• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Eff ects of Shape of Crow ders on Dynam ics of a Polym er Chain Closure

    2017-07-05 13:06:15BaichengXiaDonghuaZhangJiajunWangWanchengYu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Bai-cheng XiaDong-hua ZhangJia-jun WangWan-cheng Yu

    CAS Key Laboratory of Soft Matter Chem istry,Department of Polymer Science and Engineering, University of Science and Technology ofChina,Hefei230026,China

    Eff ects of Shape of Crow ders on Dynam ics of a Polym er Chain Closure

    Bai-cheng Xia,Dong-hua Zhang,Jia-jun Wang,Wan-cheng Yu?

    CAS Key Laboratory of Soft Matter Chem istry,Department of Polymer Science and Engineering, University of Science and Technology ofChina,Hefei230026,China

    Using 3D Langevin dynam ics simu lations,we investigate the eff ects of the shape of crowders on the dynam ics of a polym er chain closure.The chain closure in spherical crowders is dom inated by the increasedmedium viscosity so that itgetsslowerw ith the increasing volume fraction of crowders.By contrast,the dynam ics of chain closure becomes very comp licated w ith increasing volum e fraction of crowders in spherocylindrical crowders.Notably,themean closure tim e is found to have a dramatic decrease at a range of volum e fraction of crowders 0.36?0.44.We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dram atic decrease in them ean closure tim e.

    Loop formation,Crowding eff ects,Shape polydispersity

    I.INTRODUCTION

    The processwhen twom onom ersseparated by a large distance along the polymer chain come close enough to start interacting w ith each other is called loop formation.Loop formation of a polym er chain has been studied w idely by experiments,theory,and simulations due to itsgreat biological relevance[1–45].For instance,the loop formation of DNA in the cell nucleus induced by transcription factor proteinsm akes sites of DNA separated by severalμm on the geneticm ap be in molecu lar contact[1].Another exam ple is the contact formation ofpolypeptide chainswhich isconsidered asa basic step of protein folding[2].Apart from its prevalence in biological system s,loop formation also exists w idely in chem ical system s,such as in telechelic polymers[3]and in carbon nanotudes[4].

    So far,many specific aspects affecting the dynamics of a chain closure have been discussed,including the chain stiff ness[5–7],the Cou lomb interactions[8], the confinem ent eff ects[9],the com p lex chain relaxation [10,11],and the excluded volume effects[12–17].Due to its close biological relevance,how loop formation occurs in realistic cellular environments is an intriguing issue.The cellular environment in living biological cells is highly crowded and fi lled w ith a plenty of biomacromolecules,such as proteins,ribosomes,lipids,and cytoskeleton fibers.The volum e fraction of these contents can be as large as 40%.It has been recognized in recent years that the crowded cellular environments could affectmany biological processes,including gene expres-sion and protein folding,etc.It is w ithout doubt that an investigation about the dynam ics of a polym er chain closure in crowded environments is of significant importance and meaning.Indeed,severaladvances in this aspect have been achieved recently[41–45].Toanet al.[43]have studied the looping kinetics of self-avoiding polymers in crowded media and found that looping is entropically aided by the dep letion effect while the increased friction im pedes the diff usive encounter of the chain ends.The interp lay of the dep letion eff ect and the increased friction makes the looping of short chains slower and that of long chains faster[43].Lately,Shinet al.[44]have reported how the crowder size aff ects the kinetics of polymer looping and showed that the loop formation gets slower in small crowderswhile it is accelerated in big crowders.M ore recently,they have investigated the polymer looping in crowded solutions of active particles and found that the presence of active particles yields a higher eff ective temperature of the bath so that the looping is facilitated[45].

    It has been suggested by Kondratet al.[46]that the polydispersity of the size of crowders has a striking effect on the diff usivity ofmacromolecules.At the same volum e fraction of crowders,the chain diff usivity was shown to be slower w ith an increasing content of the small crowder in the composition[46].Meanwhile, Kanget al.[47]reported that the polydispersity of the shape of crowders aff ects the conform ational propertiesof sem iflexible chainssignificantly.Obviously,the chain diffusivity and the chain conformational properties are closely related to the dynam ics of a chain closure.However,up to now,how the polydispersity of the size and the shape of crowders affect the dynamics of a chain closure remains unclear.Therefore,by using three-dim ensional(3D)Langevin dynam ics simulations,we investigate in this work the dynam ics of achain closure in crowded environments where two different shapes of crowders,i.e.,the spherical and spherocylindrical crowders are introduced into the system. Note that the eff ects of the polydispersity of the size of crowders on the dynam ics of a chain closure is not the sub ject of the present work.

    II.MODEL AND M ETHODS

    The polymer in the simulations ismodeled asa beadspring chain[48].Each bead in the chain represents a segment.The finite extension nonlinear elastic(FENE) potential is applied between neighboring beads along the chain to achieve their connections described by the spring.Here,the FENE potential is given as

    whereris the distance between consecutive beads,kis the spring constant andR0is themaximum allowed separation between connected beads.The repulsive nonbonded interactions between chain beads aremodeled by the truncated Lennard-Jones(LJ)potential,namely theWeeks-Chand ler-Andersen(WCA)potential[49]

    Here,σ=1 is the diameter of a chain bead,ris the distance between beads,andε=1 is the interaction strength between beads.

    In order to m im ic the crowding environments in realistic cells,crowders w ith different shapes are introduced into the cubic simulation box of a sizeL0=15σ. As shown in FIG.1,two diff erent shapes of crowders are considered in the present work,i.e.,spherical(S-type)crowders and spherocylindrical(SC-type)crowders.The diameter of a S-type crowder isσ.The SC-type crowders are formed by connecting 5 spherical crowders together through the above FENE potential and a bending potential between successive bonds is app lied

    Here,θis the anglebetween adjacent bond vectorsw ith itsequilibrium valueθ0being set to beπ,andκ=1200 is the bending constant.Therefore,the SC-type crowder in our simulations can hard ly bend and behave like a rod.The interactions between chains beads and two kinds of crowders are purely repulsive,which can also be described by the aboveWCA potential.

    In thesimulations,themotionsof chain beads,S-type crowders and beads in SC-type crowders are described by the Langevin equation[50]:

    FIG.1 Schem atic illustration of the spherical and spherocylindrical crowders used in the simulations.The diameter of the spherical crow der isσ,and the spherocylindrical crowder is constructed by connecting 5 spherical crow ders.

    Initially,a polymer chain of the lengthN=20 and a set number of crowdersNcare introduced into a cubic simulation box of a much larger sizeL=10L0.Ncis fi rst estimated according to a pre-specified volume fraction of crowders?0and then obtained by rounding.In this way,the p lacement of crowders becomes much easier.Note that the periodic boundary conditions are app lied in all directions.Then,the simulation box begins to contractgradually till itssizeequals toL0. During the contraction process,the thermal relaxation of the chain and crowders described by the Langevin thermostat proceedssimultaneously.As the contraction process comp letes,the thermal relaxation continues for 5×103tLJ.To ensure suffi cient equilibration of the system,we have calculated the autocorrelation function of the end-to-end vectorc(t),

    FIG.2 The autocorrelation function of the end-to-end vector of a polym er chain in SC-type crowdersc(t)as a function of the timetunder three diff erent volume fractions of crow ders?=0,0.36,and 0.45.The solid lines are the linear fi ttings to the data.

    Here,R(t)and R(0)is the end-to-end vector at timetand 0,respectively.c(t)is an exponential decay function of the timet.By fi ttingc(t)-tcurves at a range ofc(t)=[1,e?2]in a sem ilogarithm ic p lot,the autocorrelation tim eτacould be obtained from the negative recip rocals of the slopes of fi tting linear lines directly. Asshown in FIG.2,theautocorrelation timeτaat?=0, 0.36 and 0.45 is 37,439,and 690,respectively.Theseτaaremuch shorter than the thermal relaxation time 5×103tLJin the simulations so that the the system is actually equilibrated even for the highest volume fraction of crowders?=0.45 we have studied.W ith all of these done,the chain dynam ics ismonitored till its two end segments are w ithin a capture radiusa=2.5σ,i.e., a closure event com p letes.The closure tim etcis identified w ith the fi rst passage time of the searching process of the two end segments.Each datum point reported in thiswork is derived from averaging over 2000 independent runs so as to reduce statistical errors.Them ean closure timeτcis an average of 2000 closure timestc.

    III.RESULTS AND DISCUSSION

    The process of a polymer chain closure is a conform ational transition from the states that the chain w ith an end-to-end distanceRee>ato the stateRee=a.In realistic cells,the conformational transitionsofbiopolymers,such as proteins,take place in crowded environm ent.The presence of crowders leads to an increased m edium viscosity.M eanwhile,non-ignorable dep letion attractions between chain segmentsemerge.Obviously, the increased medium viscosity im pedes the contact of the two end beads of the chain as its conform ational transition could be considered as a diff usive process of barrier crossing according to the K ramers theory[53]. However,the dep letion attractions com press the con form ationalspace of the chain and thus facilitate the chain closure.The interplay of these two favorable and unfavorable factors for the chain closure process resulting from the crowding eff ects determ ines how the dynamics of chain closure depends on the volume fraction of crowders?.

    FIG.3 Dependence of themean closure timeτcon the volum e fraction of crow ders?.Here,the crow ders have two diff erent shapes,i.e.,the S-type and SC-type crowders.

    It hasbeen suggested by Shinet al.[44]that the size of crowders could determ ine the outcome of this interp lay.Specifically,the chain closure gets slower in small crowders as the increased medium viscosity dom inates; while it becomes faster in big crowders due to the prevailing con finem ent eff ects.We noted that the shape of crowders could aff ect the conformational transitions of sem iflexible polymer chains significantly[47].For flexible chains,this factor should also p lay an im portant role in the conform ational transitions of chains and the dynam ics of chain closure investigated here.Therefore, we have performed a set of simulation contrast tests to exam inehow theshapeof crowdersaffects thedynam ics of chain closure.

    The core result of this work is presented in FIG.3. W hen the crowders in the system are spherical,the mean closure timeτcincreasesmonotonically w ith the increasing volume fraction of crowders?.This observation is due to the dom inating increased medium viscosity during the chain closure and is consistent w ith the work of Shinet al.[44].By comparison,for SC-type crowders,the dynam icsof chain closure getsmuch more com p licated as?increases and can be roughly divided into four dynam ic regim es.For?≤0.08,a slight decline inτcis observed.W ith a further increase in?,τcincreases sharp ly till?=0.36.A fterwards,a dramatic decrease inτcem erges and the chain closure at?=0.44 iseven faster than that at?=0.Finally,a sharp increase inτcappears again.

    The com p licated dynam ic behaviors of chain closure proceeding in SC-type crowders reflect the comp lexity of the interp lay between the unfavorable increased medium viscosity and the favorable com pressed conformational space in this case.The strength of the dep letion attractions induced by the presence of S-type crowders is≈?kBT/σ2.However,this strength is≈?PkBT/σ2for SC-type crowders w ithPbeing the length of SC-type crowders[47].Therefore,a polymer chain in SC-type crowders is likely to bemore com pact than the one in S-type crowders at the same?.As shown in FIG.4,themean squared end-to-end distance of a chain in SC-type crowders?Ree?is always smaller than that of a chain in S-type crowders at the same?. W hen the increased m edium viscosity induced by the presence of crowders is not very striking at low?,thesmaller?Ree?of a chain in SC-type crowders accounts for the slight decline inτc.As?increases further,the increased m edium viscosity dom inates the dynam ics of chain closure so that a sharp increase inτcis observed. In contrast to the gradual decrease in?Ree?of a chain in S-type crowders at the whole range of?we have m easured,the chain in SC-type crowders undergoes a dramatic decrease in its size at?=0.36?0.44 as p lotted in FIG.4.This observation provides a phenomenological exp lanation about the significantly accelerating chain closure at the corresponding range of?.However, what is the underlying physical origin of the dramatic decrease in?Ree?at?=0.36?0.44?

    FIG.4 Themean squared end-to-end distance of a polymer chain?Ree?as a function of the volum e fraction?of two kinds of shapes of crowders.

    Unlike the isotropic S-type crowders,the SC-type crowders in this work have an aspect ratioδ=P/σ≈5 and are highly anisotropic.According to the Onsager theory[54],the rod-like SC-type crowdersmay undergo an isotropic to nem atic(I-N)transition w ith increasing?.To clarify whether theI-Ntransition would occur as?increases to a certain range,we have calculated the nematic order parameter of the SC-type crowders which is defined as

    whereθiis the orientational angle of theith SC-type crowder.In the simulations,the nematic order parameterSis calculated by solving the largest eigenvalue of the orderingmatrix Q.Q is defined in the term s of the orientations of the crowder axes ui[55]

    Here I is theunit tensor.The valueof thenematic order parameterSis close to zero in the isotropic phase,while it approaches to one in the nematic phase.

    FIG.5 The nematic order parameterSof SC-type crowders as a function of?.

    As shown in FIG.5,an initial decrease inSfollowed by a stab le value ofSis observed due to a sm all quantity of SC-type crowders.However,Sincreases dramatically as?≥0.32 which is indicative of theI?Ntransition.Concom itantly,the polym er chain is confined among SC-type crowders so that a sharp decrease in its?Ree?occurs.This sim ilar caging effect on a polymer chain has also been reported by Shinet al.[44].The diff erence lies in that the caging eff ect here is a result of theI-Ntransition of SC-type crowders,while in the work of Shinet al.[44],this effect is just caused by the size of crowders.In addition,both the strength of the dep letion attraction induced by SC-type crowders and their excluded volume interactions depend on the size of a SC-type crowder.If the size of themonomer of a SC-type crowder decreases,the strength of the dep letion attraction is expected to get enhanced,while the excluded volume interactions isweakened.As a consequence,therem ight be amore obvious decrease inτcat low?,and the accelerating eff ect of the chain closure due to theI-Ntransition of SC-type crowders at high?m ight be less pronounced.Nonetheless,the four dynam ic regimesof chain closure that proceeds in SC-type crowderswould be retained.

    IV.CONCLUSIONS

    We have investigated the eff ects of the shape of crowders on the dynam ics of a polymer chain closure by using 3D Langevin dynam ics simulations in the present work.We show that the chain closure in spherical crowders gets slower w ith the increasing volum e fraction of crowders?,which is sim p ly due to the dom inating increased medium viscosity.By contrast,the dynam ics of chain closure becomesvery comp licated w ith increasing?in spherocylindrical crowders.Notably,them ean closure timeτcis found to have a dram atic decrease at a range of?=0.36?0.44 in this case.The superficial reason is the much more rapid decrease in the mean squared end-to-end distance of a chain in spherocylindrical crowders at this range of?com pared w ith the case of spherical crowders.By calculating the nematic order parameterSof spherocylindrical crowders, we find that the crowders in the system undergo an isotropic to nematic transition w ith increasing?.It isthe occurrence of this transition that gives rise to the striking caging effects suffered by the polymer chain.In view of the com p lexity of the crowded cellu lar environm ents,our resultshere are ofgreat relevance to the loop formation of biopolymers in realistic cells.

    V.ACKNOW LEDGM ENTS

    This work is supported by the Fundam ental Research Funds for the Central Universities of China (No.WK 2060200020)and the China Postdoctoral Science Foundation(No.2015M 581998).

    [1]J.A llem and,S.Cocco,N.Douarche,and G.Lia,Eur. Phys.J.E 19,293(2006).

    [2]L.Lapidus,W.Eaton,and J.Hofrichter,Proc.Natl. Acad.Sci.USA 97,7220(2000).

    [3]Y.Sheng,P.Hsu,J.Z.Y.Chen,and H.Tsao,Macrom olecu les 37,9257(2004).

    [4]M.Sano,A.Kam ino,J.Okamura,and S.Shinkai,Science 293,1299(2001).

    [5]S.Jun,J.Bechhoefer,and B.Ha,Europhys.Lett.64, 420(2003).

    [6]A.Dua and B.Cherayil,J.Chem.Phys.116,399 (2002).

    [7]R.A fra and B.Todd,J.Chem.Phys.138,174908 (2013).

    [8]J.Stam p le and I.Sokolov,J.Chem.Phys.114,5043 (2001).

    [9]P.Bhattacharyya,R.Sharma,and B.Cherayil,J. Chem.Phys.136,234903(2012).

    [10]I.Sokolov,Phys.Rev.Lett.90,080601(2003).

    [11]T.Gu′erin,O.B′enichou,and R.Voituriez,Nat.Chem. 4,568(2012).

    [12]A.Rey and J.Freire,Macromolecu les 24,4673(1991).

    [13](a)B.Friedm an and B.O’Shaughnessy,Phys.Rev.A 40,5950(1989); (b)B.Friedman and B.O’Shaughnessy,Europhys.Lett. 23,667(1993); (b)B.Friedman and B.O’Shaughnessy,Macrom olecu les 26,4888(1993); (c)B.Friedman and B.O’Shaughnessy,Macrom olecu les 26,5726(1993).

    [14]A.Pod telezhnikov and A.Vologodskii,M acrom olecules 30,6668(1997).

    [15]M.O rtiz-Repiso,J.Freire,and A.Rey,M acrom olecules 31,8356(1998).

    [16]J.K im and S.Lee,J.Chem.Phys.121,12640(2004).

    [17]J.K im,W.Lee,J.Sung,and S.Lee,J.Phys.Chem.B 112,6250(2008).

    [18](a)G.W ilem ski and M.Fixm an,J.Chem.Phys.60, 866(1974); (b)G.W ilem ski and M.Fixm an,J.Chem.Phys.60, 878(1974).

    [19]M.Doi,Chem.Phys.9,455(1975).

    [20]A.Szabo,K.Schulten,and Z.Schulten,J.Chem.Phys. 72,4350(1980).

    [21]A.Ansari,C.Jones,E.Henry,J.Hofrichter,and W. Eaton,Science 256,1796(1992).

    [22]H.Neuweiler,M.L¨ollm ann,S.Doose,and M.Sauer,J. M ol.Biol.365,856(2007).

    [23]A.M¨oglich,F.K rieger,and T.K iefhaber,J.Mol.Biol. 345,153(2005).

    [24]M.Buscaglia,L.Lapidus,W.Eaton,and J.Hofrichter, Biophys.J.91,276(2006).

    [25]J.Fern′andez,A.Rey,J.Freire,and I.de Pi′erola, Macromolecules 23,2057(1990).

    [26]S.Chan and K.D ill,J.Chem.Phys.90,492(1989).

    [27]P.Debnath and B.Cherayil,J.Chem.Phys.120,2482 (2004).

    [28]N.Toan,G.M orrison,C.Hyeon,and D.Thirum alai, J.Phys.Chem.B 112,6094(2008).

    [29]J.Z.Y.Chen,H.Tsao,and Y.Sheng,Phys.Rev.E 72,031804(2005).

    [30]D.Doucet,A.Roitberg,and S.Hagen,Boiphys.J.92, 2281(2007).

    [31]I.Yeh and G.Hummer,J.Am.Chem.Soc.124,6563 (2002).

    [32]T.Uzawa,T.Isoshima,Y.Ito,K.Ishimori,and D. M akarov,and K.Plaxco,Boiphys.J.104,2485(2013).

    [33]W.Yu and K.Luo,Sci.China Chem.58,689(2015).

    [34]W.Yu and K.Luo,J.Chem.Phys.142,124901(2015).

    [35]D.Sarkar,S.Thakur,Y.Tao,and R.Kapral,Soft M atter 10,9577(2014).

    [36]R.Everaers and A.Rosa,J.Chem.Phys.136,014902 (2012).

    [37]A.Am itai,I.Kupka,and D.Holcman,Phys.Rev.Lett. 109,108302(2012).

    [38]A.Am itai and D.Holcman,Phys.Rev.Lett.110, 248105(2013).

    [39]L.Lapidus,P.Steinbach,W.Eaton,A.Szabo,and J. Hofrichter,J.Phys.Chem.B 106,11628(2002).

    [40]H.Neuweiler,A.Schulzn,M.B¨ohm er,J.Enderlein,and M.Sauer,J.Am.Chem.Soc.125,5324(2003).

    [41]O.Stiehl,K.Weidner-Hertram p f,and M.Weiss,New J.Phys.15,113010(2013).

    [42]J.Shin,A.G.Cherstvy,and R.M etzler,ACS M acro Lett.4,202(2015).

    [43]N.Toan,D.M arenduzzo,P.Cook,and C.M icheletti, Phys.Rev.Lett.97,17830(2006).

    [44]J.Shin,A.G.Cherstvy,and R.Metzler,Soft Matter 11,472(2015).

    [45]J.Shin,A.G.Cherstvy,W.K.K im,and R.M etzler, New J.Phys.17,113008(2015).

    [46]S.Kondrat,O.Zimm erm ann,W.W iechert,and E.von Lieres,Phys.Biol.12,046003(2015).

    [47]H.Kang,N.M.Toan,C.Hyeon,and D.Thirum alai,J. Am.Chem.Soc.137,10970(2015).

    [48]K.K rem er and G.G rest,J.Chem.Phys.92,5057 (1990).

    [49]J.D.Weeks,D.Chand ler,and H.C.Andersen,J. Chem.Phys.54,5237(1971).

    [50]M.P.A llen and D.J.Tildesley,Computer Simulation of LiquidsNew York:Oxford University Press,(1987).

    [51]D.Chand ler,Introduction to M odern Statistical M echanics,New York:Oxford University Press,(1987).

    [52]D.L.Erm ak and H.Buckholz,J.Com put.Phys.35, 169(1980).

    [53]P.H¨anggi,P.Talkner,and M.Borkovec,Rev.M od. Phys.62,251(1990).

    [54]L.Onsager,Ann.N.Y.Acad.Sci.51,627(1949).

    [55]S.C.M cG rother,D.C.W illiam son,and G.Jackson,J. Chem.Phys.104,6755(1996).

    ceived on March 1,2017;Accepted on April 17,2017)

    ?Author to whom correspondence shou ld be addressed.E-m ail: yw cheng@ustc.edu.cn

    少妇粗大呻吟视频| 三级毛片av免费| 国产男人的电影天堂91| 亚洲自偷自拍图片 自拍| 男人舔女人的私密视频| 国产精品二区激情视频| 久久久久久久久久久久大奶| 国产成人欧美在线观看 | 国产野战对白在线观看| 秋霞在线观看毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 纯流量卡能插随身wifi吗| 老汉色∧v一级毛片| 97人妻天天添夜夜摸| 秋霞在线观看毛片| 久久久久久久大尺度免费视频| 国产无遮挡羞羞视频在线观看| 婷婷成人精品国产| 另类精品久久| 国产欧美日韩一区二区三区在线| www.自偷自拍.com| 三上悠亚av全集在线观看| 女人高潮潮喷娇喘18禁视频| avwww免费| 久久久精品免费免费高清| 久久久水蜜桃国产精品网| 99国产综合亚洲精品| 亚洲精品日韩在线中文字幕| 一区二区av电影网| 午夜激情久久久久久久| 男女国产视频网站| 日本av手机在线免费观看| 91精品伊人久久大香线蕉| 777久久人妻少妇嫩草av网站| 午夜两性在线视频| 亚洲一区中文字幕在线| 一本综合久久免费| 色老头精品视频在线观看| 亚洲欧美激情在线| 亚洲 国产 在线| 国产在线观看jvid| 久久精品aⅴ一区二区三区四区| 久热这里只有精品99| 欧美变态另类bdsm刘玥| 亚洲精品粉嫩美女一区| 国产一卡二卡三卡精品| 99精国产麻豆久久婷婷| 最近最新免费中文字幕在线| 亚洲人成电影观看| 亚洲一卡2卡3卡4卡5卡精品中文| 桃花免费在线播放| 久久热在线av| 国产精品一区二区免费欧美 | 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品成人免费网站| 青草久久国产| 日本一区二区免费在线视频| 成人国产av品久久久| 久久天堂一区二区三区四区| 91精品三级在线观看| 亚洲九九香蕉| 这个男人来自地球电影免费观看| 一进一出抽搐动态| av网站在线播放免费| 久久久久久久久免费视频了| 99九九在线精品视频| 黄色视频在线播放观看不卡| 欧美成人午夜精品| 成年av动漫网址| 亚洲精品久久成人aⅴ小说| 日本黄色日本黄色录像| 色精品久久人妻99蜜桃| 高清在线国产一区| 人人妻人人添人人爽欧美一区卜| 亚洲成人国产一区在线观看| 日本91视频免费播放| 亚洲五月色婷婷综合| 久久久久网色| 侵犯人妻中文字幕一二三四区| 免费在线观看影片大全网站| 妹子高潮喷水视频| 欧美日韩亚洲高清精品| 丰满饥渴人妻一区二区三| 黑人巨大精品欧美一区二区mp4| 亚洲五月色婷婷综合| 成年av动漫网址| 激情视频va一区二区三区| a级毛片黄视频| 精品国产一区二区三区四区第35| 免费看十八禁软件| 国产成人av激情在线播放| 黄色 视频免费看| 黄色视频不卡| 女人精品久久久久毛片| 黑人巨大精品欧美一区二区mp4| 久久中文看片网| 国产精品成人在线| 国产1区2区3区精品| 自线自在国产av| 久久中文字幕一级| 成年女人毛片免费观看观看9 | 久久精品久久久久久噜噜老黄| 亚洲av成人一区二区三| 日韩欧美一区视频在线观看| 国产一区二区三区av在线| 久久青草综合色| 伊人久久大香线蕉亚洲五| 大陆偷拍与自拍| 91麻豆av在线| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 成人av一区二区三区在线看 | 老司机影院成人| 亚洲精品久久成人aⅴ小说| 日韩大码丰满熟妇| 久久国产亚洲av麻豆专区| 国产精品影院久久| 亚洲精华国产精华精| 久久午夜综合久久蜜桃| 国产深夜福利视频在线观看| 亚洲欧美精品自产自拍| www.熟女人妻精品国产| 久久久久久久久免费视频了| 天堂俺去俺来也www色官网| 亚洲av美国av| 日本一区二区免费在线视频| 99九九在线精品视频| 搡老岳熟女国产| 亚洲国产精品一区二区三区在线| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 99re6热这里在线精品视频| 麻豆国产av国片精品| 午夜免费鲁丝| 自线自在国产av| 老司机影院毛片| 99久久精品国产亚洲精品| 咕卡用的链子| 日本欧美视频一区| 波多野结衣一区麻豆| 久久99热这里只频精品6学生| 妹子高潮喷水视频| 大陆偷拍与自拍| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 久久久久久久国产电影| 天天操日日干夜夜撸| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品一区二区www | 午夜日韩欧美国产| 丁香六月天网| 欧美精品人与动牲交sv欧美| 久久久久久久久免费视频了| 97在线人人人人妻| 国产伦人伦偷精品视频| 久久午夜综合久久蜜桃| 在线亚洲精品国产二区图片欧美| 中文字幕人妻丝袜制服| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| 国产在线视频一区二区| svipshipincom国产片| 久久人人爽人人片av| 人人妻人人爽人人添夜夜欢视频| 国产麻豆69| 一本综合久久免费| 国产精品久久久人人做人人爽| 国产色视频综合| 免费av中文字幕在线| 亚洲精品第二区| 国产精品二区激情视频| 久久这里只有精品19| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 国产日韩欧美视频二区| 久久av网站| 成年人黄色毛片网站| 脱女人内裤的视频| 久久精品国产亚洲av香蕉五月 | 国产淫语在线视频| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频 | 搡老岳熟女国产| 一区二区三区精品91| 免费在线观看日本一区| 丁香六月天网| 欧美亚洲 丝袜 人妻 在线| 淫妇啪啪啪对白视频 | 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 国产成人欧美| 精品国产乱码久久久久久男人| av网站免费在线观看视频| 午夜激情久久久久久久| 亚洲成人免费电影在线观看| 亚洲av电影在线进入| 久久久久久亚洲精品国产蜜桃av| 日韩 亚洲 欧美在线| 久久av网站| 如日韩欧美国产精品一区二区三区| 成人影院久久| 高清欧美精品videossex| 国产在线一区二区三区精| 日本a在线网址| 中文字幕最新亚洲高清| 黄色 视频免费看| 岛国毛片在线播放| 欧美中文综合在线视频| 国产欧美日韩一区二区三区在线| 国内毛片毛片毛片毛片毛片| 看免费av毛片| 天天躁狠狠躁夜夜躁狠狠躁| 日韩人妻精品一区2区三区| 久久国产精品人妻蜜桃| 亚洲全国av大片| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 啦啦啦免费观看视频1| 久久精品成人免费网站| 人妻人人澡人人爽人人| 国产一卡二卡三卡精品| 狂野欧美激情性xxxx| 久久国产精品影院| 女人久久www免费人成看片| 精品久久蜜臀av无| 不卡一级毛片| 亚洲九九香蕉| 我的亚洲天堂| 日韩 欧美 亚洲 中文字幕| 18在线观看网站| 男男h啪啪无遮挡| 巨乳人妻的诱惑在线观看| 汤姆久久久久久久影院中文字幕| 国产成+人综合+亚洲专区| 美女午夜性视频免费| av超薄肉色丝袜交足视频| 欧美大码av| 狠狠精品人妻久久久久久综合| 亚洲精品国产精品久久久不卡| 免费高清在线观看视频在线观看| 丰满少妇做爰视频| 成年av动漫网址| 岛国毛片在线播放| 成人三级做爰电影| 亚洲欧美激情在线| 国产伦人伦偷精品视频| 99久久综合免费| 国产免费av片在线观看野外av| av福利片在线| a 毛片基地| 91成年电影在线观看| 熟女少妇亚洲综合色aaa.| 国产一级毛片在线| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜添小说| 美女中出高潮动态图| 亚洲激情五月婷婷啪啪| av不卡在线播放| 亚洲,欧美精品.| 精品国产一区二区久久| 国产日韩欧美视频二区| 天堂中文最新版在线下载| 日韩大片免费观看网站| 夫妻午夜视频| 午夜福利免费观看在线| 黄片大片在线免费观看| 青草久久国产| 一级毛片电影观看| 亚洲精品成人av观看孕妇| 国产无遮挡羞羞视频在线观看| 亚洲,欧美精品.| 国产av又大| 精品第一国产精品| 亚洲午夜精品一区,二区,三区| av欧美777| 中亚洲国语对白在线视频| 爱豆传媒免费全集在线观看| 久久午夜综合久久蜜桃| 亚洲专区字幕在线| 99久久人妻综合| 国产一区二区激情短视频 | 久久久久国产一级毛片高清牌| 美女福利国产在线| 欧美激情久久久久久爽电影 | 国产精品av久久久久免费| 人人妻人人澡人人看| 丝袜美足系列| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| av网站在线播放免费| 老熟妇乱子伦视频在线观看 | 又大又爽又粗| 老熟妇乱子伦视频在线观看 | 老司机午夜福利在线观看视频 | 精品人妻一区二区三区麻豆| 午夜精品久久久久久毛片777| 亚洲国产精品成人久久小说| 欧美激情高清一区二区三区| 丁香六月欧美| 精品人妻在线不人妻| 最新在线观看一区二区三区| 午夜精品国产一区二区电影| 嫁个100分男人电影在线观看| 男人爽女人下面视频在线观看| 亚洲av日韩精品久久久久久密| 国产精品 欧美亚洲| 国产成人系列免费观看| 色婷婷av一区二区三区视频| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 美国免费a级毛片| 女性生殖器流出的白浆| 午夜免费鲁丝| 久久精品aⅴ一区二区三区四区| 国产精品亚洲av一区麻豆| 妹子高潮喷水视频| 香蕉国产在线看| 亚洲专区国产一区二区| 香蕉丝袜av| 99国产精品99久久久久| 亚洲国产日韩一区二区| 久久影院123| 美女中出高潮动态图| 18禁黄网站禁片午夜丰满| 欧美成人午夜精品| 久久精品亚洲av国产电影网| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 中文字幕人妻丝袜一区二区| 中文精品一卡2卡3卡4更新| 亚洲av成人不卡在线观看播放网 | 精品一区二区三卡| 老司机午夜十八禁免费视频| 91字幕亚洲| 一级,二级,三级黄色视频| 老司机亚洲免费影院| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| 1024香蕉在线观看| 欧美中文综合在线视频| 两个人免费观看高清视频| 免费不卡黄色视频| 男女午夜视频在线观看| 日韩有码中文字幕| 亚洲专区国产一区二区| 免费高清在线观看视频在线观看| 久久国产精品影院| 亚洲激情五月婷婷啪啪| 欧美国产精品va在线观看不卡| 十八禁网站网址无遮挡| 脱女人内裤的视频| 日本精品一区二区三区蜜桃| 久久综合国产亚洲精品| 久久天堂一区二区三区四区| 日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 男人舔女人的私密视频| 在线观看免费午夜福利视频| 99久久人妻综合| tocl精华| 丰满饥渴人妻一区二区三| 电影成人av| 一本大道久久a久久精品| 99精国产麻豆久久婷婷| 美女福利国产在线| 国产三级黄色录像| 国产免费视频播放在线视频| videosex国产| 窝窝影院91人妻| 久久久欧美国产精品| 欧美另类亚洲清纯唯美| 亚洲欧美色中文字幕在线| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 亚洲天堂av无毛| 久热爱精品视频在线9| 男女免费视频国产| 中文字幕av电影在线播放| 欧美黑人精品巨大| 久久久精品94久久精品| 国产又爽黄色视频| 亚洲第一欧美日韩一区二区三区 | 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频 | 亚洲天堂av无毛| 又紧又爽又黄一区二区| 伊人亚洲综合成人网| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 曰老女人黄片| 高清黄色对白视频在线免费看| 欧美激情久久久久久爽电影 | 久久久水蜜桃国产精品网| 91大片在线观看| 日韩精品免费视频一区二区三区| 日韩大片免费观看网站| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡动漫免费视频| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频 | 色婷婷av一区二区三区视频| 久久久久久久国产电影| bbb黄色大片| a级毛片黄视频| 国产亚洲精品久久久久5区| 精品久久久精品久久久| 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 99国产综合亚洲精品| 亚洲va日本ⅴa欧美va伊人久久 | 男女高潮啪啪啪动态图| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看 | 男人添女人高潮全过程视频| 成人三级做爰电影| 亚洲 国产 在线| 少妇人妻久久综合中文| 十八禁高潮呻吟视频| 精品久久久久久电影网| 十八禁高潮呻吟视频| 亚洲第一欧美日韩一区二区三区 | h视频一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲成人免费av在线播放| 中文字幕色久视频| 亚洲国产看品久久| 9色porny在线观看| 宅男免费午夜| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 丝袜美足系列| 成在线人永久免费视频| 午夜91福利影院| 国产av精品麻豆| 91九色精品人成在线观看| 最近最新中文字幕大全免费视频| 免费日韩欧美在线观看| 在线看a的网站| 国产精品久久久久久精品电影小说| 久久人妻熟女aⅴ| 又黄又粗又硬又大视频| 满18在线观看网站| 九色亚洲精品在线播放| 欧美人与性动交α欧美精品济南到| 久久久久久免费高清国产稀缺| 成人手机av| 日韩制服丝袜自拍偷拍| 国产国语露脸激情在线看| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 亚洲av片天天在线观看| 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频 | 少妇精品久久久久久久| 夫妻午夜视频| 国产不卡av网站在线观看| 久久ye,这里只有精品| 国产不卡av网站在线观看| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 国产人伦9x9x在线观看| 十八禁网站免费在线| 午夜91福利影院| 亚洲精品中文字幕一二三四区 | 好男人电影高清在线观看| 欧美日韩一级在线毛片| 久久久久久久国产电影| 视频区图区小说| 国产深夜福利视频在线观看| 性少妇av在线| 亚洲成人免费av在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 在线永久观看黄色视频| 久久综合国产亚洲精品| 国产精品九九99| 亚洲欧美一区二区三区久久| 电影成人av| 久热爱精品视频在线9| 亚洲五月婷婷丁香| 亚洲专区中文字幕在线| 婷婷丁香在线五月| 亚洲国产欧美网| 久久99一区二区三区| 一级a爱视频在线免费观看| 国产色视频综合| 水蜜桃什么品种好| 久久性视频一级片| 丝袜在线中文字幕| 精品一区二区三区四区五区乱码| 日本91视频免费播放| 爱豆传媒免费全集在线观看| 两个人免费观看高清视频| 窝窝影院91人妻| 国产精品一区二区在线观看99| 王馨瑶露胸无遮挡在线观看| 久久99一区二区三区| 亚洲精品国产区一区二| 黄色片一级片一级黄色片| 十八禁高潮呻吟视频| 成年女人毛片免费观看观看9 | 精品国产乱子伦一区二区三区 | 国产成人免费观看mmmm| 日韩欧美一区二区三区在线观看 | 亚洲久久久国产精品| 脱女人内裤的视频| 成人亚洲精品一区在线观看| 99国产精品一区二区三区| 69av精品久久久久久 | 精品人妻1区二区| 国产精品欧美亚洲77777| 久热这里只有精品99| 久久ye,这里只有精品| 老汉色av国产亚洲站长工具| 亚洲国产欧美网| 麻豆av在线久日| 飞空精品影院首页| 中文精品一卡2卡3卡4更新| 亚洲成人国产一区在线观看| 青青草视频在线视频观看| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| 日本vs欧美在线观看视频| av在线老鸭窝| svipshipincom国产片| 十八禁网站网址无遮挡| www日本在线高清视频| 色精品久久人妻99蜜桃| 9热在线视频观看99| 亚洲一区二区三区欧美精品| 999精品在线视频| 婷婷丁香在线五月| 国产欧美日韩一区二区三 | 久久久久久久大尺度免费视频| 久久这里只有精品19| 美女午夜性视频免费| 一区二区三区四区激情视频| 99精国产麻豆久久婷婷| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 丝袜在线中文字幕| 久9热在线精品视频| 在线观看人妻少妇| 国产人伦9x9x在线观看| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| 国产精品二区激情视频| 亚洲欧美清纯卡通| 1024视频免费在线观看| av天堂在线播放| 亚洲精品国产一区二区精华液| 五月开心婷婷网| 美国免费a级毛片| 日本av免费视频播放| 涩涩av久久男人的天堂| 18禁黄网站禁片午夜丰满| 天堂俺去俺来也www色官网| 三上悠亚av全集在线观看| 亚洲激情五月婷婷啪啪| 欧美激情久久久久久爽电影 | 亚洲一码二码三码区别大吗| 在线观看舔阴道视频| 亚洲中文av在线| 精品少妇久久久久久888优播| 国产精品久久久人人做人人爽| 久久久久久亚洲精品国产蜜桃av| 男人舔女人的私密视频| 国产成人一区二区三区免费视频网站| 欧美+亚洲+日韩+国产| 日本一区二区免费在线视频| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 秋霞在线观看毛片| 亚洲人成电影观看| 精品少妇一区二区三区视频日本电影| 1024视频免费在线观看| 丰满饥渴人妻一区二区三| 免费看十八禁软件| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 亚洲三区欧美一区| 日韩有码中文字幕| 好男人电影高清在线观看| 免费在线观看黄色视频的| 男人舔女人的私密视频| 亚洲美女黄色视频免费看| 动漫黄色视频在线观看| 国产av又大| 建设人人有责人人尽责人人享有的| 免费看十八禁软件| 亚洲熟女毛片儿| 两性夫妻黄色片| 久久久久网色| 欧美日韩亚洲综合一区二区三区_| 一本久久精品| 欧美日韩亚洲综合一区二区三区_| 大片免费播放器 马上看| 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 国产不卡av网站在线观看| 国产精品久久久久成人av| 两性夫妻黄色片| 少妇精品久久久久久久| 青春草亚洲视频在线观看| 最近最新中文字幕大全免费视频| 欧美 日韩 精品 国产| 国产男人的电影天堂91| 久久av网站|