• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy

    2017-09-03 07:53:52DaKeLaizhiSuiDunliLiuYusuWangSuyuLiYuanfeiJiangAnminChenMingxingJin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Da Ke,Lai-zhi Sui,Dun-li Liu,Yu-su Wang,Su-yu Li,Yuan-fei Jiang,An-min Chen, Ming-xing Jin

    Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China;Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy,Jilin University,Changchun 130012, China

    Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy

    Da Ke?,Lai-zhi Sui?,Dun-li Liu,Yu-su Wang,Su-yu Li,Yuan-fei Jiang,An-min Chen?, Ming-xing Jin?

    Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China;Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy,Jilin University,Changchun 130012, China

    The mixture of graphene oxide(GO)and dye molecules may provide some new applications due to unique electronic,optical,and structural properties.Methylene blue(MB),a typical anionic dye,can attach on GO via π-π stacking and electrostatic interaction,and the molecule removal process on GO has been observed.However,it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB.We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse.The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison.Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01)ps,(3.52±0.04)ps,(14.1±0.3)ps, (84±2)ps,and(3.66±0.08)ns.The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system,compared with the pristine MB.The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system,the increased intermediate state,and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample.

    Transient absorption spectroscopy,Methylene blue,Functionalization of graphene oxide,Relaxation channels

    I.INTRODUCTION

    Graphene is a two-dimensional array material consisting of sp2hybridized carbon atoms arranged in a hexagonal lattice.Owing to its distinctive structure, graphene exhibits many unusual properties and potential applications in a variety of fields such as electronics, composites,sensors,and energy related systems[1?6]. Following the exciting research of graphene,in recent years,graphene oxide(GO)has attracted increasing research attention due to the candidate status instead of graphene in some aspects and promising applications [7?11].As the analogue of graphene with high carrier transport mobility,GO is more suitable for some electronics and optics applications because of the plentiful oxygen-containing functional groups which can interact with electron donors and acceptors such as dyes,polymers,and nanoparticles,than graphene that lacks sp3hybridized carbon atoms[12?15].Thus,recently,GO and dye composites have been widely explored for the removal of dye molecules and the investigations of the absorption behavior of the dye molecules onto the GO have been reported by different groups[16?22].The optical features of GO will alter evidently after mixing some dyes and meanwhile the photochemical properties of the dye molecules will also change due to the different GO functionalized processes.Till now,although much progresses have been achieved in related studies, the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and the dye molecules are still a controversial issue.

    Methylene blue(MB),a typical anionic dye,is used widely in biological and industrial applications such as assay for nucleic acids,protein determination,controlled drug release,color fiber,paints textiles,and so forth[23?26].In MB and GO composites,the removal process of the dye molecules at the GO has been observed and the mechanism of the adsorption behavior was finally explicated.MB molecules can attach on GO via π-π stacking and electrostatic interaction,andthe Benesi-Hildebrand method was adopted to study the interaction of MB and GO in the water system[27, 28].However,the mechanism of ultrafast carrier relaxation of GO and MB composites has still not been completely interpreted.Transient absorption spectroscopy (TAS)has been provn to be one of the most versatile techniques for studying ultrafast processes in physics, chemistry,and biology[29].Transient absorption properties can expose some hidden information on GO and dye composites to help us understand their mysterious ultrafast carrier relaxation dynamics and explore a new application prospect in some fields.

    In the present work,we focus on the ultrafast carrier kinetic process of the system which is composed of GO and MB molecules studied by femtosecond timeresolved transient absorption spectroscopy.The transient absorption spectra of GO and MB composites in water,including both positive and negative absorbance changes,are observed via a broad probe region.Steady state absorption spectra measurements have also been conducted in order to help us interpret the related mechanism.We adopt the sequential kinetic model to globally fit the experiment data.The related electronic transition channels responsible for ground state bleaching,excited state absorption,and stimulated emission processes are discussed in detail.

    II.EXPERIMENTS

    The aqueous GO sample with a concentration of 1 mg/mL is purchased from Hengqiu Tech.Inc.The MB sample is purchased from Aladdin and is diluted in water to a concentration of 0.1 mmol/L.The third sample is prepared by mingling the above aqueous GO and the aqueous MB with the equal proportion.The pH value of both the aqueous GO and the aqueous MB is 5.

    Steady-state absorption spectra are measured by a spectrometer(AvaSpec-1650F-USB2).The system of time-resolved transient absorption measurement[30]is carried out using a regeneratively ampli fied Ti:sapphire laser system(Coherent Libra)to provide the fundamental light source. The output of the ampli fier of 2 mJ pulse energy,50 fs pulse width,1000 Hz repetition rate,at 800 nm wavelength is split into two parts. The stronger beam is used to generate the pump pulses (400 nm)by using a beta barium borate(BBO)crystal.The broadband white light continuum probe pulses from 450 nm to 750 nm are generated by focusing another beam into a 2 mm thick sapphire plate.The pump and probe beams are overlapped on the sample which is put into quartz cuvette(1 mm).The pump beam at the sample has a diameter of 1 mm and the diameter of the probe beam is 300μm.The signals of probe pulse are collected by a fiber-coupled spectrometer(AvaSpec-1650F-USB2)connected to a computer after passing through the sample.A neutral density optical filter is used to adjust the energy of the 400 nm pump pulse to about 3μJ per pulse and the excitation pulse is chopped at 500 Hz.The width of IRF is 100 fs and the group velocity dispersion effect of the transient spectra is compensated by a home-made chirp program. All of the experimental measurements are performed at room temperature.

    FIG.1 Absorption spectra of aqueous MB,aqueous GO, aqueous MB,and GO composites in a 1 mm cuvette.

    III.RESULTS AND DISCUSSION

    FIG.1 presents the absorption spectra of three samples in 1 mm cuvtte ranging from the UV to near infrared range.For MB,the main peak at~670 nm comes from the n-π?transition in dilute aqueous solution[31],this is exactly consistent with the characteristic of the MB monomer in solution.The shoulder peak at 610 nm is assigned to MB dimerization in solution and the absorbance of MB almost disappears before 550 nm and after 700 nm[32].Different from MB,the absorption spectrum of GO has a relatively wide absorption band and is peaked at~300 nm,corresponding to n-π?transition of the C=O bond in sp3hybrid regions of carbon based materials[33,34].As shown in FIG.1,the absorbance of GO decreases gradually after 300 nm and these absorption features are typical for as-prepared aqueous GO[8].In addition,the absorption spectra of the composites exhibit two maxima at~630 and 690 nm,which are assigned to adsorbed MB dimer and monomer respectively[32].Here,it can been seen that the composites show red-shifted absorption peaks,compared to the aqueous MB,it indicates that new aggregations form after mixing MB and GO. The new aggregations mainly include two types:the aggregation of the MB monomer(MB-GO)and the MB dimer(MB2-GO)on the GO surface,they are in full agreement with the findings from the UV-Vis measurements and related study[31].

    FIG.2 Transient absorption spectra of(a)aqueous MB,(b)aqueous GO,(c)aqueous MB and GO composites with different delay times after 400 nm excitation,(d)the above samples at 1 ps.

    The transient absorption spectra of aqueous MB and aqueous GO recorded in the 450?750 nm spectral region and in the 0?2 ns time window are shown in FIG.2(a)and(b). There is an apparent negative signal at about 670 nm and a broad absorption band in the 450?560 nm region in FIG.2(a).The former agrees well with the UV-visible absorption spectra of MB and can be mainly attributed to the ground state bleaching.For GO,a broad excited state absorption signal from around 470 nm to 750 nm is observed in FIG.2(b),which indicates that the photo-excited carriers absorb probe light being promoted into higher excited state levels and produce an excitation of higher energy.As shown in FIG.2(c),the transient absorption spectra of aqueous MB and GO composites exhibit two obvious features,a broad excited state absorption peak at 540 nm and a broad bleaching band at about 670 nm.It has already been con firmed that MB molecules can attach on the surface of GO by π-π stacking and electrostatic interaction to form the aggregations,and the energy transfer process can occur in the aggregation system[35?37].In order to expediently see the change after mixing MB and GO,the transient absorption spectra of the above three samples at 1 ps are shown in FIG.2(d).Here,it can be found that MB and GO composites show an enhanced absorption signal around 540 nm,compared to the cumulative signal of pure aqueous MB and GO in FIG.2(a)and(b). It is suggested that MB molecules acquire the energy from GO molecules in these aggregations after 400 nm excitation to increase the yield of the excited carriers, which are promoted to excited state levels from ground state levels,thus more excited state absorption signals are observed in the measurement and the results agree well with the previous studies[32,35,49].Furthermore, MB-GO composites also exhibit more intense bleaching signals around 670 nm because of the enhanced efficiency of ground state to excited state transition of MB in the aggregations.This phenomenon reveals the fact that the negative signal of ground state bleaching of MB is much more intense than the positive signal of excited state absorption of GO in the aggregations.

    In order to grasp further kinetic traces of the system which is composed of GO and MB molecules,the dynamic decay curves of aqueous MB,aqueous GO,and aqueous MB and GO composites at the center wavelength(540 nm)are shown in FIG.3(a).These curves have been normalized to unity at 2 ns in logarithmic scale for a better comparison of their changes over time. As known from FIG.1(a)and FIG.2(a),the excited state absorption of MB at 540 nm is much weaker than GO due to the negligible absorption of the 400 nm pump pulse,and the absorption signals of MB should be covered approximately by the signals of GO in the MB and GO composites.However,the curve that represents the excited state absorption recovery of the MB and GO composites becomes slower than the one of the GO in FIG.3(a).It indicates that new aggregation molecules are formed by mixing MB and GO,thus MB molecules make a much greater contribution to the overall excited state absorption signals of the composites at around 540 nm via acquiring the energy from the aggregation system than pure aqueous MB.The intersystem energy transfer processes occur after being excited by the 400 nm laser pulse and this is in agreement with our former explanation.The recovery kinetics traces at 670 nm for the three specimens are compared in FIG.3(b).It can be found that the recovery of the MB and GO composites is obviously faster thanthe bleach recovery of MB,indicating that not all signals in the dimer system derive from the ground state bleaching of the MB in the aggregation.The signals of the composites at 670 nm mainly include,the excited state absorption of the GO,the ground state bleaching of the MB which absorbs energy from pump pulse directly and harvests energy from the aggregation system indirectly.

    FIG.3 Normalized transient decay dynamics of aqueous MB,aqueous GO and aqueous MB and GO composites at (a)540 nm and(b)670 nm after being excited by the 400 nm laser pulse.

    To investigate the evolution of the excited or intermediate states of the system more clearly,the transient absorption signals are analyzed within a global fitting framework[38,39].As shown in FIG.4(a)?(c),the evolution associated difference spectra(EADS)of the three samples are achieved by using a sequential kinetic scheme with increasing time to fit globally the experiment data.In the case of the aqueous MB, five components are necessary to fit the data with lifetimes of(0.19±0.01)ps,(2.84±0.04)ps,(51±3)ps, (261±4)ps,and>1 ns.It has been proven that S1state splits into the upper excitonic state(S+)and the lower state(S?)in the MB dimer due to the addition of the in-phase transition dipole moments of constituent monomers[40?43].The first EADS correspond to MB dimers S?+and the second EADS correspond to S??. The time constant of 0.19 ps corresponds torelaxation,in excellent agreement with the previous study which speculates internal conversion within exciton state to occur in extremely rapid time(<1 ps)[44]. The later three component represent S?1→S1,S1→T1, and T1→T0of MB monomer respectively[26,45,46]. Previously,the triplet state lifetime of MB system had been shown(>1.0μs)in Ref.[26].And the experimental data are in full agreement with another recent report[44].For GO,the transient data can be fitted globally with four time constants of(0.72±0.01)ps, (4.8±0.1)ps,(48±1)ps,>1 ns and these results correspond to the related reports in the previous pump-probe studies on GO[47,48].Furthermore,we still utilize the five population sequential reaction model to resolve the detailed relaxation process of the excited state in the MB-GO aggregation.Five lifetimes are acquired via fitting of(0.61±0.01)ps,(3.52±0.04)ps,(14.1±0.3)ps, (84±2)ps,and 3.66±0.08 ns.In FIG.4(c),the first EADS corresponds to MB2-GO S??and the S?+→S??relaxation occur within 0.61 ps,which is almost three times slower than the same process in the pure MB2.It is inferred that a large proportion of energy which promotes carriers from S0into S?+in MB2-GO,is derived from GO of MB2-GO,since GO can directly absorb the most energy from 400 nm excitation.And the process that energy transfer from GO to MB in MB2-GO system is accomplished about within 0.61 ps.The second lifetime of 3.52 ps almost is only longer 0.68 ps than MB2due to intersystem energy transfer,indicating that the decay pathways of MB2in MB2-GO system is the same as the pure MB2,both are internal conversion from excited state to the ground state.The third and fourth components represent S?1→S1,S1→T1of MB-GO respectively,they are signi ficantly faster than MB and it implies the other potential channels that can increase the rate of decay of the singlet state of MB in MB-GO system.The phenomenon might be explained as the increased intermediate state between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMO-LUMO)of the MB-GO due to interaction between MB and GO containing a mixture of sp2and sp3carbons[49].And it is also in agreement with the red-shifted absorption peaks of MB-GO in comparison to MB in the absorption spectra measurement. The dynamic models of MB and MB-GO are shown in FIG.5.The last component corresponds to the decay of triplet state MB in MB-GO system,it is much faster than in pure MB system,this reveals that the decay pathways of triplet state MB also cause changes after combining functionalized GO.For triplet state MB,two major photochemical pathways have been observed:the triplet energy is transferred to oxygen forming singlet oxygen(1O2)and the triplet decay to the ground state via intersystem crossing[26,50?52].Wojtoniszak et al.have found that GO functionalized with MB(GOMB)shows enhanced efficiency in singlet oxygen generation compared to pristine MB[34].But they still have not come up with enough convincing explanation of this phenomenon.By comparing the decay lifetimes of triplet state MB in two samples,we speculate that adsorption of MB on GO can promote the energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample and increase the proportion of this decay channel.

    FIG.5 Dynamic models of MB and MB-GO.Pump:400 nm excitation,IC:internal conversion,ISC:intersystem crossing, ET:energy transfer from GO to MB,IMS:intermediate state.

    IV.CONCLUSION

    We have demonstrated the ultrafast carrier relaxation of MB and GO composites by the femtosecond time-resolved transient absorption spectra.Because of electrostatic interaction and π-π stacking,MB and GO form a new aggregation system in water,which changes the properties of dye molecules.The alterations in the aggregation system are monitored by steady-state and transient absorption spectroscopy measurements.The relaxation process and energy transfer channels are analyzed by using the sequential kinetic model to globally fit the experiment data.It is found that the relaxation rate of MB2-GO is slower than that of MB2, which is attributed to the internal energy transfer in the aggregation system.In addition,the increased intermediate state between the HOMO-LUMO results in the new photochemical pathways and increase the rate of decay of the singlet state of MB in MB-GO system. We infer that GO functionalized with MB may promote the intersystem energy transfer from triplet state MB to ground state oxygen.And it can be a reasonable explanation to this observation that GO-MB shows enhanced efficiency in singlet oxygen generation compared with pristine MB.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Basic Research Program of China(No.2013CB922200), the National Natural Science Foundation of China (No.11674128,No.11474129,and No.11504129),Jilin Province Scienti fic and Technological Development Program,China(No.20170101063JC),the Thirteenth Five-Year Scienti fic and Technological Research Project of the Education Department of Jilin Province,China (No.400).

    [1]D.B.Lu,C.G.Luo,Y.L.Song,Q.N.Pan,and C.Y. Pu,Chin.J.Chem.Phys.29,205(2016).

    [2]J.H.Chen,X.Y.Feng,W.F.Chen,Y.Q.Song,and L.F.Yan,Chin.J.Chem.Phys.30,112(2017).

    [3]L.J.Liang,Q.Wang,T.Wu,J.W.Shen,and Y.Kang, Chin.J.Chem.Phys.22,627(2009).

    [4]L.S.Li and X.Yan,J.Phys.Chem.Lett.1,2572 (2010).

    [5]A.J.Du and S.C.Smith,J.Phys.Chem.Lett.2,73 (2011).

    [6]P.V.Kamat,J.Phys.Chem.Lett.2,242(2011).

    [7]D.R.Dreyer,S.Park,C.W.Bielawski,and R.S.Ruo ff, Chem.Soc.Rev.39,228(2009).

    [8]G.Eda and M.Chhowalla,Adv.Mater.22,2392 (2010).

    [9]C.Mattevi,G.Eda,S.Agnoli,S.Miller,K.A. Mkhoyan,O.Celik,D.Mastrogiovanni,G.Granozzi, E.Garfunkel,and M.Chhowalla,Adv.Funct.Mater. 19,2577(2009).

    [10]D.A.Dikin,S.Stankovich,E.J.Zimney,R.D.Piner, G.H.B.Dommett,G.Evmenenko,S.T.Nguyen,and R.S.Ruo ff,Nature 448,457(2007).

    [11]R.R.Nair,H.A.Wu,P.N.Jayaram,I.V.Grigorieva, and A.K.Geim,Science 335,442(2012).

    [12]X.Wang,L.J.Zhi,and K.M¨ullen,Nano Lett.8,323 (2008).

    [13]C.M.Hill,Y.Zhu,and S.L.Pan,ACS Nano 5,942 (2011).

    [14]I.V.Lightcap and P.V.Kamat,J.Am.Chem.Soc. 134,7109(2012).

    [15]G.Katsukis,J.Malig,C.Schulz-Drost,S.Leubner,N. Jux,and D.M.Guldi,ACS Nano 6,1915(2012).

    [16]X.Y.Peng and F.Gong,E-J.Chem.5,802(2008).

    [17]P.Bradder,S.K.Ling,S.B.Wang,and S.M.Liu,J. Chem.Eng.Data 56,138(2011).

    [18]G.K.Ramesha,A.V.Kumara,H.B.Muralidhara,and S.Sampath,J.Colloid Interface Sci.361,270(2011).

    [19]T.H.Liu,Y.H.Li,Q.J.Du,J.K.Sun,Y.Q.Jiao, G.M.Yang,Z.H.Wang,Y.Z.Xia,W.Zhang,K.L. Wang,H.W.Zhu,and D.H.Wu,Colloids Surf.BBiointerfaces 90,197(2012).

    [20]H.Liu,J.Gao,M.Q.Xue,N.Zhu,M.N.Zhang,and T.B.Cao,Langmuir 25,12006(2009).

    [21]D.Wang,Y.G.Li,P.Hasin,and Y.Y.Wu,Nano Res. 4,124(2011).

    [22]D.D.Zhang,L.Fu,L.Liao,B.Y.Dai,R.Zou,and C. X.Zhang,Electrochim.Acta 75,71(2012).

    [23]P.R.Ginimuge and S.D.Jyothi,J.Anaesthesiol.Clin. Pharmacol.26,517(2010).

    [24]R.H.Schirmer,B.Coulibaly,A.Stich,M.Scheiwein, H.Merkle,J.Eubel,K.Becker,H.Becher,O.M¨uller, T.Zich,W.Schiek,and B.Kouyat′e,Redox Rep.8,272 (2003).

    [25]J.P.Tardivo,A.Del Giglio,C.S.De Oliveira,D.S. Gabrielli,H.C.Junqueira,D.B.Tada,D.Severino, R.D.F.Turchiello,and M.S.Baptista,Photodiagn. Photodyn.Ther.2,175(2005).

    [26]J.Chen,T.C.Cesario,and P.M.Rentzepis,Chem. Phys.Lett.498,81(2010).

    [27]D.Chen,H.B.Feng,and J.H.Li,Chem.Rev.112, 6027(2012).

    [28]A.Wojcik and P.V.Kamat,ACS Nano 4,6697(2010).

    [29]G.R.Fleming,Chemical Application of Ultrafast Spectroscopy,New York:Oxford University Press, 1986.

    [30]L.Z.Sui,W.W.Jin,S.Y.Li,D.L.Liu,Y.F.Jiang, A.M.Chen,H.Liu,Y.Shi,D.J.Ding,and M.X.Jin, Phys.Chem.Chem.Phys.18,3838(2016).

    [31]C.P′ark′anyi,C.Boniface,J.J.Aaron,and M.Maa fi, Spectrochim.Acta Part A 49,1715(1993).

    [32]K.Haubner,J.Murawski,P.Olk,L.M.Eng,C.Ziegler, B.Adolphi,and E.Jaehne,ChemPhysChem.11,2131 (2010).

    [33]T.V.Cuong,V.H.Pham,Q.T.Tran,S.H.Hahn,J. S.Chung,E.W.Shin,and E.J.Kim,Mater.Lett.64, 399(2010).

    [34]Z.T.Luo,Y.Lu,L.A.Somers,and A.T.C.Johnson, J.Am.Chem.Soc.131,898(2009).

    [35]M.Wojtoniszak,D.Rogi′nska,B.Machali′nski,M. Drozdzik,and E.Mijowska,Mater.Res.Bull.48,2636 (2013).

    [36]H.C.Junqueira,D.Severino,L.G.Dias,M.S. Gugliotti,and M.S.Baptista,Phys.Chem.Chem. Phys.4,2320(2002).

    [37]J.E.Huang,Z.Q.Huang,Y.Yang,H.M.Zhu,and T. Q.Lian,J.Am.Chem.Soc.132,4858(2010).

    [38]I.H.M.van Stokkum,D.S.Larsen,and R.van Grondelle,Biochim.Biophys.Acta 1657,82(2004).

    [39]J.J.Snellenburg,S.Laptenok,R.Seger,K.M.Mullen, and I.H.M.van Stokkum,J.Stat.Software 49,1 (2012).

    [40]M.Kasha,Radiat.Res.20,55(1963).

    [41]F.C.Spano,Acc.Chem.Res.43,429(2010).

    [42]S.Verma,A.Ghosh,A.Das,and H.N.Ghosh,J.Phys. Chem.B 114,8327(2010).

    [43]H.Yamagata and F.C.Spano,J.Chem.Phys.136, 184901(2012).

    [44]J.C.Dean,D.G.Oblinsky,S.Ra fiq,and G.D.Scholes, J.Phys.Chem.B 120,440(2016).

    [45]M.Enescu,L.Krim,L.Lindqvist,and T.Q.Wu,J. Photochem.Photobiol.B 22,165(1994).

    [46]D.A.Dunn,V.H.Lin,and I.E.Kochevar,Photochem. Photobiol.53,47(1991).

    [47]Z.B.Liu,X.Zhao,X.L.Zhang,X.Q.Yan,Y.P.Wu, Y.S.Chen,and J.G.Tian,J.Phys.Chem.Lett.2, 1972(2011).

    [48]S.Kaniyankandy,S.N.Achary,S.Rawalekar,and H. N.Ghosh,J.Phys.Chem.C 115,19110(2011).

    [49]G.Eda,Y.Y.Lin,C.Mattevi,H.Yamaguchi,H.A. Chen,I.S.Chen,C.W.Chen,and M.Chhowalla,Adv. Mater.22,505(2010).

    [50]J.L.Ravanat,J.Cadet,K.Araki,H.E.Toma,M.H. G.Medeiros,and P.Di Mascio,Photochem.Photobiol. 68,698(1998).

    [51]N.Kosui,K.Uchida,and M.Koizumi,Bull.Chem.Soc. Jpn.38,1958(1965).

    [52]D.Harmatz and G.Blauer,Photochem.Photobiol.38, 385(1983).

    ceived on April 13,2017;Accepted on June 10,2017)

    ?These authors contributed equally to this work.

    ?Authors to whom correspondence should be addressed.E-mail: amchen@jlu.edu.cn,mxjin@jlu.edu.cn

    av黄色大香蕉| 国产中年淑女户外野战色| 国产成人欧美在线观看| 国产在线男女| 欧美一区二区精品小视频在线| 国产精品一及| 成人性生交大片免费视频hd| 99精品久久久久人妻精品| 尤物成人国产欧美一区二区三区| 一个人看的www免费观看视频| 精品久久久久久,| 琪琪午夜伦伦电影理论片6080| 亚洲欧美清纯卡通| 亚洲欧美日韩高清在线视频| 亚洲av五月六月丁香网| 亚洲片人在线观看| 久久午夜福利片| 亚洲欧美精品综合久久99| 中文字幕久久专区| 成人av一区二区三区在线看| 国产黄a三级三级三级人| 国产精品久久视频播放| 天堂影院成人在线观看| 九九在线视频观看精品| 国产不卡一卡二| 免费大片18禁| 如何舔出高潮| 欧美绝顶高潮抽搐喷水| 中文字幕人成人乱码亚洲影| 丝袜美腿在线中文| 高清在线国产一区| 成人特级黄色片久久久久久久| 久久这里只有精品中国| 18美女黄网站色大片免费观看| 91麻豆av在线| 国语自产精品视频在线第100页| 欧美在线黄色| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆 | 少妇裸体淫交视频免费看高清| bbb黄色大片| 精品人妻一区二区三区麻豆 | 亚洲精品在线观看二区| 18禁黄网站禁片免费观看直播| 国产免费av片在线观看野外av| 村上凉子中文字幕在线| 欧美三级亚洲精品| 无遮挡黄片免费观看| 床上黄色一级片| 色播亚洲综合网| 国产日本99.免费观看| 色尼玛亚洲综合影院| 午夜免费男女啪啪视频观看 | 天堂动漫精品| 国产精品一区二区三区四区久久| 中文字幕熟女人妻在线| 欧美成人性av电影在线观看| 青草久久国产| 少妇人妻精品综合一区二区 | 国模一区二区三区四区视频| 亚洲欧美日韩无卡精品| av天堂中文字幕网| 亚洲国产精品合色在线| .国产精品久久| 日本黄色视频三级网站网址| 波多野结衣高清无吗| 少妇被粗大猛烈的视频| 91麻豆精品激情在线观看国产| 综合色av麻豆| 国产精品久久久久久人妻精品电影| 国产欧美日韩一区二区精品| 美女高潮的动态| 亚洲avbb在线观看| 亚洲三级黄色毛片| 日日摸夜夜添夜夜添小说| 国语自产精品视频在线第100页| 此物有八面人人有两片| 日韩欧美一区二区三区在线观看| 日本一二三区视频观看| 看片在线看免费视频| 1000部很黄的大片| 成人特级av手机在线观看| 中文字幕精品亚洲无线码一区| 国产精品电影一区二区三区| 午夜免费成人在线视频| 成人午夜高清在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久欧美精品欧美久久欧美| 日本免费a在线| 首页视频小说图片口味搜索| 欧美绝顶高潮抽搐喷水| eeuss影院久久| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 看十八女毛片水多多多| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| 人人妻人人澡欧美一区二区| 久久久久久久精品吃奶| 亚洲在线自拍视频| 国产爱豆传媒在线观看| 亚洲七黄色美女视频| 国产久久久一区二区三区| 变态另类成人亚洲欧美熟女| 国产av不卡久久| 国产成人aa在线观看| 中文字幕av在线有码专区| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 色av中文字幕| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图 | 亚洲内射少妇av| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 18禁黄网站禁片免费观看直播| 91久久精品国产一区二区成人| 国产久久久一区二区三区| 九九在线视频观看精品| 在线观看美女被高潮喷水网站 | 欧美最新免费一区二区三区 | 一卡2卡三卡四卡精品乱码亚洲| 激情在线观看视频在线高清| 日本精品一区二区三区蜜桃| 桃色一区二区三区在线观看| av天堂中文字幕网| 变态另类丝袜制服| 精品午夜福利视频在线观看一区| 999久久久精品免费观看国产| 国产一区二区在线av高清观看| 免费在线观看亚洲国产| 在线观看66精品国产| 美女高潮喷水抽搐中文字幕| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频| 三级国产精品欧美在线观看| 色综合亚洲欧美另类图片| 午夜福利欧美成人| 久久热精品热| 99久久99久久久精品蜜桃| www.熟女人妻精品国产| 成人鲁丝片一二三区免费| 国产人妻一区二区三区在| 男女视频在线观看网站免费| 观看美女的网站| 欧美一区二区亚洲| 午夜福利免费观看在线| 国产一区二区在线av高清观看| 免费高清视频大片| 亚洲18禁久久av| 亚洲自偷自拍三级| 深夜精品福利| 亚洲熟妇中文字幕五十中出| 我要搜黄色片| 免费在线观看成人毛片| 99精品在免费线老司机午夜| 国产午夜福利久久久久久| 久久精品久久久久久噜噜老黄 | 国产野战对白在线观看| 老熟妇仑乱视频hdxx| 草草在线视频免费看| 亚洲av美国av| 欧美成人a在线观看| 一级av片app| 欧美最黄视频在线播放免费| 麻豆成人av在线观看| 欧美在线黄色| 制服丝袜大香蕉在线| 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 亚洲中文字幕日韩| 久久久成人免费电影| 久久久久久久精品吃奶| 中出人妻视频一区二区| 搞女人的毛片| 免费看a级黄色片| 久久久久久久午夜电影| 国产淫片久久久久久久久 | 久久久久久九九精品二区国产| 五月玫瑰六月丁香| 一进一出抽搐动态| 亚洲无线观看免费| 村上凉子中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线二视频| 色哟哟哟哟哟哟| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 精品国产三级普通话版| 国产视频内射| 国产精品一区二区性色av| 免费看美女性在线毛片视频| 男女那种视频在线观看| 3wmmmm亚洲av在线观看| 亚洲人与动物交配视频| 午夜两性在线视频| 国产精品精品国产色婷婷| 级片在线观看| 美女免费视频网站| 一级黄片播放器| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站在线播| 成人毛片a级毛片在线播放| 欧美zozozo另类| 脱女人内裤的视频| 91麻豆精品激情在线观看国产| 老司机午夜十八禁免费视频| 网址你懂的国产日韩在线| 琪琪午夜伦伦电影理论片6080| 内地一区二区视频在线| 村上凉子中文字幕在线| 18禁黄网站禁片午夜丰满| 婷婷精品国产亚洲av| 九九热线精品视视频播放| 日本三级黄在线观看| 亚洲专区中文字幕在线| 天天躁日日操中文字幕| 一个人看视频在线观看www免费| 国产精品免费一区二区三区在线| 又爽又黄无遮挡网站| 欧美日韩黄片免| 狠狠狠狠99中文字幕| 国产精品电影一区二区三区| 少妇丰满av| 亚洲成人久久爱视频| 黄色日韩在线| 欧美性猛交黑人性爽| 色尼玛亚洲综合影院| 日本五十路高清| 男人的好看免费观看在线视频| 看黄色毛片网站| 欧美日韩黄片免| 在线观看舔阴道视频| 一区二区三区激情视频| 日本五十路高清| 一夜夜www| 中文在线观看免费www的网站| 三级国产精品欧美在线观看| 国产私拍福利视频在线观看| 狠狠狠狠99中文字幕| 一级av片app| 人妻制服诱惑在线中文字幕| 91av网一区二区| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| 一个人免费在线观看的高清视频| 99精品久久久久人妻精品| 麻豆一二三区av精品| 久久久久亚洲av毛片大全| 亚洲性夜色夜夜综合| 国产精品亚洲av一区麻豆| 成人高潮视频无遮挡免费网站| 男人舔女人下体高潮全视频| 夜夜爽天天搞| 国产av一区在线观看免费| 国产视频一区二区在线看| 国产91精品成人一区二区三区| 国模一区二区三区四区视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲电影在线观看av| 久久精品影院6| 18禁黄网站禁片午夜丰满| 午夜日韩欧美国产| 日本与韩国留学比较| 51午夜福利影视在线观看| 色av中文字幕| 中文亚洲av片在线观看爽| 国产成人福利小说| 国产单亲对白刺激| 久久国产精品影院| 亚洲天堂国产精品一区在线| 久久精品国产亚洲av涩爱 | 亚洲精品日韩av片在线观看| 欧美zozozo另类| 午夜福利成人在线免费观看| 757午夜福利合集在线观看| 国产高清激情床上av| 男人的好看免费观看在线视频| 国内精品久久久久精免费| 国内精品美女久久久久久| 国产一区二区亚洲精品在线观看| x7x7x7水蜜桃| 亚洲最大成人中文| 久久这里只有精品中国| 禁无遮挡网站| 亚洲成av人片在线播放无| 婷婷色综合大香蕉| 性插视频无遮挡在线免费观看| 99热这里只有是精品50| 神马国产精品三级电影在线观看| 淫秽高清视频在线观看| 日本精品一区二区三区蜜桃| 俺也久久电影网| 韩国av一区二区三区四区| 99久久精品热视频| 夜夜夜夜夜久久久久| 亚洲国产精品合色在线| 亚洲自偷自拍三级| 久久99热6这里只有精品| 日本成人三级电影网站| 综合色av麻豆| 亚洲avbb在线观看| 国产一级毛片七仙女欲春2| 成人特级av手机在线观看| 婷婷丁香在线五月| 国产爱豆传媒在线观看| 69av精品久久久久久| 天堂av国产一区二区熟女人妻| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 少妇的逼水好多| 我的女老师完整版在线观看| 国模一区二区三区四区视频| 国产午夜精品论理片| 久久精品国产清高在天天线| 97超级碰碰碰精品色视频在线观看| 变态另类成人亚洲欧美熟女| 哪里可以看免费的av片| 欧美极品一区二区三区四区| 国产高潮美女av| 久久亚洲真实| 麻豆一二三区av精品| 亚洲综合色惰| 美女高潮的动态| 久久精品91蜜桃| 亚洲国产欧美人成| 日韩 亚洲 欧美在线| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看的高清视频| 精品99又大又爽又粗少妇毛片 | 欧美最新免费一区二区三区 | 国产日本99.免费观看| 网址你懂的国产日韩在线| 亚洲国产欧美人成| 九色国产91popny在线| 五月伊人婷婷丁香| 欧美xxxx性猛交bbbb| 在线观看66精品国产| 最近视频中文字幕2019在线8| 色尼玛亚洲综合影院| 在线观看av片永久免费下载| 岛国在线免费视频观看| 午夜精品一区二区三区免费看| www日本黄色视频网| 男人和女人高潮做爰伦理| 亚洲午夜理论影院| 久久婷婷人人爽人人干人人爱| 欧美乱妇无乱码| 久久久久免费精品人妻一区二区| 国产免费av片在线观看野外av| 亚洲成人久久爱视频| 99久久九九国产精品国产免费| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 不卡一级毛片| 最近中文字幕高清免费大全6 | 亚洲人成伊人成综合网2020| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 此物有八面人人有两片| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 国产欧美日韩一区二区三| 欧美色欧美亚洲另类二区| 九九在线视频观看精品| 日本一二三区视频观看| 悠悠久久av| 一级作爱视频免费观看| 此物有八面人人有两片| 欧美黄色淫秽网站| 91av网一区二区| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 亚洲第一电影网av| 欧美黄色片欧美黄色片| 99精品在免费线老司机午夜| or卡值多少钱| 久久精品国产亚洲av涩爱 | 精品国产亚洲在线| 美女cb高潮喷水在线观看| 亚洲成人免费电影在线观看| 99在线视频只有这里精品首页| 免费在线观看影片大全网站| 51国产日韩欧美| 亚洲 国产 在线| 美女 人体艺术 gogo| 97碰自拍视频| 国产单亲对白刺激| 搡女人真爽免费视频火全软件 | 一级a爱片免费观看的视频| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| av黄色大香蕉| 一二三四社区在线视频社区8| 夜夜躁狠狠躁天天躁| 床上黄色一级片| 真人做人爱边吃奶动态| 黄色视频,在线免费观看| 国产熟女xx| 天美传媒精品一区二区| 亚洲经典国产精华液单 | 99久久九九国产精品国产免费| 搡老岳熟女国产| 此物有八面人人有两片| 日本a在线网址| 亚洲天堂国产精品一区在线| 日韩欧美国产一区二区入口| 99国产精品一区二区蜜桃av| 国产伦精品一区二区三区四那| 国产精品一区二区三区四区久久| 老女人水多毛片| 久久久成人免费电影| 极品教师在线视频| 国产午夜福利久久久久久| 一区二区三区四区激情视频 | 中文字幕高清在线视频| 亚洲av.av天堂| 国产人妻一区二区三区在| 欧美日韩国产亚洲二区| 欧美一区二区国产精品久久精品| 免费人成在线观看视频色| 黄色女人牲交| 亚洲美女搞黄在线观看 | 天堂av国产一区二区熟女人妻| 国产精品一区二区三区四区久久| 蜜桃亚洲精品一区二区三区| 亚洲真实伦在线观看| 无人区码免费观看不卡| 在线观看av片永久免费下载| 国产欧美日韩一区二区精品| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 啦啦啦韩国在线观看视频| 亚洲18禁久久av| 日本在线视频免费播放| 丁香欧美五月| 国产成人av教育| 国产三级中文精品| 无人区码免费观看不卡| 欧美又色又爽又黄视频| 99精品久久久久人妻精品| 亚洲第一区二区三区不卡| 国产伦人伦偷精品视频| 91九色精品人成在线观看| 免费在线观看影片大全网站| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩东京热| 亚洲国产欧洲综合997久久,| 中出人妻视频一区二区| 久久欧美精品欧美久久欧美| 青草久久国产| 小说图片视频综合网站| 午夜福利在线观看吧| 免费看光身美女| av在线天堂中文字幕| 一本综合久久免费| 欧美一区二区亚洲| 特级一级黄色大片| 搡老妇女老女人老熟妇| 欧美乱色亚洲激情| а√天堂www在线а√下载| 日本熟妇午夜| 97超视频在线观看视频| av在线老鸭窝| 国产私拍福利视频在线观看| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 日韩亚洲欧美综合| 国产亚洲精品久久久久久毛片| 日本a在线网址| 99久久99久久久精品蜜桃| 麻豆国产97在线/欧美| 精品一区二区三区av网在线观看| 久久99热这里只有精品18| 精品99又大又爽又粗少妇毛片 | 午夜a级毛片| 午夜福利成人在线免费观看| 久久国产乱子免费精品| 最新在线观看一区二区三区| 中文字幕av成人在线电影| av女优亚洲男人天堂| 精品国产亚洲在线| 免费观看的影片在线观看| 全区人妻精品视频| 午夜老司机福利剧场| 亚洲色图av天堂| 一区二区三区四区激情视频 | 精华霜和精华液先用哪个| 男人狂女人下面高潮的视频| 亚洲乱码一区二区免费版| 久久久久性生活片| 日韩人妻高清精品专区| 性欧美人与动物交配| 高清日韩中文字幕在线| 色综合婷婷激情| 啪啪无遮挡十八禁网站| 成人av一区二区三区在线看| 久久草成人影院| 久久久久久久久久黄片| 一本综合久久免费| 亚洲五月婷婷丁香| 最好的美女福利视频网| 午夜久久久久精精品| 露出奶头的视频| 国产精品98久久久久久宅男小说| 18禁黄网站禁片午夜丰满| 一a级毛片在线观看| 中文字幕久久专区| 国产高清有码在线观看视频| 国产一区二区三区视频了| 首页视频小说图片口味搜索| 亚洲av免费在线观看| 在线播放无遮挡| 久久午夜福利片| 日韩精品青青久久久久久| 校园春色视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲,欧美,日韩| 日本一二三区视频观看| 亚洲自拍偷在线| 男女那种视频在线观看| 天美传媒精品一区二区| 色哟哟哟哟哟哟| 99久国产av精品| 免费高清视频大片| 国产精品国产高清国产av| 别揉我奶头~嗯~啊~动态视频| 3wmmmm亚洲av在线观看| 免费人成在线观看视频色| 亚洲av熟女| 国产免费一级a男人的天堂| 极品教师在线视频| 变态另类丝袜制服| 免费无遮挡裸体视频| 日韩 亚洲 欧美在线| 搡女人真爽免费视频火全软件 | 精品无人区乱码1区二区| 99久久精品热视频| 在线播放无遮挡| 高清毛片免费观看视频网站| 日韩欧美精品v在线| 国产在线精品亚洲第一网站| 国产黄色小视频在线观看| 日本黄大片高清| 特大巨黑吊av在线直播| 国产欧美日韩精品亚洲av| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| 精品久久久久久久久亚洲 | 国产极品精品免费视频能看的| 国产单亲对白刺激| 天堂√8在线中文| 99久久九九国产精品国产免费| 熟女人妻精品中文字幕| 久久精品国产亚洲av香蕉五月| 日韩欧美在线乱码| 性色avwww在线观看| 国产av一区在线观看免费| a级毛片a级免费在线| 欧美区成人在线视频| 日本黄色片子视频| 波多野结衣高清作品| 激情在线观看视频在线高清| 午夜激情福利司机影院| 日韩欧美一区二区三区在线观看| 91九色精品人成在线观看| 久久九九热精品免费| 亚洲国产精品999在线| 丰满人妻熟妇乱又伦精品不卡| 精品午夜福利在线看| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 国产探花在线观看一区二区| 色哟哟·www| 国产免费男女视频| 99riav亚洲国产免费| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 国产精品av视频在线免费观看| 老女人水多毛片| 天堂动漫精品| 欧美日本视频| 俄罗斯特黄特色一大片| 欧美+日韩+精品| 免费搜索国产男女视频| 全区人妻精品视频| 1024手机看黄色片| av在线观看视频网站免费| 欧美另类亚洲清纯唯美| 日韩欧美三级三区| 人人妻人人看人人澡| 69人妻影院| 亚洲成人免费电影在线观看| 一进一出抽搐动态| 美女免费视频网站| 国产aⅴ精品一区二区三区波| 欧美一区二区国产精品久久精品| 日韩国内少妇激情av| 十八禁人妻一区二区| 91午夜精品亚洲一区二区三区 | 欧美极品一区二区三区四区| 99热只有精品国产| 小蜜桃在线观看免费完整版高清| 国产高清有码在线观看视频| 久久精品91蜜桃| 日本撒尿小便嘘嘘汇集6| 欧美bdsm另类| 午夜精品一区二区三区免费看| 亚洲性夜色夜夜综合| 亚洲精品一卡2卡三卡4卡5卡|