張 媛,丁樹哲
ZHANG Yuan1,DING Shu-zhe2
運(yùn)動(dòng)性骨骼肌內(nèi)質(zhì)網(wǎng)應(yīng)激與線粒體功能調(diào)控
張 媛1,丁樹哲2
ZHANG Yuan1,DING Shu-zhe2
內(nèi)質(zhì)網(wǎng)(ER)是真核細(xì)胞中Ca2+貯存庫,負(fù)責(zé)調(diào)節(jié)蛋白質(zhì)合成、合成后加工、折疊和聚集的細(xì)胞器,其具有極強(qiáng)的內(nèi)穩(wěn)態(tài)體系,當(dāng)細(xì)胞穩(wěn)態(tài)受外界刺激因素改變時(shí)可導(dǎo)致內(nèi)質(zhì)網(wǎng)功能內(nèi)穩(wěn)態(tài)失衡,形成內(nèi)質(zhì)網(wǎng)應(yīng)激(ER stress,ERs)。由于線粒體與內(nèi)質(zhì)網(wǎng)存在內(nèi)質(zhì)網(wǎng)-線粒體聯(lián)接區(qū)域(mitochondrial associated membranes,MAM)結(jié)構(gòu)以及在功能方面的相互作用,使得線粒體對(duì)ERs非常敏感,ERs可通過改變代謝物的轉(zhuǎn)移,如Ca2+,或通過應(yīng)激反應(yīng)信號(hào)通路,將信息傳遞至線粒體,直接影響線粒體功能,包括:代謝酶活性、呼吸鏈功能及ATP生成、線粒體融裂、DNA生物發(fā)生、質(zhì)量控制等方面。骨骼肌ERs的現(xiàn)象首先被發(fā)現(xiàn)存在于一些肌病中,隨后的研究提示,運(yùn)動(dòng)訓(xùn)練也是誘發(fā)骨骼肌ERs的因素之一,運(yùn)動(dòng)訓(xùn)練可能在調(diào)節(jié)骨骼肌線粒體功能、優(yōu)化ERs水平、維持細(xì)胞蛋白穩(wěn)態(tài)方面發(fā)揮重要作用,其具體分子機(jī)制有待進(jìn)一步研究。
骨骼肌;內(nèi)質(zhì)網(wǎng)應(yīng)激;線粒體;運(yùn)動(dòng)訓(xùn)練
真核細(xì)胞含有多個(gè)細(xì)胞器以及被膜包圍的間隙,大多數(shù)蛋白在胞漿內(nèi)質(zhì)網(wǎng)上合成,大約一半以上需要通過轉(zhuǎn)移或穿過至少一層細(xì)胞膜到達(dá)它們的目的地。以線粒體為例,99%的線粒體蛋白需借助存在于線粒體膜上的蛋白輸入機(jī)制(PIM,Protein Import Machinery)進(jìn)入線粒體不同區(qū)域發(fā)揮作用[11]。在諸多對(duì)影響線粒體PIM功能的分子機(jī)制研究中,除發(fā)現(xiàn)PIM自身組件蛋白表達(dá)水平可影響線粒體蛋白輸入效率外,另一重要因素亦值得思考,即線粒體內(nèi)、外蛋白穩(wěn)態(tài)環(huán)境,而這一穩(wěn)態(tài)環(huán)境的維持與內(nèi)質(zhì)網(wǎng)功能及狀態(tài)密切相關(guān)。研究表明,線粒體與內(nèi)質(zhì)網(wǎng)緊密聯(lián)系,兩者的結(jié)合區(qū)域稱為內(nèi)質(zhì)網(wǎng)-線粒體聯(lián)接膜(MAM, mitochondrial associated membranes),MAM結(jié)構(gòu)復(fù)雜并含有大量功能蛋白,如伴侶蛋白GRP75、磷脂合成酶、線粒體融合蛋白Mfn2等,這些蛋白可通過調(diào)節(jié)基礎(chǔ)代謝物(脂肪)或信號(hào)物質(zhì)(鈣)的雙向供應(yīng)以維持和控制線粒體功能,甚至決定細(xì)胞命運(yùn)[38](圖1-C)。內(nèi)質(zhì)網(wǎng)是真核細(xì)胞中Ca2+貯存庫,也是調(diào)節(jié)蛋白質(zhì)合成及合成后加工、折疊和聚集的場所,是一種重要的細(xì)胞器,其具有極強(qiáng)的內(nèi)穩(wěn)態(tài)體系,當(dāng)細(xì)胞穩(wěn)態(tài)受外界刺激因素改變時(shí),可導(dǎo)致內(nèi)質(zhì)網(wǎng)功能的內(nèi)穩(wěn)態(tài)失衡,形成內(nèi)質(zhì)網(wǎng)應(yīng)激(ERs,Endoplasmic Reticulum stress)[12]。由于線粒體與內(nèi)質(zhì)網(wǎng)在結(jié)構(gòu)與功能方面的相互作用,使得線粒體對(duì)ERs非常敏感,ERs可通過改變代謝物的轉(zhuǎn)移,如Ca2+,或通過應(yīng)激反應(yīng)信號(hào)通路,將信息傳遞至線粒體,直接影響線粒體功能[55]。
內(nèi)質(zhì)網(wǎng)(ER)是細(xì)胞內(nèi)負(fù)責(zé)蛋白質(zhì)合成與折疊的細(xì)胞器,在真核細(xì)胞中維持細(xì)胞正常功能,大約有1/3的細(xì)胞蛋白質(zhì)需通過內(nèi)質(zhì)網(wǎng)上相關(guān)核糖體合成。ER由連續(xù)的膜結(jié)構(gòu)構(gòu)成,分為粗面ER、光面ER、傳統(tǒng)ER以及核膜,基于細(xì)胞在融合、分裂、延伸、膜降解等方面的需求,ER在結(jié)構(gòu)上做相應(yīng)的改變。粗面ER大多較薄,表面附著核糖體,是合成蛋白的場所,光面ER大多為管狀結(jié)構(gòu),參與糖原和脂類的合成,是與其它細(xì)胞器交流的主要區(qū)域。ER對(duì)Ca2+內(nèi)環(huán)境穩(wěn)態(tài)的調(diào)節(jié)作用在細(xì)胞信號(hào)通路、細(xì)胞適應(yīng)及存活等方面及其重要。此外,ER與其它細(xì)胞器,包括高爾基體、細(xì)胞膜、細(xì)胞核以及線粒體之間存在精巧而復(fù)雜的關(guān)聯(lián)性[16、22、51]。近幾年的大量研究表明,ER與線粒體之間關(guān)系密切,尤其是ER對(duì)細(xì)胞應(yīng)激的應(yīng)答反應(yīng)對(duì)調(diào)節(jié)線粒體生物活性及功能具有重要作用,進(jìn)而影響細(xì)胞代謝與存活質(zhì)量。
細(xì)胞穩(wěn)態(tài)改變可干擾內(nèi)質(zhì)網(wǎng)功能而誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激(ERs),導(dǎo)致機(jī)體出現(xiàn)諸多生理、病理性改變。ERs將伴隨激活兩種適應(yīng)性機(jī)制:未折疊蛋白反應(yīng)(UPR,Unfolded Protein Response)或內(nèi)質(zhì)網(wǎng)超負(fù)荷反應(yīng)(EOR,Endoplasmicreticulum Overload Response)。UPR通過激活內(nèi)質(zhì)網(wǎng)膜上相關(guān)蛋白,一方面,提高ER對(duì)蛋白的折疊能力,另一方面,降低蛋白翻譯過程,緩解蛋白合成負(fù)荷,進(jìn)而阻止ER未折疊蛋白的進(jìn)一步堆積。EOR也是機(jī)體自我保護(hù)性反應(yīng)之一,指正確折疊蛋白在內(nèi)質(zhì)網(wǎng)上過度積聚時(shí)引起的內(nèi)質(zhì)網(wǎng)超負(fù)荷,從而導(dǎo)致一系列信號(hào)物質(zhì)的激活。細(xì)胞在以上兩種適應(yīng)性機(jī)制的調(diào)節(jié)作用下,ERs狀態(tài)得以緩解,相反,如果細(xì)胞在ERS環(huán)境中不能及時(shí)通過UPR或EOR途徑進(jìn)行自我適應(yīng),將最終走向凋亡[16]。
由于ERS常導(dǎo)致內(nèi)質(zhì)網(wǎng)內(nèi)未折疊蛋白或錯(cuò)誤折疊蛋白的蓄積,引起UPR,所以,一般用參與UPR的標(biāo)志性分子來提示ERs的發(fā)生。如圖1-A所示:哺乳動(dòng)物細(xì)胞內(nèi)質(zhì)網(wǎng)膜上存在3種未折疊蛋白感應(yīng)跨膜蛋白,分別為IRE1α(inositol-requiring protein 1 alpha),ATF6 (activating transcription factor 6) 以及PERK (eukaryotic translation initiation factor-2-alpha kinase)(圖1-A)[33,34,42]。當(dāng)3個(gè)跨膜蛋白的管腔域在ER固有伴侶蛋白—免疫球蛋白重鏈結(jié)合蛋白/78Da葡萄糖調(diào)節(jié)蛋白(Bip/GRP78)存在時(shí)處于與膜結(jié)合狀態(tài),其蛋白保持失活狀態(tài)。而當(dāng)ER中未折疊蛋白積累到一定程度,Bip將與上述3種跨膜蛋白暴露部位的疏水域結(jié)合,使其激活[2]。其一、激活后的ATF6將轉(zhuǎn)移至細(xì)胞核與UPR相關(guān)基因的啟動(dòng)子相結(jié)合發(fā)揮作用;其二、活化的PERK可使真核翻譯起始因子2-α(eIF2α)磷酸化,抑制蛋白翻譯過程,同時(shí)優(yōu)先翻譯一些特殊蛋白;其三、IRE1α被激活后將通過對(duì)X盒結(jié)合蛋白1(XBP-1)mRNA的加工,使其編碼相關(guān)轉(zhuǎn)錄因子從而促進(jìn)參與ER內(nèi)環(huán)境穩(wěn)態(tài)的相關(guān)基因表達(dá)[4,10,51]。綜上所述,以上3個(gè)信號(hào)通路的激活將分別作用于:1)降低蛋白翻譯過程,緩解蛋白折疊負(fù)荷;2)提高內(nèi)質(zhì)網(wǎng)蛋白折疊能力;3)降解未折疊蛋白等3個(gè)方面,最終緩解內(nèi)質(zhì)網(wǎng)蛋白負(fù)荷。同樣,當(dāng)細(xì)胞無法通過UPR途徑恢復(fù)內(nèi)質(zhì)網(wǎng)蛋白穩(wěn)態(tài),細(xì)胞將走向凋亡[23]。
3.1 內(nèi)質(zhì)網(wǎng)與線粒體途徑細(xì)胞凋亡
線粒體是真核細(xì)胞中普遍存在的最重要的細(xì)胞器之一,同時(shí)也是機(jī)體自由基產(chǎn)生和清除的重要器官,在細(xì)胞代謝過程中發(fā)揮著舉足輕重的作用。此外,線粒體對(duì)細(xì)胞死亡過程的調(diào)節(jié)至關(guān)重要,包括細(xì)胞凋亡與細(xì)胞壞死。細(xì)胞凋亡有兩個(gè)途徑,其中,細(xì)胞內(nèi)凋亡途徑的起始事件為線粒體內(nèi)膜(IMM)兩側(cè)膜電位急劇下降,進(jìn)而誘發(fā)線粒體內(nèi)促凋亡因子釋放,如細(xì)胞色素C[36]。線粒體通透性轉(zhuǎn)換孔(MPTP)是線粒體內(nèi)促凋亡因子得以釋放的必經(jīng)之路(圖1-B),當(dāng)ERs嚴(yán)重延長超過UPR的適應(yīng)性反應(yīng)時(shí),細(xì)胞將啟動(dòng)凋亡程序,其中具體的分子信號(hào)通路并未完全闡明。
3.2 內(nèi)質(zhì)網(wǎng)-線粒體聯(lián)接區(qū)域
ER與線粒體聯(lián)接區(qū)域(MAM)最初被認(rèn)為是線粒體區(qū)域含有ER代謝雜質(zhì)的一個(gè)標(biāo)志,但一些前沿的研究發(fā)現(xiàn),這一區(qū)域的膜及內(nèi)腔分子成分能夠相互混合與交換(圖1-C)。MAM約占整個(gè)線粒體外膜區(qū)域(OMM)的20%,參與內(nèi)質(zhì)網(wǎng)小管融合[9]、線粒體分布[43]以及細(xì)胞器形態(tài)變化的諸多蛋白質(zhì)均為MAM成員或與之關(guān)聯(lián)。例如:胞漿伴侶蛋白GRP75在ER表面鈣通道IP3R與OMM的VDAC之間形成結(jié)構(gòu)上的鏈接,ER-線粒體間隙富含鈣結(jié)合ER伴侶鈣聯(lián)蛋白[53]。此外,MAM區(qū)域還包括線粒體融合蛋白(Mfn-2)[15]、伴侶蛋白、分類蛋白和其它酶類物質(zhì),如磷脂合成酶,直接調(diào)節(jié)脂肪合成與轉(zhuǎn)運(yùn)[22],線粒體與ER之間的脂質(zhì)交換發(fā)生在特定的結(jié)合位點(diǎn),從而促使脂質(zhì)通過疊合翻動(dòng)或其它機(jī)制從一側(cè)直接轉(zhuǎn)移至另外一側(cè)(圖1-D)。
3.3 內(nèi)質(zhì)網(wǎng)應(yīng)激與線粒體功能
ER與線粒體在結(jié)構(gòu)與功能方面的相互作用,使得線粒體對(duì)ERs非常敏感。ERs可通過改變代謝物的轉(zhuǎn)移,如Ca2+[14],或通過應(yīng)激反應(yīng)信號(hào)通路,將信息傳遞至線粒體,直接影響線粒體功能:包括線粒體代謝酶活性、呼吸鏈功能及ATP生成、線粒體融裂、線粒體DNA生物發(fā)生、ROS生成、線粒體質(zhì)量控制等方面[55]?;诩?xì)胞應(yīng)激產(chǎn)生的程度,由ER傳遞至線粒體的應(yīng)激信號(hào)可最終影響細(xì)胞存活質(zhì)量。在ER應(yīng)激的早期適應(yīng)性階段,ER-線粒體交流增強(qiáng),Ca2+在兩個(gè)細(xì)胞器之間轉(zhuǎn)運(yùn)增加,進(jìn)入線粒體的Ca2+流增加[5,30],線粒體中受Ca2+調(diào)節(jié),并參與TCA循環(huán)中的脫氫酶活性改變,從而促進(jìn)線粒體代謝,提高線粒體呼吸及ATP生成。然而,若長期處于ERs將對(duì)線粒體代謝產(chǎn)生負(fù)面影響,降低線粒體呼吸,減弱細(xì)胞ATP水平[5、35]導(dǎo)致內(nèi)質(zhì)網(wǎng)中Ca2+儲(chǔ)備下降,線粒體內(nèi)Ca2+含量增加[50,54]最終使線粒體分裂并開放線粒體通透性轉(zhuǎn)換孔(MPTP),開啟細(xì)胞內(nèi)凋亡信號(hào)通路導(dǎo)致細(xì)胞凋亡。對(duì)于不同的細(xì)胞類型,變化的ER應(yīng)激狀態(tài)還將影響其它線粒體功能,包括線粒體DNA生物發(fā)生[25],呼吸鏈亞基的轉(zhuǎn)錄水平[35]以及影響線粒體ROS等方面。近期研究發(fā)現(xiàn),Bak-/-Bax-/-造血干細(xì)胞經(jīng)過24 h ERs誘導(dǎo)劑衣霉素處理后,細(xì)胞UPR將持久性被激活,同時(shí)伴隨線粒體代謝功能嚴(yán)重下降,提示,線粒體代謝功能受損是造成ER應(yīng)激關(guān)聯(lián)性細(xì)胞死亡的潛在因素[56]。因此,在ERs狀態(tài)下,線粒體-ER相互作用為細(xì)胞能量調(diào)節(jié)提供保障,使細(xì)胞得以適應(yīng)[6]。
圖1 內(nèi)質(zhì)網(wǎng)與線粒體的關(guān)聯(lián)性 (引自:Bravo R. Curr Mol Med,2013[7])Figure 1. The Relationship between Endoplasmic Reticulum and Mitochondria
3.4 內(nèi)質(zhì)網(wǎng)應(yīng)激與線粒體蛋白穩(wěn)態(tài)
線粒體內(nèi)膜及基質(zhì)中含有許多特殊伴侶蛋白分子,以確保線粒體蛋白折疊及復(fù)合物組裝的高效性[11,29],如基質(zhì)Hsp60、mtHsp70伴侶蛋白。線粒體基質(zhì)中ClpXP和LON均為AAA蛋白酶,主要負(fù)責(zé)降解錯(cuò)誤折疊的水溶性蛋白,其中LON是線粒體蛋白質(zhì)穩(wěn)態(tài)的關(guān)鍵調(diào)節(jié)因子,在線粒體生物代謝的多個(gè)方面發(fā)揮重要作用,包括受損線粒體蛋白的降解[1-3]、電子傳遞鏈復(fù)合物IV的組裝[21,27]、降解線粒體轉(zhuǎn)錄因子TFAM調(diào)節(jié)mtDNA轉(zhuǎn)錄與復(fù)制等[39]。當(dāng)細(xì)胞處于中度應(yīng)激狀態(tài)時(shí),線粒體需通過蛋白輸入、折疊以及水解等途徑維持線粒體蛋白穩(wěn)態(tài)環(huán)境。UPR信號(hào)通路之一PERK激酶的激活,可在ER應(yīng)激狀態(tài)下誘導(dǎo)線粒體LON表達(dá)[24]。此外,線粒體非折疊蛋白反應(yīng)(UPRmt)是維持線粒體蛋白穩(wěn)態(tài)的重要機(jī)制[37,40,41]。UPRmt被激活是細(xì)胞內(nèi)部失調(diào)的一種征兆,細(xì)胞將通過這一機(jī)制維持正常的線粒體功能。正常條件下,轉(zhuǎn)錄因子ATFS-1被輸入線粒體,而后在線粒體基質(zhì)中被LON蛋白酶降解,當(dāng)UPRmt被激活時(shí),ATFS-1輸入線粒體受阻,在細(xì)胞質(zhì)中積累到一定程度后被輸入至細(xì)胞核,進(jìn)入細(xì)胞核的ATFS-1將轉(zhuǎn)錄激活UPRmt相關(guān)基因,調(diào)節(jié)線粒體蛋白穩(wěn)態(tài)。
3.5 內(nèi)質(zhì)網(wǎng)應(yīng)激與線粒體質(zhì)量控制
細(xì)胞內(nèi)線粒體數(shù)量處于連續(xù)變化狀態(tài),線粒體質(zhì)量控制將通過自噬作用識(shí)別并篩選排除受損線粒體。ER應(yīng)激誘發(fā)大量線粒體功能損傷可通過線粒體融合、分裂的質(zhì)量控制途徑得以緩解,線粒體融合既通過內(nèi)容物的混合更新大量功能損傷的線粒體,線粒體融合蛋白也可與ER相互作用,促進(jìn)代謝交換從而提高線粒體功能[13,59]。另一方面,線粒體分裂使細(xì)胞分離出功能損傷的線粒體,一旦得以分離,這些線粒體即通過線粒體自噬途徑被泛素化標(biāo)記進(jìn)而降解。線粒體自噬需要一系列自噬相關(guān)特異蛋白,如BNIP3、NIX以及泛素連接酶Parkin等基因, Parkin可選擇性募集受損線粒體,使其通過OMM蛋白的泛素化被標(biāo)記而后降解。ERs時(shí),Parkin可能通過PERK途徑被上調(diào),進(jìn)而增強(qiáng)ER-線粒體相互作用,從而滿足細(xì)胞器內(nèi)Ca2+交換與線粒體生物合成,相反,Parkin缺失將減少ER-線粒體結(jié)合,標(biāo)志ER-線粒體結(jié)合區(qū)存在缺陷[8,52]。Parkin在ERs時(shí)發(fā)揮的諸多作用還包括,參與一些特異性底物被泛素化標(biāo)記后進(jìn)行蛋白酶體降解的過程、參與線粒體自噬清除受損線粒體以及增強(qiáng)應(yīng)激環(huán)境下細(xì)胞生理代謝水平等[57]。
4.1 病理因素
蛋白質(zhì)聚集是導(dǎo)致蛋白質(zhì)錯(cuò)誤折疊或誘發(fā)蛋白結(jié)構(gòu)變異性疾病的最常見因素,這類疾病大多為精神性系統(tǒng)疾病,如阿爾茨海默癥、帕金森綜合征及亨廷頓氏舞蹈癥等,越來越多的研究表明,闡明這些疾病伴隨的ERs機(jī)制對(duì)未來預(yù)防與治療此類疾病具有重大意義[46]。此外,內(nèi)質(zhì)網(wǎng)應(yīng)激現(xiàn)象在與物質(zhì)代謝相關(guān)組織中,如胰島、肝臟[47]、脂肪等,已得到廣泛研究[26,28]。盡管事實(shí)上骨骼肌在很大程度上影響機(jī)體葡萄糖利用,進(jìn)而與許多代謝性疾病密切相關(guān),包括糖尿病、肥胖癥等,然而,與其它代謝器官相比,對(duì)骨骼肌內(nèi)質(zhì)網(wǎng)應(yīng)激的研究一直被忽視。骨骼肌雖具有有限的分泌功能,但因骨骼肌含有大量特異性ER網(wǎng)狀結(jié)構(gòu),即肌質(zhì)網(wǎng)(SR),加之在維持SR管腔Ca2+濃度穩(wěn)態(tài)方面發(fā)揮重要作用,骨骼肌ERs的現(xiàn)象首先被發(fā)現(xiàn)存在于一些肌病中,如I型強(qiáng)直性肌營養(yǎng)不良癥、包涵體肌炎等。肌病患者的肌肉樣本中ER應(yīng)激誘導(dǎo)伴侶蛋白GRP94、鈣網(wǎng)織蛋白表達(dá)顯著增高,以促進(jìn)肌肉的再合成[26,28]。因此,了解骨骼肌ER/SR應(yīng)激機(jī)制在健康、病理肌肉生理中的作用顯得尤為重要。
4.2 運(yùn)動(dòng)訓(xùn)練
內(nèi)質(zhì)網(wǎng)應(yīng)激機(jī)制是骨骼肌在應(yīng)對(duì)內(nèi)環(huán)境變化時(shí)所出現(xiàn)的諸多適應(yīng)性調(diào)節(jié)機(jī)制之一,這一過程可直接影響蛋白合成從而調(diào)節(jié)肌肉質(zhì)量。那么,運(yùn)動(dòng)訓(xùn)練或肌肉收縮是否引發(fā)骨骼肌ERs?一項(xiàng)對(duì)8名男子經(jīng)過200 km長跑前后肌肉活檢研究表明,這種極限運(yùn)動(dòng)的運(yùn)動(dòng)負(fù)荷可激活內(nèi)質(zhì)網(wǎng)應(yīng)激通路[31],骨骼肌Bip和剪切的X盒結(jié)合蛋白1表達(dá)顯著上調(diào)。同樣是過度訓(xùn)練,近期一項(xiàng)研究過度上、下坡跑及無坡度跑訓(xùn)練8周后趾長伸肌、比目魚肌中ER應(yīng)激相關(guān)基因變化情況,發(fā)現(xiàn):過度下坡跑訓(xùn)練8周后,不同類型肌纖維中IRE-1、PERK、真核起始因子α磷酸化水平均顯著增高,而在運(yùn)動(dòng)后2周時(shí)間均恢復(fù)正常,其它組別:過度上坡跑及無坡度跑模型僅對(duì)比目魚肌的ERs蛋白有顯著影響[48]。提示:極限過度運(yùn)動(dòng)可顯著激活ER應(yīng)激相關(guān)信號(hào)通路,這種激活可能對(duì)肌肉造成不同程度的損傷或病理狀態(tài),即部分解釋了過度訓(xùn)練對(duì)機(jī)體帶來的負(fù)面影響,當(dāng)然,這種變化將在恢復(fù)期中逐漸消失,其中的分子機(jī)制有待深入研究。
耐力訓(xùn)練是研究骨骼肌ER應(yīng)激機(jī)制的一種常見運(yùn)動(dòng)模型,在采用耐力訓(xùn)練模型研究骨骼肌內(nèi)質(zhì)網(wǎng)應(yīng)激的過程中,一些研究結(jié)果提示,內(nèi)質(zhì)網(wǎng)應(yīng)激信號(hào)通路的激活可能與線粒體生物發(fā)生存在某種關(guān)聯(lián)。Spiegelman BM研究小組2011年對(duì)PGC-1α特異性基因敲除鼠的研究報(bào)道中,充分證實(shí)了UPR在運(yùn)動(dòng)訓(xùn)練誘發(fā)骨骼肌適應(yīng)性改變中的重要作用,研究發(fā)現(xiàn),過氧化物酶體增殖物激活受體γ輔激活子1α(PGC-1α)可通過輔激活A(yù)TF6α調(diào)節(jié)肌管細(xì)胞與骨骼肌UPR,而PGC-1α在調(diào)節(jié)運(yùn)動(dòng)性骨骼肌線粒體生物發(fā)生中的作用已得到充分證實(shí)[58]。另一項(xiàng)研究,Kim K等人通過不同運(yùn)動(dòng)強(qiáng)度的實(shí)驗(yàn)?zāi)P停瑱z測其對(duì)大鼠骨骼肌ERs相關(guān)基因的影響,發(fā)現(xiàn):經(jīng)過5周的跑臺(tái)訓(xùn)練,高強(qiáng)度運(yùn)動(dòng)組(跑速34 m/min)Bip、ATF4及CHOP等基因表達(dá)水平均顯著低于對(duì)照組及低強(qiáng)度運(yùn)動(dòng)組(跑速20 m/min),同時(shí),PGC-1α mRNA 表達(dá)水平及線粒體解偶聯(lián)蛋白3(UCP3)水平顯著增高[32]。提示:較高運(yùn)動(dòng)強(qiáng)度能夠在誘發(fā)線粒體生物發(fā)生的同時(shí)降低ER應(yīng)激水平,緩解細(xì)胞應(yīng)激狀態(tài)。
此外,有研究提出,骨骼肌ER應(yīng)激是導(dǎo)致肌肉質(zhì)量減少的潛在誘因,一方面,ER應(yīng)激可直接導(dǎo)致肌細(xì)胞凋亡,另一方面,骨骼肌ERs可抑制蛋白合成代謝雷帕霉素靶蛋白復(fù)合體(mTORC1)信號(hào)通路,間接影響肌肉質(zhì)量。隨著年齡的增長,UPR相關(guān)基因表達(dá)下調(diào),將造成ER處于高水平應(yīng)激狀態(tài),因此,適宜的運(yùn)動(dòng)訓(xùn)練可上調(diào)UPR相關(guān)基因,緩解ERs水平,是維持肌肉質(zhì)量調(diào)節(jié)全身代謝水平的新途徑[20]。有研究表明,力量訓(xùn)練也可誘發(fā)骨骼肌ER應(yīng)激,Ogborn DI等人分別對(duì)青年組(21歲左右)和老年組(70歲左右)進(jìn)行1組10次,共4組75%最大力量腿部推蹬和伸展力量訓(xùn)練,運(yùn)動(dòng)訓(xùn)練后3、24、48 h肌肉活檢取大腿股外側(cè)肌,研究發(fā)現(xiàn),力量訓(xùn)練通過激活A(yù)TF6、IRE1α通路誘發(fā)ERs,而PERK通路及CHOP基因表達(dá)并不變化,這些現(xiàn)象不受年齡因素的影響[45]。綜上所述,運(yùn)動(dòng)對(duì)骨骼肌ERs的誘發(fā)機(jī)制十分復(fù)雜,其不但與運(yùn)動(dòng)強(qiáng)度、運(yùn)動(dòng)負(fù)荷、運(yùn)動(dòng)方式密切相關(guān),而且還可能受到鄰近細(xì)胞器功能狀態(tài)的影響。
4.3 其它因素
營養(yǎng)過?;虿蛔阋彩钦T發(fā)骨骼肌ERs的因素,有研究表明,小鼠在經(jīng)過6周高脂膳食(膳食中含70%脂類與不足1%的糖類)喂養(yǎng)后,其比目魚肌、脛骨前肌肉BiP、IRE1α表達(dá)顯著增高,此研究還發(fā)現(xiàn),棕櫚酸可誘導(dǎo)C2C12肌細(xì)胞發(fā)生UPR,同時(shí)降低mTORC1的活性[17-19]。相反,研究發(fā)現(xiàn):小鼠分別饑餓1、2、3天后脛骨前肌和比目魚肌的CHOP及eIF2α表達(dá)無顯著變化,然而,2、3天饑餓使小鼠脛骨前肌BiP表達(dá)水平降低[44]。另一方面,細(xì)胞水平的研究也發(fā)現(xiàn)氧化應(yīng)激環(huán)境與ER的關(guān)系,C2C12細(xì)胞在200μmol H2O2環(huán)境處理4、17 h后BiP水平顯著增高,ERs激活UPR的3個(gè)信號(hào)通路呈現(xiàn)不同的變化趨勢(shì):其中,PERK-ATF4-CHOP信號(hào)通路激活效果最顯著,IRE1α-XBP1s通路次之,ATF6信號(hào)通路幾乎無變化[49]。此外,衣霉素、毒胡蘿卜素是體外實(shí)驗(yàn)中常用的ERs激活劑。
內(nèi)質(zhì)網(wǎng)與線粒體在結(jié)構(gòu)與功能方面的相互作用使得線粒體對(duì)ERs非常敏感。由于UPRER機(jī)制的存在,適度ER應(yīng)激狀態(tài)并非對(duì)細(xì)胞造成損害,ERs可通過改變代謝物的轉(zhuǎn)移,如Ca2+,或通過應(yīng)激反應(yīng)信號(hào)通路,將信息傳遞至線粒體,調(diào)節(jié)線粒體功能(圖2)。
圖 2 正常及ERs狀態(tài)下的線粒體與內(nèi)質(zhì)網(wǎng)Figure 2. Mitochondria and Endoplasmic Reticulum under Normal and ER Stress
因此,在適度ERs狀態(tài)下,線粒體-ER相互作用為細(xì)胞能量調(diào)節(jié)提供保障,使細(xì)胞得以適應(yīng)。相反,當(dāng)細(xì)胞處于重度ERs狀態(tài),即錯(cuò)誤蛋白聚集水平超過UPRER調(diào)節(jié)蛋白穩(wěn)態(tài)能力時(shí),ERs將導(dǎo)致線粒體受損,細(xì)胞凋亡。 運(yùn)動(dòng)訓(xùn)練作為誘發(fā)骨骼肌ERs的因素之一,可能在調(diào)節(jié)線粒體功能的同時(shí)優(yōu)化ERs水平,通過提高UPRER調(diào)節(jié)蛋白穩(wěn)態(tài),其中的分子機(jī)制還有待進(jìn)一步研究。
[1] BENDER,T. et al. The role of protein quality control in mitochondrial protein homeostasis under oxidative stress[J]. Proteomics,2010,10:1426-1443.
[2] BERTOLOTTI A,ZHANG Y,HENDERSHOT L M,et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response[J]. Nat Cell Biol,2000,2:326-332.
[3] BOTA D A,DAVIES,K J. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism[J]. Nat Cell Biol,2002,4:674-680.
[4] BOYCE M,YUAN J. Cellular response to endoplasmic reticulum stress:a matter of life or death[J]. Cell Death Differ,2006,13:363-373.
[5] BRAVO,R. et al. Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress[J]. Cell Sci,2011,124:2143-2152.
[6] BRAVO R. Endoplasmic reticulum:ER stress regulates mitochondrial bioenergetics[J]. Int J Biochem Cell Biol,2012,44(1):16-20.
[7] BRAVO R. Cell death and survival through the endoplasmic reticulum- mitochondrial axis[J]. Curr Mol Med,2013,13(2):317-329.
[8] BOUMAN,L. et al. Parkin is transcriptionally regulated by ATF4:evidence for an interconnection between mitochondrial stress and ER stress[J]. Cell Death Differ,2011,18:769-782.
[9] BUI M,GILADY SY,F(xiàn)ITZSIMMONS REB,et al. Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM)properties[J]. J Biol Chem,2010,285:31590-31602.
[10] CALFON M,ZENG H,URANO F,et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature,2002,415:92-96.
[11] CHACINSKA A,KOEHLER C M,MILENKOVIC D,et al.“Importing Mitochondrial Proteins:Machineries and Mechanisms” [J]. Cell,2009,138:628-644.
[12] CHAKRABARTI A,CHEN A W,VARNER J D. A review of the mammalian unfolded protein response[J]. Biotechnol Bioeng,2011,108(12):2777-2793.
[13] CHAN,D C. Fusion and fission:interlinked processes critical for mitochondrial health[J]. Annu Rev Genet,2012,46:265-287.
[14] CSORDAS G,VARNAI P,GOLENAR T,et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface[J]. Mol Cell,2010,39:121-132.
[15] DE BRITO O M,SCORRANO L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria[J]. Nature,2008,456:605-610.
[16] DECUYPERE JP,MONACO G,BULTYNCK G,et al. The IP(3)receptor–mitochondria connection in apoptosis and autophagy[J]. Biochim Biophys Acta 2011,1813:1003-1013.
[17] DELDICQUE L,CANI P D,PHILP A,et al. The unfolded protein response is activated in skeletal muscle by high-fat feeding:potential role in the downregulation of protein synthesis[J]. Am J Physiol Endocrinol Metab,2010,299(5):E695-705.
[18] DELDICQUE L,BERTRAND L,PATTON A,et al. ER stress induces anabolic resistance in muscle cells through PKB-induced blockade of mTORC1[J]. PLoS One,2011,6:e20993:1-9.
[19] DELDICQUE L,HESPEL P,F(xiàn)RANCAUX M. ER stress in skeletal muscle:origin and metabolic consequences[J]. Exerc Sport Sci Rev,2012,40(1):43-49.
[20] DELDICQUE L. Endoplasmic reticulum stress in human skeletal muscle:any contribution to sarcopenia?[J]. Front Physiol,2013,4:236.
[21] FUKUDA,R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells[J]. Cell,2007,129:111-122.
[22] GIORGI C,DE STEFANI D,BONONI A,et al. Structural and functional link between the mitochondrial network and the endoplasmic reticulum[J]. Int J Biochem Cell Biol,2009,41:1817-1827.
[23] HAERI M,KNOX BE. Endoplasmic reticulum stress and unfolded protein response pathways:Potential for treating age-related retinal degeneration[J]. J Ophthalmic Vis Res,2012,7(1):45-59.
[24] HAN,J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death[J]. Nat Cell Biol,2013,15:481-490.
[25] HENG M. et al. Sensing endoplasmic reticulum stress by protein kinase RNA-like endoplasmic reticulum kinase promotes adaptive mitochondrial DNA biogenesis and cell survival via heme oxygenase-1/carbon monoxide activity[J]. FASEB J,2012,26:2558-2568.
[26] HETZ C,MARTINON F,RODRIGUEZ D,et al. The unfolded protein response:integrating stress signals through the stress sensor IRE1alpha[J]. Physiol Rev,2011,91:1219-1243.
[27] HORI O. et al. Transmission of cell stress from endoplasmic reticulum to mitochondria:enhanced expression of Lon protease[J]. Cell Biol,2002,157:1151-1160.
[28] HOTAMISLIGIL G S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease[J]. Cell,2010,140:900-917.
[29] JENG W,LEE S,SUNG N,et al. Molecular chaperones:guardians of the proteome in normal and disease states[J]. F1000Res,2015,15:1-11.
[30] KAUFMAN R J,MALHOTRA J D. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics[J]. Biochim Biophys Acta,2014,1843(10):2233-2239.
[31] KIM H J,JAMART C,DELDICQUE L,et al. Endoplasmic reticulum stress markers and ubiquitin-proteasome pathway activity in response to a 200-km run[J]. Med Sci Sports Exerc,2011,43:18-25.
[32] KIM K,KIM YH,LEE SH,et al. Effect of exercise intensity on unfolded protein response in skeletal muscle of rat[J]. Korean J Physiol Pharmacol,2014,18(3):211-216.
[33] KOHNO K. How transmembrane proteins sense endoplasmic reticulum stress[J]. Antioxid. Redox Signal,2007,9:2295-2303.
[34] KOHNO K. Stress-sensing mech- anisms in the unfolded protein response:similarities and differences between yeast and mammals[J]. Biochem,2010,147:27-33.
[35] KOO,HJ. et al. Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells[J]. Neurosignals,2012,20:265-280.
[36] KROEMER G,GALLUZZI L,BRENNER C. Mitochondrial membrane permeabilization in cell death[J]. Physiol Rev,2007,87:99-163.
[37] LIU Y,SAMUEL BS,BREEN PC,et al. Caenorhabditis elegans pathways that surveil and defend mitochondria[J]. Nature,2014,508(7496):406-10.
[38] MARCHI S,PATERGNANI S,PINTON P. The endoplasmic reticulum–mitochondria connection:One touch,multiple functions[J]. Biochim Biophys Acta,2014,1837(4):461-469.
[39] MATSUSHIMA,Y. et al. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM)[J]. Proc Natl Acad Sci USA,2010,107:18410-18415.
[40] NARGUND AM,PELLEGRINO MW,F(xiàn)IORESE CJ,et al. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation[J]. Science,2012,3,337(6094):587-590.
[41] NARGUND AM,F(xiàn)IORESE CJ,PELLEGRINO MW,et al. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt)[J]. Mol Cell,2015,58(1):123-33.
[42] SCHRODER M,KAUFMAN R J. The mammalian unfolded protein response[J]. Annu Rev Biochem,2005,74:739-789.
[43] MISKO A,JIANG S,WEGORZEWSKA I,et al. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex[J]. J Neurosci,2010,30:4232-4240.
[44] OGATA T,OISHI Y,HIGUCHI M,et al. Fasting-related autophagic response in slow-and fast-twitch skeletal muscle[J]. Biochem Biophys Res Commun,2010,394:136-140.
[45] OGBORN D I,MCKAY B R,CRANE J D,et al. The unfolded protein response is triggered following a single,unaccustomed resistance-exercise bout[J]. Am J Physiol Regul Integr Comp Physiol,2014,15,307(6):R664-669.
[46] OGEN-SHTERN N,BEN DAVID T,LEDERKREMER G Z. Protein aggregation and ER stress[J]. Brain Res. 2016,pii:S0006-8993(16):30183-4.
[47] PASSOS E,ASCENS?O A,MARTINS M J,et al. Endoplasmicreticulum stress response in non-alcoholic steatohepatitis:The possible role of physical exercise[J]. Metabolism,2015,64(7):780-792.
[48] PEREIRA B C,DA ROCHA A L,PINTO A P,et al. Excessive eccentric exercise-induced overtraining model leads to endoplasmic reticulum stress in mice skeletal muscles[J]. Life Sci,2016,145:144-151.
[49] PIERRE N,BARBé C,GILSON H,et al. Activation of ER stress by hydrogen peroxide in C2C12 myotubes[J]. Biochem Biophys Res Commun,2014,450(1):459-463.
[50] RIZZUTO,R. et al. Mitochondria as sensors and regulators of calcium signaling[J]. Nat Rev Mol Cell Biol,2012,13:566-578.
[51] SCHR?DER M. Endoplasmic reticulum stress responses[J]. Cell Mol Life Sci,2008,65:862-894.
[52] SUN,X. et al. ATF4 protects against neuronal death in cellular Parkinson’s disease models by maintaining levels of parkin[J]. Neurosci,2013,33:2398-2407.
[53] SZABADKAI G,BIANCHI K,VARNAI P,et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+channels[J]. J Cell Biol,2006,175:901-911.
[54] URRA H. et al. When ER stress reaches a dead end[J]. Biochim Biophys Acta,2013,1833:3507-3517.
[55] VANCE J E. MAM (mitochondria-associated membranes) in mammalian cells:Lipids and beyond[J]. Biochim Biophys Acta,2014,1841(4):595-609.
[56] WANG X,ENO CO,ALTMAN B J,et al. ER stress modulates cellular metabolism[J]. Biochem J,2011,435:285-296.
[57] WINKLHOFER,K F. Parkin and mitochondrial quality control:toward assembling the puzzle[J]. Trends Cell Biol,2014,24:332-341.
[58] WU J,RUAS J L,ESTALL J L,et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex[J]. Cell Metab,2011,2,13(2):160-9.
[59] YOULE,R J,VAN DER BLIEK A M. Mitochondrial fission,fusion,and stress[J]. Science,2012,337:1062-1065.
Regulation of Exercise-induced ER Stress and Mitochondrial Function in Skeletal Muscle
The endoplasmic reticulum (ER) is an intracellular Ca2+reservoir organelle whose primary function is protein synthesis,folding and processing,with strong homeostasis system,ER stress is induced by several physiological or pathological stimuli that change the homeostasis of the cell. A consequence of the physical,like MAM structure,and functional interaction between ER and mitochondria is that mitochondria function is sensitive to ER stress. ER stress can be transmitted to mitochondria by alterations in the transfer of metabolites such as Ca2+or by stress-responsive signaling pathways,directly influencing mitochondrial functions:Including mitochondrial metabolic enzyme activity,respiratory chain function,ATP production,mitochondrial movement,mtDNA biogenesis and mitochondrial quality control. In skeletal muscle,ER stress first was observed in myopathies,recently,it was reported that ER stress is activated by doing exercise,exercise may paly an role in regulating mitochondrial function,optimizing ER stress level and maintaining protein homeostasis in skeletal muscle,the molecular mechanism of this process needs to be further investigated.
skeletal muscle;endoplasmic reticulum stress;mitochondria;sport exercise
1002-9826(2017)04-0091-06
10. 16470/j. csst. 201704013
G804.2
A
2016-05-23;
2017-05-20
江蘇高校青藍(lán)工程資助(優(yōu)秀青年骨干教師);南京體育學(xué)院院級(jí)課題重大項(xiàng)目(YJ1601)。
張媛,女,講師,博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)性骨骼肌線粒體調(diào)控,Tel:(025)84755226,E-mail:beibei82506@126.com。
1. 南京體育學(xué)院 運(yùn)動(dòng)健康科學(xué)系,江蘇 南京 210014;
2. 華東師范大學(xué) 體育與健康學(xué)院,上海 200241 1. Nanjing Sports Institute,Nanjing 210014,China;2. East China Normal University,Shanghai 200241,China.