝦!養(yǎng)殖戶:有信心養(yǎng)
    搞養(yǎng)殖,我們都看《當(dāng)代水產(chǎn)》
    加油!水產(chǎn)人!
    牛年開盤魚價創(chuàng)新高,養(yǎng)殖戶如何避免“有魚價沒魚賣”的尷尬?
    供應(yīng)趨緊,養(yǎng)殖戶提價意向明顯
    平凡人物·平凡故事:年底了,養(yǎng)殖戶喜迎豐收
    大咖點評:2020年水產(chǎn)動保誰主沉浮?
    讀懂“水產(chǎn)人十二時辰”,你就懂了水產(chǎn)人的一天
    學(xué)做環(huán)保型元霄燈
    豐田汽車公司最新的環(huán)保型汽油機
    videosex国产| 女人被躁到高潮嗷嗷叫费观| 女人被躁到高潮嗷嗷叫费观| 丰满饥渴人妻一区二区三| av女优亚洲男人天堂| 2021少妇久久久久久久久久久| 高清欧美精品videossex| 又黄又粗又硬又大视频| 夜夜骑夜夜射夜夜干| 国产老妇伦熟女老妇高清| 热99国产精品久久久久久7| 欧美日韩av久久| 99久国产av精品国产电影| 在线 av 中文字幕| 国产精品嫩草影院av在线观看| 亚洲成人手机| 99久国产av精品国产电影| 亚洲精品中文字幕在线视频| 欧美日本中文国产一区发布| 69精品国产乱码久久久| 一二三四中文在线观看免费高清| 亚洲美女搞黄在线观看| 在线天堂中文资源库| 中文欧美无线码| 久久久久精品国产欧美久久久 | 最新的欧美精品一区二区| 国产精品免费大片| 免费黄色在线免费观看| a级片在线免费高清观看视频| 日韩一本色道免费dvd| 美女扒开内裤让男人捅视频| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| 大话2 男鬼变身卡| svipshipincom国产片| 丝袜脚勾引网站| 一级爰片在线观看| 精品福利永久在线观看| 在线观看国产h片| 九色亚洲精品在线播放| 久久av网站| 欧美日韩成人在线一区二区| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品古装| 久久av网站| 国产精品偷伦视频观看了| 搡老乐熟女国产| 最近的中文字幕免费完整| 考比视频在线观看| 亚洲熟女精品中文字幕| 亚洲 欧美一区二区三区| 国产成人欧美| 伦理电影大哥的女人| 欧美日韩一级在线毛片| 丁香六月欧美| 无遮挡黄片免费观看| 免费观看人在逋| 成人国语在线视频| 亚洲国产精品成人久久小说| 熟女av电影| 久久精品亚洲av国产电影网| 卡戴珊不雅视频在线播放| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 美女福利国产在线| 国产又爽黄色视频| 视频在线观看一区二区三区| 午夜免费鲁丝| 亚洲精品一区蜜桃| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品国产一区二区精华液| 9热在线视频观看99| 日韩电影二区| 青草久久国产| 高清不卡的av网站| 少妇精品久久久久久久| 中文天堂在线官网| 观看美女的网站| 国产一级毛片在线| 国产精品.久久久| 久久这里只有精品19| 亚洲婷婷狠狠爱综合网| 高清在线视频一区二区三区| 天堂中文最新版在线下载| 午夜激情久久久久久久| 激情视频va一区二区三区| 99re6热这里在线精品视频| 69精品国产乱码久久久| 欧美人与性动交α欧美软件| 国产精品久久久人人做人人爽| 欧美精品人与动牲交sv欧美| 人人澡人人妻人| 欧美 日韩 精品 国产| 女性生殖器流出的白浆| 精品午夜福利在线看| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 18在线观看网站| 综合色丁香网| 国产亚洲av片在线观看秒播厂| 精品国产露脸久久av麻豆| 18禁裸乳无遮挡动漫免费视频| 色婷婷久久久亚洲欧美| 宅男免费午夜| 免费不卡黄色视频| av女优亚洲男人天堂| 热99久久久久精品小说推荐| 久久精品久久久久久噜噜老黄| 亚洲婷婷狠狠爱综合网| 一区二区日韩欧美中文字幕| 美女主播在线视频| 国产精品久久久久成人av| 国产免费又黄又爽又色| 欧美日韩视频精品一区| 人妻人人澡人人爽人人| 国产成人午夜福利电影在线观看| 亚洲欧美成人综合另类久久久| 色94色欧美一区二区| 国产精品秋霞免费鲁丝片| 午夜91福利影院| 天天躁狠狠躁夜夜躁狠狠躁| 最新的欧美精品一区二区| 最近中文字幕高清免费大全6| www.自偷自拍.com| 美女大奶头黄色视频| 成人影院久久| 亚洲图色成人| 日韩人妻精品一区2区三区| 久久久久人妻精品一区果冻| 亚洲国产精品国产精品| 国产成人精品无人区| 国产亚洲最大av| 国产亚洲一区二区精品| 国产熟女欧美一区二区| www.熟女人妻精品国产| 老熟女久久久| 午夜日本视频在线| 亚洲国产欧美网| 天天影视国产精品| 亚洲色图 男人天堂 中文字幕| 嫩草影院入口| 午夜福利乱码中文字幕| 两性夫妻黄色片| 久久国产亚洲av麻豆专区| 国产精品蜜桃在线观看| 亚洲欧美精品自产自拍| 免费观看性生交大片5| 欧美 日韩 精品 国产| 国产伦理片在线播放av一区| 肉色欧美久久久久久久蜜桃| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 欧美精品亚洲一区二区| 一区福利在线观看| 成人毛片60女人毛片免费| 国产97色在线日韩免费| 2021少妇久久久久久久久久久| 男女午夜视频在线观看| 久久鲁丝午夜福利片| 亚洲av成人精品一二三区| www日本在线高清视频| 蜜桃在线观看..| 看非洲黑人一级黄片| 2021少妇久久久久久久久久久| 一级爰片在线观看| 亚洲精品美女久久久久99蜜臀 | 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 一级爰片在线观看| 精品少妇久久久久久888优播| 搡老乐熟女国产| 自拍欧美九色日韩亚洲蝌蚪91| 青青草视频在线视频观看| 国产高清国产精品国产三级| 色播在线永久视频| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 少妇人妻久久综合中文| 久久人人爽人人片av| 十八禁网站网址无遮挡| 亚洲熟女精品中文字幕| 亚洲精品av麻豆狂野| 老熟女久久久| 99国产综合亚洲精品| 最近最新中文字幕免费大全7| 天天躁日日躁夜夜躁夜夜| 黄色 视频免费看| 国产成人午夜福利电影在线观看| 国产精品 国内视频| 国产亚洲午夜精品一区二区久久| 热99国产精品久久久久久7| 自线自在国产av| 捣出白浆h1v1| 久久久久精品久久久久真实原创| 两个人看的免费小视频| 欧美 亚洲 国产 日韩一| 日日啪夜夜爽| 久久鲁丝午夜福利片| 青草久久国产| 中文字幕最新亚洲高清| 丝袜脚勾引网站| 免费少妇av软件| 90打野战视频偷拍视频| 婷婷色综合大香蕉| 在线观看国产h片| 少妇人妻精品综合一区二区| 天天影视国产精品| 亚洲av电影在线进入| 亚洲国产av新网站| 麻豆精品久久久久久蜜桃| 99精国产麻豆久久婷婷| www.熟女人妻精品国产| 久久国产精品男人的天堂亚洲| 黄片无遮挡物在线观看| 日韩 亚洲 欧美在线| 久久久久久久久久久免费av| 黄片播放在线免费| 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 亚洲欧美激情在线| 51午夜福利影视在线观看| 精品第一国产精品| 在线观看免费视频网站a站| 国产国语露脸激情在线看| 日韩 亚洲 欧美在线| 老司机影院毛片| av天堂久久9| 久久久国产欧美日韩av| 日韩不卡一区二区三区视频在线| 日韩中文字幕欧美一区二区 | 欧美日韩福利视频一区二区| 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 国产免费视频播放在线视频| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 国产精品久久久久久久久免| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 国产又色又爽无遮挡免| 国产精品免费大片| 国产精品麻豆人妻色哟哟久久| 香蕉国产在线看| 亚洲国产精品成人久久小说| av.在线天堂| 亚洲,一卡二卡三卡| 日韩欧美一区视频在线观看| 亚洲美女视频黄频| 中文字幕亚洲精品专区| 国产精品偷伦视频观看了| 亚洲美女搞黄在线观看| 日韩大码丰满熟妇| 国产 精品1| 免费高清在线观看日韩| 一二三四中文在线观看免费高清| 国产探花极品一区二区| 搡老乐熟女国产| 国产又爽黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦啦在线视频资源| 免费高清在线观看视频在线观看| 老司机在亚洲福利影院| 亚洲欧美精品自产自拍| 婷婷色综合www| 国产在线免费精品| 天美传媒精品一区二区| 亚洲成人国产一区在线观看 | 亚洲精品日本国产第一区| av有码第一页| 亚洲精品av麻豆狂野| 免费看不卡的av| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 七月丁香在线播放| 97在线人人人人妻| 国产麻豆69| 久久精品久久久久久久性| 永久免费av网站大全| 国产免费一区二区三区四区乱码| videosex国产| 久久国产亚洲av麻豆专区| 久久亚洲国产成人精品v| 亚洲av福利一区| 亚洲国产精品国产精品| 亚洲国产av影院在线观看| 另类精品久久| 只有这里有精品99| 亚洲五月色婷婷综合| 在线看a的网站| 好男人视频免费观看在线| 久久久久精品人妻al黑| 亚洲精品久久午夜乱码| 亚洲国产精品999| 免费久久久久久久精品成人欧美视频| 日韩 欧美 亚洲 中文字幕| 国产麻豆69| 女人被躁到高潮嗷嗷叫费观| 观看av在线不卡| 麻豆乱淫一区二区| 麻豆av在线久日| 老司机亚洲免费影院| 国产精品一区二区在线观看99| 日韩成人av中文字幕在线观看| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| 国产一区有黄有色的免费视频| bbb黄色大片| 999精品在线视频| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 天天躁日日躁夜夜躁夜夜| 日韩熟女老妇一区二区性免费视频| 天美传媒精品一区二区| 捣出白浆h1v1| 国精品久久久久久国模美| 人妻一区二区av| 日韩av免费高清视频| 狠狠精品人妻久久久久久综合| 亚洲男人天堂网一区| 国产在线视频一区二区| 亚洲国产欧美在线一区| 男人舔女人的私密视频| 超色免费av| 在现免费观看毛片| 黄色一级大片看看| 午夜久久久在线观看| 高清在线视频一区二区三区| 在线看a的网站| 中文字幕高清在线视频| 国产精品国产av在线观看| 成人国产麻豆网| 日韩免费高清中文字幕av| 美女午夜性视频免费| 国产精品一国产av| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 精品一区二区三区四区五区乱码 | 热re99久久精品国产66热6| 日韩大码丰满熟妇| 激情视频va一区二区三区| 十八禁人妻一区二区| 欧美精品亚洲一区二区| 亚洲av国产av综合av卡| 韩国高清视频一区二区三区| 大香蕉久久成人网| 婷婷色av中文字幕| 99热国产这里只有精品6| 老司机靠b影院| 国产精品一国产av| 久久久久久久国产电影| 人人妻人人澡人人看| 成年av动漫网址| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 在线观看免费午夜福利视频| 久久精品国产a三级三级三级| 国产欧美日韩综合在线一区二区| 亚洲av在线观看美女高潮| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 国产欧美日韩综合在线一区二区| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| tube8黄色片| 国产一区亚洲一区在线观看| 男人添女人高潮全过程视频| av一本久久久久| 久久毛片免费看一区二区三区| 亚洲国产中文字幕在线视频| 亚洲精华国产精华液的使用体验| 天堂8中文在线网| 亚洲欧美成人精品一区二区| 色视频在线一区二区三区| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 黄色视频不卡| 日韩欧美精品免费久久| 欧美激情高清一区二区三区 | 只有这里有精品99| 欧美 日韩 精品 国产| 看非洲黑人一级黄片| 久久人人97超碰香蕉20202| 少妇人妻 视频| 乱人伦中国视频| 国产一区二区在线观看av| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| av一本久久久久| 久久亚洲国产成人精品v| 青青草视频在线视频观看| 捣出白浆h1v1| 99九九在线精品视频| 欧美日韩亚洲综合一区二区三区_| 我要看黄色一级片免费的| 最近最新中文字幕大全免费视频 | av视频免费观看在线观看| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 你懂的网址亚洲精品在线观看| 在现免费观看毛片| 婷婷色麻豆天堂久久| 热re99久久精品国产66热6| 欧美人与性动交α欧美精品济南到| 纯流量卡能插随身wifi吗| 国产麻豆69| av在线老鸭窝| 国产精品三级大全| 一本一本久久a久久精品综合妖精| 日韩成人av中文字幕在线观看| 国产一区二区激情短视频 | 日本爱情动作片www.在线观看| 岛国毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲七黄色美女视频| 九色亚洲精品在线播放| 亚洲熟女精品中文字幕| 十八禁高潮呻吟视频| 爱豆传媒免费全集在线观看| 考比视频在线观看| xxxhd国产人妻xxx| 波野结衣二区三区在线| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 蜜桃国产av成人99| 日韩一卡2卡3卡4卡2021年| 丝袜喷水一区| av一本久久久久| 亚洲久久久国产精品| 少妇猛男粗大的猛烈进出视频| 老司机影院毛片| 老司机亚洲免费影院| 亚洲精品日韩在线中文字幕| 在线亚洲精品国产二区图片欧美| 午夜福利影视在线免费观看| 亚洲国产欧美一区二区综合| 91精品三级在线观看| 久久久久久久精品精品| 90打野战视频偷拍视频| 男人爽女人下面视频在线观看| 国产黄色免费在线视频| 久久久久久久国产电影| 中国三级夫妇交换| 另类亚洲欧美激情| 免费观看性生交大片5| 大陆偷拍与自拍| 美女国产高潮福利片在线看| 香蕉国产在线看| av线在线观看网站| 国产激情久久老熟女| 亚洲男人天堂网一区| 美女福利国产在线| 永久免费av网站大全| 国产亚洲一区二区精品| 精品久久久久久电影网| 国产成人系列免费观看| 一级毛片电影观看| 岛国毛片在线播放| 亚洲四区av| 一级,二级,三级黄色视频| 国产成人欧美| 国产成人欧美在线观看 | 成人毛片60女人毛片免费| 国产乱来视频区| 成人国产麻豆网| 巨乳人妻的诱惑在线观看| 国产高清国产精品国产三级| videosex国产| 9热在线视频观看99| 国产精品无大码| 精品人妻一区二区三区麻豆| 免费av中文字幕在线| 啦啦啦 在线观看视频| 91精品伊人久久大香线蕉| 黄频高清免费视频| 国产亚洲一区二区精品| 亚洲av男天堂| 国产精品国产av在线观看| 中文字幕av电影在线播放| av.在线天堂| 99热全是精品| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频网站a站| 日韩成人av中文字幕在线观看| 国产精品av久久久久免费| 国产 精品1| 婷婷色综合大香蕉| 欧美在线黄色| 观看美女的网站| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美精品综合一区二区三区| 久久精品久久久久久噜噜老黄| 搡老岳熟女国产| 久久综合国产亚洲精品| 香蕉丝袜av| 亚洲熟女毛片儿| 亚洲欧洲国产日韩| h视频一区二区三区| 国产99久久九九免费精品| 精品免费久久久久久久清纯 | 久久鲁丝午夜福利片| 欧美 亚洲 国产 日韩一| 久久精品亚洲av国产电影网| 亚洲成人免费av在线播放| www.熟女人妻精品国产| 亚洲av电影在线进入| 亚洲欧美一区二区三区国产| 哪个播放器可以免费观看大片| 丝袜喷水一区| 我的亚洲天堂| 国产成人精品久久久久久| 精品国产超薄肉色丝袜足j| 免费不卡黄色视频| 国产成人午夜福利电影在线观看| 中文字幕高清在线视频| 麻豆av在线久日| 韩国精品一区二区三区| 激情五月婷婷亚洲| 免费高清在线观看日韩| 欧美成人午夜精品| 国产97色在线日韩免费| 亚洲男人天堂网一区| 无限看片的www在线观看| 国产极品天堂在线| 涩涩av久久男人的天堂| 亚洲情色 制服丝袜| 一级毛片黄色毛片免费观看视频| 天堂俺去俺来也www色官网| e午夜精品久久久久久久| kizo精华| 女人爽到高潮嗷嗷叫在线视频| 又大又爽又粗| 伊人久久国产一区二区| 搡老乐熟女国产| 叶爱在线成人免费视频播放| 亚洲熟女毛片儿| 成人国语在线视频| 亚洲男人天堂网一区| av不卡在线播放| 国产精品无大码| 日本欧美视频一区| av在线播放精品| 国产精品久久久久久人妻精品电影 | 久久人妻熟女aⅴ| 免费看av在线观看网站| 亚洲综合色网址| 国产一区二区激情短视频 | 欧美国产精品va在线观看不卡| 国产精品无大码| 欧美97在线视频| 卡戴珊不雅视频在线播放| 精品福利永久在线观看| www.自偷自拍.com| 制服人妻中文乱码| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| 亚洲国产欧美在线一区| 美女高潮到喷水免费观看| 国产精品免费视频内射| 亚洲免费av在线视频| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说| 99热国产这里只有精品6| 赤兔流量卡办理| 美国免费a级毛片| 国产一区二区三区av在线| 亚洲第一av免费看| 午夜免费鲁丝| 母亲3免费完整高清在线观看| 亚洲美女搞黄在线观看| av天堂久久9| 51午夜福利影视在线观看| 亚洲精品国产av蜜桃| svipshipincom国产片| 人体艺术视频欧美日本| 美女视频免费永久观看网站| 国产激情久久老熟女| 免费高清在线观看日韩| 久久久久久免费高清国产稀缺| 国产亚洲欧美精品永久| 性高湖久久久久久久久免费观看| 亚洲欧美精品综合一区二区三区| 最新在线观看一区二区三区 | 国产免费福利视频在线观看| 天天躁夜夜躁狠狠躁躁| 中国国产av一级| 亚洲av日韩在线播放| 丝瓜视频免费看黄片| 亚洲精品国产一区二区精华液| 高清视频免费观看一区二区| 精品国产国语对白av| av网站免费在线观看视频| 国产视频首页在线观看| 久久久精品区二区三区| 欧美人与性动交α欧美精品济南到| 欧美 日韩 精品 国产| 成人国语在线视频| 日韩电影二区| 伦理电影免费视频| 99国产精品免费福利视频| 好男人视频免费观看在线| 成人毛片60女人毛片免费| 激情视频va一区二区三区| 午夜老司机福利片| 日韩 欧美 亚洲 中文字幕| 国产日韩一区二区三区精品不卡| 亚洲av日韩精品久久久久久密 | 国产精品人妻久久久影院|