• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    1,2-環(huán)己二胺縮鄰香蘭素單核與四核鐿稀土配合物的近紅外性質(zhì)

    2017-08-07 15:00:28范仲天董艷萍李光明
    無機化學學報 2017年8期
    關(guān)鍵詞:催化合成

    范仲天 高 博 董艷萍*,,2 李光明*,

    1,2-環(huán)己二胺縮鄰香蘭素單核與四核鐿稀土配合物的近紅外性質(zhì)

    范仲天1高 博1董艷萍*,1,2李光明*,1

    (1黑龍江大學化學化工與材料學院,功能無機材料化學省部共建教育部重點實驗室,哈爾濱 150080)
    (2《黑龍江大學工程學報》編輯部,哈爾濱 150080)

    通過配體1,2-環(huán)己二胺縮鄰香蘭素(H2L)和不同的鐿鹽反應,合成了4個鐿稀土配合物[Yb(H2L)2](ClO4)3·2CH3OH·H2O(1),[Yb4(L)4(NO3)2(H2O)2](PF6)2·4CH3CN(2),[Yb4(L)4(H2O)2Cl2](PF6)2·2CH2Cl2·2H2O(3)和[Yb4(L)4(NO3)2(H2O)2][Yb(NO3)3(H2O)2(CH3OH)](NO3)2·4CH2Cl2·6CH3OH(4)。X射線單晶衍射分析表明配合物1為零維的單核結(jié)構(gòu),配合物2~4均為四核結(jié)構(gòu)。研究了4個配合物的近紅外發(fā)光性能。

    近紅外發(fā)光;鐿配合物;結(jié)構(gòu)

    0 Introduction

    Much recent interest has been focused on the design and preparation of the polynuclear lanthanide complexes,because they could be potentially used in fluorescence[1-5],magnetism[6-11].However,direct excitation of Ln3+ions is difficult because of the weak (Laporte-forbidden)nature of their f-f transitions.In order to hurdle it,well-designed organic chromophores have been used to act as antennas[12-14].It is wellknown that salen type ligands are able to stabilize differentmetalsin variouscoordination environment[15-16]. And a series ofsalen type ligands have been employed in the synthesis ofnumerous metalcomplexes,such as a number of salen type homo-polynuclear complexes, some of which exhibit intriguing magnetic[17-20]and luminescent properties[21-23].Previously,Jones and coworkers have reported some salen type ligands to stabilize Ln3+centers and provide the antenna for lanthanide NIR luminescence,e.g.,Jones et al.have reported the first salen type sandwich Yb3complex which shows NIR luminescence of the Yb3+ion in 2005[24].In 2012,they have presented the homoleptic cyclic tetranuclear complexes which exhibit NIR luminescence of the Nd3+ions and Yb3+ions[25-26].However, the synthesis and structures are often influenced by a variety of factors,such as the structure of the ligand, the ionic radius of the lanthanide ions and the nature of the counter ions.To the best of our knowledge,few mono-nuclear lanthanide complexes constructed from flexible hexa-dentate salen type ligands with the outer O2O2moiety has been documented.In view of recent emerging significance of homo-polynuclear lanthanide complexes in NIR luminescence and magnetism,based on the hexa-dentate ligand H2L(N,N′-bis(3-methoxy -salicylidene)cyclohexane-1,2-diamine)with the richness of coordination codes(L2-and H2L modes,Scheme 1).The semi-ridged salen type ligand ofH2L and various ytterbium salts were employed in the experiment to explore the structures and NIR luminescence of the salen type lanthanide complexes.As a result,a series of four mono-and tetra-nuclear ytterbium complexes have been isolated.Their structures have been determined and described as well as their NIR luminescence have been investigated and discussed.

    Scheme 1 Molecular structure and bonding modes of the salen type ligand H2L for mono-and tetranuclear ytterbium complexes 1~4

    1 Experimental

    1.1 Materials and general methods

    All chemicals except YbCl3·6H2O,Yb(NO3)3· 6H2O,Yb(ClO4)3·9H2O and H2L were obtained from commercial sources and used without further purification.YbCl3·6H2O,Yb(NO3)3·6H2O,Yb(ClO4)3·9H2O were prepared by the reactions of Ln2O3and hydrochloric acid,nitric acid and perchloric acid in aqueous solution,respectively.H2L was prepared according to the reported method[25].Elemental(C,H and N)analyses were performed on a Perkin-Elmer 2400 analyzer.FTIR spectra were obtained on a Perkin-Elmer Spectrum 100 spectrophotometer by using KBr disks in the range of 4 000~500 cm-1.UV-Vis absorption spectra were recorded on a Perkin-Elmer Lambda 35 spectrometer.Thermal analyses were conducted on a Perkin-Elmer STA 6000 with a heating rate of 10℃·min-1in a temperature range from 30 to 800℃ under atmosphere.Excitation and emission spectra were measured with an Edinburgh FLS 920 fluorescence spectrophotometer.Luminescence lifetimes were recorded on a single photon counting spectrometer from Edinburgh Instruments(FLS 920)with a microsecond pulse lamp as the excitation.

    1.2 Syntheses of complexes 1~4

    1.2.1 Synthesis of[Yb(H2L)2](ClO4)3·2CH3OH·H2O(1)

    To a stirred solution of H2L (0.2 mmol,0.077 g) in absolute CH2Cl2(10 mL),a solution of Yb(ClO4)3· 9H2O(0.1 mmol,0.063 g)in absolute CH3OH(10 mL) were added.The resultant mixed solution was allowed to stir for 10 h at room temperature.The solution was filtered and petroleum ether was allowed to diffuse slowly into the filtrate at room temperature and yellow crystals were obtained in a week.For 1:Yield:0.083 g,63%.Anal.Calcd.for C46H60YbCl3N4O23(%):C,41.97; H,4.59;N,4.26;Found(%):C,41.92;H,4.72;N,4.24. IR(KBr,cm-1):3 392(w),2 952(w),1 643(s),1 503(m), 1 451(m),1 228(s),1 122(s),1 093(s),745(w),627(w). UV-Vis(CH3OH,λmax/nm):226,274,361.

    1.2.2 Synthesis of[Yb4(L)4(NO3)2(H2O)2](PF6)2· 4CH3CN(2)

    To a stirred solution of H2L (0.2 mmol,0.077 g)in absolute CH3CN (10 mL),a solution of Yb(NO3)3· 6H2O(0.2 mmol,0.093 g)in absolute CH3OH(10 mL) were added.The mixed solution was allowed to stir for 2 h at room temperature,and then NH4PF6(0.3 mmol, 0.049 g)wasadded to the solution.The resultantmixture was allowed to stir for 10 h at room temperature.The yellow solution was then filtered and diethyl ether was allowed to diffuse slowly into the filtrate at room temperature and yellow crystals were obtained in a week.For 2:Yield:0.072 g,53%.Anal.Calcd.for C96H112Yb4F12N14O24P2(%):C,40.77;H,3.99;N,6.93; found:C,39.98;H,3.91;N,6.91%.IR (KBr,cm-1): 3 423(w),2 937(m),2 857(m),1 650(s),1 619(m), 1 472(s),1 384(m),1 290(m),1 227(m),844(s),742 (m),559(m).UV-Vis(CH3OH,λmax/nm):221,264,338.

    1.2.3 Synthesis of[Yb4(L)4(H2O)2Cl2](PF6)2·2CH2Cl2· 2H2O(3)

    The synthesis of 3 is similar to 2 except that YbCl3·6H2O(0.2 mmol,0.078 g)was used instead of Yb(NO3)3·6H2O.For 3:Yield:0.067g,48%.Anal. Calcd.forC90H104Yb4Cl6F12N8O20P2(%):C,38.43;H,3.73; N,3.98;Found(%):C,38.36;H,3.90;N,3.96.IR(KBr, cm-1):2 936(m),2 859(m),1 648(s),1 618(m),1 386 (m),1 292(m),1 226(m),844(s).UV-Vis(CH3OH,λmax/ nm):224,271,342.

    1.2.4 Synthesis of[Yb4(L)4(NO3)2(H2O)2][Yb(NO3)3 (H2O)2(CH3OH)](NO3)2·4CH2Cl2·6CH3OH(4)

    To a stirred solution of H2L(0.2 mmol,0.077 g) in absolute CH2Cl2(25 mL),a solution of Yb(NO3)3· 6H2O(0.2 mmol,0.093 g)in absolute CH3OH(5 mL) were added.The yellow solution was then filtered and petroleum ether was allowed to diffuse slowly into the filtrate at room temperature and yellow crystals were obtained in a week.For 4:Yield:0.078 g,49%.Anal. Calcd.for C99H135Yb5Cl8N13O42(%):C,35.73;H,4.09; N,5.47;Found(%):C,35.15;H,3.81;N,5.59.IR (KBr,cm-1):3 425(w),2 936(m),2 860(m),1 651(s), 1 508(m),1 470(m),1 385(m),1 313(m),1 227(m), 742(m).UV-Vis(CH3OH,λmax/nm):223,274,353.

    1.3 X-ray crystallography

    Suitable single crystals of 1~4 were selected for X-ray diffraction analysis.Single-crystal X-ray data of 1~4 were collected using an Oxford Xcalibur Gemini Ultra diffractometer with graphite-monochromated Mo Kαradiation(λ=0.071 073 nm)at 293 K.The structures were solved by the direct methods and refined by full-matrix least-squares on F2using the SHELXTL-97 program[27].The Yb3+,NO3-and Cl-were easily located,and then non-hydrogen atoms (C,N and O)were placed from the subsequent Fourierdifference maps.All non-hydrogen atoms were refined anistropically.Crystallographic data and structure refinement parameters for the complexes are presented in Table 1.The SQUEEZE results were consistent with TG-DSC and elemental analysis.The CH3CN, CH2Cl2,CH3OH and H2O molecules have been included in the formula for the calculation of intensive properties. The SQUEEZE results have been appended to the CIF files.

    CCDC:916031,1;916032,2;916034,3;916033,4.

    2 Results and discussion

    2.1 Synthesis and spectral analysis

    As shown in Scheme 2,complex 1 was synthesized by the reaction of H2L with Yb(ClO4)3·9H2O with the ligand-to-metal molar ratio of 2∶1,while complexes 2~4 were synthesized by the reaction ofH2L with Yb(NO3)3·6H2O or YbCl3·6H2O and/or NH4PF6with the ligandto-metal molar ratio of 1∶1.In the FT-IR spectra(Fig.S1 in Supporting information),the characteristic strong absorptions of theν(C=N)vibration at 1 643~1 651 cm-1for complexes 1~4,are slightly blue-shifted by 17~25 cm-1compared to those for the free ligands (1 626 cm-1)upon coordination of the Ln3+ion.The presence of ClO4-in complex 1 as a counter ion was indicated by its IR spectrum,which shows a strong characteristic band at 627 cm-1for ClO4-.Four bands around 1 470,1 385,1 225 and 742 cm-1forcomplexes 2 and 4 were observed,which can be assigned to vibrations of coordinated nitrate groups,respectively (ν1,ν2,ν3andν4).In addition,the absorption bands at 844 cm-1for complexes 2 and 3 are attributed to the stretching vibrations of the PF6-anions.TG-DSC analyses of complexes 1~4(Fig.S2~S5)reveal that complex 1 loses a gradual weight loss of 6.16%in the range of 33~85℃,which corresponds to the loss of two methanol molecules and one water molecules (Calcd.6.53%).The loss of four acetonitrile molecules (Obsd.5.78%,Calcd.5.81%)is observed for 2 in the range of 33~250℃.Complex 3 loses two dichloromethane molecules and two water molecules in the temperature range of 33~330℃(Obsd.8.90%,Calcd. 7.32%).For 4,the weight loss between 33 and 180℃ can be attributed to the loss of four dichloromethane molecules and six methanol molecules(Obsd.14.90%, Calcd.15.98%).

    Table 1 Crystaldata and structure refinement for complexes 1~4

    2.2 Structuraldescription of complex 1

    Fig.1 View of the cationic structure in complex 1

    X-ray crystallographic analysis reveals that complex 1 crystallizes in a monoclinic space group P21/c with an ionic mononuclear structure(Fig.1). Complex 1 is composed of one[Yb(H2L)2]3+cation, three free ClO4-anions,two crystalline CH3OH and one H2O molecules.The Yb3+ion is eight-coordinated to eight oxygen atoms from two ligands forming a distorted square antiprism geometry (Fig.1),and shielded in the outer O2O2 cavity (two phenol oxygen atoms and two methoxy oxygen atoms)of the ligand, while the nitrogen atoms ofimine remain uncoordinated. Notably,the two ligands coordinate to the Yb3+ion in a crossover configuration.The dihedral angle between the coordination planes of two O2O2 cavities is 79.793(1)°.The dihedral angles between the two neighboring aromatic rings in different ligands are 28.330(3)°and 36.974(3)°.The Yb-O bond distances from phenol and methoxy groups are in the range of 0.221 4(6)to 0.247 2(6)nm and the average distance is 0.233 6 nm.The three free ClO4-ions do not participate in the coordination structure but balance the positive charge of the complex.Noticeably,such an ionic crossover mononuclear Yb3+complex is unique with a crossover structure involving pure oxygen atoms coordination.It is similar to the reported mononuclear complex[Yb(H2L1)2CH3OH](ClO4)3(H2L1=N,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-propanediamine): the Yb3+ion is nine-coordinated to nine-oxygen atoms from two ligands and one methanol[28].Previously,two kinds of salen type mononuclear lanthanide complexes have been reported,e.g.complexes [(H2L2)Nd(NO3)3] (H2L2=N,N′-bis(3-methoxysalicylidene)propane-1,2-diamine)[29],[Nd(H2L3)(NO3)3](H2L3=N,N′-ethylene-bis (3-methoxysalicylideneimine)[30],which are ofthe neutral crab-like structure with a ratio of ligand to lanthanide of1∶1;[Ce(salophen)2](salophen=N,N′-bis(salicylidene) -1,2-(phenylenediamine))[31]are of crossover structure and distorted sandwich structure with a ratio of ligand to lanthanide of 2∶1,in which the Ce ions are+4 oxidation state and the N atoms are coordinated to the Ceions.

    2.3 Structural description of complexes 2~4

    Fig.2 View of the cationic structure of complex 2

    Single-crystal X-ray diffraction analyses indicate that complexes 2,3 and 4 are isomorphous,so only structure ofcomplex 2 is descripted in detail.Complex 2 crystallizes in a triclinic space group of P1 featuring a discrete ionic structure with a defect-dicubane Yb4core.The structural unit is composed of one [Yb4(L)4 (NO3)2(H2O)2]2+cation,two free PF6-anions,and four solvate acetonitrile molecules (Fig.2).The [Yb4(L)4 (NO3)2(H2O)2]2+cation lying about an inversion centre, two equivalent Yb2(L)2moieties are bridged by twoμ-O phenoxide atoms (O5 and O5i)of two salen type ligands with O4tetradentate mode(Scheme 1)and two O atoms(O9 and O9i)of two coordinatedμ3-OH-groups,resulting in the formation of a homoleptic cyclic tetranuclear Yb4(L)2(HL)2host structure.In each of two equivalent Yb2(L)(HL)moieties,two Yb3+(Yb1 and Yb2)ions with differentcoordination environments are also linked by twoμ-O phenoxide atoms(O1 and O3)of one L2-ligand with N2O4hexa-dentate mode and one O atom (O9)ofthe coordinated H2O molecule.The unique inner Yb3+ion (Yb1)is eight-coordinate and bound by the N2O2core of the salen type L2-ligand in addition to two O atom (O5 of MeO group and O6 ofμ-O phenoxide atom)from the salen type ligand and two O atoms of two coordinated H2O molecule.Meanwhile the outer Yb3+ion(Yb2)is ninecoordinated including seven oxygen atoms from two outer O2O2moieties of two salen type ligands,where four O atoms(two ofMeO groups and two ofphenoxide atoms)are from one salen type ligand and three O atoms(one of MeO groups and two ofphenoxide atoms) from another salen type ligand.It completes its coordination environment with one O atom from the monodentate NO3-anion and one O atom from the coordinated H2O molecule.The unique Yb…Yb distances are different,with the distances of 0.343 00(4), 0.370 28(6)and 0.379 12(5)nm for Yb1…Yb2,Yb1…Yb1iand Yb2…Yb1i,respectively,in which each of the Yb1…Yb2 separations in the equivalent Yb2L2moieties is slightly shorter than that(Yb1…Yb1ior Yb2…Yb1iseparation)between two equivalent Yb2L2moieties.For the inner Yb3+ion(Yb1 or Yb1i),the Yb -O bond length(0.227 2(4)~0.228 4(5)nm;O atoms from coordinated H2O molecule)or the Yb-N bond lengths(0.238 6(7)~0.243 9(6)nm)are in the range of the Yb-O bond lengths(0.227 2(5)~0.231 2(5)nm) with O atoms from the phenoxo groups.For the outer Yb3+ion (Yb2 or Yb2i),the Yb-O bond lengths also depend on the nature of the oxygen atoms,varying from 0.222 2(5)to 0.269 5(5)nm,in which the bond lengths(0.254 8(5)~0.269 5(5)nm)from the oxygen atoms ofMeO groups are distinctively longerthan those (0.222 2(5)~0.239 6(4)nm,0.232 7(6)and 0.231 7(4) nm)from the phenoxo oxygen atoms,monodentate NO3-anion or coordinated H2O molecule.It is interesting to note the presence of an ‘a(chǎn)pical’triply bridged H2O molecule for each of the two central O atoms(O9 and O9i),which could be shown from the reasonable directionality of the interactions with three Yb3+ions. Furthermore,as to the cation[Yb4(L)4(NO3)2(H2O)2]2+, the charge is balanced by the protonation of one(N4 or N4i)of the imino nitrogen atoms for two of the deprotonated salen type L2-ligands,which endows the formation of two strong intramolecular H-bond interactionswith the shortN4…O7 distance(0.269 8(10) nm)(Fig.2).The PF6-is not involved in the coordination to lanthanide ions,and it plays a chargebalancing role.

    Notably,although complex 2 is isomorphic to previous reported analog of the salen type homoleptic tetranuclear complexes,e.g.[Yb4(L)2(HL)2(NO3)2(OH)2] (NO3)2[25]and[Yb4(L)2(HL)2(μ3-OH)2Cl2]Cl2[26],the PF6-ions instead of NO3-or Cl-ions act as the counter ions balancing the positive charge in 2.Furthermore, there are obvious differences between the composition of complexes 2,3 and 4,e.g.the two coordination NO3-anions in 2 are replaced by two Cl-anions in 3, while a neutral molecule of[Yb(NO3)3(H2O)2(CH3OH)] is crystalline in 4.

    2.4 NIR luminescence

    The UV-Vis absorption spectra of the ligand H2L and complexes 1~4 were recorded in CH3OH solution (Fig.3).For free ligand,the typical absorptions at 220 and 261 nm are attributed to theπ-π*transition of the aromatic ring and azomethine chromophores.The peak at 334 nm is attributed to n-π*transition of R band which belongs to azomethine.For complexes 1~4,the similar ligand-centered solution absorption bands(221~226,264~274,338~361 nm)are observed and red-shifted as compared to those (220,261 and 334 nm)for ligand due to the changes in the energy levels of the ligand orbitals upon the coordination.Complexes 2~4 show the higher molar absorption coefficients than thatfor complex 1,which is attributed to more ligands in complex 1.

    Fig.3 UV-Vis spectra of the ligand H2L and complexes 1~4 in CH3OH solution

    The NIR photoluminescence spectra ofcomplexes 1~4 were recorded with the excited wavelength at 370 nm in the isoabsorptive solution at room temperature. NIR photoluminescence spectra of complexes 1~4 exhibit that the typical NIR emission bands of Yb3+ion could be observed at 975 nm which is assigned to the2F5/2→2F7/2transition(Fig.4).Notably,the emission of Yb3+ion in complexes 1 and 4 is not a sharp transition that well-split NIR emission peaks are observed,where it appears as a series of bands with two otherbroad bands centered around 1 024 and 1 056 nm.Similar results have been proposed in previously report which is attributed to the crystal-field or stark splitting[32].The absence of the typical Yb3+ion excitation bands in the excitation spectra and the ligandcentered luminescence in the emission spectra of 1~4 reveal the occurrence of the ligand-to-metal energy transfer.Obviously,the NIR signal of Yb3+ion for complex 1 is the strongest among the four complexes which can be ascribed to two reasons.Firstly,it might be owing to the existence of the coordinated counter ions,such as NO3-anions and Cl-anions in 2~4, which are believed to quench the NIR fluorescence. Secondly,the Yb3+ion of complex 1 is well enclosed in the crossover structure,which contributes to preventing the NIR luminescence quenching from solvent molecule effectively.In addition to the steadystate emission,we also perform time-resolved measurements for complexes 1 and 4 in the NIR region by using the time-correlated single photon counting (TCSPC)technique.The decay of the emission band at 975 nm gives a satisfactory fitto a monoexponential decay with lifetimes of 2.90μs for 1 and 2.59μs for 4.The lifetimes of 2 and 3 cannot be obtained due to the weakness of the signal.

    Fig.4 NIR spectra of complexes 1~4 in CH3OH with the excited wavelength at 370 nm in the isoabsorptive solution

    3 Conclusions

    We have isolated a series of four salen type ytterbium complexes featuring an ionic crossover mononuclear structure for complex 1 and defectdicubane core structures for complexes 2~4 through the self-assembly of the semi-ridged salen type H2L with various ytterbium salts.It demonstrates that the flexible ligand and the different ytterbium counter ions dominate the structures of salen type ytterbium complexes.All complexes 1~4 exhibit the similar typical NIR luminescence of Yb3+ions proposing that the energy transfer from H2L to Yb3+ions in 1~4 takes place effectively and the crossover structure and the defect-dicubane structure can encapsulate the lanthanide ions efficiently prevent the NIR luminescence quenching from solvent molecules.

    Acknowledgments:This work is financially supported by the National Natural Science Foundation of China (Grants No. 51402092,21601132).

    Supporting information is available athttp://www.wjhxxb.cn

    [1]Rocha J,Carlos L D,Paz F A A,et al.Chem.Soc.Rev., 2011,40:926-940

    [2]Carlos L D,Ferreira R A S,De Zea B,et al.Chem.Soc. Rev.,2011,40:536-549

    [3]Kieran G,Julia M,Michael A S,et al.Cryst.Growth Des., 2017,17:1524-1538

    [4]Wang G T,Zhang J C,Tang Z Y,et al.CrystEngComm, 2016,18:2437-2445

    [5]Elena A M,Anastasiya V Y,Matthias Z,et al.Dalton Trans.,2017,46:3457-3469

    [6]Sabdeep K G,Stuart K L,Kamma S,et al.Inorg.Chem., 2017,56:3946-3960

    [7]Dong Y P,Yan P F,Zou X Y,et al.Dalton Trans.,2016, 9148-9157

    [8]Mattgew G.Nitholas F C,Ana-Maria A,et al.Chem.Sci., 2016,7:155-165

    [9]Sunri L,Takuji O.Chem.Lett.,2017,46:10-18

    [10]Chen Y C,Liu J L,Ungur L,et al.J.Am.Chem.Soc.,2016, 138:2829-2837

    [11]Liu J,Chen Y C,Liu J L,et al.J.Am.Chem.Soc.,2016, 138:5441-5450

    [12]Akine S,Utsuno F,Taniguchi T,et al.Eur.J.Inorg.Chem., 2010:3143-3150

    [13]Albrecht M,Osetska O,Bünzli J C G,et al.Chem.Eur.J., 2009,15:8791-8799

    [14]Chauvin A S,Comby S,Song B,et al.Chem.Eur.J.,2008, 14:1726-1735

    [15]Dalla Cort A,De Bernardin P,Forte G,et al.Chem.Soc. Rev.,2010,39:3863-3874

    [16]ZOU Xiao-Yan(鄒曉艷),MA Hui-Yuan(馬慧媛),PANG Hai-Jun(龐海軍),et al.Chinese J.Inorg.Chem.(無機化學學報),2016,32(9):1647-1652

    [17]Zhu J,Song H F,Yan P F,et al.CrystEngComm,2013,15: 1747-1752

    [18]Yan P F,Lin P H,Habib F,et al.Inorg.Chem.,2011,50: 7059-7065

    [19]Zou X Y,Yan P F,Dong Y P,et al.RSC Adv.,2015,5: 96573-96573

    [20]Dong Y P,Yan P F,Zou X Y,et al.J.Mater.Chem.C, 2015,3:4407-4415

    [21]Yang X,Jones R A,Rivers J H,et al.Dalton Trans.,2009: 10505-10510

    [22]Yang X,Lam D,Chan C,et al.Dalton Trans.,2011,40: 9795-9801

    [23]Liu T Q,Yan P F,Luan F,et al.Inorg.Chem.,2015,54: 221-228

    [24]Yang X,Jones R A.J.Am.Chem.Soc.,2005,127:7686-7688

    [25]Feng W,Zhang Y,LüX,et al.CrystEngComm,2012,14: 3456-3463

    [26]Feng W,Zhang Y,Zhang Z,et al.Inorg.Chem.,2012,51: 11377-11385

    [27]Sheldrick G M.Acta Crystallogr.Sect.A,2008,A64:112-122

    [28]Zou X Y,Yan P F,Zhang J W,et al.Dalton Trans.,2013, 42:9482-9489

    [29]Sun W B,Yan P F,Li G M,et al.Inorg.Chim.Acta,2009, 362:1761-1766

    [30]Gao T,Yan P F,Li G M,et al.Inorg.Chim.Acta,2008, 361:2051-2058

    [31]Terzis A,Mentzafos D,Tajmir-Riahi H.Inorg.Chim.Acta, 1984,84:187-193

    [32]Kang T S,Harrison B S,Bouguettaya M,et al.Adv.Funct. Mater.,2003,13:205-210

    關(guān)鍵詞:合成;單橋連雙環(huán)戊二烯;Friedel-Crafts酰基化反應;錸羰基配合物;催化

    DOI:10.11862/CJIC.2017.153

    Abstract:Thermal treatment of two p-phenylene-and p-biphenylene-bridged biscyclopentadienes(C5Me4H)E (C5Me4H)(E=C6H4,(C6H4)2)with Re2(CO)10in refluxing mesitylene gave the corresponding complexes(E)[(η5-C5Me4) Re(CO)3]2(E=C6H4(1),(C6H4)2(2)),which were separated by chromatography,and characterized by elemental analysis,IR,1H NMR and13C NMR spectroscopy.The molecular structures ofcomplexes 1 and 2 were characterized by X-ray crystal diffraction analysis,showing both them are monobridged biscyclopentadienyl dinuclear rhenium carbonyl complexes.In addition,the catalytic performance of complexes 1 and 2 was also tested,and it was found thatboth complexes were obviously active for Friedel-Crafts acylation reactions.CCDC:1506755,1;1506754,2.

    Keywords:synthesis;mono-bridged biscyclopentadiene;Friedel-Crafts acylation reaction;rhenium carbonylcomplex;catalysis

    0 Introduction

    Much attention has been focused on the synthesis of a series of biscyclopentadienyl carbonyl ruthenium complexes in recent decades,which mainly include non-bridged [1-2], singly bridged [3-8] and doubly bridged[9-10]biscyclopentadienyl complexes.Bridged bis (cyclopentadienyl)ligands have been extensively studied as frameworks for dinuclear metal complexes that are resistant to fragmentation and maintain twometal centers in close proximity even after metalmetal bond cleavage[11-13].Especially,rhenium carbonyl complexes have been studied as catalysts for many reactions due to their catalytic activity.When compared to mononuclear rhenium complexes,bridged dicyclopentadienyl dirhenium analogues,in which the bridging ligand binds two reactive metal centers,may promote the distinctive chemical reactivity and catalytic properties.However,only a few examples of Friedel-Crafts reactions catalyzed by rhenium carbonyl complexes have been reported up to now[14-16]. Recently,Our group have reported the synthesis and catalytic activity of three monobridged bis (cyclopentadienyl)rhenium carbonyl complexes[17], showing that these rhenium carbonyl complexes have catalytic activity for Friedel-Crafts alkylation reactions.To develop a deeper understanding of the structures and reactivity of bridged bis (cyclopentadienyl)rhenium carbonyl complexes,here in this paper we selected two bridged ligand precursors(C5Me4H)E(C5Me4H)(E=C6H4,(C6H4)2),in which both two bridging groups have planer structure, and expected to see the catalytic reactivity of both pphenylene- and p-biphenylene-bridged bis (cyclopentadienyl)rhenium carbonylcomplexes.

    1 Experimental

    1.1 General considerations

    All procedures were performed under an argon atmosphere by using standard Schlenk techniques. Solvents were distilled from appropriate drying agents under nitrogen atmosphere.Elemental analyses of C and H were performed with a Vario ELⅢ elemental analyzer.The IR spectra were recorded as KBr disks on a Thermo Fisher is50 spectrometer. Gas chromatograms were recorded with an Agilent 6820 gas chromatograph.1H and13C NMR spectra were recorded on a Bruker AVⅢ-500 (or 600)instrument in CDCl3.The ligand precursors (C5Me4H)E(C5Me4H) (E=C6H4, (C6H4)2)were synthesized according to the literature[18-20].

    1.2 Synthesis of complex 1

    A solution of free ligand (C5Me4H)C6H4(C5Me4H) (0.19 g,0.6 mmol)and Re2(CO)10(0.2 g,0.3 mmol)in mesitylene (15 mL)was refluxed for 48 h.After removal of solvent,the residue was placed on an alumina column.Elution with petroleum ether/CH2Cl2(2∶1,V/V)developed a colorless band,which was collected,and after concentration,afforded (C6H4)[(η5-C5Me4)Re(CO)3]2(1)as a white solid.Yield:52.1% (0.134 g).m.p.316℃;Anal.Calcd.for C30H28O6Re2(%): C,42.05;H,3.29.Found(%):C,42.32;H,3.13.1H NMR(CDCl3,500 MHz):δ2.16(s,12H,C5Me4),2.25(s, 12H,C5Me4),7.28(s,4H,C6H4).13C NMR(CDCl3,125 MHz):δ10.9,11.4,97.7,102.2,104.0,131.8,132.4, 197.37.IR(KBr,cm-1):1 900(s),2 002(s).

    1.3 Synthesis of complex 2

    Using a procedure similar to that described above,ligand precursor(C5Me4H)(C6H4)2(C5Me4H)was reacted with Re2(CO)10in refluxing mesitylene for 48 h.After chromatography with petroleum ether/CH2Cl2, (C6H4)2)[(η5-C5Me4)Re(CO)3]2(2)was obtained as white crystals.Yield:77.8% (0.217 g).m.p.313℃;Anal. Calcd.for C36H32O6Re2(%):C,46.34;H,3.46.Found (%):C,45.98;H,3.59.1H NMR(CDCl3,500 MHz):δ 2.17 (s,12H,C5Me4),2.26 (s,12H,C5Me4),7.38(d, 4H,J=8.0 Hz,C6H4),7.61(d,4H,J=8.5 Hz,C6H4).13C NMR (CDCl3,125 MHz):δ10.9,11.3,97.7,102.1, 104.4,127.0,131.4,133.0,139.8,197.4.IR(KBr, cm-1):1 903(s),2 012(s).

    1.4 Crystallographic analysis

    Crystallographic data for complexes 1 and 2 were collected at 298 K on a Bruker AXS SMART 1000 CCD diffractometer with Mo Kαradiation (λ=0.071 073 nm)using theφ-ωscan technique.The crystal structures were solved by direct method and refined on F2by full-matrix least-squares technique using the SHELXL-97 program package[21].All non-hydrogen atoms were found from the Fourier difference maps refined anisotropically,hydrogen atoms were included in calculated positions riding on the parent atoms and refined with fixed thermal parameters. Crystallographic data and experimental details for structural analysis of the complexes are summarized in Table 1.

    CCDC:1506755,1;1506754,2.

    Table 1 Crystal data and structure refinement parameters for complexes 1 and 2

    1.5 General procedure for catalytic tests

    The catalytic reactions were carried out under an argon atmosphere with magnetic stirring.The required complexes (0.02 mmol)was mixed with 1,2-dichloroethane (3.5 mL)in a 25 mL round-bottom flask at room temperature.Aromatic compounds and acylation reagents were added by syringe.The reaction mixture was heated at 80℃ for 24 h.After cooling to room temperature,the solid catalyst was separated from the reaction mixture by filtration.The solvent was removed by rotary evaporation,and the residue was purified by Al2O3column chromatography, eluting with petroleum ether and ethyl acetate to give a white solid.

    2 Results and discussion

    2.1 Preparation of complexes 1 and 2

    Reactions of ligand precursors (C5Me4H)E (C5Me4H)(E=C6H4,(C6H4)2)with Re2(CO)10in refluxing mesitylene for 48 h afforded the corresponding complexes(E)[(η5-C5Me4)Re(CO)3]2(E=C6H4(1),(C6H4)2(2))in yield of 52%and 78%,respectively(Scheme 1).The IR spectra of complexes 1 and 2 all exhibited only terminalcarbonyl bands(1:1 900,2 002 cm-1;2: 1 903,2 012 cm-1).The1H NMR spectra of 1 and 2 all displayed two groups of singlets for the four methyl protons,indicating the symmetrical structure in solution,in addition,complex 1 showed a singlet atδ7.28 for the phenylene protons and complex 2 showed two doublets atδ7.38 and 7.61 for the biphenylene protons.

    Scheme 1 Synthesis of complexes 1 and 2

    2.2 Crystal structures of complexes 1 and 2

    Slow evaporation of the solvent from the complexes in hexane-CH2Cl2 solution gave single crystals 1 and 2 suitable for X-ray diffraction. Selected bond parameters are presented in Table 2 and their structures are depicted in Fig.1 and 2, respectively.

    Single-crystal X-ray diffraction analysis reveals that 1 and 2 crystallize in the triclinic space group P1 Complexes 1 and 2 are monobridged bis (cyclopentadienyl)rhenium carbonyl complexes and similar to each other.Both structures show that the molecule consists oftwo[(η5-C5Me4)Re(CO)3]moieties linked by a single bridge,with each rhenium atom isη5-coordinated to the cyclopentadienyl ring and three terminal CO ligands.Two Re(CO)3units are located on the opposite site of the monobridged ligand and anti to each other,the Re atoms exhibit a three-legged pianostool geometry.Re-Re bonds are not observed in both complexes.Complex 1 has a symmetric structure,the molecule consists oftwo [(η5-C5Me4)Re(CO)3]moieties linked by a p-phenylene-bridge.Complex 2 also has similar structure,consisting oftwo[(η5-C5Me4)Re(CO)3] moietieslinked by a p-biphenylene-bridge.The dihedral angle between the two Cp ring planes is 0°and the torsion angle Re1-Cp(centroid)…Cp(centroid)-Re1iis -180°,indicating two Cp rings are parallel to each other.For complexes 1 and 2,the distances of Re1-CEN and Re1i-CEN(CEN means the centroid ofthe cyclopentadienylring)are equal(Table 2).The Re-CEN distance in 1 is 0.195 6 nm and the Re-CEN distancein 2 is 0.194 6 nm,which compare very well with those values in the analogues [(η5-C5H4)2C(CH2)5][Re (CO)3]2(0.195 7 and 0.196 0 nm)and [(η5-C5H4)2 Si (CH3)2][Re(CO)3]2(0.194 6 and 0.195 2 nm)[17].From above data,we can conclude that the different ligand bridges in these complexes have no obvious effect on their structures.

    Fig.1 Molecular structure of complex 1

    Fig.2 Molecular structure ofcomplex 2

    Table 2 Selected bond distances(nm)and angles(°)for complexes 1 and 2

    2.3 Catalysis of Friedel-Crafts acylation reactions In order to test the catalytic capability in Friedel -Crafts acylation reactions(Scheme 2~6)catalyzed by two complexes,considering factors such as the reaction time,yield,economic considerations,the following experimental conditions were chosen for next work:reaction time 24 h;1,2-dichloroethane as solvent;80℃;the molar ratio of aromatic substrates and acylation reagents was 1∶3;the amount of catalyst was 1.0%(n/n)(substrate as reference).

    Scheme 2 Complex 1 or 2 catalyzed Friedel-Crafts acylation reaction of anisole with benzoyl chloride

    Scheme 3 Complex 1 or 2 catalyzed Friedel-Crafts acylation reactions of anisole and methylbenzene with acyl chlorides

    Scheme 4 Complex 1 or 2 catalyzed Friedel-Crafts acylation reactions of anisole and methylbenzene with acetic anhydride

    Scheme 5 Complex 1 or 2 catalyzed Friedel-Crafts acylation reactions of acyl chlorides

    With the above studies,the yields(%)were found to vary with aromatic substrates with different acylation reagents,the catalytic results of complex 1 and 2 are shown in Table 3.Friedel-Crafts acylation reactions are electrophilic substitution reactions, however halogen element and carbonyl formed p-π conjugation in acylating agent,thus the acylating agents were difficult to lose halogen element to form carbocation.Benzoyl chloride,phenylacetyl chloride, cinnamoyl chloride and cyclohexanecarboxylic acid chloride could be used as acylation reagents in these reactions and the corresponding products were obtained with high selectivity for the para-products without detection of di-substituted in all cases, suggesting that the catalytic reaction has highregioselectivity.The order of increasing reactivity was found to be:4-bromoanisole<4-methyl anisole<methylbenzene <2-bromoanisole <anisole <2-methylanisole, which was consistent with the characteristics ofthe aromatic electrophilic substitution mechanism.Overall,both complexes gave similar results,showing that the different ligand bridges have only a smallinfluence on the catalytic behavior.

    Scheme 6 Complex 1 or 2 catalyzed Friedel-Crafts acylation reactions of acetic anhydride

    Table 3 Catalyzed Friedel-Crafts acylation reaction of aromatic substrates with different acylation reagents

    Continued Table 3

    3 Conclusions

    Two new bridge d bis(cyclopentadienyl)rhenium carbonyl complexes(E)[(η5-C5Me4)Re(CO)3]2(E=C6H4(1),(C6H4)2(2))have been synthesized and structurally characterized.Friedel-Crafts reactions of aromatic substrates with acylation reagents showed that two complexes have catalytic activity.Compared with traditional catalysts,these complexes have significant practical advantages,namely lower amounts of catalyst,mild reaction conditions,and high selectivity. Further studies to elucidate the reaction mechanism and expand the synthetic utility of these catalysts are in progress.

    Supporting information is available athttp://www.wjhxxb.cn

    References:

    [1]Bailey N A,Radford S L,Sanderson J A,et al.J.Organomet. Chem.,1978,154:343-351

    [2]Nataro C,Angelici R J.Inog.Chem.,1998,37:2975-2983

    [3]Knox S A R,Macpherson K A,Orper A G,et al.J.Chem. Soc.,Dalton Trans.,1989:1807-1813

    [4]Burger P.Angew.Chem.Int.Ed.,2001,40:1917-1919

    [5]Zhou X,Zhang Y,Xu S,et al.Inorg.Chim.Acta,1997,262: 109-112

    [6]Fox T,Burger P.Eur.J.Inorg.Chem.,2001:795-803

    [7]Zhang Y,Wang B,Xu S,et al.Transition Met.Chem., 1999,24:610-614

    [8]Zhang Y,Xu S,Zhou X.Organometallics,1997,16:6017-6020

    [9]Ovchinnikov M V,Guzei I A,Angelici R J.Organometallics, 2001,20:691-696

    [10]Ovchinnikov MV,Wang X,Schultz AJ,etal.Organometallics, 2002,21:3292-3296

    [11]Bonifaci C,Ceccon A,Gambaro A,et al.J.Organomet. Chem.,1998,557:97-109

    [12]Cuenca T,Royo P.Coord.Chem.Rev.,1999,193-195:447-498

    [13]Ceccon A,Santi S,Orian L,et al.Coord.Chem.Rev.,2004, 248:683-724

    [14]Nishiyama Y,Kakushou F,Sonoda N.Bull.Chem.Soc.Jpn., 2000,73:2779-2782

    [15]Kusama H,Narasaka K.Bull.Chem.Soc.Jpn.,1995,68: 2379-2383

    [16]Kuninobu Y,Matsuki T,Takai K.J.Am.Chem.Soc.,2009, 131:9914-9915

    [17]Li Z,Ma Z H,Wang H,et al.Transition Met.Chem., 2016,41:647-653

    [18]Meng X,Sabat M,Grimes R.N.J.Am.Chem.Soc.,1993, 115:6143-6151

    [19]Bunel E E,Campos P,Ruz J,et al.Organometallics,1998, 7:474-476

    [20]Yuen H F,Marks T J.Organometallics,2008,27:155-158

    [21]Sheldrick G M.SHELXL-97,Program for Crystal Structure Refinement,University of G?ttingen,G?ttingen,Germany, 1997.

    NIR Luminescent N,N′-Bis(3-methoxy-salicylidene)cyclohexane-1,2-diamine Mono-and Tetra-nuclear Ytterbium Complexes

    FAN Zhong-Tian1GAO Bo1DONG Yan-Ping1ZOU Xiao-Yan*,1,2LI Guang-Ming*,1
    (1Key Laboratory of Functional Inorganic Material Chemistry(MOE),School of Chemistry and Materials Science,Heilongjiang University,Harbin 150080,China)
    (2Editorial Board of Journal of Engineering of Heilongjiang University,Harbin 150080,China)

    A series of four N,N′-bis(3-methoxy-salicylidene)cyclohexane-1,2-diamine(H2L)ytterbium complexes, namely,[Yb(H2L)2](ClO4)3·2CH3OH·H2O(1),[Yb4(L)4(NO3)2(H2O)2](PF6)2·4CH3CN(2),[Yb4(L)4(H2O)2Cl2](PF6)2· 2CH2Cl2·2H2O(3)and[Yb4(L)4(NO3)2(H2O)2][Yb(NO3)3(H2O)2(CH3OH)](NO3)2·4CH2Cl2·6CH3OH(4)have been isolated by reactions of H2L with various ytterbium salts.X-ray crystallographic analysis reveals that complex 1 is of a discrete mononuclear structure,and complexes 2~4 are of homoleptic tetra-nuclear structure.The NIR luminescence of all complexes were investigated and discussed.CCDC:916031,1;916032,2;916034,3; 916033,4.

    NIR luminescent;ytterbium complexes;structure

    Syntheses,Structures and Catalytic Activity of p-Phenylene-or p-Biphenylene-Bridged Biscyclopentadienyl Dinuclear Rhenium Carbonyl Complexes

    ZHANG Ning1MA Zhi-Hong*,2LI Su-Zhen3HAN Zhan-Gang1ZHENG Xue-Zhong1LIN Jin*,1
    (1College of Chemistry&Material Science,Hebei Normal University,Shijiazhuang 050024,China)
    (2College of Basic Medicine,Hebei Medical University,Shijiazhuang 050017,China)
    (3Hebei College of Industry and Technology,Shijiazhuang 050091,China)

    O614.346

    A 文章編號:1001-4861(2017)08-1489-08

    10.11862/CJIC.2017.182

    614.71+3 文獻標識碼:A

    1001-4861(2017)08-1497-08

    2017-05-18。收修改稿日期:2017-06-23。

    國家自然科學基金(No.51402092,21601132)資助項目。

    *通信聯(lián)系人。E-mail:zxy_18889@126.com,gmli_2000@163.com

    收稿日期:2017-04-07。收修改稿日期:2016-05-09。

    國家自然科學基金(No.21372061)、河北省自然科學基金(No.B2017205006)和河北師范大學重點基金(No.L2017Z02)資助項目。

    *通信聯(lián)系人。E-mail:mazhihong-1973@163.com,linjin64@126.com;會員登記號:S06N0210M1305。

    猜你喜歡
    催化合成
    多酸化學的研究及應用
    重視隱性德育關(guān)注心靈成長
    甘肅教育(2016年23期)2017-02-09 13:11:40
    三乙烯四胺接枝型絮凝劑制備及其對模擬焦化廢水處理
    丙酮—甲醇混合物萃取精餾分離過程合成與模擬
    二氧化氯組合工藝處理PTA工業(yè)化廢水的研究
    綜合化學實驗設(shè)計:RGO/MnO復合材料的合成及其電化學性能考察
    考試周刊(2016年85期)2016-11-11 02:09:06
    八種氟喹諾酮類藥物人工抗原的合成及鑒定
    滿文單詞合成系統(tǒng)的設(shè)計
    科技視界(2016年18期)2016-11-03 00:34:31
    文學經(jīng)典催化高教情商教育
    青年文學家(2015年8期)2016-05-09 13:41:06
    梁啟超與漢語中的日語譯詞
    淫妇啪啪啪对白视频| 天天躁夜夜躁狠狠躁躁| 91在线观看av| 757午夜福利合集在线观看| 99国产精品99久久久久| 久久久久久久午夜电影 | 日日摸夜夜添夜夜添小说| 国产色视频综合| 90打野战视频偷拍视频| 啦啦啦免费观看视频1| 三上悠亚av全集在线观看| 久久精品亚洲精品国产色婷小说| 国内久久婷婷六月综合欲色啪| a级毛片在线看网站| 午夜免费观看网址| 无遮挡黄片免费观看| 每晚都被弄得嗷嗷叫到高潮| 咕卡用的链子| 欧美黄色淫秽网站| 后天国语完整版免费观看| 久久久久精品人妻al黑| 欧美不卡视频在线免费观看 | 国产亚洲av高清不卡| 国产精品综合久久久久久久免费 | 亚洲男人天堂网一区| 免费在线观看影片大全网站| 国产精品一区二区在线不卡| 亚洲伊人色综图| 性少妇av在线| 又黄又爽又免费观看的视频| 国产国语露脸激情在线看| 亚洲人成伊人成综合网2020| 午夜91福利影院| 午夜激情av网站| 中文欧美无线码| a级片在线免费高清观看视频| 黄色a级毛片大全视频| 久久久国产成人免费| 80岁老熟妇乱子伦牲交| 一进一出抽搐gif免费好疼 | 亚洲国产中文字幕在线视频| 国产av又大| 黄频高清免费视频| 日韩三级视频一区二区三区| 一a级毛片在线观看| 天天影视国产精品| 国产亚洲精品第一综合不卡| 亚洲av美国av| 欧美精品人与动牲交sv欧美| 美女 人体艺术 gogo| 亚洲国产中文字幕在线视频| 亚洲午夜理论影院| 亚洲精品在线美女| 久热这里只有精品99| 99国产精品免费福利视频| 国产精品自产拍在线观看55亚洲 | 成人精品一区二区免费| 欧美日韩av久久| 国产在线一区二区三区精| 国产一卡二卡三卡精品| 免费看十八禁软件| 校园春色视频在线观看| 精品高清国产在线一区| av免费在线观看网站| 黄网站色视频无遮挡免费观看| 丰满的人妻完整版| cao死你这个sao货| 亚洲精品乱久久久久久| 午夜免费鲁丝| 女同久久另类99精品国产91| 国产精品国产av在线观看| 国产av精品麻豆| 视频在线观看一区二区三区| 国产男女内射视频| 少妇猛男粗大的猛烈进出视频| 亚洲专区字幕在线| av天堂在线播放| 高清视频免费观看一区二区| 最近最新中文字幕大全免费视频| 欧美性长视频在线观看| 少妇粗大呻吟视频| 亚洲国产精品sss在线观看 | 国产精品98久久久久久宅男小说| 极品少妇高潮喷水抽搐| 成年人免费黄色播放视频| 免费观看a级毛片全部| www.精华液| 99久久99久久久精品蜜桃| 激情视频va一区二区三区| 99re在线观看精品视频| 岛国毛片在线播放| 久久久久视频综合| 丝袜美足系列| 少妇粗大呻吟视频| 十八禁网站免费在线| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区三区四区第35| 国产成人欧美| 少妇猛男粗大的猛烈进出视频| 高清欧美精品videossex| 亚洲一区高清亚洲精品| 久久婷婷成人综合色麻豆| 日韩欧美在线二视频 | 色综合婷婷激情| 免费久久久久久久精品成人欧美视频| 热99re8久久精品国产| 一级作爱视频免费观看| 18禁裸乳无遮挡免费网站照片 | 高潮久久久久久久久久久不卡| 精品欧美一区二区三区在线| 欧美精品一区二区免费开放| 狠狠狠狠99中文字幕| 久久香蕉国产精品| 久久久久久久午夜电影 | 国产一卡二卡三卡精品| 亚洲一区中文字幕在线| 91精品国产国语对白视频| 一级片'在线观看视频| 首页视频小说图片口味搜索| 男人操女人黄网站| 99精国产麻豆久久婷婷| 亚洲av电影在线进入| 高清视频免费观看一区二区| 成年动漫av网址| 男女午夜视频在线观看| av线在线观看网站| 日本五十路高清| 99在线人妻在线中文字幕 | 国产主播在线观看一区二区| 久久久久久久久久久久大奶| 91大片在线观看| 美女视频免费永久观看网站| 99国产精品免费福利视频| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕 | 在线观看免费视频日本深夜| 午夜福利一区二区在线看| 久久中文字幕一级| 69精品国产乱码久久久| 久久青草综合色| 夫妻午夜视频| 热re99久久国产66热| 老汉色∧v一级毛片| 国产在线一区二区三区精| 国产精品国产av在线观看| 一本一本久久a久久精品综合妖精| 久久久久精品人妻al黑| 午夜福利免费观看在线| 露出奶头的视频| 亚洲少妇的诱惑av| 国产精品影院久久| 国产精品98久久久久久宅男小说| 超碰成人久久| 欧美激情久久久久久爽电影 | 丁香欧美五月| 国产xxxxx性猛交| 成年人免费黄色播放视频| 母亲3免费完整高清在线观看| 人成视频在线观看免费观看| 国产精品亚洲av一区麻豆| 亚洲国产欧美网| ponron亚洲| 日韩三级视频一区二区三区| 亚洲免费av在线视频| 黄片播放在线免费| 国产成人欧美| 国产精品九九99| 在线观看免费午夜福利视频| 精品卡一卡二卡四卡免费| 在线观看www视频免费| 免费黄频网站在线观看国产| 又大又爽又粗| 岛国在线观看网站| 一a级毛片在线观看| 制服诱惑二区| 久久 成人 亚洲| 极品少妇高潮喷水抽搐| 69av精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区国产精品乱码| 国产乱人伦免费视频| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 免费在线观看日本一区| ponron亚洲| av有码第一页| 久久精品91无色码中文字幕| 热re99久久国产66热| 日韩制服丝袜自拍偷拍| 欧美日韩亚洲综合一区二区三区_| 国产成人免费观看mmmm| 在线观看66精品国产| 午夜福利,免费看| 久久中文看片网| 日日夜夜操网爽| 亚洲五月婷婷丁香| 青草久久国产| 91国产中文字幕| 一区在线观看完整版| cao死你这个sao货| 青草久久国产| 久久天躁狠狠躁夜夜2o2o| 国内毛片毛片毛片毛片毛片| 精品亚洲成a人片在线观看| 久久婷婷成人综合色麻豆| 999久久久精品免费观看国产| 看黄色毛片网站| 欧美精品亚洲一区二区| 国产男靠女视频免费网站| 国产亚洲精品久久久久5区| 欧美丝袜亚洲另类 | 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| 男女之事视频高清在线观看| 中文字幕最新亚洲高清| 欧美+亚洲+日韩+国产| 久久99一区二区三区| 国产aⅴ精品一区二区三区波| 亚洲欧美激情在线| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 女性被躁到高潮视频| a级片在线免费高清观看视频| 国产熟女午夜一区二区三区| 少妇猛男粗大的猛烈进出视频| 两个人免费观看高清视频| x7x7x7水蜜桃| 每晚都被弄得嗷嗷叫到高潮| 18在线观看网站| 国产在视频线精品| 大香蕉久久网| 最近最新中文字幕大全电影3 | 黄片大片在线免费观看| 午夜激情av网站| 一个人免费在线观看的高清视频| www.熟女人妻精品国产| 成人国产一区最新在线观看| 18禁美女被吸乳视频| 国产男女内射视频| 国产精品久久久久久精品古装| 精品免费久久久久久久清纯 | 国产一区有黄有色的免费视频| 亚洲av熟女| 久久久久精品国产欧美久久久| 精品福利观看| 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 成人特级黄色片久久久久久久| 国产欧美亚洲国产| 免费在线观看亚洲国产| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 久久久久久久久免费视频了| 亚洲精品在线观看二区| 亚洲五月婷婷丁香| 天天躁日日躁夜夜躁夜夜| 搡老岳熟女国产| 免费看十八禁软件| 脱女人内裤的视频| 国产在线观看jvid| 亚洲一区二区三区欧美精品| 亚洲 欧美一区二区三区| 亚洲欧美色中文字幕在线| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 午夜福利视频在线观看免费| 国产精华一区二区三区| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 亚洲欧美激情综合另类| 99国产精品一区二区三区| 欧美老熟妇乱子伦牲交| 性少妇av在线| 日韩中文字幕欧美一区二区| 亚洲成人国产一区在线观看| 男女高潮啪啪啪动态图| 亚洲专区中文字幕在线| 天天操日日干夜夜撸| 国产精品免费大片| 亚洲少妇的诱惑av| 丝袜人妻中文字幕| 亚洲国产欧美网| 精品一品国产午夜福利视频| 国产精品 国内视频| 国产aⅴ精品一区二区三区波| 嫩草影视91久久| 久久精品国产亚洲av高清一级| 国产人伦9x9x在线观看| 精品亚洲成a人片在线观看| 91国产中文字幕| av电影中文网址| 国产又色又爽无遮挡免费看| 日本一区二区免费在线视频| 亚洲自偷自拍图片 自拍| 天天影视国产精品| 午夜精品久久久久久毛片777| 亚洲自偷自拍图片 自拍| 国产精品久久久av美女十八| 最近最新免费中文字幕在线| 久久ye,这里只有精品| 激情视频va一区二区三区| 91大片在线观看| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯 | 18禁观看日本| 亚洲一区二区三区欧美精品| 一级毛片精品| 十八禁网站免费在线| 成人国语在线视频| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 午夜老司机福利片| 又黄又爽又免费观看的视频| 久久中文字幕人妻熟女| 黄片播放在线免费| 91成人精品电影| 电影成人av| 中文字幕av电影在线播放| 日本五十路高清| 天天操日日干夜夜撸| 真人做人爱边吃奶动态| 两个人免费观看高清视频| bbb黄色大片| 超碰成人久久| 男女之事视频高清在线观看| 国产日韩一区二区三区精品不卡| 国产一区二区三区视频了| 人人妻人人澡人人爽人人夜夜| 首页视频小说图片口味搜索| 无限看片的www在线观看| 免费看a级黄色片| 少妇裸体淫交视频免费看高清 | 国产欧美亚洲国产| 国产成人av激情在线播放| 一进一出好大好爽视频| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 亚洲aⅴ乱码一区二区在线播放 | 狠狠狠狠99中文字幕| 亚洲精品久久午夜乱码| 午夜福利乱码中文字幕| 国产极品粉嫩免费观看在线| 亚洲专区国产一区二区| cao死你这个sao货| 91九色精品人成在线观看| 国产精品免费一区二区三区在线 | 国产激情久久老熟女| 亚洲精品在线观看二区| 制服诱惑二区| 黄色成人免费大全| 女性生殖器流出的白浆| 一级毛片女人18水好多| 亚洲国产看品久久| 国产麻豆69| 国产精品免费视频内射| 日韩欧美国产一区二区入口| 免费看十八禁软件| 久久精品亚洲熟妇少妇任你| 五月开心婷婷网| 校园春色视频在线观看| 久久精品熟女亚洲av麻豆精品| 99久久国产精品久久久| 国产视频一区二区在线看| 成人免费观看视频高清| 国产精品欧美亚洲77777| videos熟女内射| 制服诱惑二区| 亚洲精品成人av观看孕妇| 欧美日韩亚洲综合一区二区三区_| 50天的宝宝边吃奶边哭怎么回事| 人妻 亚洲 视频| 国产欧美日韩一区二区精品| 亚洲精品中文字幕在线视频| 亚洲aⅴ乱码一区二区在线播放 | 18禁裸乳无遮挡动漫免费视频| 久久久精品区二区三区| 男女之事视频高清在线观看| 女性被躁到高潮视频| 精品久久久久久久毛片微露脸| 久久国产精品人妻蜜桃| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻熟女乱码| 韩国精品一区二区三区| 免费看十八禁软件| 一本大道久久a久久精品| 99精品欧美一区二区三区四区| 老司机午夜福利在线观看视频| 悠悠久久av| 欧美日韩亚洲综合一区二区三区_| 亚洲精品乱久久久久久| 精品国产超薄肉色丝袜足j| 老鸭窝网址在线观看| 精品高清国产在线一区| 国产91精品成人一区二区三区| 欧美乱妇无乱码| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久av网站| 欧美大码av| 欧美在线黄色| 午夜老司机福利片| 午夜福利视频在线观看免费| av片东京热男人的天堂| 悠悠久久av| 满18在线观看网站| 在线观看舔阴道视频| 国产又色又爽无遮挡免费看| 午夜福利在线观看吧| 免费在线观看完整版高清| 夜夜爽天天搞| xxx96com| 老汉色∧v一级毛片| videosex国产| 日韩欧美在线二视频 | 国产精品久久久久成人av| 妹子高潮喷水视频| 国产欧美日韩精品亚洲av| 黑人猛操日本美女一级片| 搡老岳熟女国产| 国产麻豆69| 亚洲精品国产区一区二| 十八禁人妻一区二区| 亚洲一区二区三区不卡视频| 高清视频免费观看一区二区| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 中文字幕色久视频| 老熟女久久久| 99香蕉大伊视频| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 欧美性长视频在线观看| 久久香蕉国产精品| 亚洲av成人一区二区三| 国产三级黄色录像| 久久午夜综合久久蜜桃| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 国产精品久久久久久精品古装| 国产精品久久久久久人妻精品电影| 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 搡老乐熟女国产| 亚洲精品久久成人aⅴ小说| 亚洲成国产人片在线观看| 国产在线一区二区三区精| 欧美精品高潮呻吟av久久| 久9热在线精品视频| 嫩草影视91久久| 少妇的丰满在线观看| 两个人免费观看高清视频| 我的亚洲天堂| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 天天躁夜夜躁狠狠躁躁| 国产精品偷伦视频观看了| 18禁观看日本| 成熟少妇高潮喷水视频| 天天影视国产精品| 国产区一区二久久| 欧美黑人精品巨大| 最新在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 久99久视频精品免费| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 777久久人妻少妇嫩草av网站| 国产精品国产av在线观看| 国产又爽黄色视频| 免费高清在线观看日韩| 国内久久婷婷六月综合欲色啪| 大码成人一级视频| 亚洲美女黄片视频| www.精华液| 99国产精品免费福利视频| 亚洲av片天天在线观看| 大型av网站在线播放| 日本黄色视频三级网站网址 | 九色亚洲精品在线播放| 男人操女人黄网站| 日韩成人在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇熟女久久| 欧美国产精品va在线观看不卡| 亚洲五月天丁香| 999精品在线视频| 免费在线观看亚洲国产| 黄色女人牲交| 一区二区三区国产精品乱码| 精品福利永久在线观看| 国产高清视频在线播放一区| 女人被狂操c到高潮| 国产精品久久久人人做人人爽| 人妻丰满熟妇av一区二区三区 | 精品国内亚洲2022精品成人 | 男男h啪啪无遮挡| 亚洲精品中文字幕一二三四区| 亚洲三区欧美一区| 国产精品秋霞免费鲁丝片| 啦啦啦免费观看视频1| 久久人人爽av亚洲精品天堂| 亚洲九九香蕉| 变态另类成人亚洲欧美熟女 | 日韩大码丰满熟妇| 韩国精品一区二区三区| 亚洲精品国产一区二区精华液| 精品国产美女av久久久久小说| 日日爽夜夜爽网站| 人成视频在线观看免费观看| 欧美日韩亚洲高清精品| 久久草成人影院| 深夜精品福利| 国产亚洲精品一区二区www | 亚洲全国av大片| 校园春色视频在线观看| 19禁男女啪啪无遮挡网站| 国产亚洲精品一区二区www | 男女午夜视频在线观看| 成人18禁高潮啪啪吃奶动态图| 久久国产精品大桥未久av| 在线观看66精品国产| 午夜老司机福利片| 丰满的人妻完整版| 欧美日韩国产mv在线观看视频| 一边摸一边抽搐一进一小说 | 国产男女内射视频| 国产三级黄色录像| 国产精品一区二区精品视频观看| bbb黄色大片| 久久精品aⅴ一区二区三区四区| 丁香六月欧美| cao死你这个sao货| 大型黄色视频在线免费观看| svipshipincom国产片| 国产三级黄色录像| 成年版毛片免费区| 一级作爱视频免费观看| videos熟女内射| 欧美久久黑人一区二区| 人人妻人人澡人人爽人人夜夜| 一级a爱视频在线免费观看| 99热国产这里只有精品6| 99re在线观看精品视频| 啦啦啦视频在线资源免费观看| 啪啪无遮挡十八禁网站| 伊人久久大香线蕉亚洲五| 国产精品永久免费网站| 午夜福利在线免费观看网站| 亚洲欧美激情在线| 久久精品国产99精品国产亚洲性色 | 黑人欧美特级aaaaaa片| 精品免费久久久久久久清纯 | 亚洲一区高清亚洲精品| 国产精品二区激情视频| 成年人午夜在线观看视频| 日韩有码中文字幕| av视频免费观看在线观看| 国产成人精品久久二区二区免费| 一级片免费观看大全| 日韩免费av在线播放| 免费av中文字幕在线| 亚洲性夜色夜夜综合| 激情视频va一区二区三区| 中出人妻视频一区二区| 天堂√8在线中文| 岛国在线观看网站| 黄色片一级片一级黄色片| 国产高清激情床上av| 黑人操中国人逼视频| 国产精华一区二区三区| 日韩 欧美 亚洲 中文字幕| 真人做人爱边吃奶动态| 一级片免费观看大全| 欧美日韩亚洲高清精品| 老司机午夜福利在线观看视频| avwww免费| 看片在线看免费视频| 人成视频在线观看免费观看| 成人av一区二区三区在线看| 精品午夜福利视频在线观看一区| 国产欧美亚洲国产| 又紧又爽又黄一区二区| 夜夜夜夜夜久久久久| 天堂动漫精品| 国产乱人伦免费视频| e午夜精品久久久久久久| 91精品三级在线观看| 精品福利观看| 国产亚洲欧美98| 十八禁网站免费在线| 777久久人妻少妇嫩草av网站| 免费不卡黄色视频| 精品人妻熟女毛片av久久网站| 欧美激情久久久久久爽电影 | 香蕉国产在线看| 99re在线观看精品视频| 亚洲av成人一区二区三| 制服诱惑二区| av视频免费观看在线观看| 无限看片的www在线观看| 亚洲人成电影免费在线| 一进一出好大好爽视频| 久久精品亚洲熟妇少妇任你| 午夜老司机福利片| 99精品欧美一区二区三区四区| 国产乱人伦免费视频| 最新在线观看一区二区三区| 黄色视频不卡| 少妇 在线观看| 大码成人一级视频| 一个人免费在线观看的高清视频| 欧美日韩黄片免| 亚洲国产中文字幕在线视频|