• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theory of Quantum Dissipation in a Class of Non-Gaussian Environments

    2017-09-03 07:53:52RuixueXuYangLiuHoudaoZhangYiJingYan
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Rui-xue Xu,Yang Liu,Hou-dao Zhang,YiJing Yan

    Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics andiChEM,University of Science and Technology of China,Hefei 230026,China

    (Dated:Received on June 17,2017;Accepted on June 27,2017)

    Theory of Quantum Dissipation in a Class of Non-Gaussian Environments

    Rui-xue Xu,Yang Liu,Hou-dao Zhang,YiJing Yan?

    Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics andiChEM,University of Science and Technology of China,Hefei 230026,China

    (Dated:Received on June 17,2017;Accepted on June 27,2017)

    In this work we construct a novel dissipaton-equation-of-motion(DEOM)theory in quadratic bath coupling environment,based on an extended algebraic statistical quasi-particle approach.To validate the new ingredient of the underlying dissipaton algebra,we derive an extended Zusman equation via a totally different approach.We prove that the new theory, if it starts with the identical setup,constitutes the dynamical resolutions to the extended Zusman equation.Thus,we verify the generalized(non-Gaussian)Wick’s theorem with dissipatons-pair added.This new algebraic ingredient enables the dissipaton approach being naturally extended to nonlinear coupling environments.Moreover,it is noticed that, unlike the linear bath coupling case,the in fluence of a non-Gaussian environment cannot be completely characterized with the linear response theory.The new theory has to take this fact into account.The developed DEOM theory manifests the dynamical interplay between dissipatons and nonlinear bath coupling descriptors that will be speci fied.Numerical demonstrations will be given with the optical line shapes in quadratic coupling environment.

    Non-Gaussian environment,Quantum dissipation,Dissipaton theory

    I.INTRODUCTION

    Quantum dissipation plays crucial roles in many fields of modern science.Exact theories include the Feynman-Vernon in fluence functional path integral approach [1],and its differential equivalence,the hierarchicalequations-of-motion(HEOM)formalism[2–6].However,almost all existing quantum dissipation theories exploit the Gaussian-Wick’s thermodynamical statistics[7–9],which is strictly valid only for linear bath couplings.Intrinsically,a linear bath coupling implies a weak backaction of system on environment. The lowest non-Gaussian environment in fluence requires a quadratic bath coupling.

    In this work,we extend the dissipaton equation of motion(DEOM)theory[10,11]to treat the linearplus-quadratic bath coupling environment.This theory goes with a statistical quasi-particle(“dissipaton”) description for the hybrid environment that can be either bosonic or fermionic or excitonic.Dynamical variables in DEOM are the dissipaton density operators (DDOs),for both the reduced system and the hybrid bath dynamics[10,11].The latter could also be measured experimentally,via such as the Fano interference[12–16],vibronic spectroscopy with non-Condon polarized environment[17],and transport current noise spectrum[18].

    Dissipaton algebra plays essential roles[10,11].It consists of the generalized(non-Gaussian)Wick’s theorem and the generalized diffusion equation.This noval algebra leads to the rules on how the DDOs evolves in time,and further on their relations to experimental measurable quantities that involve explicitly the hybrid bath dynamics[14–18].From the algebraic construction point of view,the new DEOM theory in quest amounts to the establishment of the generalized Wick’s theorem with dissipatons-pairs added.This will be the new ingredient of the dissipaton algebra for treating the quadratic bath coupling in study.

    Another important issue is concerned with the characterization of nonlinear coupling bath.On top of the interacting bath correlation function description[7–9], additional information would be needed.This is a general concern in any non-Gaussian environment theories. To address this issue,we propose a polarization model to determine both the linear and nonlinear bath coupling strengths.This model resolves this issue,with a single additional parameter,on top of the conventional linear response theory.

    In this work,we construct the DEOM formalism,via the dissipaton algebra,including the aforementioned new ingredient for treating quadratic bath coupling. We validate this new ingredient,the generalized Wick’s theorem with dissipatons-pairs added.To do that we derive an extended Zusman equation via a totally different approach.We prove that the DEOM formalism, if it started with the same setup,constitutes the dynamical resolutions to the extended Zusman equation.Therefore,as the algebraic construction is concerned, we would have also con firmed the DEOM formulations. The linear and quadratic bath coupling strength parameters,will be discussed on the basis of the nonlinear polarization model.Numerical DEOM demonstrations are then carried out on the optical line shapes in the nonlinear coupling environment.

    II.DISSIPATON DYNAMICS THEORY

    A.Statistical quasi-particle description

    Let us start with the total composite Hamiltonian,

    The system Hamiltonian HSand dissipative operator ?QSare arbitrary.The latter is set to be dimensionless.The bath Hamiltonian and the hybridization bath operator(solvation mode)are given,respectively,

    Throughout this work we set ?=1 and β=1/(kBT),with kBand T being the Boltzmann constant and temperature.Letbe the bare bath ensemble average.De fineSet hereafter t≥0 for the time variable.We have[7,9]

    The first expression in Eq.(3)is the fluctuationdissipation theorem[7,9],withbeing the imaginary part of

    The second expression of Eq.(4)presents an exponential series expansion of the linear bath correlation function.Set hereafter?xBto be dimensionless,so that the bath coupling parameters,α1and α2in Eq.(1),are of frequency unit.It is well known that,for a complete characterization of the nonlinear environment in fluence (α2≠0),additional information,on top of Eq.(4),is needed.We will address this issue latter.

    with

    As de fined in Eq.(7),dissipatonsare statistically independent quasi-particles.Each of them is a macroscopic linear combination of bath degrees of freedoms. Individualis characterized by a single damping parameter,γk,that can be complex,and a joint-pair of interacting strength parameters,

    B.Dissipaton algebra and DEOM formalism

    Dynamical variables in DEOM are dissipaton density operators(DDOs)[10,11]:

    The dissipatons product inside(···)?is irreducible,such that(c-number)?=0.Bosonic dissipatons satisfy the symmetric permutation,(?fk?fj)?=(?fj?fk)?.Physically, each DDO of Eq.(9)stands for a given con figuration of the total n=n1+···+nkdissipatons.Denote for the use below the associated DDO’s index,n±k,which differs from n≡n1···nKat the speci fied nkby±1. Similarly,n±±kjdiffers from n at the speci fied nkand njthat are replaced by nk±1 and nj±1,respectively.

    The DEOM formalism can be easily constructed via the algebraic dissipaton approach[10,11].The construction starts with applying the Liouville-von Neuman equation,˙ρT(t)=?i[HS+hB+HSB,ρT(t)],for the total density operator in Eq.(9).The bath hB-action and the system-bath coupling HSB-action are then readily evaluated with the generalized diffusion equation and the generalized Wick’s theorem,respectively.

    The generalized diffusion equation arises from the single-damping parameter characteristic,as shown in Eq.(7),for both its forward and backward correlation functions.This feature leads to[10,11]

    This is the bath hB-action contribution to the DDOs dynamics.The generalized diffusion Eq.(10)or Eq.(11), with an arbitrary total composite ρT(t),has been validated previously[10,11].

    The generalized Wick’s theorem(GWT)deals with the system-bath coupling HSB-action[10,11].In this work this theorem has two ingredients,GWT-1 and GWT-2,in relation to the linear and quadratic bath couplings,respectively.The GWT-1 reads[10,11]

    The GWT-2 is concerned with the quadratic bath couplings,where a pair of dissipatonsparticipate in simultaneously without time-ordering.This new ingredient of dissipaton algebra would read

    with the last term being evaluated as

    Together with the first term in Eq.(13)being evaluated via GWT-1,we obtain

    The DEOM formalism in the presence of both linear and quadratic bath couplings can now be readily constructed via the above dissipaton algebra.The final results read

    Here,

    with

    Evidently,the dissipatons de fined in Eqs.(4)?(7)are strictly based on the linear bath coupling part that satis fies Gaussian-Wick’s statistics[7–9].The quadratic non-Gaussian bath in fluences are treated via the GWT-2,Eq.(15).This is the virtue of the DEOM theory that includes the powerful dissipaton algebra[10,11].In general,Eqs.(10)?(15)are all non-Gaussian operators in the system subspace.

    III.VALIDATION ON DISSIPATON ALGEBRA WITH EXTENDED ZUSMAN EQUATION

    This section is devoted to validating the GWT-2, Eqs.(13)and(14),the new ingredient of the dissipaton algebra presented above.It together with the wellestablished Eqs.(10)and(12)lead immediately and unambiguously to the extended DEOM(Eq.(16)).Therefore,from the algebraic construction point of view,the required validation can be made with the dissipaton basis set of size K=1.This amounts to the formal setting Eq.(4)with

    The dissipaton index n can be omitted;i.e.,ρ(n)n(t)= ρ(n)(t)≡?ρn(t),for the basis set size K=1 case,in which the DEOM(Eq.(16))readsThe involving superoperators A,B and C,are the same as those in Eq.(17),but without dissipaton indexes.

    In the following,on the basis of Eq.(19)which will be called the Zusman setup,we construct the extended Zusman equation via a totally different approach.By showing that the extended Zusman equation is identical to Eq.(20),we validate the dissipaton algebra and thus the extended DEOM theory,Eq.(16).The proof here is rigourous,due to the nature of the algebraic construction,despite of the fact that the Zusman setup,Eq.(19), itself could even be a bad approximation.

    It is well known that the Zusman setup,Eq.(19),is equivalent to the combination of the high-temperature (HT)and the Smoluchowski limits.The HT limit is characterized with

    In this case,the solvation mode is a classical Brownian motion in the secondary bath environment.The latter exerts a stochastic forceand friction constant ζ on the solvation mode.The corresponding Langevin equation reads

    with

    This is the high-temperature fluctuation-dissipation theorem. The resultant Caldeira-Leggett’s equation reads[19–21]

    To complete the Zusman setup,Eq.(19),consider further the Smoluchowski(or strongly-overdamped)limit; i.e.,ζ?ωB,whereas ω2B/ζ=γ remains finite to be the exponent in Eq.(19).Moreover,it is easy to show that〈x2B〉B=〈p2B〉B→ (βωB)?1,in the high-temperature limit.The identities here will be used in eliminating the appearance of βωBin the formulations below.The pre-exponential coefficient in Eq.(19)reads then

    In the strongly-overdamped limit, the momentum pBwould no longerbe a correlated dynamical∫variable. Theequation ofmotion forwhich is closed now, can be obtained via the standard Fokker-Planck-Smoluchowski algorithm[22].

    Another equivalent but much simpler approach is the so-called diffusion mapping method[23];i.e.,mapping each individual pB-space variable to its limiting diffusive xB-space correspondence.This method makes a simple use of the Langevin equation Eq.(22),which in the strongly-overdamped limit reduces to

    Consider further the following two thermodynamic relations,

    Together with pB/xB??ωB/ζ,as implied in Eq.(27), and〈x2B〉B=〈p2B〉Bin study here,we would have then

    The above results of the Zusman setup lead to the following rules of diffusion mapping[23],

    The Smoluchowski limit to the Calderia-Leggett’s master equation is now readily obtained by replacing all those pB-dependent operators in Eq.(24)and Eq.(25). In particular,the Fokker-Planck operator becomes the Smoluchowski or diffusion operator,

    While ηr=〈x2B〉Bwas de fined in Eq.(26),γ=ω2B/ζ assumes the diffusion constant here.The Smoluchowski limit of Eq.(24)has an extended Zusman equation form,

    ThisrecoverstheconventionalZusman equation [24?26],in the absence of the quadratic bath coupling (α2=0).

    We have also derived Eq.(33)via the standard Fokker-Planck-Smoluchowski approach[22];however, the derivations are too mathematical and tedious,see Appendix for details.The present universal diffusion mapping approach with Eq.(30)and Eq.(31)is much simpler and physically more appealing.

    It is easy to verify that the DEOM formalism, Eq.(20),is just the dynamical resolution to the extended Zusman Eq.(33).More precisely,

    or

    where Hn(x)is the nth-order Hermite polynomial,and

    We have thus validated the dissipaton algebra, Eqs.(10)?(15). This is the purpose of the above comparisons between the dissipaton approach and the present system-and-solvation composite description. The dissipaton algebra,including the new ingredient, Eq.(13)and Eq.(14),the generalized Wick’s theorem with dissipatons-pairs added,is also by de facto established.Therefore,the extended DEOM Eq.(16)for general cases is also validated,due to its algebraic construction nature.

    IV.INTERPLAY BETWEEN DISSIPATONS AND ENVIRONMENT PARAMETERS

    Turn to the issue on the bath coupling parameters, α1and α2.It is crucial to have a physical support on the nonlinear coupling bath descriptors.This issue is directly related to the extended DEOM theory,which should describe the dynamical interplay between dissipatons and nonlinear bath couplings.Erroneous descriptors of α1and α2would result in unphysical DEOM dynamics.

    In the following,we propose a polarization model to determine both α1and α2.For clarity,we consider a chromophore system,with its ground|g〉and an excited |e〉states being engaged in optical excitations.The total system-and-bath composite Hamiltonian in the presence of external classical laser field E(t)assumes

    Here,hgand hedenote the bath Hamiltonians associating with the ground and excited system states,respectively.Eq.(37)assumes the form of Eq.(1);i.e.,

    with the system Hamiltonian and dissipative mode,

    In Eq.(39)the bath Hamiltonian goes with hB=hg.

    The polarization model assumes

    and

    The physical picture of this model is as follows.The system is initially in the ground|g〉state,with?xBdescribing its first solvation shell of frequency ωB.Upon excitation,the system in the excited|e〉state experiences different solvation environment.The reorganized first-shell solvation is described withIt has different frequency,and is also linearly shifted by dB, with respective to the ground-state solvation shell.The secondary environmentremains unchanged,as described by the samefor its interacting with eithersolvation mode.Apparently,the quadractic bath coupling vanishes when

    The coupling strength of secondary bath with the solvation mode is given by

    The renormalized frequencies forwould be

    respectively.

    To proceed, we consider first the linear–displacement–mapping (LDM)ansatz. Leth(1)ebe the special case of heat ω′B=ωB.The LDM ansatz assumes h(1)e?hg,due to a linear displacement dB,be the result within linear response theory.That is[9]

    Here,

    Consequently,

    This relates the secondary bath,of Eq.(49),to the solvation coordinate

    Substituting Eqs.(42)?(51)for Eq.(38),followed by some elementary algebra,we obtain

    where

    Moreover,the bath coupling α-parameters of Eq.(52) should go along with the underlying interplay with the dissipatons de fined in Eqs.(4)?(7).Given the temperature,dissipatons are determined byOn the other hand,the α-parameters in Eq.(52)are functions ofand λ.While the latter two are free variables,are dictated by the samethat determines the dissipatons.For the secondary bath coupling strength parameter(Eq.(45)),we have[9]

    FIG.1 Evaluated absorption lineshapes.See text for the details.

    The above identities describe the determination of ωBvia any given χ(i)B(ω).Actually,Eq.(56)follows in line with the de finition of χB(ω)in Eq.(5).

    For numerical illustrations,we adopt the Drude model for the secondary bath.The resultant χB(ω), which supports Eqs.(54)?(57),reads

    We set the parameters(in unit of ωB)andand also λ=1 for nonzero linear bath coupling strength.FIG.1 depicts the evaluated linear absorption spectra,at four representing values ofWhen θ=1 there is only the linear bath coupling.The other three(solid)curves with θ≠1 are of both the linear and the quadratic bath couplings,which are presented in parallel with their linear-free(thin) counterparts. In contrast with the pure linear bath coupling(θ=1)case,the spectrum lineshape is generally asymmetric.The observed skews in individual lineshape pro files,which show non-monotonic dependence on θ,are all in qualitative agreements with the secondary-bath-free but analytical results[27].

    V.CONCLUSION

    Evidently,the dissipaton algebra leads readily to the DEOM formalism.The key contribution of this workis the establishment of the generalized Wick’s theorem with a pair of dissipatons added;i.e.,the GWT-2,Eq.(13)and Eq.(14).The other ingredients of the dissipaton algebra had all been well established in our previous work[10,11].

    The new ingredient,Eq.(13)and Eq.(14),which is now veri fied unambiguously,can be used consecutively to treat further higher-order nonlinear bath couplings.For example,the GWT-3,illustrated with the dissipaton-basis-set size of one,would go with[cf. Eq.(13)]

    While the first quantity is evaluated by using Eq.(13) and Eq.(14),the second quantity would be

    The first two quantities are evaluated via the GWT-1 and the GWT-2 of Eq.(14),respectively.The last quantity above goes with

    The GWT-3 is then completed.The GWT-n follows the same recursive procedure.Thus,the present work represents a major advancement in the DEOM theory, with the speci fied class of non-Gaussian coupling environments that could be physically characterized,as illustrated in this work.

    VI.ACKNOWLEDGEMENTS

    This work was supported by the Ministry of Science and Technology of China(No.2017YFA0204904 and No.2016YFA0400904),the National Natural Science Foundation of China(No.21633006 and No.21373191), and the Fundamental Research Funds for Central Universities(No.2030020028).

    APPENDIX A:The Smoluchowski limit:Conventional approach

    This appendix utilizes the standard textbook approach of Ref.[22]to derive the extended Zusman Eq.(33).This is the application of the Smoluchowski limit to the Caldeira-Leggett’s equation(Eq.(24)),and derive the closed equation for

    We start with the FP operator,Eq.(25),which has the coherent and incoherent contributions:

    where

    It is easy to obtain[22]

    where

    and

    These are the bosonic annihilation and creation operators,satisfyingThe normalized eigen solutions to Eq.(A4)are therefore

    with the ground state ψ0(pB)of Eq.(A5)and

    Apparently,{ψn(pB)}are all real.

    On the other hand,from Eq.(A6),we evaluate

    We have also

    Turn now to the transformed Caldeira–Leggett’s equation(Eq.(24)),

    for

    The second expression goes with the complete and orthonormal basis set of{ψn(pB);n=0,1,···}.Therefore,

    Together with Eqs.(A4)–(A11),we obtain

    where

    Consider now the Smoluchowski limit,where ζ?ωB. To derive a single closed equation in this limit,it requires further[22](i)the core Hamiltonian,HS+,could be neglected compared to the friction,as the bath coupling is considered up to the quadratic level,cf. Eq.(A15).Consequently,while

    Eq.(A15)with n=1 and 2 becomes,respectively,

    The latter two,together with Eq.(A16)and γ≡ω2B/ζ, result in

    The second expression is obtained by considering the Smoluchowski limit where ζ?ωB. Note also(cf. Eqs.(32)and(A16))

    and(cf.Eq.(26))

    The high-temperature relation is used here;see comments after Eq.(25).Substituting Eqs.(A20)–(A22)into Eq.(A17),followed by some simple algebra,we obtain

    On the other hand,from Eq.(A1),Eq.(A13),and Eq.(A14),we have

    Therefore,Eq.(A23)is equivalent to Eq.(33). We have thus completed the standard Fokker–Planck–Smoluchowski approach[22]to the construction of the extended Zusman equation. Apparently,the novel method of construction,on the basis of Eqs.(27)–(29) that result in the rules of diffusion mapping,Eq.(30) and Eq.(31),is much simpler and physically more appealing.

    [1]R.P.Feynman and F.L.Vernon Jr.,Ann.Phys.24, 118(1963).

    [2]Y.Tanimura,Phys.Rev.A 41,6676(1990).

    [3]Y.Tanimura,J.Phys.Soc.Jpn.75,082001(2006).

    [4]R.X.Xu,P.Cui,X.Q.Li,Y.Mo,and Y.J.Yan,J. Chem.Phys.122,041103(2005).

    [5]Y.A.Yan,F.Yang,Y.Liu,and J.S.Shao,Chem. Phys.Lett.395,216(2004).

    [6]J.S.Jin,X.Zheng,and Y.J.Yan,J.Chem.Phys.128, 234703(2008).

    [7]U.Weiss,Quantum Dissipative Systems,3rd Edn., Series in Modern Condensed Matter Physics,Vol.13, Singapore:World Scienti fic,(2008).

    [8]H.Kleinert,Path Integrals in Quantum Mechanics, Statistics,Polymer Physics,and Financial Markets,5th Edn.,Singapore:World Scienti fic,(2009).

    [9]Y.J.Yan and R.X.Xu,Annu.Rev.Phys.Chem.56, 187(2005).

    [10]Y.J.Yan,J.Chem.Phys.140,054105(2014).

    [11]Y.J.Yan,J.S.Jin,R.X.Xu,and X.Zheng,Frontiers Phys.11,110306(2016).

    [12]U.Fano,Phys.Rev.124,1866(1961).

    [13]A.E.Miroshnichenko,S.Flach,and Y.S.Kivshar,Rev. Mod.Phys.82,2257(2010).

    [14]H.D.Zhang,R.X.Xu,X.Zheng,and Y.J.Yan,J. Chem.Phys.142,024112(2015).

    [15]R.X.Xu,H.D.Zhang,X.Zheng,and Y.J.Yan,Sci. China Chem.58,1816(2015).

    [16]H.D.Zhang,Q.Qiao,R.X.Xu,and Y.J.Yan,Chem. Phys.481,237(2016).

    [17]H.D.Zhang,Q.Qiao,R.X.Xu,and Y.J.Yan,J. Chem.Phys.145,204109(2016).

    [18]J.S.Jin,S.K.Wang,X.Zheng,and Y.J.Yan,J. Chem.Phys.142,234108(2015).

    [19]A.O.Caldeira and A.J.Leggett,Physica A 121,587 (1983).

    [20]A.Garg,J.N.Onuchic,and V.Ambegaokar,J.Chem. Phys.83,4491(1985).

    [21]M.Thoss,H.B.Wang,and W.H.Miller,J.Chem. Phys.115,2991(2001).

    [22]H.Risken,The Fokker-Planck Equation,Methods of Solution and Applications,2nd Edn.,Berlin:Springer-Verlag,(1989).

    [23]H.D.Zhang,J.Xu,R.X.Xu,and Y.J.Yan,“Modified Zusman equation for quantum solvation dynamics and rate processes,”in Reaction Rate Constant Computations:Theories and Applications,edited by K.L. Han and T.S.Chu,Ch.13,RSC Theoretical and Computational Chemistry Series No.6,London,(2014). http://dx.doi.org/10.1039/9781849737753-00319.

    [24]L.D.Zusman,Chem.Phys.49,295(1980).

    [25]L.D.Zusman,Chem.Phys.80,29(1983).

    [26]D.Y.Yang and R.I.Cukier,J.Chem.Phys.91,281 (1989).

    [27]Y.J.Yan and S.Mukamel,J.Chem.Phys.85,5908 (1986).

    ?Author to whom correspondence should be addressed.E-mail: yanyj@ustc.edu.cn

    久久久精品欧美日韩精品| 免费人成在线观看视频色| 久久久国产成人精品二区| 在线看三级毛片| 成人性生交大片免费视频hd| 一本一本综合久久| 国产精品嫩草影院av在线观看 | 757午夜福利合集在线观看| 在线国产一区二区在线| 久久久久久久久中文| 99精品在免费线老司机午夜| 看片在线看免费视频| 亚洲三级黄色毛片| 午夜精品一区二区三区免费看| 真实男女啪啪啪动态图| 国产 一区 欧美 日韩| 日韩欧美在线二视频| 国产v大片淫在线免费观看| av中文乱码字幕在线| 国产黄片美女视频| 精品久久久久久久久久免费视频| 欧美黑人欧美精品刺激| 最新中文字幕久久久久| eeuss影院久久| 亚洲精品成人久久久久久| 免费看a级黄色片| 午夜福利18| 欧美+亚洲+日韩+国产| 日韩人妻高清精品专区| 自拍偷自拍亚洲精品老妇| 村上凉子中文字幕在线| 美女大奶头视频| 午夜福利欧美成人| 久久精品久久久久久噜噜老黄 | 国产成人aa在线观看| 熟女人妻精品中文字幕| 亚洲国产色片| 一本久久中文字幕| 99久久无色码亚洲精品果冻| 国产高清有码在线观看视频| 嫩草影院入口| 精品免费久久久久久久清纯| 日本a在线网址| 黄色视频,在线免费观看| 国产精品女同一区二区软件 | 久久精品国产清高在天天线| 亚洲综合色惰| 美女黄网站色视频| 久久久久久久午夜电影| 99久久精品热视频| 少妇被粗大猛烈的视频| 色在线成人网| 久久久久亚洲av毛片大全| 欧美又色又爽又黄视频| 午夜影院日韩av| 2021天堂中文幕一二区在线观| 亚洲美女黄片视频| av中文乱码字幕在线| 少妇人妻一区二区三区视频| 人人妻,人人澡人人爽秒播| av中文乱码字幕在线| 午夜福利18| av欧美777| 久久精品国产亚洲av涩爱 | 成人一区二区视频在线观看| www.熟女人妻精品国产| 精品久久久久久久久久免费视频| 人妻丰满熟妇av一区二区三区| 怎么达到女性高潮| 成人美女网站在线观看视频| 日日夜夜操网爽| 91九色精品人成在线观看| 人人妻人人看人人澡| 成年女人毛片免费观看观看9| 桃红色精品国产亚洲av| 制服丝袜大香蕉在线| 在线观看美女被高潮喷水网站 | 午夜福利成人在线免费观看| 亚洲精品乱码久久久v下载方式| 亚洲不卡免费看| 日韩欧美国产在线观看| 精品国内亚洲2022精品成人| 天堂av国产一区二区熟女人妻| 18+在线观看网站| 一本综合久久免费| 两个人视频免费观看高清| 51午夜福利影视在线观看| 亚洲国产精品成人综合色| 男人的好看免费观看在线视频| 麻豆国产av国片精品| 免费在线观看亚洲国产| 成人av在线播放网站| 美女高潮的动态| 亚洲avbb在线观看| 男女那种视频在线观看| 人人妻人人看人人澡| 一个人看视频在线观看www免费| 国产精品久久久久久久电影| 老熟妇仑乱视频hdxx| 亚洲精品一区av在线观看| 少妇丰满av| 99热只有精品国产| 丰满乱子伦码专区| 偷拍熟女少妇极品色| 天美传媒精品一区二区| 毛片一级片免费看久久久久 | 欧美精品国产亚洲| 久久久久久大精品| 岛国在线免费视频观看| 日韩高清综合在线| 精品熟女少妇八av免费久了| 欧美色欧美亚洲另类二区| 老司机午夜福利在线观看视频| 观看免费一级毛片| 国产av麻豆久久久久久久| 欧美日本视频| 婷婷亚洲欧美| 成人国产一区最新在线观看| 午夜a级毛片| 久久久久久久午夜电影| 老鸭窝网址在线观看| 久9热在线精品视频| 午夜激情欧美在线| 亚洲人成网站在线播| 精品国内亚洲2022精品成人| 好看av亚洲va欧美ⅴa在| av在线蜜桃| 搡老岳熟女国产| 亚洲熟妇中文字幕五十中出| 一级毛片久久久久久久久女| 中亚洲国语对白在线视频| 禁无遮挡网站| 老司机午夜十八禁免费视频| 久久伊人香网站| 人人妻人人看人人澡| 伦理电影大哥的女人| 一区二区三区激情视频| 在线观看av片永久免费下载| 日韩成人在线观看一区二区三区| 色综合亚洲欧美另类图片| 欧美性猛交黑人性爽| 欧美激情在线99| 最后的刺客免费高清国语| 桃色一区二区三区在线观看| 一本精品99久久精品77| 99精品在免费线老司机午夜| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看| 日韩成人在线观看一区二区三区| 一a级毛片在线观看| 亚洲,欧美精品.| 亚洲最大成人av| 一本久久中文字幕| 日本黄色片子视频| 久久精品国产亚洲av天美| 亚洲在线观看片| 天天一区二区日本电影三级| 一区二区三区激情视频| 2021天堂中文幕一二区在线观| 美女高潮喷水抽搐中文字幕| 美女xxoo啪啪120秒动态图 | 特级一级黄色大片| 黄色日韩在线| 国产男靠女视频免费网站| 我的女老师完整版在线观看| 黄色配什么色好看| 成人高潮视频无遮挡免费网站| 国产精品一区二区性色av| 亚洲国产精品sss在线观看| 男女下面进入的视频免费午夜| 深爱激情五月婷婷| 久久午夜亚洲精品久久| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久免费视频| 国产精品乱码一区二三区的特点| 91久久精品电影网| 午夜福利欧美成人| 波多野结衣高清作品| 丝袜美腿在线中文| 午夜精品久久久久久毛片777| 最近在线观看免费完整版| 午夜a级毛片| 夜夜夜夜夜久久久久| 女同久久另类99精品国产91| 日韩av在线大香蕉| 亚洲专区国产一区二区| 久久久精品大字幕| 美女被艹到高潮喷水动态| 成人国产综合亚洲| 日韩欧美 国产精品| 最新中文字幕久久久久| 欧美一区二区国产精品久久精品| 一区二区三区四区激情视频 | 麻豆av噜噜一区二区三区| 九色国产91popny在线| 国产精品亚洲美女久久久| 悠悠久久av| 男人舔女人下体高潮全视频| 免费大片18禁| 久久久国产成人免费| 欧美另类亚洲清纯唯美| 中文字幕高清在线视频| 欧美三级亚洲精品| 日韩中字成人| 免费大片18禁| bbb黄色大片| 国产精品一区二区免费欧美| 少妇熟女aⅴ在线视频| 精品人妻偷拍中文字幕| 日韩欧美三级三区| 精品久久久久久久末码| xxxwww97欧美| 成人一区二区视频在线观看| 变态另类成人亚洲欧美熟女| 午夜影院日韩av| 午夜福利免费观看在线| 国产成人影院久久av| 精品日产1卡2卡| 天堂av国产一区二区熟女人妻| 三级男女做爰猛烈吃奶摸视频| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看| 国模一区二区三区四区视频| 国产精品久久久久久久久免 | 国产精品综合久久久久久久免费| 午夜a级毛片| 我要搜黄色片| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 九九在线视频观看精品| 少妇丰满av| 亚洲性夜色夜夜综合| 午夜福利视频1000在线观看| 欧美3d第一页| 少妇的逼水好多| 亚洲一区二区三区色噜噜| 亚洲美女视频黄频| 免费看美女性在线毛片视频| 国产成人aa在线观看| 中文字幕久久专区| 特级一级黄色大片| av天堂在线播放| 噜噜噜噜噜久久久久久91| 日韩亚洲欧美综合| 国产久久久一区二区三区| 欧美激情久久久久久爽电影| 日本免费一区二区三区高清不卡| 深夜a级毛片| 国产三级黄色录像| 男人的好看免费观看在线视频| 国内久久婷婷六月综合欲色啪| 天天一区二区日本电影三级| 神马国产精品三级电影在线观看| 欧美黄色片欧美黄色片| av视频在线观看入口| 国产69精品久久久久777片| 欧美最黄视频在线播放免费| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 日本a在线网址| 一本久久中文字幕| 欧美日韩亚洲国产一区二区在线观看| 赤兔流量卡办理| 国产一区二区三区视频了| av欧美777| 日韩av在线大香蕉| xxxwww97欧美| 99热精品在线国产| 麻豆成人av在线观看| 男人舔女人下体高潮全视频| 男女之事视频高清在线观看| 很黄的视频免费| 美女被艹到高潮喷水动态| 999久久久精品免费观看国产| 亚洲片人在线观看| 日本a在线网址| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 91在线观看av| 成人毛片a级毛片在线播放| 高清日韩中文字幕在线| 日韩高清综合在线| 亚洲人成网站在线播| 成人永久免费在线观看视频| av天堂在线播放| 18禁在线播放成人免费| 国内精品久久久久久久电影| av专区在线播放| 身体一侧抽搐| 国产一区二区激情短视频| 欧美色视频一区免费| 亚洲第一电影网av| 国产在线男女| 亚洲国产精品合色在线| 亚洲真实伦在线观看| 国产亚洲欧美在线一区二区| 精品人妻熟女av久视频| 国产成人欧美在线观看| 天堂影院成人在线观看| 亚洲av中文字字幕乱码综合| 内射极品少妇av片p| 亚洲精品在线观看二区| 亚洲内射少妇av| 俺也久久电影网| 久久国产精品人妻蜜桃| 一区二区三区激情视频| 精品午夜福利在线看| 麻豆国产av国片精品| 成人精品一区二区免费| 国产免费一级a男人的天堂| 国产精品日韩av在线免费观看| 狂野欧美白嫩少妇大欣赏| 天堂av国产一区二区熟女人妻| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 99精品久久久久人妻精品| 色综合婷婷激情| 婷婷色综合大香蕉| 久久6这里有精品| 免费黄网站久久成人精品 | 天堂√8在线中文| 久久久国产成人免费| 中文字幕av在线有码专区| 国产三级在线视频| а√天堂www在线а√下载| 极品教师在线视频| 国产精品一区二区三区四区免费观看 | 精品国产三级普通话版| 啪啪无遮挡十八禁网站| 级片在线观看| 九九在线视频观看精品| 天堂√8在线中文| 夜夜夜夜夜久久久久| 伊人久久精品亚洲午夜| 91麻豆精品激情在线观看国产| 精品人妻熟女av久视频| 国产亚洲精品综合一区在线观看| 无遮挡黄片免费观看| 18美女黄网站色大片免费观看| 亚洲在线自拍视频| 波多野结衣高清无吗| 制服丝袜大香蕉在线| 久久久国产成人精品二区| 老熟妇乱子伦视频在线观看| 久久久久久久久久黄片| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添av毛片 | 日本与韩国留学比较| 18禁在线播放成人免费| 色av中文字幕| 亚洲中文字幕日韩| 亚洲av日韩精品久久久久久密| 老司机午夜福利在线观看视频| av福利片在线观看| 宅男免费午夜| 国产成人aa在线观看| 国产免费男女视频| 色综合亚洲欧美另类图片| 99在线视频只有这里精品首页| 色综合婷婷激情| 亚洲国产精品sss在线观看| www.www免费av| 丁香六月欧美| 美女大奶头视频| 午夜福利在线观看吧| 国产欧美日韩精品一区二区| 国产男靠女视频免费网站| 午夜福利在线观看吧| 中文字幕久久专区| 亚洲美女黄片视频| 嫩草影院入口| 欧美潮喷喷水| 亚洲成人精品中文字幕电影| 一边摸一边抽搐一进一小说| 脱女人内裤的视频| 丁香欧美五月| 亚洲五月天丁香| 午夜精品一区二区三区免费看| 亚洲成人精品中文字幕电影| 国产高清有码在线观看视频| 九色国产91popny在线| 最好的美女福利视频网| 一本久久中文字幕| 午夜免费男女啪啪视频观看 | 欧美国产日韩亚洲一区| 亚洲 欧美 日韩 在线 免费| 综合色av麻豆| www.熟女人妻精品国产| 日韩精品青青久久久久久| 久久天躁狠狠躁夜夜2o2o| 脱女人内裤的视频| 亚洲精品日韩av片在线观看| 桃红色精品国产亚洲av| 波多野结衣巨乳人妻| 久久婷婷人人爽人人干人人爱| 国产人妻一区二区三区在| 99久久九九国产精品国产免费| 国产91精品成人一区二区三区| 三级毛片av免费| 在线观看66精品国产| 久久精品综合一区二区三区| 极品教师在线视频| 国产精品综合久久久久久久免费| 男女之事视频高清在线观看| 又爽又黄a免费视频| 国产男靠女视频免费网站| 一边摸一边抽搐一进一小说| 在线播放无遮挡| 搡女人真爽免费视频火全软件 | 色综合婷婷激情| 久久久久久久午夜电影| 很黄的视频免费| 亚洲人成网站在线播放欧美日韩| 俄罗斯特黄特色一大片| 国产 一区 欧美 日韩| 国产精品久久视频播放| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇仑乱视频hdxx| 一个人观看的视频www高清免费观看| 啦啦啦观看免费观看视频高清| 丁香欧美五月| 欧美日韩福利视频一区二区| 少妇高潮的动态图| АⅤ资源中文在线天堂| 色综合欧美亚洲国产小说| 国产精品一区二区性色av| 嫩草影院新地址| 亚洲av中文字字幕乱码综合| avwww免费| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 亚洲国产欧美人成| 精品久久久久久成人av| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 色综合婷婷激情| 他把我摸到了高潮在线观看| aaaaa片日本免费| 三级男女做爰猛烈吃奶摸视频| 噜噜噜噜噜久久久久久91| 高潮久久久久久久久久久不卡| 中文字幕人成人乱码亚洲影| 非洲黑人性xxxx精品又粗又长| 欧美三级亚洲精品| 欧美成人性av电影在线观看| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 日韩欧美 国产精品| 性插视频无遮挡在线免费观看| 国产伦一二天堂av在线观看| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 一级作爱视频免费观看| 国语自产精品视频在线第100页| 最近视频中文字幕2019在线8| 国产在视频线在精品| 91av网一区二区| 亚洲成人久久爱视频| 波野结衣二区三区在线| 99riav亚洲国产免费| 欧美乱妇无乱码| 国产黄片美女视频| 亚洲av一区综合| a级一级毛片免费在线观看| 91麻豆精品激情在线观看国产| 极品教师在线视频| 日韩欧美 国产精品| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| 午夜a级毛片| 在线看三级毛片| 91久久精品电影网| 一区二区三区免费毛片| 9191精品国产免费久久| 国产精品一区二区三区四区久久| 久久久久精品国产欧美久久久| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 精品国产亚洲在线| 亚洲黑人精品在线| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 乱码一卡2卡4卡精品| 少妇丰满av| 性欧美人与动物交配| 91字幕亚洲| 成年人黄色毛片网站| 麻豆成人av在线观看| 女人十人毛片免费观看3o分钟| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 久久久精品大字幕| 久久久久久久久久黄片| 尤物成人国产欧美一区二区三区| 午夜a级毛片| 精品午夜福利视频在线观看一区| 亚洲精品乱码久久久v下载方式| 久久欧美精品欧美久久欧美| 国产人妻一区二区三区在| 亚洲精品在线美女| 欧美xxxx黑人xx丫x性爽| 精品福利观看| 色播亚洲综合网| 天天一区二区日本电影三级| 欧美性感艳星| 国产亚洲精品综合一区在线观看| 深夜精品福利| 国产大屁股一区二区在线视频| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器| 日本黄大片高清| 午夜精品在线福利| 在线天堂最新版资源| 国产精品久久视频播放| 亚洲av五月六月丁香网| 欧美日韩乱码在线| 91九色精品人成在线观看| a级毛片免费高清观看在线播放| 日日夜夜操网爽| 亚洲熟妇熟女久久| 午夜精品一区二区三区免费看| 我的女老师完整版在线观看| 久久伊人香网站| 少妇丰满av| 人妻久久中文字幕网| 欧美bdsm另类| 99热这里只有精品一区| 国产主播在线观看一区二区| 一级黄片播放器| 亚洲专区中文字幕在线| 亚洲国产色片| 91久久精品电影网| 国产真实乱freesex| 国产极品精品免费视频能看的| 毛片女人毛片| 国产一级毛片七仙女欲春2| 禁无遮挡网站| 日本黄大片高清| 麻豆成人午夜福利视频| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 91久久精品电影网| 日韩 亚洲 欧美在线| 久久精品人妻少妇| 精品人妻熟女av久视频| 在线观看av片永久免费下载| 热99re8久久精品国产| 国产精品影院久久| 国产日本99.免费观看| 国产精品久久久久久亚洲av鲁大| 免费在线观看成人毛片| 午夜福利18| 日本撒尿小便嘘嘘汇集6| 亚洲精品一区av在线观看| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 精品无人区乱码1区二区| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 欧美xxxx性猛交bbbb| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看 | 免费观看的影片在线观看| 久久精品91蜜桃| 真人一进一出gif抽搐免费| 久久热精品热| 亚洲欧美激情综合另类| 色在线成人网| 精品日产1卡2卡| 九九久久精品国产亚洲av麻豆| 国产 一区 欧美 日韩| 亚洲18禁久久av| 天堂网av新在线| 国产一区二区在线av高清观看| 色综合婷婷激情| 欧美一区二区亚洲| 特级一级黄色大片| 久久久久久久精品吃奶| 三级男女做爰猛烈吃奶摸视频| 男人和女人高潮做爰伦理| 国产乱人视频| 久久久国产成人精品二区| 亚洲国产精品sss在线观看| 免费黄网站久久成人精品 | 男人狂女人下面高潮的视频| 久久精品久久久久久噜噜老黄 | 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 亚洲国产色片| 日本五十路高清| 老司机福利观看| 精品国产三级普通话版| 国产aⅴ精品一区二区三区波| 波多野结衣高清作品| 日本一本二区三区精品| 国产精品日韩av在线免费观看| 一本综合久久免费| 久久亚洲真实| 亚洲一区二区三区色噜噜| 亚洲人成电影免费在线| 日本与韩国留学比较| 97超级碰碰碰精品色视频在线观看| 18禁黄网站禁片免费观看直播| 亚洲天堂国产精品一区在线| 国产av不卡久久| 国产午夜精品论理片| 啪啪无遮挡十八禁网站|