• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissociative Photoionization of 1,4-Dioxane with Tunable VUV Synchrotron Radiation

    2017-09-03 07:53:50MingWangJunChenWeifeiFeiZhaohuiLiYepengYuXuanLinXiaobinShanFuyiLiuLiusiSheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年4期

    Ming Wang,Jun Chen,Wei-fei Fei,Zhao-hui Li,Ye-peng Yu,Xuan Lin,Xiao-bin Shan, Fu-yi Liu,Liu-si Sheng

    National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    (Dated:Received on March 11,2017;Accepted on April 11,2017)

    Dissociative Photoionization of 1,4-Dioxane with Tunable VUV Synchrotron Radiation

    Ming Wang,Jun Chen,Wei-fei Fei,Zhao-hui Li,Ye-peng Yu,Xuan Lin,Xiao-bin Shan, Fu-yi Liu?,Liu-si Sheng

    National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    (Dated:Received on March 11,2017;Accepted on April 11,2017)

    The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of- flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0?15.5 eV.Parent ion and fragment ions at m/z 88,87,58,57,45,44,43,41,31,30,29,28 and 15 are detected under supersonic conditions.The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2+,C3H6O+,C3H5O+,C2H5O+,C2H4O+,C2H3O+,C3H5+,CH3O+, C2H6+,C2H5+/CHO+,C2H4+and CH3+was determined from their photoionization efficiency curves.The optimized structures for the neutrals,cations,transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method.Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones.Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.

    1,4-Dioxane,VUV photoionization mass spectra,Appearance energy,Dissociation channel,G3B3

    I.INTRODUCTION

    1,4-Dioxane(DX)can be easily found in nature as an intermediate in many chemical pathways[1?3].It has a wide range of applications in paints[1,2],textile and dye industries[2].On the other hand,DX is also well known to induce kidney failure,liver damage [4,5]and even human carcinogen.Recently,DX,a signi ficant representative of cyclic ethers,has also been con firmed hard to degrade[6,7],which will contribute to the concentration of DX in the atmosphere[8,9].DX can undergo further transformation or degradation with OH radicals and halogen atoms(such as Br,Cl)[9], then transform into low-volatility oxygenated organic compounds,which may contribute to secondary organic aerosol formation under atmospheric conditions.Hence, a better understanding of the unimolecular chemistry of DX is clearly desirable.

    Up to now,a lot of methods[10?19]have been devoted to the unimolecular chemistry of DX.As an important physical property,the ionization energy(IE)ofDX wasdeterminedtobeinthe rangeof9.058?9.39 eV by photoionization (PI) spectroscopy[19],photoelectron-photoion-coincidence (PEPICO)spectroscopy[12],mass analyzed threshold ionization(MATI)spectrum[18]and photoionization mass spectrometry(PIMS)[15].The appearance energy(AE)values of fragment ions investigated by different techniques also show considerable discrepancies. These large deviations may be enough to remind researchers to re-investigate the details of fragmentation patterns.In the case of dissociating channels,Fraser-Monteiro and co-workers[12]discussed the possible structures and the heats of formation for fragment ions from DX by using PEPICO.Then,they concluded that ionic DX trend to produce fragment ions and neutrals by simple bond cleavages.Zou et al.[15]discussed the possible fragmentation channels and structures of some fragment ions and argued that the rearrangement processes were involved in the dissociation of DX,not just involved breaking bonds.It should be noted that AE values derived from the previous PIMS suffered from poor signal to noise ratio.Apart from these experimental studies,there are a few theoretical reports describing the dissociative photoionization process of DX.Lam et al.[20]studied the detailed mechanism of C3H6O+isomers(m/z=58)fragmented from DX cation and Hudson et al.[21]explored the formation behaviors of C2H6+(m/z=30)and C2H5+(m/z=29)from CH2CH2OCH2+.

    As mentioned above,despite considerable experime-ntal studies performed on cationic DX,the IE,AE values as well as some formation pathways of the fragment ions,still have not been de finitely con firmed.Thus, more evidences based on real-time analysis and isomeric selectivity are needed to fully understand the dissociative mechanism of DX.This may be obtained by using tunable VUV-PIMS technique[22?27].This approach features several advantages.First,the molecular-beam reduces collision effects and allows unstable intermediates to be isolated.Furthermore,the high-energy resolution and tunability of the synchrotron radiation minimize fragmentation and allows different isomers to be distinguished[26,27].Indeed,the experimental method employed in this work was also successfully employed in the previous studies[22?25].In this work,we report a quantitative study on the photoionization and dissociative photoionization of DX on the basis of VUV-PIMS experiments and theoretical calculations.

    II.EXPERIMENTAL AND THEORETICAL METHODS

    A.Experimental methods

    Thewholeexperimentswereperformedatthe atomic and molecular physics beamline(BL09U)at the National Synchrotron Radiation Laboratory(NSRL) Hefei,China. Thesynchrotron radiationbeam from an undulator of the 800 MeV electron storage ring of the NSRL was monochromatized with a 6-m length monochromator equipped with a grating(370 lines/mm),which covers the photon energy range from 7.5 eV to 22.5 eV.The absolute photon of monochromator is precisely calibrated with the known IEs of inert gases.The energy resolution(E/?E)of photons at 15.9 eV is measured to be 9 meV(full width at half maximum)[28],with an average photon flux~1012photons/s.The monochromatic VUV radiation, the supersonic molecular beam and the PIMS are mutually perpendicular.The setup consists of seven electrostatic lenses that focus and accelerate the ions from the region of interaction to the home-made TOF-MS with a mass resolution?M/M of~800.An overview of the experimental setups have been reported in Refs.[29, 30].For each target molecules,the experiments consist of the acquisition of the mass spectra at designated photon energies and the measurement of the PIE curves of the selected ions.All the PIE curves are obtained by integrating over the peaks at each photon energy and normalized by the photon flux recorded by a photodiode.The experimental AEs,corresponding to the onset of the ion signal,can be determined from PIE curves by fitting straight lines to the background and to the ion signal in the threshold region,which has been proven to be very useful[22?25,31?34].

    The liquid sample of DX(Alfa-Aesar,99%purity) without further puri fication is carried by Ar(1.5 atm, 99.99%purity)and then expanded into the ionization chamber through a nozzle with a diameter of 70μm. The beam consisting of neutral monomeric DX then passes through a skimmer with diameter of 1 mm to form a continuous supersonic molecular beam before it reaches the photoionization region.The skimmed molecular beam is detected by the VUV radiation in the ionization region of a TOF-MS.In view of the supersonic jet expansion conditions,the thermal energy distribution of parent molecule is not taken into account in data processing.During the experiment,Ar is used as the filter gas with an operating pressure of 6 Torr to effectively suppress higher harmonics of the undulator[32].

    B.Theoretical calculation

    In the process of photoionization and dissociative photoionization of a molecule M by monochromatic radiation of energy hν,the ionic fragment m0+,and several neutral fragments miare produced as the following equation.

    The adiabatic IE of M is determined by using Eq.(2) and the adiabatic AE of m0+is calculated by Eq.(3):

    where Emaxrefers to the highest energy barrier involved in the formation pathway of corresponding ionic fragment m0+.E(M+)and E(M)represent the absolute energy of ionic and neutral precursor,respectively.The energies to form related products are calculated by subtracting adiabatic IE of the parent molecule from its adiabatic AE,namely Eq.(4).

    To obtain IE for M and AE values for various fragment ions,we performed calculations of single-point energies for reactants,products,intermediates and transition states at G3B3 level and the calculated results are given in Table S1 in supplementary materials.In this theory,prior to energetic calculations,the geometry of a species is optimized at the B3LYP/6-31+G(d,p)level with the Gaussian 09 programs[35].The calculated values of the IE,AE,and?E for possible formation pathways in the dissociative photoionization of DX are summarized in Table I as well as our experimental values.

    III.RESULTS AND DISCUSSION

    A.Experimental measurements

    The VUV photoionization mass spectra of DX at photon energies of 15.50,11.51,and 9.50 eV areshown in FIG.1.At the photon energy of 15.50 eV, ions at m/z 15,28,29,30,31,41,43,44,45,57, 58,87 and 88 can be recognized as CH3+,C2H4+, C2H5+/CHO+,C2H6+,CH3O+,C3H5+,C2H3O+, C2H4O+,C2H5O+,C3H5O+,C3H6O+,C4H7O2+and molecular ion C4H8O2+,respectively.This is well consistent with the data from the NIST database[36].The signal at m/z=18 is neglected because it is water from the background of setup.With photon energy decreasing to 11.51 eV,a few ion signals C2H4O+,C2H5O+, C3H5O+,C3H6O+,C4H7O2+,and C4H8O2+can be distinguished clearly.When the photon energy is further reduced to 9.50 eV,only parent ion can be detected.

    TABLE I Experimental and calculated values of IE and AEs and?E(energies to form products)for possible dissociative channels in the dissociative photoionization of 1,4-dioxane.

    FIG.1 Photoionization mass spectra of 1,4-dioxane at (a)15.50,(b)11.51,and(c)9.50 eV.The insert shows expanded mass spectra between the m/z range from 41 to 45.

    FIG.2 Relative branching ratio of parent ion(C4H8O2+) and observed major fragment ions including C4H7O2+, C3H6O+ (m/z=58), C3H5O+ (m/z=57), C2H5O+(m/z=45),C2H4O+ (m/z=44),C2H3O+ (m/z=30), C2H6+(m/z=28),CHO+/C2H5+,and C2H4+,derived from normalized photoionization efficiency curves.

    The relative branching ratio curves of various charged fragment are shown in FIG.2. For the sake of comparison,we arti ficially divide them into five regions.In area(I),the C4H8O2+remains to be the only ion from its onset to~10.5 eV.In area(II), the C4H8O2+decreases abruptly while fragment ions C4H7O2+,C3H6O+,C2H5O+and C2H4O+rise and their onsets cross at~10.5 eV.This clearly indicates that these four fragment ions come from the directly dissociation of the parent ion. Obviously,C3H6O+dominates the ion population until~12.6 eV,corresponding to a major dissociation channels.The similar AE values and shape of branching ratio curves of C2H5O+and C2H4O+may indicate a common intermediate.When it comes to area(III),C4H8O2+decreases slowly along with the signi ficant reduction of C3H6O+. Meanwhile,the ionic species C3H5O+and C2H6+begin to increase,indicating that these species may originate from C4H7O2+or C3H6O+or even both.Analogous analysis can also be used for fragment ions C2H3O+, CHO+/C2H4+and C2H4+in area(IV).In the energy range of 12.4?14.0 eV,C4H8O2+and C3H6O+decrease rapidly,as other fragment ions,such as C2H3O+, CHO+/C2H4+and C2H4+are produced more quickly. Moreover,the dissociation channel to produce C2H4+predominates above 12.6 eV.As for area(V),all the relative branching ratio values seem to remain stable.

    FIG.3 Normalized photoionization efficiency curves of the parent ion C4H8O2+.The ionization energy is determined to be(9.10±0.04)eV.The inset picture is the DFT optimized lowest energy structure for 1,4-dioxane cation.

    The PIE curves of the parent ion and its main fragment ions are shown in FIG.3 and FIG.4,respectively.For the parent ion,our measured IE value of 9.10±0.04 eV is consistent with the experimental determination of 9.058 eV obtained from MATI measurement[18]and calculated value of 9.10 eV at G3B3 level.The geometries of parent ion and neutral DX at B3LYP/6-31+G(d,p)level are very similar because of symmetry restrictions that the oxygen lone pairs are primarily p-type orbitals and are essentially nonbonding.This is the reason why the PIE curve of C4H8O2+exhibits a relatively sharp onset to some extent.

    B.Dissociation mechanisms

    1.Formation pathway of C4H7O2+

    DX has a chair conformation with a center of symmetry in the gas phase and possesses the point group of D2h[37].That is to say there are two types of C?H bonds(for example:C6?H14 point to the plane and C6?H13 point out of the plane)in DX.The fragmentation channel attributable to the loss of an H atom in DX may occur via two distinguishable fragmentation pathways.In one case,the process involves the rupture of the C6?H13 bond with an energy barrier of 1.62 eV (TS1-1),resulting in a six-membered ring with double bond structure(P2).The calculated AE of C4H7O2+in this channel(named channel 1a in the following)is 10.72 eV,consistent well with our experimental value of(10.60±0.08)eV.The other case,named channel 1b, involves the cleavage of C6?H14 bond overcoming an energy barrier of 2.53 eV,forming the final products P2 and H atom.These measurements of AE values and energy barriers show that channel 1a is favored.

    2.Formation pathway of C3H6O+

    FIG.4 Normalized photoionization efficiency curves and appearance energy values of fragment ions measured in the dissociative photoionization of 1,4-dioxane.

    As the dominant fragment product of C4H8O2+between 10.9?12.5 eV,the fragment ion C3H6O+has been con firmed to be a mixture of CH2CH2OCH2+as major component(90%?95%)and CH3OCHCH2+as a minor component(5%?10%)of the C3H6O+ions[14, 20].Lam and co-workers[20]proposed three formation pathways for CH2CH2OCH2+(involves AE values of 10.78 eV for channel 2a,11.07 eV for channel 2b and 11.19 eV for channel 2c)and two for CH3OCHCH3+(involves large AE values of 11.91 eV for channel 3a and 11.78 eV for channel 3b)in their detailed G3(MP2) study of the C3H6O+isomers fragmented from DX.Furthermore channel 2b and 2c are suggested to be more efficient in producing CH2CH2OCH2+in their theoretical studies.

    From the point of AE value,our experimental AE value of(10.58±0.05)eV suggests perhaps that the channel 2a with a calculated AE value 10.78 eV(also showing good agreement with our theoretical value 10.77 eV)is more favored.Taking into account the facts that C3H6O+involves a number of re-dissociation process[17,21,38],we believe that the three channels mentioned above are possible and may even compete with each other.Particularly,the channel 2a plays a major role in low energies,while the other two channels dominate at high energies.In our study,the β-distonic ion CH2CH2O=CH2+(P3)is assumed to be the only component of the C3H6O+fragment for its decisive abundance.

    C.Formation pathway of C3H5O+

    As noted by Dunbar and co-workers [38], C3H5O+can begenerated in asequentialway (C4H8O2+→C3H6O++CH2O→C3H5O++H+CH2O)

    or a simultaneous way that competes with C3H6O+, C2H5O+and C2H4O+from parent ion.This matches well with our analysis results of relative branching ratios,which suggests that C3H5O+originates from C4H8O2+or C3H6O+or even both. Additionally, the loss of H form C3H6O+must be accompanied by complicated rearrangements and does not produce CH2OCH=CH2+or the oxetanyl cation but dissociates largely via complicated rearrangements yielding CH3CH2CO++H at threshold[17].We thus suppose the sequential channel(CH3CH2CO++CH2O+H)to be the formation pathway of C3H5O+.In the case of CH3CH2CO+(P4a),the first step is 1,4-H shifting to form a relatively stable intermediate INT1 via a five-membered ring transition state TS2 overcoming an energy barrier of 0.97 eV,which is the highest energy step along the entire pathway.The second step is formation of the mentioned important intermediate CH3CH2CHO+via transition state TS3 by prolongation and rotation about the C?O bond.However,the structure of TS3 is not found at B3LYP/6-31+G(d,p) level,but can be found at QCISD/6-31G(d)theoryand MP2 theory[21].The last step is the H atom loss from aldehyde group to form P4a through TS4 by overcoming an energy barrier of 0.75 eV.

    FIG.5 Formation pathway of C4H7O2+calculated at the G3B3//B3LYP/6-31+G(d,p)level.

    Obviously,FIG.6(a)shows the sequential fragmentation pathway,while the competitive formation pathway has been shown in FIG.6(b).Considering the facts that the product set CH2OCHCH2++CH2O+H requires3.0eV ofexcitation,whileC3H5O+is observed abundantly at 2.2 eV,the formation of CH2OCHCH2+through this pathway has been precluded. Wethen find acompetitiveformation pathway to produce CH2OCHCH2+(P4b)according to C4H8O2+→CH2OCHCH2+(P4b)+CH2OH,giving a calculated AE value of 11.22 eV closer to experimental one(11.24±0.04)eV.Such plausible mechanism starts from the molecular ion P1 followed by ring-opening and a successive H-shifts to form INT3 via TS5 with an energy barrier of 1.55 eV.CH2OCHCH2+can be formed simply by breaking C2?C3 directly from INT3,which can be further con firmed by scanning the C2?C3 bond length from 1.5?A to 4.5?A with a finding that no possible transition state exists.Additionally,the calculated reaction barrier of 2.12 eV is in good agreement with our experimental value of 2.14 eV.We then suppose the latter channel to be the more likely one.

    D.Formation pathway of C2H5O+

    According to the results of FIG.1 and FIG.2, C2H5O+appears to be one of the dominant as well as the lowest energy fragment ions in the energy region we studied.As for the possible structure of C2H5O+, the first one is CH3OCH2+which is energetic accessible but has been excluded due to its failure to transfer a methyl cation rapidly onto acetone as CH3OCH2+does [13].We also eliminate the structure of protonated oxirane as m/z 45 fragment ion because of a signi ficantly high revised value of the proton affinity while con firm CH3CHOH+as the possible structure of C2H5O+due to its similar enthalpy of formation and speci fical H+transfer rate.The calculated AE of CH3CHOH+is 10.64 eV,agrees reasonably well with our experimental results of(10.52±0.06)eV.

    FIG.6Formation pathways of CH3CH2CO+(P4a)and CH2OCHCH2+(P4b)calculated at the G3B3//B3LYP/6-31+G(d,p)level.

    Thissen and co-workers[13]proposed an interesting mechanism that the CH3CHOH+can be formed via a H+transfer from the hydroxyl group of CH2CHOH+(a detailed discussion of this charged fragment can be found in the next section)to the aldehyde group of CH3CHO,which gives a rational explanation for the formation of a CH3CHOH+fragment ion,whose AE value is identical to that of the C2H4O+,which is also in good agreement with our experimental results. However,this mechanism cannot be con firmed under the present study.Instead,another formation pathway (P1→TS5→INT3→TS6→INT4)is found.For the purpose of brevity,only the remaining intermediate INT3 and its subsequent steps are discussed.Besides breaking C?C bond to form P4b directly,INT3 can also transform into INT4 via 2,3-H-shift with a transition state TS6 located at 10.23 eV,which is 0.42 eV lower than the highest energy step of TS5. Afterward,a cleavage of C2?O4 bond of INT4 can further dissociate to CH3CHOH+(P5)+CH2CHO.Moreover,if we assume CH3CH2CH2to be the neutral species,the rel-ative energy of COOH++CH3CH2CH2is calculated to be 10.50 eV,which is remarkable close to our experimental AE of(10.52±0.06)eV,but the likelihood of the complex rearrangement as well as the energy barrier required to reach these structures seem uncertain.

    E.Formation pathway of C2H4O+

    The fragment ions of C2H4O+generated from ionized DX has been reported to possess the enol structure CH2CHOH+but not CH2OCH2+by means of ion-molecule reactions coupling with AE measurements [13].However,the detailed mechanism of this feasible route are still unknown.According to our calculated results in FIG.7 and FIG.8,whether INT3 transforms into TS6 or TS7-2 via 2,3-hydrogen or 2,4-hydrogen shift can lead to different products of similar AE values,indicating that a mechanism via the common intermediate INT3 may account for the same AE values for CH3CHOH+and CH2CHOH+,which has been predicted in the previous discussion section of relative branching ratios. As depicted in FIG.8,the ratelimiting step in CH2CHOH loss is the transfer of the proton,coupled with the cleavage of C2?O5 single bond via the TS7-2(10.76 eV,Table I),the final structure of CH2CHOH++CH2CHOH can be formed,subsequently.

    Besides the pathway described above,we have also investigated the possibility of 3,6-hydrogen shift in INT3. On the basis of G3B3 calculation,a channel of little higher AE values(10.99 eV)is found. Staring from INT3,the 3,6-H shift in INT3 leads to the formation of INT5 via TS7-1 with an energy barrier of 1.33 eV.Then,2,3-hydrogen shift and a simple cleavage of C3?O4 bond can transform INT5 into dissociating products CH2CHOH++CH3CHO,overcoming a barrier of 1.57 eV via transition state TS8.The calculated AE 10.76 eV of CH2CHOH+is more close to our experimental AE value(10.52±0.03)eV,suggesting that the dissociative channel CH2CHOH++CH2CHOH is more favored.

    F.Formation pathway of C2H3O+

    FIG.7 Formation pathways of CH3CHOH+(P5)calculated at the G3B3//B3LYP/6-31+G(d,p)level.

    FIG.8 Formation pathways of CH2CHOH+(P6)calculated at the G3B3//B3LYP/6-31+G(d,p)level.

    In the case ofC2H3O+, from the analysis of metastable ion spectra of the distonic radical cation CH2CH2OCH2+obtained by neutralizationreionization mass spectrometry(NRMS),Polce et al. [17]have drawn the following three conclusion.Firstly, elimination of CH3to yield C2H3O+can be observed from CH2CH2OCH2+.Secondly,the elimination CH3is exothermic and must,therefore,be associated with sizable activation energies,according to the presence of large kinetic energy releases.Thirdly,the structure of C2H3O+is attributed to be the lowest energy structure of CH3CO+with a calculated standard formation enthalpy value of 799 kJ/mol,which stands much closer to that of C2H3O+(874 kJ/mol)than CH2=C?OH+(784 kJ/mol)favored by Fraser-Monteiro et al.[12]. As shown in Table I,for the CH3CO+,the measured AE value of(12.06±0.10)eV is reasonable consistent with the calculated value of 12.37 eV and is~0.10 eV lower than the experimental value of(11.96±0.10)eV [12].In the present case,a pathway for the formation of CH3CO+is found and the corresponding energy profile is shown in FIG.9.The distonic radical cation (CH2CH2OCH2+,P3)can undergo a hydrogen transfer from the middle C atom to the terminal C atom to generate INT6 via transition state TS9 with an energy barrier of 1.6 eV.It should be noted that INT6 possess the structure of CH3OCHCH2+,which is exactly the mentioned minor component of C3H6O+.This may imply that the two structures of C3H6O+are actually interchangeable.Subsequently,another hydrogen shift between the adjacent C atoms by passing through structure TS10 located at 11.89 eV can explain the formation of INT7 with an elongated C?O bond.Finally,the further cleavage of a weak C?O bond in INT7 can yield CH3and CH3CO+(P7).

    FIG.9 Formation pathways of CH3CO+(P7)calculated at the G3B3//B3LYP/6-31+g(d,p)level.

    FIG.10 Formation pathways of C2H6+(P8)and C2H5+(P9a)calculated at the G3B3//B3LYP/6-31+g(d,p)level.

    G.Formation pathway of C2H6+

    Hudson and co-workers[21]explored the formation behavior of C2H6+(m/z 30)and C2H5+(m/z=29)from CH2CH2OCH2+via the pathway: CH2CH2O=CH2+→CH3CH2O=CH+→CH3CH2CHO+→CH3CH2···H···CO+→C2H6++CO or CH3CH2++ HCO by QCISD/6-31G(d)theory forstructures and three given levels of theory for energies. The calculated AE value for C2H6+(P8)is 11.25 eV at QCISD/6-311G(d,p)level,which is somewhat a bit lower than our experimental AE of(11.50±0.03)eV. And in order to compare the energy advantage of the formation pathways of CH3CH2+(P9a)and the CHO+(P9b,will be discussed in the next section), we re-investigate this path at the theoretical level of G3B3//B3LYP/6-31+G(d,p). According to the calculated results,the AE value for C2H6+is 11.76 eV, higher than our experimental AE by 0.26 eV.At this point,the AE values calculated by the mentioned two theoretical methods differ from each other,but are in fair agreement with our experimental AE.The detailed formation pathway of C2H6+is shown in FIG.10. Starting from INT2,a rotation and elongation of C?C bond connecting CH3CH2and CHO leads to the formation of INT8 via transition state TS13 with an energy barrier of 1.13 eV.The calculated structure of INT8 indicates a hydrogen-bridged ion-molecule complex,which is also 0.39 eV lower than the G3B3 energy of TS13(11.33 eV).This may further establish the feasibility of forming INT8.Then the H-bonded complex INT8 can either decompose into C2H6++CO or C2H5++HCO with the H atom immigration.

    H.Formation pathway of C2H5+and CHO

    A selectively-labelled derivatives study of CH2CH2OCH2+[17]as well as the high-resolution massspectrastudy [12]clearly show thatboth CHO+and C2H5+can be formed competitively. Ourcalculationsindicatethatboth CHO+and C2H5+are energetic possible under G3B3//B3LYP/6-31+G(d,p)level. Then two energetic channels of C4H8O2+→CHO++C2H5+CH2O and C4H8O2+→C2H5++CHO+CH2O are proposed.The AEs value of C2H5+is calculated to be 11.91 eV,showing reasonable agreement with our experimental value of(11.74±0.10)eV. While the calculated AE of CHO+are 12.33 and 12.20 eV,a bit higher than the experimental one,due to the following two formation pathways(shown in FIG.11),respectively.This suggests that C2H5+dominates at lower photon energies, while CHO+appears at higher photon energies.

    In the case of CHO+,only the remaining part of pathway proceeding from INT1 is discussed.INT1 undergoes a C?O elongation via transition state TS11 with an energy barrier of 1.17 eV to form the final products CHO+(P9b)+C2H5.Additionally,analogous to the formation of CH3CH2CO+(P4a),CHO+(P9b)can also be formed through INT2 in which the CH3CH2?CHO bond is elongated with a relative high energy barrier of 2.13 eV.Subsequently,dissociation of TS12 yields C2H5+CHO+as products.

    I.Formation pathway of C2H4+

    A typical structure of CO+,with the same m/z=28 as C2H4+,has been excluded by previous high-resolution mass spectra[12]and a metastable ion mass spectra study[17]of deuterated C3D6O+,where the original mass peak of m/z=28 shifts to 32. Therefore,the m/z=28 species is assigned to C2H4+. The formation of C2H4+from that one step dissociation channels C2H4++OCH2CH2O and C2H4++c-OCH2CH2O(four-membered-ring)would require energy of at least 15.47 and 14.47 eV,respectively, which are much higher than our experimental result(11.78±0.10)eV as well as the literature valuesof(11.90±0.10)eV[12]and 11.8 eV[15]. Whereas, the formation process simply by breaking bond can be clearly eliminated. From FIG.2,the branching ratio of C2H4+increases with the decreasing of the branching ratio of C3H6O+with energy increasing,suggesting that C2H4+is formed by C3H6O+. Then a higher energy consecutive dissociation path C4H8O2+→C3H6O++CH2O→C2H4++2CH2O is proposed.As shown in FIG.11,the calculated AE value of this consecutive dissociation path is 12.02 eV,showing reasonable agreement with experimental result of (11.78±0.10)eV.

    FIG.11 Formation pathways of CHO+(P9a)and C2H4+(P10)calculated at the G3B3//B3LYP/6-31+G(d,p)level. The energy of neutral 1,4-dioxane is de fined as zero.

    IV.CONCLUSION

    Dissociative photoionization of DX was investigated with VUV-TOF-PIMS in conjunction with supersonic expansion molecular beam.IE of parent molecule,AE values of twelve observed fragment ions,and relative branching ratios of major ions(m/z=88,87,58,57,45, 44,43,31,30,29,and 28)were derived from their PIE curves.A few of the determined values are revised with respect to previous publications.Based on comparison of the experimental and theoretical AE values,detailed dissociative photoionization channels of R1?R11 are identi fied R1:C4H7O2+(P2,m/z=87)+H,

    R2:CH3CH2CO+(P4a,m/z=57)+H+CH2O,

    R3:CH2CHOCH2+(P4b,m/z=57)+H+CH2O,

    R4:CH3CHOH+(P5,m/z=45)+CH2CHO,

    R5:CH2CHOH+(P6,m/z=44)+CH3CHO,

    R6:CH2CHOH+(P6,m/z=44)+CH2CHOH,

    R7:CH3CO+(P7,m/z=43)+CH3+CH2O,

    R8:C2H6+(P8,m/z=30)+CO+CH2O,

    R9:C2H5+(P8a,m/z=29)+CHO+CH2O,

    R10:CHO+(P8b,m/z=29)+C2H5+CH2O

    R11:C2H4+(P9,m/z=28)+CH2O+CH2O

    C3H5O+isreferred tobeCH3CH2CO+and CH2CHOCH+2respectively. They can be generated by further elimination ofH from the CHO group of CH3CH2CHO+and elimination of CH2OH from the molecular ion. Fragment ions with m/z=29 are attributed to C2H5+andCHO+whichcanbeproducedvia CH2CH2O=CH2+→CH3CH2O=CH+→CH3CH2CHO+→CH3CH2···H···CO+→C2H5++HCO and by elimination ofC2H5through CH3CH2OCH+or CH3CH2CHO+or even both respectively.The present study is of great signi ficance for understanding the photoionization and dissociation processes of DX in the photon energy region of 8.00?15.50 eV.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.91544105,No.U1532137, No.11575178,and No.U1232209).

    [1]D.K.Stepien,P.Diehl,J.Helm,A.Thoms,and W. Puttmann,Water Res.48,406(2014).

    [2]M.J.Zenker,R.C.Borden,and M.A.Barlaz,Environ. Eng.Sci.20,423(2003).

    [3]D.T.Adamson,S.Mahendra,K.Walker,S.Rauch,S. Sengupta,and C.Newell,Environ.Sci.Technol.Lett. 1,254(2014).

    [4]C.T.Derosa,S.Wilbur,J.Holler,P.Richter,and Y. W.Stevens,Toxicol.Ind.Health 12,1(1996).

    [5]J.Y.Choi,Y.J.Lee,J.Shin,and J.W.Yang,J.Hazard.Mater.179,762(2010).

    [6]W.Shen,H.Chen,and S.Pan,Bioresour.Technol.99, 2483(2008).

    [7]M.J.Zenker,R.C.Borden,and M.A.Barlaz,J.Environ.Eng.130,926(2004).

    [8]J.Platz,J.Sehested,O.J.Nielsen,and T.J.Wallington,J.Chem.Soc.Faraday Trans.93,2855(1997).

    [9]T.Maurer,H.Hass,I.Barnes,and K.H.Becker,J. Phys.Chem.A 103,5032(1999).

    [10]J.E.Collin and G.Cond′e,Bull.Class Sci.Acad.Roy. Belg.52,978(1966).

    [11]J.C.Traeger,Org.Mass Spectrom.20,223(1985).

    [12]M.L.Fraser-Monteiro,J.J.Butler,and T.Baer,J. Phys.Chem.86,739(1982).

    [13]R.Thissen,P.Mourgues,and H.E.Audier,Eur.Mass Spectrom.4,79(1998).

    [14]R.Thissen,H.E.Audier,J.C.Rooke,and P.Mourgues,Eur.Mass Spectrom.5,147(1999).

    [15]P.Zou,G.S.Wu,W.W.Chen,D.L.Yang,L.S.Sheng, G.H.Wu,W.Q.Ye,and Y.W.Zhang,J.Acta.Phys-Chim.14,21(1998).

    [16]J.Jalonen,J.M.Tedder,and P.H.Nidaud,J.Chem. Soc.Faraday Trans.II 76,1450(1980).

    [17]M.J.Polce and C.Wesdemiotis,J.Am.Chem.Soc. 115,10849(1993).

    [18]A.B.Burrill and P.M.Johnson,Chem.Phys.Lett. 350,473(2001).

    [19]K.Watanabe,T.Nakayama,and J.Mottl,J.Quant. Spectry.Radiative Transfer.2,369(1962).

    [20]C.S.Lam,W.K.Li,and S.W.Chiu,J.Phys.Chem. A 109,7296(2005).

    [21]C.E.Hudson,D.J.McAdoo,and J.C.Traeger,J.Am. Soc.Mass Spectrom.13,1235(2002).

    [22]J.Chen,M.Q.Cao,B.Wei,M.M.Ding,X.B.Shan, F.Y.Liu,and L.S.Sheng,J.Mass Spectrom.51,169 (2016)

    [23]M.Q.Cao,Y.Q.Li,G.B.Chu,J.Chen,X.B.Shan, F.Y.Liu,Z.Y Wang,and L.S.Sheng,J.Electron Spectrosc.Relat.Phenom.191,41(2013).

    [24]W.Z.Fang,L.Gong,Q.Zhang,X.B.Shan,F.Y.Liu, and L.S.Sheng,J.Chem.Phys.134,174306(2011).

    [25]W.X.Li,Y.J.Hu,J.W.Guan,F.Y.Liu,X.B.Shan, and L.S.Sheng,J.Chem.Phys.139,024307(2013).

    [26]B.Franziska,N.R.Qiao,G.Amir,Paul R.Horn,A. Musahid,R.L.Stephen,and H.G.Martin,J.Am. Chem.Soc.135,14229(2013).

    [27]M.C.Castrovilli,P.Bolognesi,A.Cartoni,D.Catone, P.O’Keeffe,A.R.Casavola,S.Turchini,N.Zema,and L.Avaldi,J.Am.Soc.Mass Spectrom.25,351(2014).

    [28]X.F.Tang,X.G.Zhou,M.Niu,S.Liu,J.Sun,X.B. Shan,F.Y.Liu,and L.S.Sheng,Rev.Sci.Instrum. 80,113101(2009).

    [29]S.Zhang,Y.M.Wang,Z.Z.Cao,B.Zhang,S.S.Wang, R.H.Kong,Y.J.Zhao,X.B.Shan,and L.S.Sheng, Rev.Sci.Inst.78,043104(2007).

    [30]R.H.Kong,X.B.Shan,S.S.Wang,Y.W.Zhang, L.S.Sheng,L.Q.Hao,and Z.Y.Wang,J.Electron Spectrosc.Relat.Phenom.160,49(2007).

    [31]X.Y.Liu,W.J.Zhang,Z.Y.Wang,M.Q.Huang, X.B.Yang,L.Tao,Y.Sun,Y.T.Xu,X.B.Shan,F. Y.Liu,and L.S.Sheng,J.Mass.Spectrom.44,404 (2009).

    [32]W.Z.Fang,G.Lei,X.B.Shan,F.Y.Liu,Z.Y.Wang, and L.S.Sheng,J.Electron Spectrosc.Relat.Phenom. 184,129(2011).

    [33]W.Z.Fang,L.Gong,X.B.Shan,Y.J.Zhao,F.Y. Liu,Z.Y.Wang,and L.S.Sheng,J.Mass.Spectrom. 46,1152(2011).

    [34]W.Z.Fang,L.Gong,X.B.Shan,F.Y.Liu,Z.Y. Wang,and L.S.Sheng,Anal.Chem.83,9024(2011).

    [35]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,H. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.M.Martain,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A.1, Wallingford,CT:Gaussian,Inc.,(2009).

    [36]http://webbook.nist.gov/Last accessed(2017).

    [37]R.Wada and M.Kato,Chem.Phys.Lett.641,74 (2015).

    [38]R.C.Dunbar,F.S.Huang,and S.J.Klippenstein,Int. J.Mass Spectrom.Ion Proc.128,2l(1993).

    ?Author to whom correspondence should be addressed. E-mail:fyliu@ustc.edu.cn,Tel:+86-551-63602123,FAX:+86-551-65141078

    午夜91福利影院| 一本一本久久a久久精品综合妖精| av有码第一页| 少妇被粗大猛烈的视频| 黄色怎么调成土黄色| 侵犯人妻中文字幕一二三四区| 亚洲伊人色综图| 亚洲,欧美精品.| 欧美精品人与动牲交sv欧美| 国产麻豆69| 久久久久久久精品精品| 亚洲国产毛片av蜜桃av| 国产不卡av网站在线观看| 亚洲精华国产精华液的使用体验| 午夜福利网站1000一区二区三区| 亚洲伊人久久精品综合| 国产一区二区 视频在线| 亚洲一区中文字幕在线| 午夜福利乱码中文字幕| 高清黄色对白视频在线免费看| 亚洲免费av在线视频| av国产精品久久久久影院| 亚洲三区欧美一区| 日韩一区二区视频免费看| 精品免费久久久久久久清纯 | 国产1区2区3区精品| 建设人人有责人人尽责人人享有的| 久久狼人影院| 亚洲国产欧美一区二区综合| 大片电影免费在线观看免费| 免费在线观看视频国产中文字幕亚洲 | 日韩大码丰满熟妇| 欧美久久黑人一区二区| 亚洲成人一二三区av| 亚洲精华国产精华液的使用体验| 午夜日本视频在线| 两个人看的免费小视频| 妹子高潮喷水视频| 亚洲成av片中文字幕在线观看| 这个男人来自地球电影免费观看 | 国产精品二区激情视频| 一区在线观看完整版| 久久综合国产亚洲精品| 老汉色∧v一级毛片| 午夜福利,免费看| 最新的欧美精品一区二区| svipshipincom国产片| 色婷婷久久久亚洲欧美| 国产淫语在线视频| 亚洲精品视频女| 国产亚洲午夜精品一区二区久久| 一边摸一边抽搐一进一出视频| 波多野结衣av一区二区av| 久久国产精品大桥未久av| 少妇人妻 视频| 国产1区2区3区精品| 久久久久久人人人人人| 人人妻人人澡人人爽人人夜夜| 99精品久久久久人妻精品| 黄片播放在线免费| 18禁动态无遮挡网站| 亚洲成av片中文字幕在线观看| 中文欧美无线码| av又黄又爽大尺度在线免费看| 亚洲免费av在线视频| 久久毛片免费看一区二区三区| 免费少妇av软件| 熟女av电影| 久久国产精品大桥未久av| 亚洲欧美一区二区三区黑人| 欧美xxⅹ黑人| 亚洲天堂av无毛| 一区二区av电影网| 啦啦啦在线观看免费高清www| 搡老乐熟女国产| netflix在线观看网站| 日韩欧美精品免费久久| 一本大道久久a久久精品| 黄色 视频免费看| 极品少妇高潮喷水抽搐| 在线观看免费视频网站a站| 18禁国产床啪视频网站| 黑丝袜美女国产一区| 国产黄色免费在线视频| 国产麻豆69| 在线观看国产h片| 老司机亚洲免费影院| 熟妇人妻不卡中文字幕| 宅男免费午夜| 色94色欧美一区二区| 精品亚洲乱码少妇综合久久| 美女中出高潮动态图| 天天添夜夜摸| 黄频高清免费视频| 亚洲成人av在线免费| av福利片在线| 亚洲欧洲精品一区二区精品久久久 | 91aial.com中文字幕在线观看| 如日韩欧美国产精品一区二区三区| 亚洲av欧美aⅴ国产| 亚洲美女视频黄频| 国产成人av激情在线播放| www.熟女人妻精品国产| 欧美国产精品va在线观看不卡| 欧美日韩亚洲高清精品| 少妇被粗大的猛进出69影院| 久久精品国产亚洲av涩爱| 男女边摸边吃奶| 熟女少妇亚洲综合色aaa.| 人妻人人澡人人爽人人| 亚洲图色成人| 亚洲成色77777| 日韩av不卡免费在线播放| 99久久精品国产亚洲精品| 久久综合国产亚洲精品| 免费久久久久久久精品成人欧美视频| 王馨瑶露胸无遮挡在线观看| 精品少妇内射三级| 国产在视频线精品| 纯流量卡能插随身wifi吗| 老汉色∧v一级毛片| 精品人妻在线不人妻| 在线 av 中文字幕| av一本久久久久| 最近中文字幕2019免费版| 亚洲美女黄色视频免费看| 最黄视频免费看| 2018国产大陆天天弄谢| 人妻人人澡人人爽人人| 9热在线视频观看99| 男女午夜视频在线观看| 捣出白浆h1v1| 亚洲av电影在线进入| 国产成人精品久久二区二区91 | 亚洲情色 制服丝袜| netflix在线观看网站| 欧美 亚洲 国产 日韩一| 曰老女人黄片| 免费看av在线观看网站| 国产一区有黄有色的免费视频| 欧美精品高潮呻吟av久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久久久免| 建设人人有责人人尽责人人享有的| 少妇精品久久久久久久| 蜜桃在线观看..| 亚洲在久久综合| 亚洲av日韩精品久久久久久密 | 午夜影院在线不卡| 国产xxxxx性猛交| a级片在线免费高清观看视频| 亚洲七黄色美女视频| 婷婷色综合大香蕉| 色视频在线一区二区三区| 超碰成人久久| 少妇人妻精品综合一区二区| 久久久精品区二区三区| 亚洲欧美色中文字幕在线| 色网站视频免费| 日韩制服骚丝袜av| 嫩草影院入口| 久久久久久人妻| 国产毛片在线视频| 日韩一本色道免费dvd| 狂野欧美激情性xxxx| 精品少妇久久久久久888优播| 成年人午夜在线观看视频| 亚洲av成人不卡在线观看播放网 | 国产1区2区3区精品| 啦啦啦啦在线视频资源| 男人添女人高潮全过程视频| 捣出白浆h1v1| 丝袜人妻中文字幕| 美女扒开内裤让男人捅视频| 午夜福利视频精品| 最近的中文字幕免费完整| 免费黄频网站在线观看国产| 亚洲成av片中文字幕在线观看| 久久久亚洲精品成人影院| 操出白浆在线播放| 午夜免费鲁丝| 久热爱精品视频在线9| 久热这里只有精品99| 亚洲av电影在线进入| √禁漫天堂资源中文www| 国产成人欧美| 色精品久久人妻99蜜桃| 人妻人人澡人人爽人人| 亚洲,欧美精品.| 操美女的视频在线观看| 激情视频va一区二区三区| 亚洲成人av在线免费| 男女高潮啪啪啪动态图| 亚洲美女搞黄在线观看| 汤姆久久久久久久影院中文字幕| 天天躁日日躁夜夜躁夜夜| 日韩欧美一区视频在线观看| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 国产熟女欧美一区二区| 亚洲精品av麻豆狂野| 日本欧美视频一区| 日韩不卡一区二区三区视频在线| 黄色视频在线播放观看不卡| 日本黄色日本黄色录像| 亚洲一级一片aⅴ在线观看| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 国产男女内射视频| 亚洲少妇的诱惑av| 日本午夜av视频| 欧美国产精品va在线观看不卡| 亚洲在久久综合| xxx大片免费视频| 亚洲成人一二三区av| 成年美女黄网站色视频大全免费| 成人18禁高潮啪啪吃奶动态图| 新久久久久国产一级毛片| 亚洲av国产av综合av卡| 高清欧美精品videossex| 国产成人一区二区在线| 色综合欧美亚洲国产小说| 国产精品久久久久久精品古装| 黄频高清免费视频| 99久久综合免费| 欧美黑人精品巨大| 日韩中文字幕视频在线看片| 老汉色∧v一级毛片| 黄频高清免费视频| 黄片播放在线免费| 国产xxxxx性猛交| 午夜日本视频在线| a级毛片黄视频| 美女高潮到喷水免费观看| 国产男女内射视频| tube8黄色片| av免费观看日本| 久久久久网色| 欧美日韩亚洲综合一区二区三区_| 男女高潮啪啪啪动态图| 高清在线视频一区二区三区| 青草久久国产| 久久久久精品性色| 欧美xxⅹ黑人| 国语对白做爰xxxⅹ性视频网站| 亚洲第一青青草原| 亚洲国产中文字幕在线视频| 国产深夜福利视频在线观看| 两性夫妻黄色片| 不卡av一区二区三区| 高清视频免费观看一区二区| 国产亚洲欧美精品永久| 午夜日韩欧美国产| 少妇被粗大的猛进出69影院| 狂野欧美激情性xxxx| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| av电影中文网址| 91精品三级在线观看| www.精华液| 黑人巨大精品欧美一区二区蜜桃| 街头女战士在线观看网站| 亚洲四区av| 成年人免费黄色播放视频| 国产精品免费大片| 高清在线视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 国语对白做爰xxxⅹ性视频网站| 国产探花极品一区二区| av天堂久久9| 国产xxxxx性猛交| 国产精品秋霞免费鲁丝片| 国产片特级美女逼逼视频| 老司机影院毛片| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 日韩伦理黄色片| 亚洲欧美日韩另类电影网站| 亚洲七黄色美女视频| 丁香六月欧美| 精品少妇黑人巨大在线播放| 一级毛片电影观看| 精品视频人人做人人爽| 色综合欧美亚洲国产小说| 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 亚洲三区欧美一区| 国产精品国产三级专区第一集| 欧美国产精品va在线观看不卡| 久久久国产精品麻豆| 久久综合国产亚洲精品| 黄片小视频在线播放| 国产成人欧美在线观看 | 国产男女超爽视频在线观看| 制服人妻中文乱码| 嫩草影视91久久| 亚洲精华国产精华液的使用体验| 国产欧美日韩一区二区三区在线| 一本一本久久a久久精品综合妖精| 制服诱惑二区| 亚洲成人手机| 国产精品久久久久久精品古装| 欧美精品高潮呻吟av久久| 亚洲精品aⅴ在线观看| 亚洲欧洲精品一区二区精品久久久 | 天天躁日日躁夜夜躁夜夜| 国产又爽黄色视频| 亚洲av国产av综合av卡| 国产免费视频播放在线视频| 在线观看人妻少妇| 久久天躁狠狠躁夜夜2o2o | 日韩免费高清中文字幕av| 亚洲人成网站在线观看播放| 久久久久精品久久久久真实原创| 免费在线观看视频国产中文字幕亚洲 | 精品一区二区免费观看| 国产精品蜜桃在线观看| 男人操女人黄网站| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 欧美成人午夜精品| 久久免费观看电影| 国产精品99久久99久久久不卡 | 妹子高潮喷水视频| 国产精品一国产av| 亚洲熟女毛片儿| 伊人亚洲综合成人网| 在现免费观看毛片| 亚洲精品aⅴ在线观看| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 美女福利国产在线| 五月开心婷婷网| 亚洲精品久久午夜乱码| 亚洲在久久综合| 9色porny在线观看| 久久精品国产亚洲av涩爱| 久久热在线av| 精品少妇黑人巨大在线播放| 日本爱情动作片www.在线观看| 免费在线观看完整版高清| 精品一区在线观看国产| 欧美激情 高清一区二区三区| 男女边吃奶边做爰视频| 国产午夜精品一二区理论片| 欧美另类一区| 热99久久久久精品小说推荐| 久久久精品94久久精品| 蜜桃在线观看..| av一本久久久久| 国产av一区二区精品久久| 成人三级做爰电影| 午夜免费观看性视频| 欧美日韩亚洲国产一区二区在线观看 | 婷婷色av中文字幕| 国产熟女午夜一区二区三区| 亚洲国产成人一精品久久久| 亚洲欧洲国产日韩| 精品亚洲成a人片在线观看| 久久这里只有精品19| 韩国精品一区二区三区| 亚洲免费av在线视频| 国产亚洲av片在线观看秒播厂| 国产成人免费观看mmmm| 国产日韩欧美亚洲二区| 中文字幕色久视频| 亚洲第一av免费看| 国产男人的电影天堂91| 男女无遮挡免费网站观看| 成人三级做爰电影| av视频免费观看在线观看| 国产男女内射视频| 国产不卡av网站在线观看| av天堂久久9| 尾随美女入室| 国精品久久久久久国模美| 欧美激情极品国产一区二区三区| 美女福利国产在线| 国产一区二区三区综合在线观看| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 老司机深夜福利视频在线观看 | 国产精品一区二区在线观看99| 热re99久久国产66热| 看十八女毛片水多多多| 美国免费a级毛片| 你懂的网址亚洲精品在线观看| 精品久久久精品久久久| 国产成人精品无人区| av女优亚洲男人天堂| 亚洲国产欧美一区二区综合| 韩国高清视频一区二区三区| 国产熟女午夜一区二区三区| av线在线观看网站| 中国三级夫妇交换| 日韩一区二区视频免费看| 男女国产视频网站| 亚洲在久久综合| 久久97久久精品| 大香蕉久久网| 亚洲国产欧美网| 最近中文字幕2019免费版| 免费在线观看视频国产中文字幕亚洲 | 国产色婷婷99| 国产视频首页在线观看| 99国产精品免费福利视频| 久久精品久久精品一区二区三区| 老司机影院毛片| 中文字幕精品免费在线观看视频| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 国产精品一国产av| 嫩草影视91久久| 一级毛片 在线播放| 欧美av亚洲av综合av国产av | 人人妻人人爽人人添夜夜欢视频| 色网站视频免费| 女人爽到高潮嗷嗷叫在线视频| 黄频高清免费视频| 狂野欧美激情性bbbbbb| 男人操女人黄网站| 亚洲av在线观看美女高潮| 成人国语在线视频| 精品国产一区二区三区四区第35| 黑人猛操日本美女一级片| 国产不卡av网站在线观看| 国产成人av激情在线播放| av有码第一页| 免费在线观看视频国产中文字幕亚洲 | 午夜影院在线不卡| 国产片内射在线| 亚洲国产精品999| 久久99热这里只频精品6学生| 久久久久久久久久久免费av| 无限看片的www在线观看| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 国产 一区精品| 天堂俺去俺来也www色官网| 欧美日韩一级在线毛片| tube8黄色片| 国产精品 欧美亚洲| 人人妻人人爽人人添夜夜欢视频| 午夜日韩欧美国产| 纵有疾风起免费观看全集完整版| 9热在线视频观看99| 国产极品天堂在线| 免费黄网站久久成人精品| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 亚洲国产欧美一区二区综合| 丝袜在线中文字幕| 日韩大片免费观看网站| 考比视频在线观看| 国产av国产精品国产| 欧美日韩综合久久久久久| 国产精品熟女久久久久浪| 丝袜人妻中文字幕| 日韩制服丝袜自拍偷拍| 大片电影免费在线观看免费| 人人妻人人爽人人添夜夜欢视频| 王馨瑶露胸无遮挡在线观看| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久久免| 最近最新中文字幕免费大全7| 秋霞伦理黄片| 日本av手机在线免费观看| videosex国产| 国产精品久久久久久精品电影小说| 亚洲精品,欧美精品| 自线自在国产av| 中文精品一卡2卡3卡4更新| 欧美老熟妇乱子伦牲交| 99久久综合免费| 成人毛片60女人毛片免费| 国产亚洲一区二区精品| 日本wwww免费看| 国产精品香港三级国产av潘金莲 | 妹子高潮喷水视频| 女人精品久久久久毛片| 久久天堂一区二区三区四区| 国产一区二区 视频在线| 人妻一区二区av| 一级毛片电影观看| 巨乳人妻的诱惑在线观看| 久久久精品国产亚洲av高清涩受| 性色av一级| 亚洲国产欧美一区二区综合| 国语对白做爰xxxⅹ性视频网站| 欧美日本中文国产一区发布| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 久久这里只有精品19| 亚洲美女搞黄在线观看| 日本午夜av视频| 999精品在线视频| 波多野结衣一区麻豆| 亚洲精品国产区一区二| 十八禁人妻一区二区| 国产日韩欧美视频二区| 伊人亚洲综合成人网| 老司机在亚洲福利影院| 永久免费av网站大全| 国产精品久久久久久精品电影小说| 国产成人精品无人区| av女优亚洲男人天堂| av网站免费在线观看视频| 水蜜桃什么品种好| 亚洲精品视频女| 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| 麻豆乱淫一区二区| 亚洲av中文av极速乱| 国产日韩欧美视频二区| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 欧美人与性动交α欧美精品济南到| 老司机靠b影院| 少妇的丰满在线观看| 熟女av电影| 丰满少妇做爰视频| 欧美亚洲 丝袜 人妻 在线| 日日啪夜夜爽| 制服人妻中文乱码| 国产av码专区亚洲av| 麻豆精品久久久久久蜜桃| 日本vs欧美在线观看视频| 精品人妻在线不人妻| 美女福利国产在线| 亚洲精品自拍成人| 日日啪夜夜爽| 成人漫画全彩无遮挡| 免费高清在线观看日韩| 精品少妇一区二区三区视频日本电影 | 最近中文字幕高清免费大全6| av.在线天堂| 国产精品久久久久久精品古装| 成年女人毛片免费观看观看9 | av.在线天堂| 妹子高潮喷水视频| 在线观看三级黄色| 91精品三级在线观看| 国产精品嫩草影院av在线观看| 十八禁人妻一区二区| 涩涩av久久男人的天堂| 国产日韩一区二区三区精品不卡| 天天添夜夜摸| 国产亚洲一区二区精品| 日韩中文字幕视频在线看片| 亚洲国产日韩一区二区| 777久久人妻少妇嫩草av网站| 久久久久精品久久久久真实原创| av视频免费观看在线观看| 好男人视频免费观看在线| 日韩大码丰满熟妇| 波多野结衣av一区二区av| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av高清一级| 欧美 日韩 精品 国产| 午夜久久久在线观看| 女人久久www免费人成看片| 久热爱精品视频在线9| 99热网站在线观看| 一区二区日韩欧美中文字幕| 久久影院123| 亚洲中文av在线| 1024视频免费在线观看| 又黄又粗又硬又大视频| 男女免费视频国产| 亚洲精品第二区| 如日韩欧美国产精品一区二区三区| 亚洲国产成人一精品久久久| 午夜老司机福利片| 亚洲少妇的诱惑av| 久久久久国产一级毛片高清牌| 天天影视国产精品| 欧美少妇被猛烈插入视频| 国产伦理片在线播放av一区| 天美传媒精品一区二区| 日韩熟女老妇一区二区性免费视频| 又黄又粗又硬又大视频| 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| 最新在线观看一区二区三区 | a 毛片基地| 国产精品无大码| 韩国精品一区二区三区| 亚洲综合色网址| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| 亚洲欧美成人精品一区二区| 国产成人免费无遮挡视频| 男女之事视频高清在线观看 | 亚洲成人手机| 欧美精品一区二区大全| 久久久久久免费高清国产稀缺| 日本wwww免费看| 日韩精品免费视频一区二区三区| 国产精品一区二区在线不卡| 女性生殖器流出的白浆| 老司机亚洲免费影院| 亚洲美女黄色视频免费看| 精品亚洲乱码少妇综合久久| 免费久久久久久久精品成人欧美视频| 久久av网站| 好男人视频免费观看在线| 亚洲av欧美aⅴ国产| 国产成人欧美| 少妇的丰满在线观看| 18禁国产床啪视频网站| 久久韩国三级中文字幕| 亚洲欧美一区二区三区黑人| 激情视频va一区二区三区| 免费不卡黄色视频| 久久婷婷青草|