• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Higher Alcohols from Syngas over A lkali Prom oted K-Co-M o Catalysts Supported on M ulti-walled Carbon Nanotubes

    2017-07-05 13:06:15LiliJiHunLiWeiZhngSongSunChenGoJunBoYunsheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Li-li JiHun LiWei ZhngSong SunChen GoJun BoYun-sheng M

    a.Department of Chem ical Physics,University of Science and Technology of China,Hefei 230026, China

    b.National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    Synthesis of Higher Alcohols from Syngas over A lkali Prom oted K-Co-M o Catalysts Supported on M ulti-walled Carbon Nanotubes

    Li-li Jia,Huan Lib,Wei Zhangb,Song Sunb,Chen Gaob,Jun Baob?,Yun-sheng Maa?

    a.Department of Chem ical Physics,University of Science and Technology of China,Hefei 230026, China

    b.National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    A series of carbon nanotubes-supported K-Co-M o catalysts were prepared by a sol-gel method combined w ith incipientwetness im pregnation.The catalyst structureswere characterized by X-ray diff raction,N2adsorption-desorption,transm ission electronm icroscopy and H2-TPD,and its catalytic perform ance toward the synthesis of higher alcohols from syngas was investigated.The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs.The uniform mesoporous structure of CNTs increased the diff usion rate of reactants and products,thus prom oting the reaction conversion.Furthermore,the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group,which served as the key intermediate for the alcohol formation and carbon chain grow th.Benefi ting from these characteristics,the CNTs supported M o-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as com pared to the unsupported catalyst and activated carbon supported catalyst.

    CO hydrogenation,Higher alcoholsynthesis,M o-based catalyst,CNTs support

    I.INTRODUCTION

    Catalytic conversion of the syngas derived from coal, biomass and natural gas into higher alcohols has attracted significant attention because of the scarcity of energy resources,environmental concerns,and gasoline additive octane dem ands.So far,several catalytic system s have been developed for this reaction during the past few decades[1?3].Among them,the alkaliprom oted M o-based catalysts are regarded as one of them ost prom ising candidates due to the excellent resistance to sulfur poisoning and coke deposition[4].Increasing attempts have been made to im prove the catalytic perform ances of M o-based catalysts.It is found that the 3d transition m etals,especially Co,are found to be effective promoters for alkali-promoted Mo-based catalysts,they are known to enhance alcohol production and im prove C2+alcohol selectivity.The strong interaction between Co and Mo species is conducive to the formation of higher alcohols.

    Catalyst supports have a significant im pact on the synthesis of alcohols from syngas.The acid supports such as A l2O3are unfavorable to the synthesis of alcohols because the acidic sites of supportswould causethe alcohol dehydration.Activated carbon has the advantages of large surface area,high thermal stability, resistance to acidic or basic media,and shows higher selectivity to alcohols as com pared to SiO2-,A l2O3-, and CeO2-supported catalysts.The interaction between the activated carbon and Mo species p lays an im portant role in the catalytic performance.Our previous study has investigated the activated carbon supported K-Co-M o catalysts by the synchrotron radiation X-ray absorption fine structure(XAFS).It was found that w ith an increase in the M o loading,the surface M o atom s gradually changed from tetrahedrally coordinated M o6+species to octahedrally coordinated Mo4+, suggesting a higher reduction degree.The activated carbon supported Mo-based catalyst exhibited an excellent perform ance for the higher alcohol synthesis,especially the formation of the C2+OH.

    Multi-walled carbon nanotubes(MWCNTs)have a lot of unique characteristics,such as inert graphitic surface,appropriate pore size distribution,good electrical conductivity and enhanced mass transport capability, whichmake it a prom ising support for various catalytic app lications[5,6].Tavasoliet al.[7]found that the CNTs supported Co catalysts showed a higher CO conversion and Fischer-Tropsch synthesis rate than that of the alum ina supported catalyst.The reason was attributed that the CNTs aided the uniform dispersion of Cometal clusters on the support.Sim ilar resultwas re-ported by Tanet al.[8].They reported a highly dispersed CNT-supported copper-cobalt-cerium catalysts. The em p loym ent of CNTs support ensured intim ate contact am ong the metal particles at the nanoscale, which led to a superior selectivity to the ethanol and C2+alcohols.Furthermore,the CNTs can provide the sp2-C surface-sites for adsorption-activation of H2and form a high concentration of H-speciesm icro environment,thereby increasing the hydrogenation reaction rate[9?11].Theuniform poresizedistribution ofCNTs support exhibited an excellent gas perm eability and enabled themetal nanoparticles to be very accessible to the reaction gas,which facilitated the diff usion of the reactants and the dispatched products from the active sites[12].

    In our previous work,we have developed a highly homogeneous unsupported K-Co-Mo catalyst prepared by a modified sol-gelmethod[13]to improve the catalytic perform ance for higher alcohol synthesis and understand the support eff ect.Herein,a kind of m esoporous MWCNTswas employed as the support to prepare the K-Co-Mo/CNTs catalysts.The catalyst structureswere characterized by a series of physicochem ical m ethods,and the catalytic perform ance for the synthesisofhigher alcohols from syngaswas investigated.The relationship between the structure and catalytic perform ance was also discussed.

    II.EXPERIM ENTS

    A.Catalyst preparation

    The CNTs supported K-Co-M o catalysts(K-Co-Mo/CNTs)wereprepared by a sol-gelmethod combined w ith incipient wetness im pregnation.The MWCNTs w ith inner diameter of 5?10 nm and outer diam eter of 10?20 nm were supp lied by Chengdu Institute of Organic Chem istry.Prior to use,the raw CNTs was treated w ith 30%nitric acid for 24 h,followed by washing w ith deionized water several tim es and then drying at 393 K for 12 h.Finally,the CNTs was flushed w ith pure N2at 453 K for 2 h to remove any surface adsorbents.A typical procedure is as follows:fi rstly, theaqueoussolutionsofCo(NO3)2·6H2O,C6H8O7·H2O and K2CO3were added in sequence dropw ise to the (NH4)6MoO24·4H2O aqueous solution under stirring. The acidity ofm ixed solution was adjusted to pH=3.5 by adding the amm onia or acetic acid.Subsequently, them ixed solution was kept in a water bath at 343 K until the sol was obtained.The as-prepared sol was then im pregnated into CNTs.A fter ultrasonic dispersion for 1 h,them ixture was dried at 393 K overnight and calcined in flowing nitrogen at 673 K for 4 h.The Mo content in the as-prepared catalysts,expressed as the weight ratio M o/CNTs,was ranged from 10%to 50%.The atom ic ratios of K/M o and Co/M o were 0.1 and 0.5,respectively.

    B.Catalyst characterization

    Powder X-ray diff raction(XRD)patterns were recorded w ith a Rigaku D/m ax-γA rotating-anode diff ractometer equipped w ith a Cu Kαradiation source. The BET surface area,pore volume,and pore diameter were determ ined by nitrogen adsorption at 77 K using a M icrom eritics TriStar II 3020 analyzer.Transm ission electron m icroscopy(TEM)was performed using a Philips CM 20(100 kV)transm ission electron m icroscope equipped w ith a NARON energy-dispersive spectrom eter.

    The H2-temperature programmed desorption(H2-TPD)experiment was carried out on the model of FINESSORB-3013 adsorption instrum ent.For each experiment,0.1 g of the samp le was packed into a U-type quartz tube.The samp le was pretreated under 5%H2/A r at 798 K for 3 h.A fter cooling to room temperature,the pretreated sam p le passed through He atmosphere at 473 K for 0.5 h.Then the pretreated samp le was saturated w ith 5%H2/Ar for 1 h.A fter that the sam p lewas flushed w ith heat 373 K for 1 h.Finally the TPD analysiswas carried out in a flow of He from 373 K to 1123 K at a heating rate of 10 K/m in.

    C.Catalytic activity measurem ents

    The catalytic performance of the catalysts for the synthesis of higher alcohols from syngaswas tested in a fixed-bed stainless steel reactor w ith an inner diameter of 8mm.The reactorwas packed w ith 0.5 g of catalyst that was diluted w ith quartz sand to produce a total volum e of 2m L and loaded at the center of the reactor tube.Prior to reaction,the catalyst was reduced w ith 5%H2/N2for 12 h at a flow rate of 40m L/m in.A fter lowered to the reaction tem perature,the feed gas containingV(H2):V(CO):V(N2)=60:30:10 passed through. The effl uent gaswas cooled in an ice-water bath to separate into gas and liquid phases.Details on the product analytical p rocedure were described in our previouswork[14].A ll the activity measurementswere performed under the reaction condition of 5.0MPa,553 K and gas hourly space velocity(GHSV)2400 h?1.The activity data were collected after the reaction was performed for 24 h because the alcohol synthesis required an induction period.

    III.RESULTS AND DISCUSSION

    FIG.1 XRD patterns of(a)unsupported K-Co-M o,(b) pure CNTs,K-Co-Mo/CNTs w ith diff erent M o loading of (c)10 w t%,(d)30 w t%,(e)40 w t%,(f)50 w t%,and (g)K-Co-Mo/AC w ith Mo loading of 30 w t%.

    FIG.1 shows the XRD patternsof thepurified CNTs, the unsupported catalyst and the CNTs supported catalysts w ith different Mo loading.The purified CNTs showed two broad peaksat26.1?and 43.2?,respectively. 26.1?corresponding to(002)reflection of graphite and the other sm all asymm etric peak 43.2?is due to(100) reflection of graphite[15].For the unsupported catalyst,on ly three w ide peaks at 26.1?,37.0?,and 53.5?were detected,which was assigned to MoO2.The formation ofMoO2wasattributed to the fact that in nitrogen,the decom position of citric acid in the sol resulted in the partial reduction of M o+6species[16].The supported catalystsexhibited the same diff raction patterns but weaker diff raction intensity as the CNTs support. Besides the CNTs peaks,no peaksassigned to K,Co,or M o specieswere detected for the CNTs supported catalysts.Furthermore,w ith an increaseof theMo contents, the diff raction intensity decreased gradually.The result indicated that the active com ponents had a low degree of crystallization and high dispersion on the surface of CNTs.For comparison,the diff raction pattern of the activated carbon supported catalyst w ith the Mo/AC ratio of 30%was also presented.A lm ost no obvious diff raction peakswere observed on the sam p le.

    The TEM images of the sole CNTs and the supported catalysts were shown in FIG.2.The purified CNTs had open endsw ith a uniform diameter of about 20 nm,displaying a mesoporous pore structure.For the CNTs supported catalysts,at a low loading of M o, the catalyst particles were evenly distributed on the CNTs w ithout obvious aggregation.It was noted that somepartsof theparticlesentered the carbon tubesand well dispersed on the inside surface,benefi ting from the sm all particle size and uniform m esoporous structure of CNTs.W hen the Mo/CNTs weight ratio exceeded 30%,the particlesbegan to aggregate,asshown in FIG. 2(d)and(e).FIG.2(f)shows the TEM im age of the activated carbon supported catalyst(M o/AC ratio of 30%).The as-prepared catalyst particlesalso exhibited a high dispersion on the activated carbon support.

    FIG.2 TEM patterns of the(a)pure CNTs,K-Co-M o/CNTs w ith diff erent M o loading of(b)10 w t%,(c) 30 w t%,(d)40 w t%,(e)50 w t%;and(f)K-Co-Mo/AC w ith M o loading of 30 w t%.

    TABLE I Texture properties of the pure CNTs and supported K-Co-Mo catalysts.

    FIG.3 shows the nitrogen adsorption-desorption isotherms of the pure CNTs and supported K-Co-Mo catalyst.The pure CNTs exhibited a type IV isotherm w ith a hysteresis loop of type H1 according to the IUPAC classification,and the capillary condensation occurred at a high relative pressure(P/P0)above 0.80. The result further demonstrated the used CNTs possessed amesoporous structurew ith cylindrical pore geometry and a high degree of pore size uniform ity,as revealed by the TEM images.The CNTs supported K-Co-M o catalysts exhibited sim ilar isotherm s to that of the purified CNTs,indicating that metal im pregnation did not alter the pore structure of the parent support.W ith an increase of the M o loading,the BET surface and pore volum e(V)of the supported catalysts decreased while the average pore size did not show significant change as shown in Table I.For com parison, the nitrogen adsorption-desorption isotherm s of the activated carbon supported K-Co-M o catalyst w ith the Mo loading of 30%was also listed(FIG.3(f)).The adsorption-desorption isotherm showed type Ibehavior w ith a H4 type hysteresis loop,indicative of the existence of narrow slit-like pores.Furtherm ore,a steep increase of adsorbed volume at very low relative pressure,corresponding tom icropore volume fi lling,wasobserved.The result indicated that the activated carbon supported catalyst contained a certain amount ofm icropores.Consequently,the catalyst exhibited a much larger BET surface area but smaller pore size as compared to the CNTs supported catalysts w ith the same com position.

    FIG.3 Nitrogen adsorption-desorption isotherm s of(a)pure CNTs,K-Co-M o/CNTs w ith diff erent M o loading of (b)10 w t%,(c)30 w t%,(d)40 w t%,(e)50 w t%,and(f)K-Co-M o/AC w ith Mo loading of 30 w t%.

    FIG.4 H2-TPD of the K-Co-M o/CNTs w ith diff erent M o loading of(a)10 w t%,(b)30 w t%,(c)40 w t%,(d)50 w t% and(e)K-Co-M o/AC w ith M o loading of 30 w t%.

    The hydrogen adsorp tion and desorption ability of the catalysts are investigated by H2-TPD experiments and the profi leswere shown in FIG.4.The CNTs supported catalysts exhibited a predom inant peak of hydrogen desorption at 973 K.Besides,a very weak w ide peak appeared around 740K.Theweak desorption peak wasmost probably due to themolecularly adsorbed hydrogen.The strong peak was attributed to the dissociatively chem isorbed hydrogen,which was suggested to have a significant im pact on the catalytic activity. The capacity of adsorbing hydrogen increased w ith an increaseof theMo loading and reached thehighest level at the M o loading of 30%.W ith a further increase of theMo loading,theadsorption capacity ofhydrogen did not show significant change.The H2-TPD profi le of the activated carbon supported K-Co-M o catalyst(M o/AC ratio of 30%)was also listed.The sam p le exhibited a stronger low tem perature desorption peak than that of the CNTs catalysts,which may be due to the fact that the presence of the m icropores in the activated carbon was conducive to the absorption of molecular hydrogen.It was noted that its peak corresponding to dissociatively chem isorbed hydrogen shifted to higher tem perature as com pared to the CNTs catalyst,indicative of a stronger interaction between the chem isorbed H-species and activated carbon support.Furthermore, a shoulder peak was also observed,which may be attributed that the non-uniform ly distributed pore size of activated carbon resulted in a diff erent diff usion rate of H-species.

    Table II lists the catalytic performance of the K-Co-M o/CNTs catalysts for the synthesis of higher alcohols.For comparison,the unsupported catalyst was also tested under the same conditions.The unsupported K-Co-M o exhibited a relative low activity toward alcohol synthesis,and the predom inant alcohol product was methanol.The incorporation of CNTs support led to a significant increase in the alcohol production.As shown in Table II,the catalyst w ith a M o/CNTsweight ratio of30%showed thebest catalytic performance for alcohols synthesis.The STY of total alcoholswas 141.7 g·kg?1·h?1,about 9 times as high as that of the unsupported sam p le and the alcohol selectivity increased from 9.5%to 35.4%.In particular,the methanol production was inhibited remarkably.The effect of the H2/CO ratio on the catalyst activity wasalso investigated.W hen the H2/CO ratio decreased from 2 to 1,the catalystw ith a Mo/CNTsweight ratio of 30% alcohol selectivity and C2+OH/MeOH ratio further increased up to 49.8%and 2.33,respectively.The ethanol became the predom inant alcohol product.M eanwhile, the alcohol STY still reached 110.0 g·kg?1·h?1.Thepresented activity data are encouraging because they were tested under very m ild conditions of 5.0MPa and 2400 h?1.The decrease of H2/CO ratio im proved the alcohol selectivity,especially the formation of C2+OH. The reason was attributed that increasing the CO concentration decreased the relative rate of hydrogenation of them ethanol precursor and thus inhibited the synthesis of m ethanol.The form ation of higher alcohols appeared to be a slow step relative to the rate of hydrogenation ofmethanolprecursor[17].In addition,increasing the CO concentration also favored the insertion ofCO into an alkylgroup to form theacylspecies,which was regarded as the key intermediate for the synthesis of alcohols[18].The CO2was yielded from the watergas-shift(WGS)side reaction.No significant change in CO2production was observed when the Mo/CNTs weight ratio increased from 30%to 50%.For com parison,the catalytic perform ance of the activated carbon supported K-Co-M o catalyst(M o loading of 30%)was tested under the same conditions.In com parison to the activated carbon sam ple,thealcoholselectivity over the CNTs catalyst showed a slight decrease,while the alcohol STY increased m ore than 60%.In particular,the C2+OH/MeOH ratio also increased from 2.08 to 2.33. The results indicated the CNTs supported K-Co-Mo catalyst exhibited better catalytic perform ance for the higher alcohol synthesis,although its BET surface area wasmuch lower than that of the activated carbon samp le.

    TABLE II Catalytic performance toward alcohol formation from syngas over the catalysts.A lc.Sel.is calculated on a CO2-free basis,Reaction conditions are 553 K,5.0 M Pa,2400 h?1.CO conv.,A lc.Sel.,and CnOH Sel.in C-m ol%,A lc. STY in g·kg?1·h?1

    The support properties,such as acidity,components dispersion,and pore structureetc.,have a significant im pact on the catalytic perform ance for alcohols synthesis from syngas.The CNTs and activated carbon are the neutral carbon materials.The as-prepared KCo-M o catalysts supported on the CNTs and activated carbon exhibited a low crystallization degree and high dispersion,as revealed by the XRD and TEM results. This suggested that the supported catalysts had a high active surface area,which contributed to higher activity com pared to the unsupported catalyst.

    The pore structure of the support significantly affected the catalytic activity for CO hydrogenation, especially the product distribution.Small pore size w ill result in poor intra-pellet diffusion effi ciencies of molecules.Slow transport of reactants to,and products from,active sites often inhibits the reaction rate and aff ects the product selectivity.For the higher alcohol synthesis from syngas,Surisettyet al.have investigated the influence of porous characteristics of support and concluded that the m esoporous support was conducive to the alcohol production,especially the formation of C2+OH[19].The hydrogen dissociation and spillover capability also p lay an im portant role in the CO hydrogenation reaction.The formation of higher alcohols from syngas over the Mo-based catalyst followsa CO insertionmechanism[20].Thedissociated H-species reactsw ith the dissociated CO to form the alkyl group.The non-dissociatively CO insertion to the alkyl group form s thealcoholproduct.Thealkylgroup serves as the key interm ediate for alcohol form ation and carbon chain grow th.The nitrogen adsorption-desorption isotherm sand TEM images showed that the CNTs supported catalysts possessed a uniform mesoporous structure.This meant that catalyst had a higher diff usion effi ciencies of m olecule and increased reaction rate as com pared to the activated carbon support containing m icropores.Furthermore,the H2-TPD result revealed that the CNTs catalyst had a strong adsorption capacity of hydrogen and relatively weaker interaction w ith the H-species com pared to the activated carbon catalyst.The reason may be attributed that the surface sp2-C sites of CNTs promoted the adsorption and activation of hydrogen[21].The weak interaction between the H-species and catalyst indicated a higher spillover capability of H-species,which was conducive to the formation of alkyl group interm ediate and thus prom oted thealcoholproduction.These factorswere suggested to be responsible for theexcellent catalytic performance of the CNTs supported K-Co-M o catalysts for the higher alcohol synthesis from syngas.

    IV.CONCLUSION

    M ulti-walled carbon nanotubes supported K-Co-M o catalyst was prepared by a sol-gelmethod.The K-Co-Mo/CNTs catalyst showed a much higher activity for the synthesis of higher alcohols than that of the unsupported catalyst and activated carbon supported catalyst.The enhanced perform ance can be attributed to the fact that the CNTs supported catalyst had a low crystallization degree and high dispersion,which suggested a high active surface area.The uniform m esoporous structure of CNTs support led to a high diffusion effi ciencies ofmolecule and increased conversion rate.Furthermore,the CNTs catalyst had a strong capability ofhydrogen absorption and spillover,which was conducive to the formation of alkyl group intermediate and thus enhanced the alcohol production.

    V.ACKNOW LEDGM ENTS

    Thiswork wassupported by NationalNaturalScience Foundation of China(No.21673214).

    [1]J.Bao,Y.L.Fu,Z.H.Sun,and C.Gao,Chem.Commun.746(2003).

    [2]V.Mahdavi,M.H.Peyrovi,M.Islam i,and J.Y.Mehr, App l.Catal.A 281,259(2005).

    [3]R.Burch and M.J.Hayes,J.Catal.165,249(1997).

    [4]S.Zam an and K.J.Sm ith,Catal.Rev.54,41(2012).

    [5]P.Serp,M.Corrias,and P.Kalck,App l.Catal.A 253, 337(2003).

    [6]X.L.Pan,Z.L.Fan,W.Chen,Y.J.Ding,H.Y.Luo, and X.H.Bao,Nat.Mater.6,507(2007).

    [7]A.Tavasoli,R.M.M.Abbaslou,M.Trepanier,and A. K.Dalai,App l.Catal.A 345,134(2008).

    [8]P.Wang,J.F.Zhang,Y.X.Bai,H.X iao,S.P.Tian, H.J.Xie,G.H.Yang,N.Tsubaki,Y.Z.Han,and Y. S.Tan,App l.Catal.A 514,14(2016).

    [9]X.M.Wu,Y.Y.Guo,J.M.Zhou,G.D.Lin,X.Dong, and H.B.Zhang,App l.Catal.A 340,87(2008).

    [10]C.H.M a,H.Y.Li,G.D.Lin,and H.B.Zhang,App l. Catal.B Environ.100,245(2010).

    [11]W.Feng,Q.W.Wang,B.Jiang,and P.J.Ji,Ind.Eng. Chem.Res.50,11067(2011).

    [12]M.Khavarian,S.P.Chai,and A.R.M oham ed,Fuel 158,129(2015).

    [13]J.Bao,Y.L.Fu,and G.Z.Bian,Catal.Lett.121,151 (2008).

    [14]M.M.Lv,W.Xie,S.Sun,G.M.Wu,L.R.Zheng, S.Q.Chu,C.Gao,and J.Bao,Catal.Sci.Technol.5, 2925(2015).

    [15]I.Eswaram oorthi,V.Sundaramurthy,and A.K.Dalai, App l.Catal.A 313,22(2006).

    [16]J.Bao,Z.H.Sun,Y.L.Fu,G.Z.Bian,Y.Zhang,and N.Tsubaki,Top Catal.52,789(2009).

    [17]E.Tronconi,N.Ferlazzo,P.Forzatti,and I.Pasquon, Ind.Eng.Chem.Res.26,2122(1987).

    [18]A.M uram atsu,T.Tatsum i,and H.Tom inaga,J.Phys. Chem.96,1334(1992).

    [19]V.R.Surisetty,A.K.Dalai,and J.Kozinski,App l. Catal.A 393,50(2011).

    [20]A.M uram atsu,T.Tatsum i,and H.Tom inaga,J.Phys. Chem.96,1334(1992).

    [21]J.J.Wang,J.R.Xie,Y.H.Huang,B.H.Chen,G.D. Lin,and H.B.Zhang,App l.Catal.A 468,44(2013).

    ceived on March 30,2017;Accepted on April 30,2017)

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: bao j@ustc.edu.cn,ysm a@ustc.edu.cn.

    www日本黄色视频网| 午夜福利在线观看免费完整高清在 | 中文亚洲av片在线观看爽| 欧美三级亚洲精品| 国产一区二区在线观看日韩| 99在线人妻在线中文字幕| 欧美一区二区国产精品久久精品| 俺也久久电影网| 少妇人妻精品综合一区二区 | 久99久视频精品免费| 欧美色欧美亚洲另类二区| 日本在线视频免费播放| 伊人久久精品亚洲午夜| 熟女电影av网| 美女免费视频网站| 国产精品女同一区二区软件| 久久久久久大精品| 淫秽高清视频在线观看| 亚洲精品国产av成人精品 | 国产成人精品久久久久久| 人人妻,人人澡人人爽秒播| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清三级在线| 国产成人一区二区在线| 亚洲成人久久性| 国产精品嫩草影院av在线观看| 免费看av在线观看网站| 日日摸夜夜添夜夜添小说| 成年版毛片免费区| 村上凉子中文字幕在线| 日韩强制内射视频| 亚洲国产色片| 国产69精品久久久久777片| 精品久久久久久久久久免费视频| 人人妻人人看人人澡| 国产毛片a区久久久久| 国产精品久久久久久久电影| 色在线成人网| 亚洲熟妇熟女久久| 久久久久国内视频| 可以在线观看的亚洲视频| 久久久a久久爽久久v久久| 色5月婷婷丁香| 99视频精品全部免费 在线| 神马国产精品三级电影在线观看| 99久久中文字幕三级久久日本| 亚洲无线在线观看| а√天堂www在线а√下载| 99久久无色码亚洲精品果冻| 性色avwww在线观看| 国产亚洲av嫩草精品影院| 成年女人毛片免费观看观看9| 久久人妻av系列| 日日摸夜夜添夜夜添av毛片| 亚洲欧美精品自产自拍| 色噜噜av男人的天堂激情| 亚洲av成人av| 久久午夜福利片| 在线免费十八禁| 欧美中文日本在线观看视频| 久久久久久久亚洲中文字幕| 少妇熟女aⅴ在线视频| 天天躁夜夜躁狠狠久久av| 18禁黄网站禁片免费观看直播| 亚洲av免费在线观看| 日本免费a在线| 变态另类丝袜制服| 一级毛片我不卡| 欧美3d第一页| 免费人成在线观看视频色| 亚洲av中文字字幕乱码综合| 在线观看av片永久免费下载| 久久99热这里只有精品18| 久久久精品94久久精品| 99久国产av精品国产电影| 午夜爱爱视频在线播放| 亚洲av成人精品一区久久| 久久鲁丝午夜福利片| 亚洲一区二区三区色噜噜| 欧美bdsm另类| 一夜夜www| 简卡轻食公司| 久久久精品大字幕| 国产精品久久久久久久电影| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一区二区三区四区久久| 久久天躁狠狠躁夜夜2o2o| 日本黄色片子视频| 日韩成人伦理影院| 人人妻人人澡欧美一区二区| 十八禁网站免费在线| 综合色丁香网| 久久精品国产亚洲网站| 日韩一区二区视频免费看| 一级黄色大片毛片| 一a级毛片在线观看| 久久中文看片网| 深夜精品福利| 一边摸一边抽搐一进一小说| 欧美中文日本在线观看视频| 国产av麻豆久久久久久久| 国产精品1区2区在线观看.| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 亚洲av熟女| 午夜激情福利司机影院| a级一级毛片免费在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲一区二区三区色噜噜| 少妇被粗大猛烈的视频| 91久久精品国产一区二区成人| 秋霞在线观看毛片| 看黄色毛片网站| 又黄又爽又免费观看的视频| 波多野结衣高清无吗| 少妇的逼好多水| 高清毛片免费观看视频网站| 亚洲久久久久久中文字幕| av在线亚洲专区| 亚洲av中文av极速乱| 黑人高潮一二区| 色播亚洲综合网| 国产精品伦人一区二区| 欧美日韩国产亚洲二区| 久久人人精品亚洲av| 黑人高潮一二区| 国产精品久久视频播放| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| 精品人妻视频免费看| 久久久久久久午夜电影| 久久午夜亚洲精品久久| 99久久成人亚洲精品观看| 不卡视频在线观看欧美| 最好的美女福利视频网| 最近视频中文字幕2019在线8| 精品一区二区三区视频在线| 欧美潮喷喷水| 男女啪啪激烈高潮av片| 九九热线精品视视频播放| 免费观看的影片在线观看| 国产精品久久电影中文字幕| 一本久久中文字幕| 国产精品不卡视频一区二区| 成人国产麻豆网| 亚洲精品国产av成人精品 | 人人妻人人看人人澡| 97碰自拍视频| 床上黄色一级片| 免费观看的影片在线观看| 国产人妻一区二区三区在| 亚洲av成人精品一区久久| 日本成人三级电影网站| 亚洲美女视频黄频| 国产欧美日韩一区二区精品| 中文字幕久久专区| 亚洲精品一区av在线观看| or卡值多少钱| 老司机影院成人| 18+在线观看网站| 免费在线观看影片大全网站| 国产国拍精品亚洲av在线观看| 日本一二三区视频观看| 精品国内亚洲2022精品成人| 久久精品91蜜桃| 久久久久久国产a免费观看| 免费观看人在逋| 99在线人妻在线中文字幕| 老熟妇乱子伦视频在线观看| 啦啦啦观看免费观看视频高清| 天堂av国产一区二区熟女人妻| 中文字幕精品亚洲无线码一区| 日韩欧美免费精品| 成人特级av手机在线观看| 99九九线精品视频在线观看视频| 最近中文字幕高清免费大全6| 免费高清视频大片| 22中文网久久字幕| 大型黄色视频在线免费观看| 亚洲精品在线观看二区| 亚洲精品成人久久久久久| 国产成人91sexporn| 天堂√8在线中文| 99热只有精品国产| 日韩欧美免费精品| 久久九九热精品免费| 干丝袜人妻中文字幕| 久久久久精品国产欧美久久久| 久久精品国产亚洲av涩爱 | ponron亚洲| 亚洲精品粉嫩美女一区| 热99re8久久精品国产| 99久久精品一区二区三区| 成人毛片a级毛片在线播放| 国产一区二区在线av高清观看| 性插视频无遮挡在线免费观看| 久久精品国产99精品国产亚洲性色| 亚洲国产日韩欧美精品在线观看| 男女下面进入的视频免费午夜| 69av精品久久久久久| 国产精品伦人一区二区| 又黄又爽又免费观看的视频| 婷婷色综合大香蕉| 麻豆成人午夜福利视频| 欧美日本视频| 少妇丰满av| 欧美成人a在线观看| 国产乱人偷精品视频| 欧美三级亚洲精品| 99在线人妻在线中文字幕| 一进一出抽搐动态| 一个人看视频在线观看www免费| 深夜a级毛片| 免费人成视频x8x8入口观看| 精品久久久久久久久久久久久| 九九在线视频观看精品| 精品午夜福利在线看| 国产片特级美女逼逼视频| 最近最新中文字幕大全电影3| 色哟哟哟哟哟哟| 有码 亚洲区| 欧美色欧美亚洲另类二区| 欧美日韩国产亚洲二区| 亚洲综合色惰| 亚洲最大成人手机在线| 中文资源天堂在线| 男女下面进入的视频免费午夜| 成人无遮挡网站| 午夜精品一区二区三区免费看| 精品一区二区三区视频在线观看免费| 亚洲18禁久久av| 午夜免费激情av| 直男gayav资源| 日本-黄色视频高清免费观看| 亚洲国产欧洲综合997久久,| 免费在线观看成人毛片| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 精品欧美国产一区二区三| 欧美激情久久久久久爽电影| www.色视频.com| 老司机影院成人| 在线国产一区二区在线| avwww免费| 99riav亚洲国产免费| 亚洲人成网站高清观看| 中文亚洲av片在线观看爽| 久久综合国产亚洲精品| 午夜精品国产一区二区电影 | 桃色一区二区三区在线观看| 白带黄色成豆腐渣| 少妇的逼好多水| 桃色一区二区三区在线观看| 伦理电影大哥的女人| 91麻豆精品激情在线观看国产| 麻豆成人午夜福利视频| 国产探花极品一区二区| 日韩欧美一区二区三区在线观看| 国产精品嫩草影院av在线观看| 免费av观看视频| 午夜影院日韩av| 狠狠狠狠99中文字幕| 国产久久久一区二区三区| 国产成人精品久久久久久| 成年女人永久免费观看视频| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品成人综合77777| 岛国在线免费视频观看| 国产av一区在线观看免费| 亚洲成人av在线免费| 亚洲国产精品sss在线观看| 最近视频中文字幕2019在线8| 成年av动漫网址| 不卡一级毛片| 嫩草影院新地址| 在线播放国产精品三级| 在线观看av片永久免费下载| 日日摸夜夜添夜夜爱| 国产 一区 欧美 日韩| 免费在线观看影片大全网站| 欧美性猛交╳xxx乱大交人| 午夜精品国产一区二区电影 | www.色视频.com| 国产亚洲精品久久久com| 18+在线观看网站| 精品国产三级普通话版| 18禁裸乳无遮挡免费网站照片| 国产大屁股一区二区在线视频| 成人毛片a级毛片在线播放| or卡值多少钱| 一本精品99久久精品77| 人人妻,人人澡人人爽秒播| 一个人观看的视频www高清免费观看| 国产高清三级在线| 日本色播在线视频| 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 麻豆国产av国片精品| 中文资源天堂在线| 久久精品国产亚洲av香蕉五月| 国产精华一区二区三区| 日韩欧美在线乱码| 亚洲美女视频黄频| 热99re8久久精品国产| 精品福利观看| 免费电影在线观看免费观看| 国产精品一区www在线观看| 中文资源天堂在线| 香蕉av资源在线| 简卡轻食公司| 亚洲av二区三区四区| 99热只有精品国产| 亚洲成人久久爱视频| 97超碰精品成人国产| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 婷婷亚洲欧美| 天堂√8在线中文| 性欧美人与动物交配| 天天一区二区日本电影三级| 一进一出好大好爽视频| 麻豆av噜噜一区二区三区| 黄色欧美视频在线观看| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 久久亚洲国产成人精品v| 国产蜜桃级精品一区二区三区| 精品人妻熟女av久视频| 三级男女做爰猛烈吃奶摸视频| 黑人高潮一二区| 蜜桃亚洲精品一区二区三区| 国产精品1区2区在线观看.| 国产男人的电影天堂91| 久久久久九九精品影院| 亚洲欧美成人精品一区二区| 久久欧美精品欧美久久欧美| 一级毛片电影观看 | 免费无遮挡裸体视频| 久久精品人妻少妇| 久久午夜亚洲精品久久| 老熟妇乱子伦视频在线观看| 亚洲最大成人av| 成年av动漫网址| 久久久久久九九精品二区国产| 成人特级av手机在线观看| 亚洲欧美精品综合久久99| 99精品在免费线老司机午夜| 久久精品人妻少妇| 亚洲精品国产成人久久av| 啦啦啦韩国在线观看视频| 少妇人妻一区二区三区视频| 亚洲最大成人手机在线| 日韩,欧美,国产一区二区三区 | 国产午夜精品论理片| 久久99热这里只有精品18| 三级毛片av免费| 亚洲激情五月婷婷啪啪| 国产中年淑女户外野战色| 欧美一区二区精品小视频在线| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 韩国av在线不卡| 婷婷精品国产亚洲av在线| 久久人人爽人人片av| 男女啪啪激烈高潮av片| 国产精品一二三区在线看| 大型黄色视频在线免费观看| 麻豆精品久久久久久蜜桃| 国产三级中文精品| 麻豆精品久久久久久蜜桃| 免费看a级黄色片| 少妇熟女欧美另类| 91av网一区二区| 精品午夜福利视频在线观看一区| 久久精品国产自在天天线| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人下体高潮全视频| 久久久久久久久久久丰满| 日本色播在线视频| 最新在线观看一区二区三区| 免费av不卡在线播放| 久久综合国产亚洲精品| 中文字幕av在线有码专区| 热99在线观看视频| 国产亚洲欧美98| 日日啪夜夜撸| 国产v大片淫在线免费观看| 国产一区二区在线观看日韩| 久久久久精品国产欧美久久久| 日韩欧美一区二区三区在线观看| 国产视频内射| 日本与韩国留学比较| 国内精品宾馆在线| 婷婷精品国产亚洲av| 综合色丁香网| 看片在线看免费视频| 久久久午夜欧美精品| 久久久色成人| 一级黄色大片毛片| 免费搜索国产男女视频| 级片在线观看| 国产男靠女视频免费网站| 国产精品美女特级片免费视频播放器| 国产老妇女一区| 99九九线精品视频在线观看视频| 国内精品一区二区在线观看| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 久久99热这里只有精品18| 国产大屁股一区二区在线视频| 久久精品国产自在天天线| 国产精品一二三区在线看| 插逼视频在线观看| 久久九九热精品免费| 亚洲专区国产一区二区| 精品免费久久久久久久清纯| 中国美白少妇内射xxxbb| 我要搜黄色片| 欧美人与善性xxx| 哪里可以看免费的av片| 成人一区二区视频在线观看| 中文字幕熟女人妻在线| 国产精品国产高清国产av| 亚洲18禁久久av| 女人被狂操c到高潮| 欧美日韩在线观看h| 午夜激情福利司机影院| 大型黄色视频在线免费观看| 在线免费十八禁| 国产一级毛片七仙女欲春2| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| 亚洲不卡免费看| 成人三级黄色视频| 又爽又黄无遮挡网站| 蜜臀久久99精品久久宅男| 麻豆国产av国片精品| 在线观看av片永久免费下载| 可以在线观看的亚洲视频| 日本黄大片高清| 亚洲七黄色美女视频| 伦理电影大哥的女人| 天美传媒精品一区二区| 国产精品99久久久久久久久| 嫩草影院入口| 欧美日韩综合久久久久久| 在线免费观看的www视频| 麻豆精品久久久久久蜜桃| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器| 麻豆久久精品国产亚洲av| 一级毛片我不卡| 亚洲专区国产一区二区| 亚洲五月天丁香| 国产成人freesex在线 | 又爽又黄a免费视频| 亚洲精品日韩av片在线观看| 免费看日本二区| 午夜影院日韩av| 别揉我奶头~嗯~啊~动态视频| 我的老师免费观看完整版| 国产亚洲精品久久久com| 国产熟女欧美一区二区| 一区二区三区免费毛片| 成人特级黄色片久久久久久久| 国产黄色视频一区二区在线观看 | 精品人妻熟女av久视频| av在线蜜桃| 99riav亚洲国产免费| 日日摸夜夜添夜夜添av毛片| 99久久久亚洲精品蜜臀av| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 久久人妻av系列| 五月伊人婷婷丁香| 男女之事视频高清在线观看| 亚洲图色成人| 97碰自拍视频| 美女内射精品一级片tv| av专区在线播放| 成人三级黄色视频| 午夜免费激情av| 国产亚洲精品av在线| 久久久久久久久大av| 午夜激情福利司机影院| 国产黄片美女视频| 精品久久国产蜜桃| 国产91av在线免费观看| 国产爱豆传媒在线观看| 嫩草影院新地址| 日韩大尺度精品在线看网址| 美女免费视频网站| 欧美色视频一区免费| 内射极品少妇av片p| 免费电影在线观看免费观看| 97超级碰碰碰精品色视频在线观看| 黄色日韩在线| a级毛片a级免费在线| 搡女人真爽免费视频火全软件 | 欧美区成人在线视频| 久久精品影院6| 亚洲国产精品久久男人天堂| 蜜臀久久99精品久久宅男| 精品久久久久久久末码| 亚洲一区高清亚洲精品| 国产极品精品免费视频能看的| 日本a在线网址| 天堂av国产一区二区熟女人妻| 国内揄拍国产精品人妻在线| 久久久久久国产a免费观看| 麻豆乱淫一区二区| 内射极品少妇av片p| 美女免费视频网站| 日本欧美国产在线视频| 午夜日韩欧美国产| 我的女老师完整版在线观看| 韩国av在线不卡| 亚洲国产高清在线一区二区三| 99九九线精品视频在线观看视频| 男女那种视频在线观看| 色在线成人网| 国产欧美日韩一区二区精品| 国产精品亚洲美女久久久| 99热网站在线观看| 少妇猛男粗大的猛烈进出视频 | 日韩欧美精品v在线| 99riav亚洲国产免费| 久久久久久久久久成人| 日韩三级伦理在线观看| 免费看日本二区| 小说图片视频综合网站| 亚洲精品国产成人久久av| 又爽又黄a免费视频| 国产男靠女视频免费网站| 国模一区二区三区四区视频| 日韩欧美在线乱码| 国产熟女欧美一区二区| av免费在线看不卡| 精品无人区乱码1区二区| 欧美日韩一区二区视频在线观看视频在线 | 插逼视频在线观看| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 亚洲av免费在线观看| 联通29元200g的流量卡| 淫秽高清视频在线观看| 国产成人一区二区在线| av视频在线观看入口| 黄色日韩在线| 午夜免费激情av| 成人午夜高清在线视频| 亚洲无线观看免费| 亚洲av第一区精品v没综合| 国产视频一区二区在线看| 久久人人爽人人片av| 91麻豆精品激情在线观看国产| 亚洲无线观看免费| 午夜精品在线福利| 在线观看一区二区三区| 少妇的逼水好多| 一区二区三区免费毛片| 国产精品福利在线免费观看| 国产色爽女视频免费观看| 搡老妇女老女人老熟妇| 三级国产精品欧美在线观看| 国产精品久久久久久久久免| 国产一区二区在线av高清观看| 国产精品1区2区在线观看.| aaaaa片日本免费| 91麻豆精品激情在线观看国产| 欧美人与善性xxx| 国产片特级美女逼逼视频| 成人国产麻豆网| 亚洲欧美成人精品一区二区| 免费观看的影片在线观看| 精华霜和精华液先用哪个| 免费观看精品视频网站| 毛片一级片免费看久久久久| av中文乱码字幕在线| 最近最新中文字幕大全电影3| 日本爱情动作片www.在线观看 | 国产黄色视频一区二区在线观看 | www日本黄色视频网| 免费一级毛片在线播放高清视频| 毛片一级片免费看久久久久| av在线观看视频网站免费| 亚洲在线观看片| 在线观看美女被高潮喷水网站| 永久网站在线| 亚洲美女搞黄在线观看 | 国产白丝娇喘喷水9色精品| 久久精品国产亚洲网站| 日本精品一区二区三区蜜桃| 久久鲁丝午夜福利片| 在线免费观看不下载黄p国产| 一进一出好大好爽视频| 一个人看视频在线观看www免费| 久99久视频精品免费| 久久久久久久久大av| 两性午夜刺激爽爽歪歪视频在线观看| 熟女人妻精品中文字幕| 色吧在线观看| 日韩国内少妇激情av| 国产麻豆成人av免费视频| 久久久久久伊人网av| 亚洲人成网站在线观看播放| 欧美激情在线99| 亚洲欧美精品自产自拍| 久久精品国产亚洲网站| 热99在线观看视频| 成人美女网站在线观看视频| 丰满乱子伦码专区| 少妇熟女aⅴ在线视频|