• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Step Chem ical Vapor Deposition of In2Se3/M oSe2van der W aals Heterostructures

    2017-07-05 13:06:15YulinChenMinglingLiYiingWuSijiLiYueLinDongxueDuHuiyiDingNnPncdXiopingWngcd
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Yu-lin ChenM ing-ling LiYi-m ing WuSi-ji LiYue LinDong-xue DuHui-yiDingNn PncdXio-ping Wngcd

    a.Hefei National Laboratory for Physical Sciences at the M icroscale,University of Science and Technology ofChina,Hefei230026,China

    b.Department ofphysics,University of Science and Technology ofChina,Hefei230026,China

    c.Synergetic Innovation Center of Quantum Information&Quantum Physics,University of Science and Technology ofChina,Hefei230026,China

    d.Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences, School ofPhysical Sciences,University of Science and Technology ofChina,Hefei230026,China

    Two Step Chem ical Vapor Deposition of In2Se3/M oSe2van der W aals Heterostructures

    Yu-lin Chena,M ing-ling Lib,Yi-m ing Wub,Si-jia Lia,Yue Lina,Dong-xue Dub,Huai-yiDinga,Nan Pana,b,c,d?,Xiao-ping Wanga,b,c,d?

    a.Hefei National Laboratory for Physical Sciences at the M icroscale,University of Science and Technology ofChina,Hefei230026,China

    b.Department ofphysics,University of Science and Technology ofChina,Hefei230026,China

    c.Synergetic Innovation Center of Quantum Information&Quantum Physics,University of Science and Technology ofChina,Hefei230026,China

    d.Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences, School ofPhysical Sciences,University of Science and Technology ofChina,Hefei230026,China

    Two-dimensional transition metal dichalcogenides heterostructures have stimulated w ide interest not only for the fundamental research,but also for the app lication of next generation electronic and optoelectronic devices.Herein,we report a successful two-step chem ical vapor deposition strategy to construct vertically stacked van derWaalsepitaxial In2Se3/M oSe2heterostructures.Transm ission electron m icroscopy characterization reveals clearly that the In2Se3has well-aligned lattice orientation w ith the substrate ofm onolayer M oSe2.Due to the interaction between the In2Se3and M oSe2layers,the heterostructure shows the quenching and red-shift of photolum inescence.Moreover,the current rectification behavior and photovoltaic effect can be observed from the heterostructure,which is attributed to the unique band structure alignm ent of the heterostructure,and is further confi rm ed by Kevin probe forcem icroscopy m easurem ent.The synthesis approach via van der Waals epitaxy in thiswork can expand theway to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.

    van der Waals heterostructures,Chem ical vapor deposition,In2Se3/MoSe2, Kevin probe forcem icroscopy,n+-n junction

    I.INTRODUCTION

    Two-dimensional(2D)layered sem iconductors,including transition metal dichalcogenides(TMDs) (MX2,where M=transition m etals such as M o or W, and X=S,Se,or Te)and III?VIgroup layered chalcogenides(MX or M2X3,where M=Ga or In,and X=S, Se,or Te),have attracted broad attention for app lications of next-generation electronic and optoelectronic devices[1?4].Particularly,it is of tremendous significance to form novel 2D heterostructures for not only fundamental research,such as long-lived interlayer excitons in M oSe2/WSe2heterostructure ow ing to type-II junction band alignment and ultrafast charge separation[5?7],but also many device applications including photovoltaics,light-em itting diodes,and photodetectors[8?10].A lthough stacking diff erent 2D m aterials by using mechanical transfer techniques is quite convenient and effi cient,the stacked orientation cannotbe precisely controlled,and the interface is often contam inated[11,12].In contrast,direct van der Waals (vdW)epitaxy can realize not only verticalheterostructuresw ith well-defined interlayer orientationsand clean interfaces by vertically stacking multip le 2D materials layer-by-layer[5?7,13?19],but also lateralheterojunctions w ith seam less connections achieved by successive in-p lane epitaxial grow th of a second material from the edge of an existing crystal[20?28].Till now,most of previous studies focused on heterostructures w ith two diff erent MX2,such as WS2/WSe2[20],WSe2/MoSe2[21,24],WS2/MoS2[22,23],and WSe2/MoS2[25],and many new physical phenomena and functionalities have been dem onstrated.It is of great significance to exp lore a variety of novel 2D vdW epitaxy heterostructures constructed beyond TMDs,however,it has been rarely reported[26].

    In the present work,we report a two-step CVD grow th method for creating 2D vertically-stacked heterostructure consisting of In2Se3and M oSe2.In2Se3, as a III?VI com pound sem iconductor,has excellent properties for electronic and optoelectronic devices.Recently,the photodetectors of In2Se3w ith ultrahigh responsivity[29]and tunable near-UV behavior[30]havebeen reported.MoSe2is an ideal choice not only for its directband gap(~1.5 eV)and strong opticalabsorption due to band nesting[31],but also for the fact that it is unable to form elem ent doping in In2Se3.To our best know ledge,this is the fi rst report of vertically-stacked 2D In2Se3/MoSe2heterostructures obtained by vdW epitaxial grow th.The vertical heterostructures were verified by the characterizations of atom ic force m icroscopy(AFM)and Raman spectroscopy.The investigation of transm ission electronm icroscopy(TEM)reveals thewell-aligned lattice orientation between In2Se3and MoSe2.In addition,ow ing to the interlayer interaction,the apparent quenching and small red shift of the photolum inescence(PL)can be observed.M ore im portantly,due to the unique band alignment of the two differentmaterials,the fabricated device exhibits both the current rectification behavior and the photovoltaic eff ect.The surface contact potential diff erence of the heterostructure is further characterized by using Kevin probe forcem icroscopy(KPFM).

    II.EXPERIM ENTS

    A.M aterials synthesis

    In2Se3/M oSe2heterostructures were grown through a two-step CVD process.The experimental set-up is ahown in FIG.1(a).In the fi rst step,monolayer MoSe2nanosheets were synthesized on a clean SiO2/Si substrate in a two-zone furnace.200mg selenium(Se)and 10 mg m olybdenum oxide(M oO3)powder were used as precursors and put into a quartz boat and an alum ina boat,respectively.They were then pushed into a quartz tube w ith one inch diam eter.Se and M oO3quartz tubeswere at the center of the fi rst heating zone (zone-1)and the second heating zone(zone-2)respectively.These two heating zones can be controlled separately and the distance between two sources is 23 cm. The SiO2/Si substrate was put up-side down w ith the polished side facing towards MoO3powder,which located at the bottom of the crucible.The vertical distance between M oO3powder and SiO2/Si substrate is about 0.5 cm.It took 15 m in for zone-1 and zone-2 to heat up from room temperature to 100 and 780?C, respectively.Then zone-1 was heated to 270?C w ithin 5 m in and kept for 30 m in,meanwhile zone-2 was kept at 780?C.40 sccm Ar(started before heating)and 10 sccm H2(started when zone-1was270?C)wereused asboth the carrier gas and reducing atm osphere to prom ote the reaction.A fter that,the furnace was cooled down to room tem perature rapidly.

    In the second step,the substrate w ith 1L MoSe2on top was used as a new substrate for the second grow th of In2Se2,which wasalso the tem plate for the synthesis of In2Se3/MoSe2heterostructures.200 mg Se powder and 10 mg In2O3powder were used as the Se and In precursors.Heating time and carrier gaswere kept the same as the grow th conditions for M oSe2,but the temperature of zone-2 was reduced to 660?C and kept for 25 m in.A ll reaction processes are carried out under atmospheric pressure.

    B.Characterization

    The optical imageswere taken by opticalm icroscopy (O lym pus BX 53F).AFM and KPFM were perform ed using Bruker Dem ension Icon in the ambient condition. Raman and confocal PL measurements were realized using LabRAM HR 800 under 514 nm excitation.PL mapping measurements was perform ed w ith a hom ebuilt m icro-PL setup.In order to ensure the exciting area to be largeenough to cover thewholeselectedmapping region,532 nm laserwas focused on the back focal p lane of ob jective lens(O lym pus M Plan Sem i Apochromat,100×,N.A.0.9,W.D.1.0 mm).W ith a tube lens(300 mm focal length)and long wave pass fi lter at 550 nm,the lum inescence image was enlarged and projected on the slit p lane of spectrometer(Princeton Instruments SP2300 w ith PyLoN:100).For the lum inescence image detecting,the w idth of the slit is set at 2 mm.The zero order interference im age reflected by the grating,as the sam e as the lum inescence image,is detected by the CCD of the spectrometer.The spatial resolution is better than 1μm.For the spectra measurem ent,the targetydirection cut line of the lum inescence im age was set at the center of the CCD through tuning thexposition of the tube lens.Then the w idth of the slit was set as 50μm.The cut line spectra,the fi rst order interference im age reflected by the grating,are detected by the CCD.The spectrum resolution is better than 0.5 nm,and spatial resolution equals to that of the lum inescence image.

    TEM,HRTEM images and SAED patternswere collected by a JEOL ARM-200F field em ission transm ission electron m icroscope operated at 200 kV.The samp les for TEM analyses were transferred onto copper grids coated w ith 5-nm-thick amorphous carbon fi lm. For samp le transfer,polymethylmethacrylate(PMMA, 495A4)was spin-coated on the SiO2/Si substrate w ith In2Se3/M oSe2heterostructures at 3000 r/m in for 60 s, followed by baking at 120?C for 3 m in to remove the solvents.Then the substrate was floated on 1 mol/L NaOH solution and the PMMA layer carrying sam p les would shed off the SiO2/Sisubstrate slow ly.A fter that, the PMMA fi lm was transferred to deionized water to remove residual ion and then spread onto the copper grid.Finally,the PMMA mediator was rem oved by dipping in acetone for 3 h.

    C.Device fabrication and m easurem ents

    The SiO2/Si substrate w ith In2Se3/M oSe2heterostructureswas spin coated w ith PMMA(495A 4)resist at 3000 r/m in for 60 s followed by a 180?C baking for 90 s.Then the EBL(JEOL,JBX 6300FS)was used to pattern the source and the drain.A fter development,5 nm Ti and 50 nm Au contacts were deposited by electron beam evaporation.Lift-off process w ith acetone finally removed excessmetal.The electricaland optoelectronic performance of fabricated device weremeasured in a Lake Shore CRX-4K probe station (~10?4Pa)w ith Keithley 4200Ssem iconductor parameter analyzer.A 532 nm laser w ith a power density of~0.5mW/cm2was used as the excitation light.

    III.RESULTS AND DISCUSSION

    FIG.1(b)shows the resultsafter the fi rst step grow th. As seen,triangular MoSe2flakes w ith size about several tens ofm icrons can be found clearly.The thickness of the flake is estimated to be~0.75 nm by AFM (FIG.1(f)),indicating thatm onolayer M oSe2has been successfully fabricated after the fi rst step CVD process.

    A fter the second CVD process,it is easy to find from FIG.1(c?e)that the optical contrast of some MoSe2flakes becomes different,im p lying that an additional layered m aterial has been grown vertically on the 1L MoSe2.Thematerial can bewell identified to be In2Se3using TEM characterization and Raman spectra(see follow ing paragraphs).Further AFM characterization reveals that the thickness of In2Se3is about 2 nm,corresponding to bilayer(FIG.1(g?i)).Therefore,we can conclude that In2Se3(bilayer)/MoSe2(monolayer)heterostructure has been successfully produced by the twostep CVD process.To our best know ledge,this is the fi rst report of direct grow th of 2D In2Se3on top of 1L MoSe2to form thevertically-stacked In2Se3/MoSe2heterostructures.

    A fter carefully exam ining the optical im ages of produced heterostructures on the whole substrate,we can classify them into three different kindsofmorphologies. The representative resu ltsare presented in FIG.1(c?e).The fi rst type is the triangular 1L M oSe2fullycovered by In2Se3(FIG.1(c)),the second is MoSe2partially covered by In2Se3flakesw ith one side uncovered(FIG. 1(d)),and the third is that w ith a corner of M oSe2uncovered(FIG.1(e)).M oreover,we can find that the edge of In2Se3flake on the top of MoSe2is rather sm ooth(FIG.1(d,e)),hinting that the In2Se3isunlikely formed from the coalescence of several small flakes but most probably grows up from a single seed.Considering In2Se3nucleated random ly on the top ofMoSe2,we propose three possible grow th processes to reach the experimental results,the schematic is shown in the right of FIG.1(a).W hen thenucleation isquitenear the center of the single crystal M oSe2,the In2Se3flake tends to fully cover the M oSe2(type i);when the nucleation is close to one apex of the triangular MoSe2,the In2Se3flake can partially cover the MoSe2and leave one side uncovered(type ii);sim ilarly,a corner of theM oSe2w ill remain uncovered when the In2Se3nucleatesaround one side of MoSe2(type iii).

    As to the In2Se3/M oSe2heterostructure fabricated on SiO2substrate,several issues should be noted. First,monolayer In2Se3can be hardly observed on 1L M oSe2,probably because it is unstable under our grow th condition.Second,the thickness of In2Se3flakes can be controlled by tuning the vertical distance between the In2O3source and the substrate as well as the deposition time,therefore diff erent In2Se3(multilayer)/M oSe2(m onolayer)heterostructure can be produced(FIG.S1(c)in supplementary materials).Third,the MoSe2/In2Se3heterostructure,i.e., M oSe2on the top of In2Se3,cannot be produced on SiO2substrate.This is because that In2Se3can hard ly nucleateand grow on SiO2substrate directly,due to the unsaturated dangling bonds on the surface of SiO2and the large latticem ism atch[4](FIG.S1(a)in supp lem entary materials).The result is well consistent w ith the observation shown in FIG.1(c?e),in which no individual In2Se3flake can be found on the SiO2substrate,except on themonolayer M oSe2.Sim ilar to M oSe2,m ica also has no unsaturated dangling bonds on its surface, making it an idealplatform for the deposition of In2Se3nanofi lm s(FIG.S1(b)in supp lem entary m aterials).

    In order to investigate the crystal quality of the heterostructure and the structure relationship between the In2Se3and the M oSe2,TEM as well as the selected area electron diff raction(SAED)characterizationswere carried out on theboundary of In2Se3/MoSe2heterostructure.The heterostructureswere transferred from SiO2/Si substrate to the copper grid w ith carbon fi lm via traditional PMMA assisted method[32]. FIG.2(a)shows a low-magnification image focused on the area where 1L M oSe2is not com p letely covered by In2Se3(the right part of thewhite dash line).FIG.2(b) is the high-resolution TEM image taken from thewhite line box in FIG.2(a).As seen,the left region of M oSe2uncovered by In2Se3dem onstrates brighter contrast, while the heterostructure on the right region shows darker contrast.Moreover,the crystal latticeof theheterostructre can be clearly observed,indicating its high crystal quality.

    FIG.2 Structural characterization of the vertically-stacked In2Se3/MoSe2heterostructure.(a)Low magnification TEM im age of the edge area where In2Se3is grown on 1L M oSe2. Scale bar:100 nm.(b)The high-resolution TEM image taken from the white box area m arked in(a).Scale bar: 10 nm.(c)Fast Fourier transform(FFT)and(d)the The electron diff raction patterns taken from the left(M oSe2)and right(heterostructure)regions in(b),respectively.Scale bar:5 nm.The two red circles in(c)and(d)stand for the atom ic spacing along[10-10]and[11-20]directions of 2HMoSe2,whereas the green circles in(d)stand for the atom ic spacing along[10-10]and[11-20]directions ofα-In2Se3.(e) Side view of the atom icm odel of the In2Se3/M oSe2vertical vdW heterostructure.

    The structures of the monolayer MoSe2and the In2Se3/MoSe2heterostructure are further analyzed by fast Fourier transform(FFT)and SAED.The results taken from the left/right region of FIG.2(b)are presented in FIG.2(c)and(d),respectively.Obviously, typical six-fold diff raction patternswere obtained from both single M oSe2(left region)and In2Se3/M oSe2heterostructure(right region),consistent w ith the anticipation of 2H-MoSe2andα-In2Se3.The FFT pattern of M oSe2in FIG.2(c)reveals that the probing beam is roughly parallel tocaxis of the crystal.The two red circles in the image represent atom ic spacing along[10-10]and[11-20]directions,and the corresponding lattice constants were calculated to be 0.28 and 0.16 nm,respectively.These valuesare in good agreem entw ith the lattice structure of 2H-MoSe2[26].The SAED from the heterostructure(FIG.2(d))demonstrates two sets of patternsw ith six-fold symm etry.Com pared w ith FIG. 2(c),weattribute that the spotsmarked w ith red circles also come from MoSe2,and thespotsmarked w ith green circles are originated from In2Se3.We can further acquire information of the crystalstructure of In2Se3from the set of green circles.The atom ic spacing along the [10-10]and[11-20]directionswere calculated to be 0.36 and 0.20 nm,respectively,consistent w ith the lattice structure ofα-In2Se3[29].M ore im portantly,considering the consistency of the crystal orientation of MoSe2and In2Se3,we consider that 2Dα-In2Se3w ith hexagonal lattice structure has been successfully grown on the top ofm onolayer M oSe2by vertical vdW epitaxy. According to the above characterizations,a schematic sideview of theatom icmodelof the In2Se3/MoSe2vdW heterostructure can be roughly depicted in FIG.2(e).

    FIG.3 Optical properties of In2Se3/M oSe2heterostructures.(a)Optical im age of heterostructures grown on SiO2/Si.Scale bar:10μm.(b)Raman and(c)PL spectra acquired from the three diff erent points marked in(a),1L MoSe2(b lack point),2L In2Se3on 1L M oSe2(red point)andnL In2Se3on 1L M oSe2(n>5,b lue point).(d)Schem atic band structure of In2Se3/M oSe2.

    The optical properties of the vertically stacked In2Se3/MoSe2heterostructures were characterized by Raman and photolum inescence(PL)spectroscopy.The excitation is a 514-nm laser w ith~1μm spot size. FIG.3(a)shows the optical image of the heterostructures grown on SiO2/Si substrate.Three different positions involving bare 1L MoSe2(black dot),2L In2Se3on 1L M oSe2(red point)andnL In2Se3on 1L M oSe2(n>5,blue point)were excited,and the results of Raman and PL spectra are demonstrated in FIG.3(b) and(c),respectively.As seen in FIG.3(b),for the heterostructure of In2Se3(>5 layers)/M oSe2,both Raman peaks from In2Se3and MoSe2can be observed clearly. Three peaks located at~109,~177,and~206 cm?1(indicated by green dash lines in FIG.3(b)),can be ascribed to A1(LO+TO),A1(TO),and A1(LO)phonon modes inα-In2Se3,respectively[4].However,because ultrathin In2Se3can be easily damaged even under lowpower laser illum ination[4],the Raman signal from In2Se3is absent for the 2L In2Se3/M oSe2heterostructure.The rest four Ram an peaks,marked by b lack dash lines,originate from 2H-MoSe2for~141 cm?1(weak E1gmode,in-p lane),~239 cm?1(A1gmode,outof-p lane),~289 cm?1(weak E12gmode,in-p lane),and~250 cm?1(defective peak)[26].W ith increasing the In2Se3thickness on the top of M oSe2,the Raman signals of In2Se3increase obviously while the Raman intensities of MoSe2slightly decrease(especially for the A1gand E12gm odes).M oreover,we find that the Raman peak positions ofmonolayer MoSe2are independent of the thickness of In2Se3flake on top.

    FIG.3(c)shows the PL spectra from m onolayer M oSe2and In2Se3/M oSe2heterostructure.As seen,the maximal PL intensity is obtained in monolayer MoSe2(black line spectrum in FIG.3(c)),thanks to its direct band gap[33].The peak position of PL is approximately at~820 nm.For the In2Se3(2L)/M oSe2(1L) heterostructure(red line spectrum in FIG.3(c)),the PL spectrum shows not only the decrease of intensitybut also the red shift of peak position to~825 nm.The behaviors can be further confi rmed by the PLmappings of 1L M oSe2and In2Se3(2L)/M oSe2(1L)heterostructure(FIG.S2 in supp lementarym aterials).Because the bilayer In2Se3owns a too large indirect band gap(~2.8 eV)to absorb the excitation laser[30],we attribute the predom inant reason for the decrease of PL intensity of the heterostructure to the type-II band alignment between 2L In2Se3and 1LMoSe2,as shown in FIG.3(d). This zigzag band structure is prone to quench the excitons and promote the charge separation,leading to the distinct decrease of photolum inescence[5].

    It is found that the full w idth at half m aximum (FWHM)of PL spectra shown in FIG.3(c)are rather large,which m ight be caused by the co-existed neutral exciton and trion em issions.In this context,the spectra can be well fi tted by two Gaussian functions w ith neutral exciton(X0≈818 nm,1.52 eV)and negative trion(X?≈834 nm,1.49 eV).The resultsare shown in FIG.S3(supp lem entary m aterials)w ith the red and green lines,respectively.The evaluated trion binding energy~30meV agreeswellw ith previous report[34]. The integrated intensity ratios of negative trion to neutralexciton is found to increase from~1.0 form onolayer MoSe2(FIG.S3(a)in supplementarymaterials)to~1.3 for In2Se3(2L)/MoSe2(1L)heterostructure(FIG.S3(b) in supp lem entary materials).The dom inant negative trion em ission in the heterostructure im p lies that the electrons tend to transfer from In2Se3to MoSe2,leading tomore negative charge doping in MoSe2[35].The result can also account for the PL red shift of the heterostructure in FIG.3(c).

    As to the In2Se3(>5L)/M oSe2(1L)heterostructure, PL em ission can hardly be found as shown in FIG.3(c) w ith blue line.We proposed two causes for the result.One is the exciton quenching eff ect,which is similar to that observed in the In2Se3(2L)/M oSe2(1L)heterostructure.The other is that the optical band gap of In2Se3decreases rapidly w ith the thickness(~2.2 eV in 5.5 nm thick In2Se3and 1.45 eV in bulk In2Se3)and can even transform into a direct band gap[30],resulting in the strong absorption to the excitation light and weakening the em ission.

    To investigate the electrical properties of the In2Se3/M oSe2heterostructures,the source-drain contacts consisting of Ti/Au(5/50 nm)were deposited on 2L In2Se3/MoSe2and 1L MoSe2regions,respectively. The finaldevice isshown in FIG.4(a)and the schematic structure of the device is shown in the inset.The transfer characteristic of the device shows apparent n-type feature(inset of FIG.4(b)).This is due to that both MoSe2and In2Se3are inclined to be intrinsic n-doping during the grow th[33,36].TheIds-Vdscurves under diff erent back-gate voltages ranging from 0 V to 60 V clearly show rectification behavior(FIG.4(b)), and the rectification ratio can reach as high as~100 whenVg<40 V.We attribute the behavior to the n+-n heterojunction formed between In2Se3and MoSe2,because both materials are n-type sem iconductor.The interpretation can be further verified by the fact that the rectification behavior is degraded asVgbecom ing large.For instance,the rectification ratio is only~5 whenVg≈60 V,as shown in FIG.4(b).

    In order to investigate the band alignment of the heterostructure and identify the proposed n+-n hetero junction,Kelvin probe force m icroscope(KPFM) measurement was performed along the red arrow line depicted in FIG.4(a).As observed from FIG.4(c), the surface contact potential diff erence(CPD)across the edge ofm onolayer M oSe2and heterostructure can reach~200 meV and the w idth of dep letion region is about 4μm.Because KPFM measures the CPD between the AFM tip and the surface of sam p le,i.e., CPDsample=?tip??sample,we can get the Ferm i level diff erence between In2Se3and MoSe2by:

    where?MoSe2and?In2Se3are the work functions of MoSe2and In2Se3,respectively[37].Therefore,the value of?EFbetween In2Se3and MoSe2can be estim ated at~200 m eV and the band alignment of 2L In2Se3and monolayer MoSe2is schematically demonstrated in FIG.4(d).As seen,compared to n-type M oSe2,In2Se3is heavily n-doped sem iconductor.Consequently,the In2Se3and M oSe2can form n+-n heterojunction,which is the predom inant cause for the rectification behavior in FIG.4(b).

    Finally,we present the primary results for the photoresponse of the devices under light illum ination.A 532 nm laser w ith a power density of~0.5 mW/cm2was used as the excitation light.TheIds-Vdscurves of the device w ith and w ithout light are dem onstrated in FIG.S4 in supp lementary m aterials.It can be found that the current increases dramatically w ith light on. The feature ismore striking for the reverse biased device.Specifically,when the device under reverse bias, the current sw itching ratio of the devicew ith light on to that w ith light off can be as high as~200.However,it decreases to~4 for the forward biased device.Thisphenomenon can be well understood w ith the band structure of the junction shown in FIG.S4(b)and FIG.S4(c) in supp lementary materials.Under the reverse bias (FIG.S4(b)in supp lementary materials),in addition to weak dark current,the large band off set can promote the separation of excitons in M oSe2,leading to a high sw itching ratio;on thecontrary,thesmallband offset under the forward bias voltage(FIG.S4(c))enables large dark current and therefore lowers the sw itching ratio.This is sim ilar to the operating princip le of pn photodiode,which further convince the n+-n band alignm ent across the In2Se3/M oSe2junction.Additionally,we also observe photovoltaic eff ect in such a n+-n heterojunction device.As shown in the inset ofFIG.S4 in supplementary materials,the device shows an open-circuit voltageVOC≈0.5 V and short-circuit currentISC≈0.8 pA under light illum ination.

    FIG.4 Electrical characterization of the In2Se3/MoSe2heterostructure.(a)Optical image of a device.The inset is the schem atic structure of the device.Scale bar:10μm.(b)Ids-Vdscurves of the device at diff erent back-gate voltages under dark(from bottom to top,in steps of 20 V).The inset is the transfer characteristic curvew ithVdsfixed at 20 V.(c)Surface contact potential diff erencem easured along the red arrow line depicted in(a).(d)Band alignm ent ofm onolayer M oSe2and bilayer In2Se3based on KPFM characterization.

    IV.CONCLUSION

    In summary,we fabricated the vertical heterostructuresw ith bilayer In2Se3on the top ofmonolayerMoSe2through a two-step CVD process.The vdW epitaxial character and the possible grow th schematic are revealed by the structural characterization.It is found that the quenching behavior and red-shift of photolum inescence of the heterostructure can bem odulated by the interaction between M oSe2and In2Se3.Due to the uniquely aligned band structure,such In2Se3/MoSe2heterostructures can exhibit distinct current rectification behavior and photoelectric response.M ore importantly,the reported approach in this work can be extended to other novel 2D heterostructures involving diff erent layered com pounds,enabling to enrich the variety of 2D vdW heterostructures for basic research and applications for next generation optoelectronic devices.

    Sup p lem en tary m aterials:M ore optical m icrographs about the grow th of In2Se3.PL mappings of intrinsic 1L MoSe2and heterostructurew ith 1L MoSe2partially covered by 2L In2Se3.Fitted PL spectra of the monolayer M oSe2and In2Se3(2L)/M oSe2heterostructure.Optoelectronic properties of the In2Se3/M oSe2heterostructure.

    V.ACKNOW LEDGM ENTS

    Thiswork was supported by the M inistry of Science and Technology of China(No.2016YFA 0200602), the National Natural Science Foundation of China(No.21421063,No.11374274,No.11404314, No.11474260,No.11504364),the Chinese Academy of Sciences(XDB01020200),and the Fundam ental Research Funds for the Central Universities (WK 2030020027,WK 2060190027).

    [1]S.Z.Butler,S.M.Hollen,L.Y.Cao,Y.Cui,J.A. Gupta,H.R.Guti′errez,T.F.Heinz,S.S.Hong,J. X.Huang,A.F.Ismach,E.Johnston-Halperin,M. Kuno,V.V.Plashnitsa,R.D.Robinson,R.S.Ruoff, S.Salahuddin,J.Shan,L.Shi,M.G.Spencer,M.Terrones,W.W ind l,and J.E.Goldberger,ACS Nano 7, 2898(2013).

    [2]B.Radisav ljevic,A.Radenovic,J.Brivio,V.Giacom etti,and A.K is,Nat.Nanotechnol.6,147(2011).

    [3]X.F.Li,M.W.Lin,A.A.Puretzky,J.C.Id robo, C.Ma,M.F.Chi,M.Yoon,C.M.Rouleau,I.I. K ravchenko,D.B.Geohegan,and K.X iao,Sci.Rep. 4,5497(2014).

    [4]W.Feng,W.Zheng,F.Gao,X.S.Chen,G.B.Liu,T. Hasan,W.W.Cao,and P.A.Hu,Chem.M ater.28, 4278(2016).

    [5]F.Ceballos,M.Z.Bellus,H.Y.Chiu,and H.Zhao, ACSNano 8,12717(2014).

    [6]P.Rivera,J.R.Schaibley,A.M.Jones,J.S.Ross,S. W u,G.A ivazian,P.K lem ent,K.Sey ler,G.C lark,N. J.Ghim ire,J.Yan,D.G.M andrus,W.Yao,and X. Xu,Nat.Commun.6,6242(2015).

    [7]P.Rivera,K.L.Seyler,H.Y.Yu,J.R.Schaibley,J.Q. Yan,D.G.M andrus,W.Yao,and X.D.Xu,Science 351,688(2016).

    [8]A.Pospischil,M.M.Furchi,and T.M ueller,Nat.Nanotechnol.9,257(2014).

    [9]J.S.Ross,P.K lement,A.M.Jones,N.J.Ghim ire,J. Q.Yan,D.G.M andrus,T.Taniguchi,K.Watanabe, K.K itamura,W.Yao,D.H.Cobden,and X.D.Xu, Nat.Nanotechnol.9,268(2014).

    [10]K.N.Zhang,T.N.Zhang,G.H.Cheng,T.X.Li,S. X.Wang,W.Wei,X.H.Zhou,W.W.Yu,Y.Sun,P. W ang,D.Zhang,C.G.Zeng,X.J.Wang,W.D.Hu, H.J.Fan,G.Z.Shen,X.Chen,X.F.Duan,K.Chang, and N.Dai,ACS Nano 10,3852(2016).

    [11]S.J.Haigh,A.Gholinia,R.Jalil,S.Romani,L.Britnell,D.C.Elias,K.S.Novoselov,L.A.Ponom arenko, A.K.Geim,and R.Gorbachev,Nat.M ater.11,764 (2012).

    [12]W.Yang,G.R.Chen,Z.W.Shi,C.C.Liu,L.C. Zhang,G.B.Xie,M.Cheng,D.M.Wang,R.Yang,D. X.Shi,K.W atanabe,T.Taniguchi,Y.G.Yao,Y.B. Zhang,and G.Y.Zhang,Nat.M ater.12,792(2013).

    [13]A.K.Geim and I.V.Grigorieva,Nature 499,419 (2013).

    [14]R.Cheng,D.H.Li,H.L.Zhou,C.Wang,A.X.Yin, S.Jiang,Y.Liu,Y.Chen,Y.Huang,and X.F.Duan, Nano Lett.14,5590(2014).

    [15]M.H.Chiu,C.D.Zhang,H.W.Shiu,C.P.Chuu,C. H.Chen,C.Y.S.Chang,C.H.Chen,M.Y.Chou,C. K.Shih,and L.J.Li,Nat.Commun.6,7666(2015).

    [16]H.Fang,C.Battaglia,C.Carraro,S.Nem sak,B.Ozdol, J.S.Kang,H.A.Bechtel,S.B.Desai,F.K ronast,A. A.Unal,G.Conti,C.Conlon,G.K.Palsson,M.C. M artin,A.M.M inor,C.S.Fad ley,E.Yab lonovitch,R. Maboudian,and A.Javey,Proc.Natl.Acad.Sci.USA. 111,6198(2014).

    [17]C.H.Lee,G.H.Lee,A.M.Van Der Zande,W.C. Chen,Y.L.Li,M.Y.Han,X.Cui,G.A refe,C.Nuckolls,T.F.Heinz,J.Guo,J.Hone,and P.K im,Nat. Nanotechnol.9,676(2014).

    [18]S.Tongay,W.Fan,J.Kang,J.Park,U.Koldem ir,J. Suh,D.S.Narang,K.Liu,J.Ji,J.B.Li,R.Sinclair, and J.Q.Wu,Nano Lett.14,3185(2014).

    [19]F.W ithers,O.Del Pozo-Zamudio,A.M ishchenko,A. P.Rooney,A.Gholinia,K.Watanabe,T.Taniguchi, S.J.Haigh,A.K.Geim,A.I.Tartakovskii,and K.S. Novoselov,Nat.Mater.14,301(2015).

    [20]X.D.Duan,C.Wang,J.C.Shaw,R.Cheng,Y.Chen, H.L.Li,X.P.Wu,Y.Tang,Q.L.Zhang,A.L.Pan, J.H.Jiang,R.Q.Yu,Y.Huang,and X.F.Duan,Nat. Nanotechnol.9,1024(2014).

    [21]Y.J.Gong,S.D.Lei,G.L.Ye,B.Li,Y.M.He,K. Keyshar,X.Zhang,Q.Z.W ang,J.Lou,Z.Liu,R. Vajtai,W.Zhou,and P.M.A jayan,Nano Lett.15, 6135(2015).

    [22]Y.J.Gong,J.H.Lin,X.L.Wang,G.Shi,S.D.Lei, Z.Lin,X.L.Zou,G.L.Ye,R.Vajtai,B.I.Yakobson,H.Terrones,M.Terrones,B.K.Tay,J.Lou,S.T. Pantelides,Z.Liu,W.Zhou,and P.M.A jayan,Nat. M ater.13,1135(2014).

    [23]H.Heo,J.H.Sung,G.Jin,J.H.Ahn,K.K im,M.J. Lee,S.Cha,H.Choi,and M.H.Jo,Adv.M ater.27, 3803(2015).

    [24]C.M.Huang,S.F.Wu,A.M.Sanchez,J.J.P.Peters,R.Bean land,J.S.Ross,P.Rivera,W.Yao,D.H. Cobden,and X.D.Xu,Nat.M ater.13,1096(2014).

    [25]M.Y.Li,Y.M.Shi,C.C.Cheng,L.S.Lu,Y.C.Lin, H.L.Tang,M.L.Tsai,C.W.Chu,K.H.W ei,J.H. He,W.H.Chang,K.Suenaga,and L.J.Li,Science 349,524(2015).

    [26]X.F.Li,M.W.Lin,J.H.Lin,B.Huang,A.A.Puretzky,C.M a,K.W ang,W.Zhou,S.T.Pantelides,M.F. Chi,K.K ravchenko,J.Fow lkes,C.M.Rouleau,D.B. Geohegan,and K.Xiao,Sci.Adv.2,e1501882(2016).

    [27]L.Liu,J.Park,D.A.Siegel,K.F.M cCarty,K.W. Clark,W.Deng,L.Basile,J.C.Id robo,A.P.Li,and G.Gu,Science 343,163(2014).

    [28]Y.F.Yu,S.Hu,L.Q.Su,L.J.Huang,Y.Liu,Z.H. Jin,A.A.Purezky,D.B.Geohegan,K.W.K im,Y. Zhang,and L.Y.Cao,Nano Lett.15,486(2015).

    [29]R.B.Jacobs-Ged rim,M.Shanmugam,N.Jain,C.A. Durcan,M.T.M urphy,T.M.M urray,R.J.M atyi,R. L.Moorell,and B.Yu,ACSNano 8,514(2014).

    [30]J.Quereda,R.Biele,G.Rubio-Bollinger,N.Agra¨?t, R.D’Agosta,and A.Castellanos-Gom ez,Adv.Opt. Mater.4,1939(2016).

    [31]A.Carvalho,R.M.Ribeiro,and A.H.C.Neto,Phys. Rev.B 88,115205(2013).

    [32]J.Xia,X.Huang,L.Z.Liu,M.Wang,L.W ang,B. Huang,D.D.Zhu,J.J.Li,C.Z.Gu,and X.M.M eng, Nanoscale 6,8949(2014).

    [33]Y.J.Gong,G.L.Ye,S.D.Lei,G.Shi,Y.M.He,J.H. Lin,X.Zhang,R.Vajtai,S.T.Pantelides,W.Zhou, B.Li,and P.M.A jayan,Adv.Funct.M ater.22,2009 (2016).

    [34]A.Singh,G.M oody,K.Tran,M.E.Scott,V.Overbeck, G.Bergh¨auser,J.Schaibley,E.J.Seifert,D.Pleskot, N.M.Gabor,J.Q.Yan,D.G.Mand rus,M.Richter, E.M alic,X.D.Xu,and X.Q.Li,Phys.Rev.B 93, 041401(2016).

    [35]J.S.Ross,S.F.W u,H.Y.Yu,N.J.Ghim ire,A. M.Jones,G.A ivazian,J.Q.Yan,D.G.M andrus,D. Xiao,W.Yao,and X.D.Xu,arXiv p reprint arXiv: 1211.0072,(2012).

    [36]M.Lin,D.Wu,Y.Zhou,W.Huang,W.Jiang,W.S. Zheng,S.L.Zhao,C.H.Jin,Y.F.Guo,H.L.Peng, and Z.F.Liu,J.Am.Chem.Soc.135,13274(2013).

    [37]K.Chen,X.W an,J.X.Wen,W.G.X ie,Z.W.Kang, X.L.Zeng,H.J.Chen,and J.B.Xu,ACS Nano 9, 9868(2015).

    ceived on April 5,2017;Accepted on April 19,2017)

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: npan@ustc.edu.cn,xpwang@ustc.edu.cn

    久久久国产成人精品二区| 一本综合久久免费| 91成年电影在线观看| 一a级毛片在线观看| 国产精品1区2区在线观看.| 观看免费一级毛片| 一本久久中文字幕| 99热只有精品国产| 这个男人来自地球电影免费观看| 午夜精品久久久久久毛片777| 天堂动漫精品| 亚洲成人中文字幕在线播放| 亚洲一区中文字幕在线| 久久久久久久久中文| 欧美日韩中文字幕国产精品一区二区三区| 欧美成人午夜精品| 91大片在线观看| 三级毛片av免费| 久久亚洲真实| 国产精品一及| 欧美又色又爽又黄视频| 超碰成人久久| 久久人妻av系列| 在线看三级毛片| cao死你这个sao货| 日韩三级视频一区二区三区| 亚洲专区中文字幕在线| 亚洲专区字幕在线| 国产高清videossex| 日本一区二区免费在线视频| 18禁裸乳无遮挡免费网站照片| 国产精品爽爽va在线观看网站| 一区福利在线观看| 两个人的视频大全免费| 欧美性长视频在线观看| 99热这里只有是精品50| 午夜激情福利司机影院| 亚洲国产精品成人综合色| 中文字幕人妻丝袜一区二区| 精品电影一区二区在线| 亚洲精品中文字幕在线视频| 国产一区二区三区视频了| 日本成人三级电影网站| 日日爽夜夜爽网站| 欧美极品一区二区三区四区| 亚洲人成伊人成综合网2020| 亚洲五月婷婷丁香| 国产亚洲精品久久久久5区| 男女床上黄色一级片免费看| 国产一区二区在线观看日韩 | 日日夜夜操网爽| 天堂影院成人在线观看| 成人亚洲精品av一区二区| tocl精华| 99riav亚洲国产免费| 最近最新中文字幕大全免费视频| 国产主播在线观看一区二区| 日本黄大片高清| 亚洲国产高清在线一区二区三| 亚洲va日本ⅴa欧美va伊人久久| 国内精品久久久久精免费| 国产成人aa在线观看| 久久精品国产亚洲av高清一级| 亚洲中文av在线| 国产三级在线视频| 欧美+亚洲+日韩+国产| 精品福利观看| 成在线人永久免费视频| 日韩精品免费视频一区二区三区| 999久久久精品免费观看国产| 夜夜看夜夜爽夜夜摸| 欧美日韩精品网址| 国产亚洲精品综合一区在线观看 | 国产午夜福利久久久久久| 久热爱精品视频在线9| 欧美精品亚洲一区二区| 久久久久久久久中文| 99久久综合精品五月天人人| 亚洲成av人片免费观看| 国产欧美日韩精品亚洲av| 男女下面进入的视频免费午夜| 亚洲美女黄片视频| 无遮挡黄片免费观看| 成人特级黄色片久久久久久久| 一级黄色大片毛片| 国产成人精品久久二区二区免费| 国内久久婷婷六月综合欲色啪| 国产区一区二久久| 亚洲第一欧美日韩一区二区三区| 日韩高清综合在线| 日本a在线网址| 俄罗斯特黄特色一大片| 欧美一区二区国产精品久久精品 | 亚洲熟妇熟女久久| 久久久国产精品麻豆| 视频区欧美日本亚洲| 久久中文字幕人妻熟女| 亚洲精品国产精品久久久不卡| 久久欧美精品欧美久久欧美| 国产视频一区二区在线看| 亚洲成人免费电影在线观看| 国产激情偷乱视频一区二区| 中文字幕最新亚洲高清| 亚洲avbb在线观看| 99久久精品国产亚洲精品| bbb黄色大片| 99精品久久久久人妻精品| 在线观看免费日韩欧美大片| 麻豆av在线久日| 久久九九热精品免费| 黄色片一级片一级黄色片| 又爽又黄无遮挡网站| 欧美大码av| 中文字幕高清在线视频| 99精品在免费线老司机午夜| 国产免费男女视频| 国产99白浆流出| 国产精品久久久久久亚洲av鲁大| 日本 av在线| 欧美黄色片欧美黄色片| 天堂√8在线中文| 91成年电影在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美日韩亚洲综合一区二区三区_| 最近视频中文字幕2019在线8| 国产精品久久久久久精品电影| 美女大奶头视频| 国产精品综合久久久久久久免费| 亚洲一区中文字幕在线| 亚洲专区字幕在线| 国产高清videossex| 免费看日本二区| 精品一区二区三区四区五区乱码| 在线观看美女被高潮喷水网站 | 亚洲av成人一区二区三| 国产精品电影一区二区三区| 成人永久免费在线观看视频| 国产亚洲精品综合一区在线观看 | 丁香欧美五月| 宅男免费午夜| 男女午夜视频在线观看| 日韩欧美 国产精品| 久久婷婷成人综合色麻豆| 亚洲电影在线观看av| 精品少妇一区二区三区视频日本电影| 动漫黄色视频在线观看| 国产精品久久久久久久电影 | 少妇被粗大的猛进出69影院| 美女午夜性视频免费| 国产99白浆流出| 久久久久久九九精品二区国产 | 国模一区二区三区四区视频 | 免费电影在线观看免费观看| 国产免费av片在线观看野外av| 午夜福利欧美成人| 一区福利在线观看| 黑人欧美特级aaaaaa片| 熟女少妇亚洲综合色aaa.| 最近最新中文字幕大全电影3| 免费观看精品视频网站| 韩国av一区二区三区四区| 亚洲专区字幕在线| 欧美成人午夜精品| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 十八禁网站免费在线| 99精品欧美一区二区三区四区| 国产91精品成人一区二区三区| 国产精品久久久久久精品电影| 香蕉av资源在线| 国产精品九九99| 亚洲无线在线观看| 久久精品91无色码中文字幕| 日本一区二区免费在线视频| 又爽又黄无遮挡网站| 成人av在线播放网站| 俺也久久电影网| 精品熟女少妇八av免费久了| 91麻豆av在线| 成人一区二区视频在线观看| www.熟女人妻精品国产| 欧美久久黑人一区二区| 黑人欧美特级aaaaaa片| 国产精品野战在线观看| 99久久99久久久精品蜜桃| 欧美绝顶高潮抽搐喷水| 手机成人av网站| 小说图片视频综合网站| 精品电影一区二区在线| 国产精品影院久久| 国产蜜桃级精品一区二区三区| 亚洲男人天堂网一区| 宅男免费午夜| 国产精品爽爽va在线观看网站| 制服丝袜大香蕉在线| 亚洲aⅴ乱码一区二区在线播放 | 九色国产91popny在线| 国产1区2区3区精品| 国产视频一区二区在线看| 美女大奶头视频| 精品久久久久久久毛片微露脸| aaaaa片日本免费| 中文资源天堂在线| 男人舔女人的私密视频| 亚洲18禁久久av| 亚洲精品美女久久久久99蜜臀| 国产精品av视频在线免费观看| 深夜精品福利| 精品免费久久久久久久清纯| 男插女下体视频免费在线播放| 欧美日韩福利视频一区二区| 中文字幕精品亚洲无线码一区| 可以免费在线观看a视频的电影网站| 久久久久精品国产欧美久久久| 精品一区二区三区av网在线观看| 一级毛片精品| 日韩国内少妇激情av| 日本成人三级电影网站| 色在线成人网| 亚洲熟妇中文字幕五十中出| 香蕉丝袜av| 桃红色精品国产亚洲av| 黄色片一级片一级黄色片| 天堂影院成人在线观看| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 亚洲中文av在线| 亚洲五月天丁香| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 巨乳人妻的诱惑在线观看| 免费观看人在逋| 99久久无色码亚洲精品果冻| 后天国语完整版免费观看| a级毛片在线看网站| 欧美乱妇无乱码| 亚洲人与动物交配视频| 国产单亲对白刺激| 久久国产精品人妻蜜桃| 精品国内亚洲2022精品成人| 国产黄片美女视频| 国内少妇人妻偷人精品xxx网站 | 欧美另类亚洲清纯唯美| 久久伊人香网站| 国产成人av激情在线播放| 在线观看舔阴道视频| 国产精品99久久99久久久不卡| 久久精品人妻少妇| 国产又色又爽无遮挡免费看| 岛国视频午夜一区免费看| 一个人免费在线观看的高清视频| 亚洲av熟女| 午夜精品久久久久久毛片777| 99久久精品国产亚洲精品| 人妻久久中文字幕网| 欧美最黄视频在线播放免费| 国产午夜精品论理片| 在线观看免费视频日本深夜| 日韩欧美 国产精品| 99热6这里只有精品| 观看免费一级毛片| 又黄又粗又硬又大视频| 日本黄色视频三级网站网址| 久久欧美精品欧美久久欧美| avwww免费| 久久久久久久久久黄片| 性色av乱码一区二区三区2| 在线观看免费日韩欧美大片| 国产成人一区二区三区免费视频网站| 亚洲第一欧美日韩一区二区三区| 成人欧美大片| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 久久精品国产亚洲av高清一级| 成年免费大片在线观看| 国产精品一区二区免费欧美| 免费无遮挡裸体视频| 丁香欧美五月| 成人午夜高清在线视频| 日本三级黄在线观看| 黄色成人免费大全| 国产精品乱码一区二三区的特点| 大型黄色视频在线免费观看| 国产成年人精品一区二区| 男女视频在线观看网站免费 | 一本大道久久a久久精品| 男女午夜视频在线观看| 99精品欧美一区二区三区四区| 51午夜福利影视在线观看| 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 少妇熟女aⅴ在线视频| 好男人电影高清在线观看| www.999成人在线观看| 亚洲av第一区精品v没综合| 中文字幕精品亚洲无线码一区| 日韩欧美国产在线观看| 欧美日本视频| 好男人电影高清在线观看| 一进一出好大好爽视频| 少妇裸体淫交视频免费看高清 | 婷婷丁香在线五月| 免费在线观看日本一区| 老熟妇乱子伦视频在线观看| 免费av毛片视频| 国产黄a三级三级三级人| 一个人免费在线观看电影 | 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 91大片在线观看| 婷婷亚洲欧美| 亚洲国产精品sss在线观看| or卡值多少钱| 一级作爱视频免费观看| 观看免费一级毛片| 免费无遮挡裸体视频| 日本五十路高清| 88av欧美| 桃红色精品国产亚洲av| 成人国语在线视频| 国产成人精品久久二区二区免费| 妹子高潮喷水视频| 丰满的人妻完整版| 亚洲七黄色美女视频| 色综合欧美亚洲国产小说| 国产精品99久久99久久久不卡| 99re在线观看精品视频| 1024视频免费在线观看| 午夜久久久久精精品| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 黄频高清免费视频| 成人三级做爰电影| 亚洲欧美日韩东京热| 亚洲成人久久性| 一级a爱片免费观看的视频| av有码第一页| 麻豆国产97在线/欧美 | 亚洲人成电影免费在线| 欧美日韩国产亚洲二区| www.自偷自拍.com| 国产精品精品国产色婷婷| 一进一出抽搐动态| 精品高清国产在线一区| 久久精品91蜜桃| 国产在线观看jvid| 亚洲男人天堂网一区| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 欧美人与性动交α欧美精品济南到| 欧洲精品卡2卡3卡4卡5卡区| www日本在线高清视频| 亚洲成人精品中文字幕电影| 极品教师在线免费播放| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美网| 国内少妇人妻偷人精品xxx网站 | 日韩成人在线观看一区二区三区| 中文字幕熟女人妻在线| 亚洲人成伊人成综合网2020| 久久精品国产综合久久久| 国产精品久久久久久亚洲av鲁大| 国产精品爽爽va在线观看网站| 免费在线观看亚洲国产| 亚洲国产日韩欧美精品在线观看 | 久久久国产成人免费| 国产激情偷乱视频一区二区| 精品国产超薄肉色丝袜足j| 国产av不卡久久| 最新在线观看一区二区三区| 白带黄色成豆腐渣| 99精品欧美一区二区三区四区| 99热6这里只有精品| 免费高清视频大片| 国产av又大| 国产伦在线观看视频一区| 黄色女人牲交| 亚洲av熟女| 国产精品 欧美亚洲| 国产亚洲av高清不卡| 国产一区二区在线av高清观看| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看 | 黄片大片在线免费观看| 国产av麻豆久久久久久久| 国语自产精品视频在线第100页| 色噜噜av男人的天堂激情| 69av精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 久久久久免费精品人妻一区二区| 国产精品久久久av美女十八| 国产精品九九99| 午夜激情福利司机影院| 一级毛片女人18水好多| 神马国产精品三级电影在线观看 | 日韩欧美国产在线观看| 女同久久另类99精品国产91| 88av欧美| 免费在线观看黄色视频的| 男男h啪啪无遮挡| 村上凉子中文字幕在线| 中亚洲国语对白在线视频| 免费搜索国产男女视频| 色av中文字幕| 搞女人的毛片| 在线观看一区二区三区| 亚洲一码二码三码区别大吗| 在线看三级毛片| 中文资源天堂在线| 男人舔女人下体高潮全视频| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| 黄色毛片三级朝国网站| 每晚都被弄得嗷嗷叫到高潮| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9| 亚洲电影在线观看av| 欧美性猛交╳xxx乱大交人| 男女那种视频在线观看| 亚洲精品一区av在线观看| 久久亚洲真实| 国产精品电影一区二区三区| 最好的美女福利视频网| 国模一区二区三区四区视频 | 欧美性猛交╳xxx乱大交人| 老司机福利观看| 精品不卡国产一区二区三区| 亚洲精品美女久久av网站| 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2| 女生性感内裤真人,穿戴方法视频| 亚洲成人久久爱视频| 欧美乱码精品一区二区三区| 亚洲精品在线观看二区| 啪啪无遮挡十八禁网站| 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av在线| 性色av乱码一区二区三区2| 色综合站精品国产| 国产av一区在线观看免费| 婷婷精品国产亚洲av在线| 两性夫妻黄色片| 熟妇人妻久久中文字幕3abv| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 757午夜福利合集在线观看| 长腿黑丝高跟| √禁漫天堂资源中文www| 999久久久国产精品视频| 日日干狠狠操夜夜爽| 成人18禁高潮啪啪吃奶动态图| ponron亚洲| 最近最新中文字幕大全免费视频| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 69av精品久久久久久| 天堂av国产一区二区熟女人妻 | 成年版毛片免费区| 一二三四社区在线视频社区8| 最新在线观看一区二区三区| 国产99白浆流出| 男女之事视频高清在线观看| 国内精品久久久久精免费| 最好的美女福利视频网| 俺也久久电影网| 久久精品国产综合久久久| 丰满的人妻完整版| 精品一区二区三区四区五区乱码| 亚洲熟女毛片儿| 91av网站免费观看| 久久热在线av| 亚洲自拍偷在线| 在线观看免费日韩欧美大片| 久久精品国产综合久久久| 深夜精品福利| 成熟少妇高潮喷水视频| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 日韩精品中文字幕看吧| 国产精品av视频在线免费观看| 黄色片一级片一级黄色片| 一二三四在线观看免费中文在| 日本a在线网址| 夜夜躁狠狠躁天天躁| 欧美在线黄色| 免费在线观看黄色视频的| 成年版毛片免费区| 久久久久久大精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人不卡在线观看播放网| 18美女黄网站色大片免费观看| 国产亚洲精品综合一区在线观看 | xxxwww97欧美| 日本黄色视频三级网站网址| 最近视频中文字幕2019在线8| 级片在线观看| 亚洲成人精品中文字幕电影| 国产熟女午夜一区二区三区| 亚洲av五月六月丁香网| 国产精品日韩av在线免费观看| 级片在线观看| 国产主播在线观看一区二区| 欧美3d第一页| 三级国产精品欧美在线观看 | 黄频高清免费视频| 亚洲成av人片在线播放无| 19禁男女啪啪无遮挡网站| 日韩欧美国产在线观看| 色噜噜av男人的天堂激情| 亚洲成a人片在线一区二区| 一区二区三区高清视频在线| 99久久无色码亚洲精品果冻| 99国产精品一区二区三区| 黄色视频,在线免费观看| 久久 成人 亚洲| 亚洲精品色激情综合| 亚洲男人的天堂狠狠| 少妇人妻一区二区三区视频| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看 | 人妻夜夜爽99麻豆av| 久久性视频一级片| 99久久久亚洲精品蜜臀av| 午夜老司机福利片| 精品久久久久久,| 成熟少妇高潮喷水视频| 亚洲乱码一区二区免费版| 午夜老司机福利片| 欧美av亚洲av综合av国产av| 国产v大片淫在线免费观看| 国产一区在线观看成人免费| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆 | 妹子高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久久亚洲精品蜜臀av| 久久久国产成人免费| 国产99白浆流出| 1024手机看黄色片| 亚洲va日本ⅴa欧美va伊人久久| 国内毛片毛片毛片毛片毛片| 日韩国内少妇激情av| 亚洲九九香蕉| 99精品在免费线老司机午夜| 精品国产美女av久久久久小说| 国产成人欧美在线观看| 亚洲 国产 在线| 国产真实乱freesex| 国产午夜福利久久久久久| 在线观看午夜福利视频| 欧美不卡视频在线免费观看 | 精品第一国产精品| 欧美av亚洲av综合av国产av| 日本 欧美在线| 亚洲 欧美一区二区三区| 亚洲真实伦在线观看| av超薄肉色丝袜交足视频| 免费在线观看日本一区| 亚洲自拍偷在线| 日韩高清综合在线| netflix在线观看网站| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| 又黄又粗又硬又大视频| 国产精品久久久久久精品电影| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲| 亚洲激情在线av| 午夜激情福利司机影院| 欧美不卡视频在线免费观看 | x7x7x7水蜜桃| 黑人巨大精品欧美一区二区mp4| 国产午夜精品久久久久久| 精品久久蜜臀av无| 欧美日韩黄片免| 国产伦人伦偷精品视频| 欧美一级a爱片免费观看看 | 久久天躁狠狠躁夜夜2o2o| 日韩大尺度精品在线看网址| 国产精品香港三级国产av潘金莲| 麻豆成人午夜福利视频| 曰老女人黄片| 琪琪午夜伦伦电影理论片6080| 欧美极品一区二区三区四区| 国产一级毛片七仙女欲春2| 日本a在线网址| 国产99久久九九免费精品| av欧美777| 91av网站免费观看| 超碰成人久久| 国产精品av久久久久免费| 韩国av一区二区三区四区| 91av网站免费观看| 亚洲一区中文字幕在线| 99久久无色码亚洲精品果冻| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 熟女电影av网| 俺也久久电影网| 精品国产亚洲在线| 欧美乱妇无乱码| 国产一级毛片七仙女欲春2| 1024手机看黄色片| 好男人电影高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟妇仑乱视频hdxx| 午夜激情福利司机影院| 精品人妻1区二区| 久久久国产成人精品二区| 国产在线观看jvid|