• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一個富路易斯堿位配合物的合成、結(jié)構(gòu)及對痕量Ag+的熒光檢測

    2017-08-07 15:00:28辛凌云李云平鞠豐陽李曉玲劉廣臻
    無機化學(xué)學(xué)報 2017年8期
    關(guān)鍵詞:痕量路易斯配位

    辛凌云 李云平 鞠豐陽 李曉玲 劉廣臻*,

    一個富路易斯堿位配合物的合成、結(jié)構(gòu)及對痕量Ag+的熒光檢測

    辛凌云1李云平1鞠豐陽2李曉玲1劉廣臻*,1

    (1洛陽師范學(xué)院化學(xué)化工學(xué)院,河南省功能導(dǎo)向多孔材料重點實驗室,洛陽 471934)
    (2洛陽師范學(xué)院食品與藥品學(xué)院,洛陽 471934)

    通過溶劑熱方法合成了一個由氫鍵拓展的攜帶路易斯堿位的三維超分子配位聚合物:{[Cd(HTZ-IP)(HPYTZ)(H2O)2]·5H2O}n(HTZ-H2IP=5-(5-四氮唑基)間苯二甲酸;HPYTZ=3,5-(4-吡啶基)-1,2,4-三唑]。X射線單晶衍射結(jié)果表明,中心鎘離子由含氮雜環(huán)羧酸配體和富氮輔助配體連接成“有懸掛手臂”的一維鏈,而鏈間則憑借配位水和2個配體的氫鍵作用拓展成三維超分子化合物。有趣的是配合物存在大量裸露的未配位的N原子,此N原子具有路易斯堿性質(zhì),能與路易斯酸性質(zhì)的Ag+有效結(jié)合,從而引起配合物的熒光猝滅。該性質(zhì)能在無色溶液中有效檢測10-4~10-6mol·L-1范圍內(nèi)的痕量Ag+離子。

    溶劑熱合成;配位聚合物;熒光;傳感材料

    One of the premier performance metrics in chemical sensing applications is chemical selectivity, the ability to detect a given molecular species.When high selectivity is coupled with low detection limits and with signal transduction mechanisms that allow for facile device implementation,chemical sensing enables a range of applications in the defense,food packaging,and environmental monitoring sectors, among others[1-4].

    The emergence of multifunctional coordinated polymers(CPs)materials is one of the most significant achievements in chemical sensing field over the past two decades[5-9].The differential recognition/binding events with guest substrates confined by the tunable pore sizes and functionalized pore surfaces,which can be transduced into externally optical signals,have enabled the CPs to become a new type of sensing materials.In fact,some luminescent CPs materials have been realized for the sensing of ions and small molecules recently[10-12].Particularly,some of those CPs show excellent luminescent sensing properties towards metal ions such as Al3+,Cu2+,Fe3+.This is because that the Lewis basic coordination sites existing in the networks of CPs can interact with special metal ions, which may result in the changes in the luminescent intensity of the CPs-based material.Currently,some CPs bearing such sites have been reported,including Eu-CPs with many Lewis basic pyridine nitrogen atoms for sensing of Cu2+ions[13-14],and Zn-CPs with uncoordinated Lewis-base sites showing excellent luminescence sensing of inorganic ions[15].Of course, there are other approaches which can improve the sensing efficiency except for the retention of Lewis base sites within the CPs.

    In order to obtain such sensing material,we present a synthetic strategy to create multi-functional CPs by employing polydentate N-heterocyclic carboxylate or dipyridyl-type ligands,such as 5-(tetrazol-5-yl) -isophthalic acid and 3,5-di(4-pyridyl)-1,2,4-triazolate ligand,which has multiple coordination sites involving polyzole nitrogen atoms,pyridyl nitrogen atoms and carboxylate oxygen atoms.All of them are good bridging ligands for constructing multi-functional CPs. Especially,the polyzole-based ligands has attracted much attention because its abundant nitrogen electron -donating atoms tend to leave uncoordinated nitrogen atoms (receptor)combined metal cation.Once the analyte is recognized by the receptor,the fluorescence signals can be observed in the form of quenching or enhancement in the fluorescence maxima due to either electron transfer(ET),charge transfer(CT),or energy transfer(ET)processes[16-18].

    Herein,we present a hydrogen-bonded supramolecular network with exposed Lewis basic nitrogen atoms({[Cd(HTZ-IP)(HPYTZ)(H2O)2]·6H2O}n),hydrothermally prepared by a mixed-ligand strategy with the combination of a rigid 5-(tetrazol-5-yl)isophthalic acid(HTZ-H2IP)and 3,5-di(4-pyridyl)-1,2,4-triazolate ligand (HPYTZ).Importantly,we have demonstrated that the infinite CPs is capable of detecting Ag+in colorless solution.As a sensing material for Ag+,this CPs has features including simple preparation procedure,fast detection time,excellent selectivity for Ag+, and high sensitivity with a detection range of10-4~10-6mol·L-1concentration limit.

    1 Experimental

    1.1 Materials and methods

    All reagents used in these syntheses were of analyticalgrade and used as purchased without further purification.Elemental analyses (C,H,N)were performed on a Flash EA 2000 elemental analyzer. Infrared spectra were recorded on a Nicolet 6700 FTIR spectrophotometer over a range of 4 000~600 cm-1. The thermo-gravimetric analyses(TGA)were performed on a SⅡEXStar6000 TG/DTA6300 analyzer in flowing N2with a heating rate of 10℃·min-1.The powder X-ray diffraction (PXRD)patterns were recorded with a Bruker AXS D8 Advance diffractometer using monochromated Cu Kαradiation(λ=0.154 18 nm;generator current:40 mA;generator voltage:40 kV;scanning scope:2θ=5°~50°).Luminescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer atroom temperature.

    1.2 Preparation of complex

    A mixture of HTZ-H2IP (0.1 mmol,23.4 mg),HPYTZ (0.1 mmol,22.3 mg),Cd(OAC)2·2H2O(0.1 mmol,26.7 mg),N,N′-dimethylformamide(DMF,1.0 mL),and H2O(5.0 mL)was placed in a 23 mL Teflon liner stainless steel reactor.The vessel was heated to 120℃for 4 days,and then cooled to room temperature at a rate of 5℃·h-1.Colorless crystals were obtained, and further crystals were filtered off,washed with mother liquid,and dried under ambient conditions. Yield:35%.Anal.Calcd.for C21H27N9O11Cd(%):C 36.35,H 3.92,N 18.17;Found(%):C 36.52,H 4.02, N 18.06.IR(cm-1):3 315m,1 597s,1 565vs,1 559s, 1 507m,1 493m,1 426m,1 395vs,1 301w,1 292m, 1 216m,1 148m,1 015m,982m,893m,862m,849s, 749m,724s,706m,685m.

    1.3 X-ray crystallography

    Suitable single crystals of complex were mounted on a Bruker Smart APEXⅡCCD diffractometer equipped with graphite-monochromated Mo Kαradiation (λ=0.071 073 nm)by usingφ-ωscan technique at room temperature.Semi-empirical absorption corrections were applied using SADABS[19].The structures were solved using direct method and refined by fullmatrix least-squares on F2.All non-hydrogen atoms were refined anisotropically,and the hydrogen atoms were placed in calculated positions and refined isotropically with a riding model except for those bound to water molecules,which were initially located in a difference Fourier map and included in the final refinement by use ofgeometricalrestraints with the OH distances being fixed at 0.085 nm and Uiso(H) equivalentto 1.5 times of Ueq(O).All calculations were performed using the SHELXTL-97 program package[20-21]. Some disordered solvent H2O molecules in complex are squeezed by PLATON/SQUEEZE program[22].The details of the structure solutions and final refinements for the complex are summarized in Table 1.Selected bond distances and angles are listed in Table S1.

    CCDC:1528982.

    2 Results and discussion

    2.1 Synthesis and IR characterization

    Hydrothermal method has been proven to be a powerful approach for the preparation of sparingly soluble organic-inorganic hybrid material[23-24].However,the given crystal growth is influenced by various hydrothermal parameters such as the pH value, temperature,the molarratio ofthe reactantand reactant solvent[25-26].The reactions of melt salt with HTZ-H2IP and HPYTZ in molar ratio of 1∶1∶1 at the reaction medium of DMF and H2O mixture (V DMF∶V H2 O=1∶5) gave rise to the homogeneous single crystals suitable for X-ray diffraction analysis.The broad bands in the area of 3 400~3 200 cm-1in the compound belong to the O-H stretching modes within coordinated and guest water molecules.Furthermore,the IR spectrum shows the sharp characteristic bands of dicarboxylate groups in the usual region at~1 600 and~1 500 cm-1for the asymmetric stretching and at~1 400 cm-1forthe symmetric stretching.

    Table 1 Crystal and structure refinement data for the complex

    2.2 Structural description of{[Cd(HTZ-IP) (HPYTZ)(H2O)2]·5H2O}n

    Single-crystal X-ray analysis reveals that the complex displays a hydrogen-bonded supramolecular network with the exposed uncoordinated N atoms.The asymmetric unit contains one Cdatom,one HPYTZ molecule,one double-deprotonated HTZ-IP anion,two coordinated H2O and five disordered guest H2O molecule confirmed by TGA and Elemental analyses. Cdion adopts a highly distorted CdNO5 octahedral geometry formed by three carboxylate O atoms belonging to two different HTZ-IP anion(Co-O 0.219 2(2)~0.250 5(3)nm),two coordinated water molecule(Co-Ow0.236 4(3)and 0.237 8(2)nm),and one nitrogen atom from HPYTZ ligand(Co-N 0.228 0(3)nm),as shown in Fig.1(a).

    Both carboxylate groups of the HTZ-H2IP ligand bridge the adjacent Cdcenters by a monodentate bridging and a bidentate chelating mode to form Cd carboxylate linear chains running along the crystallographic a axis,while each HPYTZ molecule works as a terminal ligand with uncoordinated pyridine N atoms (Fig.1b).The mono-coordinated HPYTZ ligands are pendant and decorate the chain from one side.The paralleled chains are connected by H-bonds between coordinated H2O and triazolate N atom of HPYTZ molecule(O(5W)-H(1W)…N(7);d(O5…N7)=0.288 8 nm;∠O-H…N7=173.59°)to develop the 2D thicklayer,containing circular channels with free aperture about 0.504 nm×0.605 nm (the short distance not including the van der Waals radii),as shown in Fig. S1.The adjacent thick-layers are adhered together by further H-bonds between coordination H2O and carboxylate O atoms(O(6W)-H(3W)…O(4);d(O6…O4)= 0.283 3 nm;∠O-H…O4=164.22°)producing its entire hydrogen-bonded supramolecular network(Fig.1c and Fig.1d)with little aperture about 0.377 nm×0.496 nm(the short H…H and O…O distance),as shown in Fig.S2.

    Fig.1 (a)View of coordination environment of Cd;(b)View of a 1D chain featuring HTZ-IP-bridged CdO5N octahedral; (c)Side view of a 3D supramolecular network consisting of 1D polymeric chains cohered by H-bonds;(d)Packing view of the supramolecular network

    2.3 TGA and PXRD analysis

    Thermogravimetric analysis(TGA)were conducted to determine the thermal stability of the complex. TGA reveals that the removal of guest water molecules starts at room temperature (Fig.2a).The first weight loss ofthe complex is~18.76%from room temperature to~150℃,corresponding to the elimination of five guest water molecules and two coordinated water molecules per formula unit (Calcd.18.17%).The residual solid starts to decompose at 250℃,and complete decomposition finishes at about 540℃.The final residual species holds a weight of 18.13%of the totalsample,and seems to be CdO(Calcd.18.50%).

    In order to further prove the purity of supermolecular structure,the washed and dried complex is sufficiently ground,and then examined by powder X-ray diffraction(PXRD),as shown in Fig.2b.The result shows the complex still has good crystallinity,because all major peaks in experimental PXRD match quite well that of simulated,indicating the reasonable crystalline phase purity.However,the difference in intensity may be due to the preferred orientation of the microcrystalline powder samples.

    Fig.2 TGA curve(a)and PXRD patterns(b)of the complex

    2.4 Luminescent detection for trace Ag+

    The photoluminescent properties of compound in the solid state atroom temperature showed an intensity emission band at 436 nm with excitation wavelength of 371 nm (Fig.S3),while an intensity emission band at 422 nm was observed in aqueous solution.Along with its existence of the free Lewis basic sites (uncoordinated N atoms)promoted us to investigate its potential application in the detection of common metal ions.Because these free Lewis basic sites could be available for interactions with the Lewis acid species like metalions.

    In order to examine the ability of selective sensing of metal ions,the complex is sufficiently ground,and then dispersed by ultrasonic in aqueous solution containing 0.01 mol·L-1of nitrate salts of Na+,Ag+,K+,Ba2+,Zn2+,Fe2+,Co2+,Ni2+,Cu2+,Pb2+, Fe3+,Al3+,Cd2+,Hg2+,Ca2+,Mn2+and Mg2+for 2 h.It is shown that most of the ions make no significant effect to the luminescent intensities of complex,except that there exist quenching effect to the luminescent intensities of complex including colorless Ag+ion and colored Fe2+,Fe3+and Ni2+ions.So,only the influence of colorless ions on luminescent detection of Ag+ion were investigated in this work,considering the colored ions are visible to the naked eye.As presented in Fig. 3a,the complex may act as a high-performance luminescence sensor for detecting Ag+ion in colorless solution.In order to elucidate the possible mechanism for such luminescence quenching,powder XRD was employed to monitor the structure changes by Ag+solution treatment.The powder XRD patterns of the complex immersed in Ag+solution for 2 h have obvious change comparing with that of pristine complex,as shown in Fig.S4.That implies a new kind of structure may form relying on interaction between Lewis basicN sites of the complex and Ag+.However,the IR characteristic peak of the complex immersed in Ag+solution for 2 h are similar to that of pristine complex (Fig.S5),suggesting that the main framework of complex does not change although the photoluminescence is mostly quenched.So,the quenching effect can be largely ascribed to between the receptor unit (uncoordinated N atom of ligand)and analyte(Ag+), which may cause the electrons of ligands to transfer from complex to Ag+ions,resulting in the abovementioned luminescentdecay.

    Fig.3 (a)Luminescent intensities of the complex at 422 nm treated with different metal ions(0.01 mol·L-1)in water at ambient temperature;(b)Fluorescence responses of complex for the determination of Ag+in water

    Furthermore,the quenching effect of complex was examined as a function of AgNO3concentration in the range of 0~0.01 mol·L-1.The solid samples were immersed in different concentrations of AgNO3for 2 h,and then their luminescence intensity at 422 nm was recorded.When Ag+concentration increased from 0 to 0.01 mol·L-1,the fluorescence intensity ofcomplex continuously decreased (Fig.3b).Ag+concentrations are proportional to the fluorescence intensity of complex in the range of 10-4~10-6mol·L-1(Inset in Fig.3b).This concentration limit can detect trace Ag+in the colorless solution,which is at the level of the reported fluorescence probes for Ag+[27-30].

    Along with the sensitivity requirement,high selectivity is crucial in most scenarios,especially in real sample detections.Therefore,the selectivity of the complex in FL sensing system was estimated and shown in Fig.S6.Besides Ag+,the effects of other ten kinds of colorless cations,including colorless Na+,K+, Ba2+,Zn2+,Pb2+,Al3+,Cd2+,Hg2+,Ca2+and Mg2+at the same concentration of Ag+,on the FL response of complex containing 0.01 mol·L-1Ag+at the same time were investigated.We can find that the FL intensities are significantly quenched by 0.01 mol·L-1 Ag+, whereas almost no additional inhibition of the FL intensities happens in the presence of Na+,Pb2+,Cd2+and Ca2+ions,and only little enhancement of the FL intensities happens in the presence of K+,Ba2+,Zn2+, Al3+,Hg2+and Mg2+ions.Apparently,the result clearly indicates that the FL sensing system exhibits high selectivity for Ag+in the colorless solution.

    3 Conclusions

    In summary,a hydrogen-bonded supramolecular network with exposed nitrogen atoms is prepared by the cooperation of cadmium acetate with 5-(tetrazol-5-yl)isophthalic acid and nitrogen-rich co-ligand.It is noted that the material may not only accomplish an effective and reliable quantitative testing method for pure Ag+ion with a detection range of 10-4~10-6mol· L-1 concentration limit, but also display selective sensing of Ag+ion in colorless solution.As a sensing material for Ag+,this compound has distinct features of simple preparation procedure and fast detection time.Although the selectivity of luminescence sensing for Ag+ion need to be further improved,these results show that the Lewis base sites existing in CPs-based materials are quite critical in such fluorescence response process,which provides an insight into thedevelopment of new multifunctional CPs-based materials with potential applications in the luminescence sensor.

    Supporting information is available athttp://www.wjhxxb.cn

    [1]Allendorf M D,Bauer C A,Bhakta R K,et al.Chem.Soc. Rev.,2009,38:1330-1352

    [2]Cui Y,Yue Y,Qian G,et al.Chem.Rev.,2012,112:1126-1162

    [3]Kreno L E,Leong K,Farha O K,et al.Chem.Rev.,2012, 112:1105-1125

    [4]Shustova N B,Cozzolino A F,Reineke S,etal.J.Am.Chem. Soc.,2013,135:13326-13329

    [5]Hu F L,Shi Y X,Lang J P,et al.Dalton Trans.,2015,44 (43):18795-18803

    [6]Tan H L,Chen Y.Chem.Commun.,2011,47:12373-12375

    [7]Lin X M,Gao G M,Chi Y W,et al.Anal.Chem.,2014,86: 1223-1228

    [8]Moura N M M,Nú?ez C,Lodeiro C,etal.Inorg.Chem.,2014, 53:6149-6158

    [9]Xiao J,Wu Y,Huang X C,et al.Chem.Eur.J.,2013,19: 1891-1895

    [10]Sun C Y,Wang X L,Chao Q,et al.Chem.Eur.J.,2013,19: 3639-3645

    [11]Wang L,Li Y A,Yang F,et al.Inorg.Chem.,2014,53:9087 -9094

    [12]Hu Z C,Pramanik S,Tan K,et al.Cryst.Growth Des.,2013, 13:4204-4207

    [13]Tang Q,Liu S,Liu Y,et al.Inorg.Chem.,2013,52:2799-2801

    [14]Dang S,Ma E,Sun Z M,et al.J.Mater.Chem.,2012,22: 16920-16926

    [15]Song X Z,Song S Y,Zhao S N,et al.Adv.Funct.Mater., 2014,24:4034-4041

    [16]Formica M,Fusi V,Giorgi L,et al.Coord.Chem.Rev., 2012,256:170-192

    [17]Sahoo S K,Sharma D,Bera R K,et al.Chem.Soc.Rev., 2012,41:7195-7227

    [18]Zheng M,Tan H Q,Xie Z G,et al.ACS Appl.Mater. Interfaces,2013,5:1078-1083

    [19]Sheldrick G M.SADABS,Software for Empirical Absorption Correction,University of G?ttingen,Germany,1996.

    [20]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Germany,1997.

    [21]Sheldrick G M.SHELXL-97,Program for Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

    [22]Spek A L.PLATON,Utrecht University,Netherlands,2001.

    [23]YIN Wei-Dong(尹衛(wèi)東),LI Gui-Lian(李桂連),LI Xiao-Ling (李曉玲),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報), 2016,32(4):662-668

    [24]Lu J Y.Coord.Chem.Rev.,2003,246:327-347

    [25]Li C P,Du M.Chem.Commun.,2011,47:5958-5972

    [26]Huang Y Q,Shen Z L,Sun W Y,et al.Dalton Trans.,2008: 204-213

    [27]Liu L,Zhang G,Xiang J,et al.Org.Lett.,2008,10:4581-4584

    [28]Chatterjee A,Santra M,Kim S,et al.J.Am.Chem.Soc., 2009,131:2040-2041

    [29]Lin C Y,Yu C J,Lin Y H,et al.Anal.Chem.,2010,82: 6830-6837

    [30]Qin C,Won W Y,Wang L.Macromolecules,2010,44:483-489

    Synthesis,Structure and Luminescent Detection for Trace Ag+of a Coordination Polymer with Lewis Basic Sites

    XIN Ling-Yun1LI Yun-Ping1JU Feng-Yang2LI Xiao-Ling1LIU Guang-Zhen*,1
    (1College of Chemistry and Chemical Engineering,Henan Key Laboratory of Function-Oriented Porous Materials,Luoyang Normal University,Luoyang,Henan 471934,China)
    (2School of Food and Drug,Luoyang Normal University,Luoyang,Henan 471934,China)

    Hydrogen-bonded network with Lewis basic N sites have been obtained by the solvothermal reaction, named{[Cd(HTZ-IP)(HPYTZ)(H2O)2]·5H2O}n(HTZ-H2IP=5-(tetrazol-5-yl)isophthalic acid,HPYTZ=3,5-di(4-pyridyl) -1,2,4-triazolate ligand).The single-crystal X-ray diffraction analysis shows the adjacent Cdcenters are bridged by HTZ-H2IP ligand to form Cd carboxylate linear chains,while each HPYTZ molecule works as a terminal ligand with uncoordinated pyridine N atoms.The paralleled chains are connected by H-bonds between coordination H2O and two ligands to produce its 3D supramolecular network.It is interesting that the network possess uncoordinated N atoms (Lewis-base sites)existing a significant quenching effect to the luminescent intensity of complex by Ag+ion.As a sensing material for Ag+,this coordinated polymer has features including simple preparation procedure,fast detection time,excellent selectivity for Ag+in colorless solution,and high sensitivity with a detection range of 10-4~10-6mol·L-1concentration limit.CCDC:1528982.

    solvothermal reaction;coordination polymer;fluorescent property;sensing material

    O614.122

    A

    1001-4861(2017)08-1474-07

    10.11862/CJIC.2017.184

    2017-02-27。收修改稿日期:2017-05-24。

    國家自然科學(xué)基金(No.21571093)、河南省高校科技創(chuàng)新人才(No.14HASTIT017)、河南省高校科技創(chuàng)新團隊(No.14IRTSTHN008)、河南省

    科技攻關(guān)計劃(No.162102210304)和河南省社會發(fā)展(No.152102310348)資助項目。

    *通信聯(lián)系人。E-mail:gzliuly@126.com

    猜你喜歡
    痕量路易斯配位
    簡單和可控的NiO/ZnO孔微管的制備及對痕量H2S氣體的增強傳感
    更多的可能
    讀者(2022年21期)2022-10-24 07:13:48
    路易斯·巴斯德:微生物學(xué)之父
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    Looking Forward/by Robert Louis Stevenson期待
    鈮-鋯基體中痕量釤、銪、釓、鏑的連續(xù)離心分離技術(shù)
    德不配位 必有災(zāi)殃
    當代陜西(2019年6期)2019-04-17 05:04:10
    路易斯·威廉姆斯最佳第六人
    NBA特刊(2018年13期)2018-08-06 02:12:22
    ICP- MS 測定西藏土壤中痕量重金屬Cu、Pb、Zn、Cr、Co、Ni、Cd
    西藏科技(2015年1期)2015-09-26 12:09:23
    微波消解-ICP-MS法同時測定軟膠囊中10種痕量元素
    亚洲精品色激情综合| 亚洲国产精品专区欧美| 国产高潮美女av| 国产精品成人在线| 丰满人妻一区二区三区视频av| 亚洲国产精品专区欧美| 亚洲av一区综合| 高清欧美精品videossex| 久久久久九九精品影院| 免费在线观看成人毛片| 日日啪夜夜爽| 亚洲欧美日韩另类电影网站 | 3wmmmm亚洲av在线观看| 一级片'在线观看视频| 麻豆国产97在线/欧美| 九色成人免费人妻av| 大片电影免费在线观看免费| 男人和女人高潮做爰伦理| 国产黄色视频一区二区在线观看| 久久99热6这里只有精品| 亚洲精品中文字幕在线视频 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产色婷婷电影| 黄色怎么调成土黄色| 91在线精品国自产拍蜜月| 色播亚洲综合网| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 国产精品麻豆人妻色哟哟久久| 免费人成在线观看视频色| 久久亚洲国产成人精品v| 人人妻人人看人人澡| 亚洲欧美一区二区三区黑人 | 亚洲精品国产av蜜桃| 国产在线一区二区三区精| tube8黄色片| 亚洲丝袜综合中文字幕| 欧美精品人与动牲交sv欧美| 国产精品秋霞免费鲁丝片| 五月玫瑰六月丁香| 午夜福利视频精品| 免费黄网站久久成人精品| 日本一本二区三区精品| 91精品一卡2卡3卡4卡| 亚洲国产日韩一区二区| 白带黄色成豆腐渣| freevideosex欧美| 亚洲精品乱久久久久久| 精品久久久久久久久av| 久久久久精品性色| 亚洲精品国产av蜜桃| 中文字幕久久专区| 黄色一级大片看看| 日日啪夜夜撸| 色吧在线观看| 高清欧美精品videossex| 日韩一区二区三区影片| 国产大屁股一区二区在线视频| 三级经典国产精品| 神马国产精品三级电影在线观看| 18禁裸乳无遮挡动漫免费视频 | 国产在视频线精品| 天堂俺去俺来也www色官网| 成年女人在线观看亚洲视频 | 国产爱豆传媒在线观看| 国产一区二区在线观看日韩| 国产免费视频播放在线视频| 99热6这里只有精品| 99热这里只有精品一区| 欧美最新免费一区二区三区| av播播在线观看一区| 亚洲国产av新网站| 精品久久久久久久久av| 99热6这里只有精品| 伊人久久国产一区二区| 在线精品无人区一区二区三 | 欧美xxⅹ黑人| av国产免费在线观看| 亚洲内射少妇av| 啦啦啦中文免费视频观看日本| 国产在视频线精品| 美女视频免费永久观看网站| 高清在线视频一区二区三区| 黄色日韩在线| av在线观看视频网站免费| 精品国产三级普通话版| 好男人在线观看高清免费视频| 中文字幕制服av| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 亚洲美女视频黄频| 国产av国产精品国产| 毛片女人毛片| 国产精品麻豆人妻色哟哟久久| 欧美激情久久久久久爽电影| 22中文网久久字幕| 成人国产麻豆网| 嫩草影院精品99| 99久久精品国产国产毛片| 性色avwww在线观看| 国产欧美日韩一区二区三区在线 | 国产伦精品一区二区三区视频9| 少妇丰满av| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区免费观看| 欧美激情在线99| 欧美成人午夜免费资源| 身体一侧抽搐| 亚州av有码| 精品一区二区免费观看| 下体分泌物呈黄色| 天堂网av新在线| 99久久九九国产精品国产免费| 蜜臀久久99精品久久宅男| 亚洲自拍偷在线| 一区二区三区四区激情视频| 成人二区视频| 97超碰精品成人国产| 国产一区二区三区av在线| 日韩av免费高清视频| 69人妻影院| 内地一区二区视频在线| 久久久久国产网址| 只有这里有精品99| 久久6这里有精品| 久久精品国产亚洲网站| 高清视频免费观看一区二区| 丰满人妻一区二区三区视频av| 天天躁日日操中文字幕| 午夜激情福利司机影院| 五月开心婷婷网| 蜜臀久久99精品久久宅男| 国产黄a三级三级三级人| 建设人人有责人人尽责人人享有的 | 免费看不卡的av| 日韩欧美一区视频在线观看 | 久久99热6这里只有精品| 青春草视频在线免费观看| 久久精品人妻少妇| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 国产淫语在线视频| 欧美激情久久久久久爽电影| 久久国产乱子免费精品| 国产国拍精品亚洲av在线观看| 国产精品女同一区二区软件| 观看美女的网站| 高清毛片免费看| 日韩国内少妇激情av| 日本免费在线观看一区| 一级a做视频免费观看| 一本久久精品| 国产精品伦人一区二区| 亚洲精华国产精华液的使用体验| 亚洲真实伦在线观看| 精品午夜福利在线看| 精品一区二区三区视频在线| 欧美潮喷喷水| 亚洲av国产av综合av卡| av国产免费在线观看| 好男人视频免费观看在线| 超碰av人人做人人爽久久| 欧美成人一区二区免费高清观看| 欧美 日韩 精品 国产| 日韩电影二区| 亚洲欧美一区二区三区黑人 | 大又大粗又爽又黄少妇毛片口| 免费看不卡的av| 三级男女做爰猛烈吃奶摸视频| 日产精品乱码卡一卡2卡三| av在线播放精品| 建设人人有责人人尽责人人享有的 | 一级二级三级毛片免费看| 毛片一级片免费看久久久久| 亚洲不卡免费看| 午夜免费男女啪啪视频观看| 亚洲国产精品专区欧美| 男人和女人高潮做爰伦理| 亚洲久久久久久中文字幕| 在线看a的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久人妻蜜臀av| 国产免费福利视频在线观看| 99久久中文字幕三级久久日本| 最近手机中文字幕大全| 日日啪夜夜爽| h日本视频在线播放| 只有这里有精品99| 午夜老司机福利剧场| 亚洲国产成人一精品久久久| 在线精品无人区一区二区三 | 激情五月婷婷亚洲| 下体分泌物呈黄色| 成人高潮视频无遮挡免费网站| 国产亚洲5aaaaa淫片| 国产黄a三级三级三级人| 欧美日韩国产mv在线观看视频 | 久久精品国产鲁丝片午夜精品| 日本熟妇午夜| av一本久久久久| 少妇人妻精品综合一区二区| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 丝袜美腿在线中文| 建设人人有责人人尽责人人享有的 | av在线播放精品| 亚洲人成网站高清观看| 欧美精品一区二区大全| 免费大片18禁| 别揉我奶头 嗯啊视频| av福利片在线观看| 一区二区av电影网| 国产乱来视频区| 男女那种视频在线观看| 国产高潮美女av| 国产伦精品一区二区三区视频9| 毛片女人毛片| 赤兔流量卡办理| 你懂的网址亚洲精品在线观看| 日韩av免费高清视频| 日韩 亚洲 欧美在线| 中文字幕久久专区| 视频区图区小说| 午夜福利视频精品| 亚洲美女搞黄在线观看| 亚洲av国产av综合av卡| 国产成人a∨麻豆精品| 亚洲精品456在线播放app| 赤兔流量卡办理| 久久久午夜欧美精品| 日韩大片免费观看网站| 成人亚洲精品av一区二区| 色综合色国产| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 午夜老司机福利剧场| 国产一区有黄有色的免费视频| 亚洲国产日韩一区二区| 99九九线精品视频在线观看视频| 欧美极品一区二区三区四区| 在线a可以看的网站| 国产高清国产精品国产三级 | 2021少妇久久久久久久久久久| 中文在线观看免费www的网站| 精品酒店卫生间| 综合色av麻豆| 成年免费大片在线观看| 国产有黄有色有爽视频| 国产黄a三级三级三级人| 久久精品国产亚洲网站| av在线蜜桃| 日韩强制内射视频| 青春草国产在线视频| 一级毛片黄色毛片免费观看视频| 国产精品爽爽va在线观看网站| 色婷婷久久久亚洲欧美| 80岁老熟妇乱子伦牲交| 亚洲第一区二区三区不卡| 亚洲第一区二区三区不卡| 在线看a的网站| 亚洲怡红院男人天堂| 色视频在线一区二区三区| 一区二区三区四区激情视频| 国产精品国产三级国产专区5o| 久久久久久久亚洲中文字幕| 国产精品一区二区在线观看99| 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频精品一区| 99九九线精品视频在线观看视频| 国语对白做爰xxxⅹ性视频网站| 乱系列少妇在线播放| 直男gayav资源| 免费大片黄手机在线观看| 亚洲激情五月婷婷啪啪| av免费在线看不卡| 亚洲av电影在线观看一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 性色av一级| 乱码一卡2卡4卡精品| 国产欧美亚洲国产| 久久热精品热| 精品国产乱码久久久久久小说| 七月丁香在线播放| 肉色欧美久久久久久久蜜桃 | 国产成人aa在线观看| 国产爽快片一区二区三区| 国产在线男女| .国产精品久久| 街头女战士在线观看网站| 亚洲国产欧美在线一区| 欧美激情在线99| 久久人人爽人人片av| 高清毛片免费看| 国产精品久久久久久久电影| 免费观看无遮挡的男女| 国产色婷婷99| 精品人妻偷拍中文字幕| av国产久精品久网站免费入址| 成人一区二区视频在线观看| 日日啪夜夜撸| 国产免费视频播放在线视频| 久久久欧美国产精品| av又黄又爽大尺度在线免费看| 免费黄色在线免费观看| 网址你懂的国产日韩在线| 校园人妻丝袜中文字幕| tube8黄色片| 亚洲欧美精品专区久久| 18禁在线无遮挡免费观看视频| 亚洲自偷自拍三级| 少妇人妻精品综合一区二区| 日韩成人伦理影院| 2021天堂中文幕一二区在线观| 丝袜美腿在线中文| 午夜视频国产福利| 欧美亚洲 丝袜 人妻 在线| 乱系列少妇在线播放| 日韩,欧美,国产一区二区三区| a级毛片免费高清观看在线播放| 中文字幕亚洲精品专区| 国内少妇人妻偷人精品xxx网站| 2021少妇久久久久久久久久久| 人妻一区二区av| 少妇人妻久久综合中文| 中文乱码字字幕精品一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 一级二级三级毛片免费看| 亚洲在线观看片| 午夜福利在线在线| 在线免费十八禁| 内射极品少妇av片p| 精品午夜福利在线看| 免费黄频网站在线观看国产| 亚洲成人中文字幕在线播放| 成人无遮挡网站| 99久久九九国产精品国产免费| 大片电影免费在线观看免费| 联通29元200g的流量卡| 亚洲综合色惰| 久久久久性生活片| 色网站视频免费| 亚洲自偷自拍三级| 日韩电影二区| av免费在线看不卡| 乱码一卡2卡4卡精品| 久久99精品国语久久久| 嫩草影院入口| 三级男女做爰猛烈吃奶摸视频| 国产亚洲最大av| 赤兔流量卡办理| 亚洲伊人久久精品综合| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 国产免费视频播放在线视频| 一级爰片在线观看| 七月丁香在线播放| 国产精品久久久久久久久免| 精华霜和精华液先用哪个| 亚洲精品日本国产第一区| 赤兔流量卡办理| 激情五月婷婷亚洲| tube8黄色片| 亚洲av男天堂| 美女视频免费永久观看网站| 99久久九九国产精品国产免费| 亚洲av一区综合| 又黄又爽又刺激的免费视频.| 一本色道久久久久久精品综合| 性色av一级| 国产有黄有色有爽视频| 亚洲最大成人手机在线| 免费大片黄手机在线观看| 少妇裸体淫交视频免费看高清| 一级爰片在线观看| 国内揄拍国产精品人妻在线| 成人亚洲精品av一区二区| 日韩一本色道免费dvd| 卡戴珊不雅视频在线播放| 国产黄片美女视频| 观看美女的网站| 亚洲欧美日韩东京热| 有码 亚洲区| 亚洲精品成人av观看孕妇| 亚洲精品乱码久久久久久按摩| 亚洲高清免费不卡视频| 欧美变态另类bdsm刘玥| 中国国产av一级| 最近最新中文字幕大全电影3| 丰满人妻一区二区三区视频av| 成人二区视频| 草草在线视频免费看| 丝瓜视频免费看黄片| 亚洲精品乱码久久久久久按摩| 免费在线观看成人毛片| 黄片无遮挡物在线观看| 欧美高清性xxxxhd video| 视频区图区小说| 日韩一区二区三区影片| 3wmmmm亚洲av在线观看| av在线app专区| 99久久中文字幕三级久久日本| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美精品v在线| 国产精品久久久久久精品古装| 日韩中字成人| 亚洲美女搞黄在线观看| 亚洲熟女精品中文字幕| 亚洲不卡免费看| 国产午夜精品久久久久久一区二区三区| 亚洲精品456在线播放app| 久久热精品热| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 国产高清有码在线观看视频| 国产精品一区二区在线观看99| 深爱激情五月婷婷| 99re6热这里在线精品视频| 激情五月婷婷亚洲| 亚洲av成人精品一区久久| 日本猛色少妇xxxxx猛交久久| 亚洲精品乱码久久久v下载方式| 高清日韩中文字幕在线| 高清毛片免费看| 亚洲av.av天堂| 中文字幕制服av| 日韩人妻高清精品专区| 国产成人aa在线观看| 女人久久www免费人成看片| 亚洲最大成人av| 老女人水多毛片| 久久精品国产自在天天线| 国产人妻一区二区三区在| 22中文网久久字幕| 在线 av 中文字幕| 男人舔奶头视频| 亚洲最大成人手机在线| 国产高潮美女av| 日本欧美国产在线视频| 国产午夜福利久久久久久| 久久精品久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 成年人午夜在线观看视频| 天天躁夜夜躁狠狠久久av| 夫妻午夜视频| 日韩,欧美,国产一区二区三区| 久久影院123| 亚洲av日韩在线播放| 午夜福利在线在线| 国内精品宾馆在线| 高清午夜精品一区二区三区| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 成年版毛片免费区| 最近最新中文字幕大全电影3| 色吧在线观看| 一级毛片aaaaaa免费看小| 免费电影在线观看免费观看| 国产日韩欧美在线精品| 国产成人精品久久久久久| 好男人视频免费观看在线| 你懂的网址亚洲精品在线观看| av在线播放精品| 亚洲av成人精品一区久久| 亚洲内射少妇av| 观看免费一级毛片| 男女边吃奶边做爰视频| 成人一区二区视频在线观看| 久久影院123| 国产欧美亚洲国产| 国产精品熟女久久久久浪| 91午夜精品亚洲一区二区三区| 干丝袜人妻中文字幕| 最新中文字幕久久久久| 真实男女啪啪啪动态图| 亚洲精品国产色婷婷电影| 岛国毛片在线播放| 国产精品精品国产色婷婷| 麻豆成人av视频| 97热精品久久久久久| 在线a可以看的网站| 简卡轻食公司| 国产精品久久久久久久电影| 久久综合国产亚洲精品| av天堂中文字幕网| 精品少妇久久久久久888优播| 九九在线视频观看精品| 国产高清有码在线观看视频| 亚洲精华国产精华液的使用体验| 欧美性猛交╳xxx乱大交人| 日韩电影二区| 国产精品精品国产色婷婷| 熟女av电影| 亚洲成人中文字幕在线播放| 国产精品久久久久久精品古装| 日韩av在线免费看完整版不卡| 亚洲精品中文字幕在线视频 | 99九九线精品视频在线观看视频| 一个人看的www免费观看视频| 一二三四中文在线观看免费高清| 大话2 男鬼变身卡| 五月天丁香电影| 久久99精品国语久久久| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 亚洲精品456在线播放app| 深夜a级毛片| av在线老鸭窝| 99久久中文字幕三级久久日本| 欧美高清成人免费视频www| 国产国拍精品亚洲av在线观看| 欧美成人午夜免费资源| 一级毛片 在线播放| 中文字幕亚洲精品专区| 国产黄a三级三级三级人| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| 汤姆久久久久久久影院中文字幕| 欧美日韩国产mv在线观看视频 | 性色avwww在线观看| 五月开心婷婷网| 老司机影院成人| 永久网站在线| 国产乱来视频区| 国产亚洲5aaaaa淫片| 亚洲人成网站在线播| 美女主播在线视频| 成人综合一区亚洲| 国产精品三级大全| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频 | 91精品伊人久久大香线蕉| 91狼人影院| 午夜福利视频1000在线观看| 免费观看在线日韩| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区| 国产v大片淫在线免费观看| 日韩欧美精品v在线| 国产精品熟女久久久久浪| 欧美激情久久久久久爽电影| 久久午夜福利片| 蜜臀久久99精品久久宅男| 一级黄片播放器| 99久久精品热视频| 日本三级黄在线观看| 亚洲最大成人av| kizo精华| 高清欧美精品videossex| 国产黄片美女视频| 下体分泌物呈黄色| 1000部很黄的大片| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三 | 国产亚洲av嫩草精品影院| 老司机影院毛片| 亚洲精品第二区| 神马国产精品三级电影在线观看| 亚洲不卡免费看| 一级毛片 在线播放| 欧美人与善性xxx| 久久97久久精品| 男女啪啪激烈高潮av片| 最近的中文字幕免费完整| 久久久久久久久大av| 高清在线视频一区二区三区| 国产精品女同一区二区软件| 国产探花极品一区二区| 亚洲av免费高清在线观看| 亚洲av欧美aⅴ国产| 日本三级黄在线观看| 丰满人妻一区二区三区视频av| 在线精品无人区一区二区三 | 有码 亚洲区| 成人免费观看视频高清| 亚洲国产最新在线播放| 亚洲自拍偷在线| 国产 精品1| 亚洲真实伦在线观看| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 欧美性猛交╳xxx乱大交人| 免费黄频网站在线观看国产| 亚洲欧美日韩无卡精品| 国产中年淑女户外野战色| 我的老师免费观看完整版| 狂野欧美白嫩少妇大欣赏| 肉色欧美久久久久久久蜜桃 | 麻豆成人av视频| 欧美另类一区| 精品亚洲乱码少妇综合久久| 成人国产av品久久久| 成人鲁丝片一二三区免费| 大话2 男鬼变身卡| 国产精品99久久99久久久不卡 | 一级毛片黄色毛片免费观看视频| 综合色丁香网| 亚洲无线观看免费| 一区二区三区四区激情视频| 91精品一卡2卡3卡4卡| 亚洲av成人精品一二三区| 直男gayav资源| 日韩欧美精品v在线| 亚洲人与动物交配视频| 少妇被粗大猛烈的视频| 成人美女网站在线观看视频| 成人特级av手机在线观看| 成人高潮视频无遮挡免费网站| 色婷婷久久久亚洲欧美|