• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Eff ects of Oxygen Vacancy on the Adsorption of Form aldehyde on Rutile TiO2(110)Surface

    2017-07-05 13:06:10LiingLiuJinZhao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Li-m ing Liu,Jin Zhao

    HefeiNational Laboratory for Physical Sciences at M icroscale,and Key Laboratory ofStrongly-Coupled Quantum Matter Physics,Chinese Academ y of Sciences,and Department of Physics,and Synergetic Innovation Center ofQuantum Information&Quantum Physics,University ofScience and Technology of China,Hefei230026,China

    Eff ects of Oxygen Vacancy on the Adsorption of Form aldehyde on Rutile TiO2(110)Surface

    Li-m ing Liu,Jin Zhao?

    HefeiNational Laboratory for Physical Sciences at M icroscale,and Key Laboratory ofStrongly-Coupled Quantum Matter Physics,Chinese Academ y of Sciences,and Department of Physics,and Synergetic Innovation Center ofQuantum Information&Quantum Physics,University ofScience and Technology of China,Hefei230026,China

    Oxygen vacancy(Ov)has significant influence on physical and chem ical p roperties of TiO2system s,especially on surface catalytic processes.In this work,we investigate the effects of Ovon the adsorption of formaldehyde(HCHO)on TiO2(110)surfaces through fi rstprincip les calculations.W ith the existence of Ov,we find the spatial distribution of surface excess charge can change the relative stability of various adsorption configurations.In this case,the bidentate adsorption at five-coordinated Ti(Ti5c)can be less stable than the monodentate adsorption.And HCHO adsorbed in Ovbecomes themost stable structure. These results are in good agreement w ith experim ental observations,which reconcile the long-standing deviation between the theoretical prediction and experim ental resu lts.This work brings insights into how the excess charge affects the molecule adsorption on metal oxide surface.

    TiO2,Formaldehyde,Oxygen vacancy,Excess electrons

    I.INTRODUCTION

    Titanium dioxide(TiO2)is a versatilematerial for a w ide range ofapplications,to namea few,as UV blocking pigments and sunscreen in industry,m ixed conductor and synthetic single crystals sem iconductor in electronic devices,most im portantly,asabundant and toxic free photocatalyst which have been focused since the water splitting work done by Fujishima and Honda in 1972[1].

    Form aldehyde(HCHO)on TiO2is of particular interest because in num erous organic catalytic reactions HCHO isa key species(reactant,intermediate,or product)such as resins synthesis[2],CO2reduction[3],and hydrogen production[4].Besides,HCHO is a common interior pollutantwhich causesseverehealth issues, TiO2-based HCHO decom posing devices play a crucial role in the control of air pollution.

    The adsorption of HCHO on TiO2(110)surface has attracted attentions from both theoretical and experimental researchers for the last two decades[5?9].Despite numerous innovationalmaterials based on TiO2were synthesized to catalyze decom posing HCHO,the theoretical predictions and experimental observation of adsorption configurations of HCHO on TiO2were not in accordance,even on themostw idely investigated ru-tile TiO2(110)surface.In 2001 for the fi rst time,Idrisset al.theoretically addressed the adsorption configurations and energies of HCHO on TiO2(110)surface using a cluster m odel based on density functional theory (DFT)calculations[10].A lthough only onemonodentate adsorption configuration was taken into consideration and the cluster model m ay not be an accurate description of extended surface,nevertheless,thiswork pioneered the ambition of using accurate DFT calculations to reveal them icro picture of aldehydes such as HCHO adsorption on m etal oxides.In 2011,Haubrichet al.reported a systematic investigation of the effectsof different surfaceand subsurface point defectson theadsorption ofHCHO on TiO2(110)surfaces through DFT calcu lations[11].They declared a bidentate adsorption configuration which has almost tw ice the adsorption energy of other monodentate adsorption configurationson five-coordinated Ti(Ti5c).From then on, theoreticalstudies continued confi rm ing that the bidentate adsorption configuration is themost stable structure.However,the bidentate adsorption configuration was hard ly confi rm ed from experim ental observations. For instance,in 2013,Yuanet al.reported the photocatalytic oxidation ofmethanolon TiO2(110)surface by means of thermal desorption spectroscopy(TPD) and X-ray photoelectron spectroscopy(XPS)[7].They found the form ation of HCHO and the shift of C 1s level indicated that no bidentate configuration was detected. In early 2016,Yuet al.reported,at low coverage(submonolayer)and low tem peratures(45 K to 65 K),themost abundant species of HCHO on TiO2(110)surface isa chem isorbedmonomer bounded to Ti5csites(Lew is acid)in a tilted m onodentate configuration[12].To understand the deviation between theoretical p redictions and experimental observations is urgent.

    Recently,the disagreement between the computational and experimental results started decreasing.In 2015,Zhanget al.reported that the spatial distribution of the extra charge near a Ovsite strongly aff ected the binding of the Ti-bound formaldehyde,especially decreased the stability of bidentate adsorption con figurations[9].In late 2016,Fenget al.reported confi rmation of the bidentate configurations of HCHO on Ti5cthrough STM observations[13].

    From the view ofexperimentalendeavor,stoichiom etric TiO2surfaces are very challenging to grow.They are easily being reduced or reconstructed w ith various defects and reconstruction.Among various point defectswhich m ake TiO2a typicaln-type sem iconductor, oxygen vacancy(Ov)is very common.Removing one oxygen atom from the surface would break two Ti?O bonds and release two electrons back to surface,those unpaired electrons are defined as excess charge.It is believed to have significant influence on molecular adsorption and surface catalytic reactions.Therefore,a system atical study on how Ovaff ect the adsorption of HCHO is essential.

    In this work,we reported the adsorption of HCHO on both stoichiometric and reduced TiO2(110)surfaces. The interaction between m olecular adsorption and excess charge was discussed in full details.The relative stability of variousadsorption configurations in the presence of excess electrons induced by Ovwas investigated through the com parison of geometries,energies and electronic structures.We found that the excess charge induced by Ovaffects the adsorption of HCHO significantly.W ith the existence of Ov,the bidentate adsorption at Ti5c,can be less stab le than the monodentate adsorption.And HCHO adsorbed in Ovbecomes themost stable structure.These results are in good agreement w ith experimental observations,which interpret the long-standing deviation between the theoretical prediction and experimental results.

    II.CALCULATION M ETHODS

    Periodic DFT calculations were performed by using the viennaab initiosimulation package(VASP)[14,15]. The generalized gradient approximation(GGA)functional was adopted w ith the Perdew-Burke-Ernzerhof (PBE)exchange-correlation description[16,17].The energy cutoff of 400 eV for p lane-wave basis sets was used to expand the valence electronic wave function w ith the configurationsofC(2s22p2),H(1s1),O(2s22p4) and Ti(4s23d2).The projector augmented wave(PAW) m ethod was used to describe the electron-ion interaction.Dipole correctionswere adopted to cancel the interactions between the excess charge and its periodic im ages for all calculations.A 5×2 slab model containing 3 Ti-O-Ti tri-layer was chosen to simulate the TiO2(110)surfaces.The atom s in the bottom Ti-O-Ti tri-layer were fixed to the positions w ithin bulk TiO2during the structure optim ization.To screen the effects of un-paired electrons from bottom Tiand O,the pseudo hydrogen saturationmethod wasadopted.Since a Ti atom in TiO2bulk off ers four electrons to bind to six O atom s and each O atom in bulk bonded to three Ti,pseudo hydrogens w ith the valence of 2/3(H0.66) and 4/3(H1.33)electron charge were added to bottom O and Ti correspondingly as shown in FIG.1.The H0.66?O and H1.33?Ti bond lengths were determ ined to be 1.02 and 1.88?A by the geometry optim ization procedure which kept all Ti and O atom s fixed in bulk position then allowed the pseudo hydrogen atom s to relax.Then by fixing the bottom layer,the slab was optim ized until the force on each atom is smaller than 0.02 eV/?A.To avoid the interlayer interaction,a vacuum layer of 15?A was added between slabs.To correct the self-interaction error in DFT,we app lyU=4.5 eV on Ti3d orbitals.

    The formation energy(Eformation)of oxygen vacancy is defined as:

    Eperfectis the total energy of stoichiometric surface,EOvis the total energy of the same surface w ith one oxygen vacancy andEO2is the energy of single oxygen molecule.To com pare the stability of various adsorp-tion configurations,we defined the adsorption energy (Ead)as:

    TABLE I Characteristic bonds(as notated in FIG.1)and adsorption energies ofmonodentate and bidentate adsorption con figurations at T i5con reduced T iO2(110)surface,total distortion(TD)is the sum of absolute bond-length change of corresponding bonds com paring to sam e adsorption con figuration on stoichiom etric surface(η1?stoi andη2?stoi).

    whereETiO2+HCHOis the total energy of HCHO adsorbed on TiO2(110)surface,EHCHOandETiO2are total energies of single HCHO m olecule and clean TiO2(110)surface correspondingly.

    III.RESULTS AND DISCUSSION

    A.The adsorption of HCHO on stoichiom etric TiO2(110) surface

    In agreem ent w ith previous reports[9,11,13,18, 19],the calculated most stable adsorption configuration of HCHO on pseudo hydrogen saturated stoichiometric TiO2(110)surface is thebidentateadsorption configuration(η2)at Ti5c.FIG.1 shows the top and side viewsof twomonodentate(η1)and one bidentateη2adsorption structures on Ti5c.Forη2(FIG.1(c)),two C?O bonds form sp3hybridization other than sp2hybridization as HCHO m olecule in vacuum orm onodentate adsorption configurations(η1-Ob,η1-Op).Sinceη1-Obandη1-Opare almost identicaleither in geometry(FIG.1(a)and (b)),adsorption energy or electronic structure[20],theη1-Obconfiguration was chosen as the representative for the two monodentate structures of HCHO at Ti5cand remarked asη1.The adsorption energy difference between bidentate and monodentate adsorp tion con figurations is 0.7 eV as shown in Tab le I.

    B.Adsorption of HCHO on reduced T iO2(110)surface w ith Ov

    1.BBOvas a common defect on TiO2(110)surface

    For TiO2(110)surface,bridge bonded oxygen vacancy(BBOv)is known as the m ost stable Ovstructure.It ismore stable than in-plane oxygen vacancy (IPOv)and Ovin sub-surface by 0.36 eV in our calculations.These results are in accordance w ith previous calculations[21].Each Ovinduces two excess electrons to the system.The two excess electrons prefer occupying sub-surface Tiwhich is in agreement w ith previous calculations[22,23].For reduced TiO2(110)surface w ith BBOv,there are two sites favorable for HCHO adsorption.One is at surface Ti5c,the other is in BBOv.

    2.HCHO adsorption on Ti5c

    For the adsorption of HCHO at Ti5con reduced TiO2(110)surface w ith BBOv,although adsorption configurations are preserved from those on stoichiom etric surface,theadsorption energiesand relative stability among these adsorption configurations are significantly affected by the presence of BBOv.

    The fi rst distinguishing feature is that the adsorption energies decrease about 0.4 eV for monodentate adsorption configuration(η1)on reduced TiO2(110) surface than on stoichiometric surface.We labeled diff erent Ti5csites according to their relative position w ith BBOvas online?n,online?nn,and offl ine as shown in FIG.2.As shown in Table I,for monodentate adsorption configurations,the adsorption energies forη1?offl ine,η1?online?nn,η1?online?n are?1.24,?1.19,and?1.17 eV.Com paring to?0.83 eV ofHCHO on stoichiometric surface inmonodentate configurations,molecular adsorption on reduced surface is stabilized.The reason for the energy shift is the electrostatic interaction between excess charge induced by BBOvand dipole m om ent from adsorbed HCHO molecules.

    FIG.2 The top view(along[110]direction)of adsorption con figurationsof HCHO on TiO2(110)surfacew ith Ov.Different configurations are labeled as“offl ine,on line?nn and online?n”by the relative distance between the adsorption sites and Ov.

    Another significant effect is the site sensitivity for bidentate adsorption configuration(η2)of HCHO on reduced TiO2(110)surface.It is clearly presented that, forη2configurations,the adsorption energy could vary from?1.99 eV to?1.12 eV at diff erent Ti5csites (FIG.2(a)?(c)).The adsorption energy dependents on the distance between HCHO and BBOv.At offl ine site, HCHO binds to bridge bonded oxygen which has no Ovin the same row.The local environment is sim ilar to that on stoichiometric surface except there is electrostatic interaction between sub-surface excess electron and adsorbed HCHO m olecule.Thus,the adsorption energy decreased from?1.57 eV on stoichiometric surface to?1.99 eV on reduced surface.The 0.4 eV energy shift is sim ilar to the adsorption energies change ofm onodentate adsorption configuration(η1)between stoichiometric and reduced surfaces.For HCHO at Ti5ccloser to BBOv(η2?online?nn andη2?online?n),lattice distortion becom es larger after the m olecular adsorption in Table I.The aggravated distortion would dramatically affect the spatial distribution of excess electrons.The changed distribution of excess electrons alters the electrostatic interaction strength and the adsorption energies forη2?online?nn andη2?online?n become?1.76 and?1.12 eV.

    FIG.3 Com parison of adsorption energyvs.adsorp tion site between monodentate and bidentate adsorption con figurations on stoichiom etric and reduced T iO2(110)surfaces.

    Thesignificant sitesensitivity ofbidentateadsorption configuration is due to the change of the localization of excess charge induced by BBOv.Forη2?offl ine,sim ilar to the m onodentate adsorption configurations,the excess charge all localized in sub-surface separately as shown in FIG.4(a)?(d)correspondingly.In this case, the overallelectrostatic interaction isattractive leading to stabilizemolecular adsorption.For bidentateadsorption structures(η2?on line?nn andη2?online?n),the aggravated distortion induced by molecular adsorption would drive excess charge to surface localizing closely around BBOvsite then the overall electrostatic interaction is repulsive and them olecular adsorption is destabilized as shown in FIG.4(e)and(f).

    It should be noticed that the bidentate adsorption configuration,which is them ost stable structure on stoichiometric surface,could become the least stable one w ith the interaction w ith Ov.Especially when HCHO adsorbing at Ti5cclose to BBOvin FIG.3,the bidentate adsorption configuration(η2?online?n)is less stable than all other monodentate adsorption configurations.

    3.HCHO adsorption in BBOv

    The adsorption of HCHO in BBOvheals the vacancy in a manner of inserting oxygen end of HCHO into the vacancy.The symm etric adsorption configuration(sym?η1-Ov)w ith m olecular oxygen bonded to two five-folded Ti in BBOvhas the adsorption energy of?1.46 eV(FIG.5(a)?(c)).Beside this symmetric m onodentate adsorption configuration(FIG.5(a)), another asymm etric m onodentate adsorption structure was found w ith an extra hydrogen bond betweenmolecular H and ad jacent bridge oxygen(sym?η1-Ov).Despite an extra hydrogen bond formed(FIG.5(b)),the asymm etric adsorption configuration has theadsorp tion energy of?1.45 eV which is sim ilar to symmetric one because the Ti?Ombonds are stretched on one side and com pressed on the other side.Notice that the adsorption energies ofmonodentate adsorption configurations at BBOvare,not only about 0.6 eV lower than monodentate adsorption con figurations on stoichiom etric surface,but also about 0.2 eV lower than m onodentate adsorption configurations at Ti5cw ith Ov.

    FIG.4 Distribution of Ovinduced excess electrons after adsorption of HCHO on reduced TiO2(110)in side(along [001]direction)and top(along[110]direction)view s.The dashed red circles fi lled w ith white represent the position of BBOvwhile the em p ty dashed red circles depict healed BBOvby HCHO adsorption.Spatial distribution(orbitals) of two excess electronswere depicted in yellow.

    A bidentate adsorption configuration(η2-Ov)can be formed w ith an extra chem ical bond of C?Ob.The adsorption energy ofη2-Ovis?1.70 eV which is the most stable one among all presented adsorption configurations of HCHO close to BBOv(FIG.5(c)).In other words,if there are BBOvson TiO2(110)surface,HCHO favors adsorbing at Ovsites rather than Ti5csites near BBOv.

    FIG.5 Adsorp tion con figurations of HCHO in BBOvon TiO2(110)surface in side and top views(along[001][1-10], and[110]directions for upper,m idd le and lower schem as correspondingly in each box).

    The adsorption of HCHO in BBOvhasm inor influence on the distribution of excess charge.For sym?η1-Ovand asym?η1-Ov,a sm all am ount of excess electron (less than 20%)involved in the Ti?Ombond formation,themajority of excess electrons(larger than 80%) still locate at sub-surface(FIG.4(g)and(h)).Forη2-Ovconfiguration,another C?O bond form ing sp3hybridization then no need of excess charge for chem ical bonding thus the excess electrons remain localized in sub-surface(FIG.4(i)).

    4.Eff ects of HCHO adsorption on the electronic structure

    M olecular adsorption aff ects the electronic structure of reduced TiO2(110)surface in twoways.On onehand, molecular orbitals could emerge in band gap as HOMO or LUMO of the system;on the other hand,the defect states originated from BBOvcould be aff ected by molecular adsorption.

    For m onodentate adsorption configurations at Ti5c(η1?offl ine,η1?online?nn,andη1?online?n),the highest occupied molecular orbitalsare about 0.3 eV bellow the valence band maximum(VBM)of TiO2(FIG.6). The gap states originated from BBOvare stabilized by molecular adsorption w ith the downward energy shift of0.5 eV com pared to clear reduced surface.The stabilization of excess charge states is because of the electrostatic attraction between adsorbed HCHO and excess electrons.

    FIG.6 Density of states(DOS)for various adsorption configurations of HCHO on reduced T iO2(110)surface.B lack line represents total DOSand red line rep resents the partial DOSof HCHO w ith them agnification of10 tim es for clarity.

    For bidentate adsorption configurations at Ti5c(η2?offl ine,η2?online?nn,andη2?online?n),molecular orbital contributes a gap state about 0.2 eV above VBM.As the adsorption of HCHO approaching to BBOv(fromη2?offl ine toη2?online?nn thenη2?on line?n),the m olecular gap state shifts upward a little bit due to the larger local structural distortion in Table I.Gap states induced by BBOvare stabilized forη2?offl ine andη2?online?nn configurationsalso due to the electrostatic attraction between adsorbed HCHO and excess electrons.Forη2?online?n configuration which is close to BBOv,these excess charge gap states are destabilized by shifting up about 0.1 eV because the two excess electrons are closely distributed around BBOvsite due tomolecular adsorption.

    As for HCHO adsorbing in BBOvin sym?η1-Ovand asym?η1-Ovconfigurations,an empty state from the hybridization of O 2p and Ti3d emerged about 0.7 eV bellow conduction band m inimum(CBM).The excess charge states have about 0.5 eV energy downward shift sim ilar to the monodentate adsorption at Ti5c(η1?offl ine,η1?online?nn,andη1?online?n).Molecular adsorption is stabilized by excess charge located mainly(larger than 80%)in sub-layer.For HCHO in BBOvinη2-Ovconfiguration,molecular O 2p orbitals contribute a gap state about 0.1 eV above VBM which is sim ilar to HCHO at Ti5cinη2configuration.But the excess charge is still located in sub-surfacewhich is sim ilar to HCHO at Ti5cinη1configuration.

    From above analysis,we argued that the bidentate adsorption configurations of HCHO at Ti5chave great potential to be the hole scavenger,while HCHO in BBOvin the sym?η1-Ovand asym?η1-Ovconfigurations have the great potential to be the electron scavenger in photocatalytic process on TiO2(110)surfaces.And molecular adsorption could either stabilize or destabilize the excess charge states by altering the electrostatic interaction between molecu lar adsorption and BBOv.

    IV.CONCLUSION

    In this work,we investigated the adsorption of HCHO on stoichiometric and reduced TiO2(110)surfaces through fi rst-princip les calcu lations.Com pared to stoichiom etric surface,oxygen vacancy in reduced TiO2would induce excess electrons to the system and affect the relative stability ofmolecular adsorption configurations.For HCHO adsorbing at Ti5c,on onehand,excess electronswould stabilizemolecular adsorption formonodentate adsorption.On the other hand,for bidentate adsorption,theadsorption stability dependsstrongly on the adsorption site.The adsorption is stabilized when theadsorption is far away from BBOv.Yet it can besignificantly destabilized when the adsorption is close to BBOvand becom es less stable than the monodentate adsorption.The adsorption in BBOvis them ost stable configuration near BBOvamong all the configurations we investigated.Our calculations reconcile the longstanding discrepancies between theoretical predictions and experim ental observations of the HCHO/TiO2system and provide valuable insights into the eff ects of Ovon themolecular adsorption on TiO2.

    V.ACKNOW LEDGM ENTS

    Thisworkwassupported by theNationalNaturalScience Foundation of China(No.21373190,No.21421063, No.11620101003)and the National Key Foundation of China,Department of Science&Technology (No.2016YFA0200600 and No.2016YFA0200604),the Fundam ental Research Funds for the Central Universities of China(No.W K 3510000005),the support of National Science Foundation(No.CHE-1213189 and No.CHE-1565704).Calculations were performed at Environmental M olecular Sciences Laboratory at the PNNL,a user facility sponsored by the DOE O ffi ce of Biological and Environmental Research.

    [1]A.Fu jishima and K.Honda,Nature 238,37(1972).

    [2]Y.H.Lee,C.A.K im,W.H.Jang,H.J.Choi,and M. S.Jhon,Polymer 42,8277(2001).

    [3]B.Kaesler and P.Sch¨onheit,Eur.J.Biochem.186,309 (1989).

    [4]C.W inner and G.Gottschalk,FEMSM icrobiol.Lett. 65,259(1989).

    [5]G.Busca,J.Lam otte,J.C.Lavalley,and V.Lorenzelli, J.Am.Chem.Soc.109,5197(1987).

    [6]C.B.Xu,W.S.Yang,Q.Guo,D.X.Dai,T.K.M inton, and X.M.Yang,J.Phys.Chem.Lett.4,2668(2013).

    [7]Q.Yuan,Z.F.W u,Y.K.Jin,L.S.Xu,F.Xiong,Y.S. M a,and W.X.Huang,J.Am.Chem.Soc.135,5212 (2013).

    [8]Q.Yuan,Z.F.W u,Y.K.Jin,F.X iong,and W.X. Huang,J.Phys.Chem.C 118,20420(2014).

    [9]Z.R.Zhang,M.R.Tang,Z.T.Wang,Z.Ke,Y.B. X ia,K.T.Park,I.Lyubinetsky,Z.Dohn′alek,and Q. F.Ge,Top.Catal.58,103(2015).

    [10]L.K ieu,P.Boyd,and H.Id riss,J.M ol.Catal.A-Chem. 176,117(2001).

    [11]J.Haubrich,E.Kaxiras,and C.M.Friend,Chem istry 17,4496(2011).

    [12]X.J.Yu,Z.R.Zhang,C.W.Yang,F.Bebensee,S. Heissler,A.Nefedov,M.R.Tang,Q.F.Ge,L.Chen, B.D.Kay,Z.Dohn′alek,Y.M.Wang,and C.W¨oll Christof,J.Phys.Chem.C 120,12626(2016).

    [13]H.Feng,L.M.Liu,S.H.Dong,X.F.Cui,J.Zhao,and B.Wang,J.Phys.Chem.C 120,24287(2016).

    [14]G.K resse and J.Hafner,Phys.Rev.B 48,13115(1993).

    [15]G.K resse and J.Furthmuller,Phys.Rev.B 54,11169 (1996).

    [16]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [17]J.P.Perdew,M.Em zerhof,and K.Burke,J.Chem. Phys.105,9982(1996).

    [18]H.Z.Liu,X.Wang,C.X.Pan,and K.M.Liew,J. Phys.Chem.C 116,8044(2012).

    [19]M.R.Tang,Z.R.Zhang,and Q.F.Ge,Catal.Today 274,103(2016).

    [20]L.M.Liu and J.Zhao,Surf.Sci.652,156(2016).

    [21]M.V.Ganduglia-Pirovano,A.Hofm ann,and J.Sauer, Surf.Sci.Rep.62,219(2007).

    [22]P.M.Kowalski,M.F.Cam ellone,N.N.Nair,B.M eyer, and D.Marx,Phys.Rev.Lett.105,146405(2010).

    [23]T.Shibuya,K.Yasuoka,S.M irbt,and B.Sanyal,J. Phys.Condens.M atter 24,435504(2012).

    ceived on March 22,2017;Accepted on March 31,2017)

    ?Author to whom correspondence shou ld be addressed.E-m ail: zhao jin@ustc.edu.cn

    男女下面进入的视频免费午夜 | 性欧美人与动物交配| 久久久国产成人精品二区| 国产1区2区3区精品| 九色亚洲精品在线播放| 少妇 在线观看| 亚洲 国产 在线| 纯流量卡能插随身wifi吗| 国产一区在线观看成人免费| 淫秽高清视频在线观看| 免费在线观看亚洲国产| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲| 免费女性裸体啪啪无遮挡网站| 亚洲精华国产精华精| 欧美中文日本在线观看视频| 国产熟女xx| 伊人久久大香线蕉亚洲五| 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 啦啦啦韩国在线观看视频| 亚洲三区欧美一区| 在线免费观看的www视频| 久久久久久久久久久久大奶| 亚洲精品国产一区二区精华液| 一本大道久久a久久精品| 神马国产精品三级电影在线观看 | 国产xxxxx性猛交| 国产精品精品国产色婷婷| 免费在线观看黄色视频的| 黄色a级毛片大全视频| 女同久久另类99精品国产91| 99热只有精品国产| 波多野结衣一区麻豆| 久久热在线av| 12—13女人毛片做爰片一| 亚洲av美国av| 国产精华一区二区三区| 精品国产乱子伦一区二区三区| 亚洲中文字幕日韩| 亚洲精品美女久久av网站| 嫁个100分男人电影在线观看| 亚洲av电影不卡..在线观看| 国产精品免费视频内射| 18禁国产床啪视频网站| 好男人在线观看高清免费视频 | 亚洲精品在线美女| 美女高潮到喷水免费观看| 国产欧美日韩一区二区精品| 亚洲中文日韩欧美视频| 亚洲美女黄片视频| 满18在线观看网站| 国产欧美日韩综合在线一区二区| 午夜福利成人在线免费观看| 午夜免费鲁丝| 久久久久久久久中文| 亚洲va日本ⅴa欧美va伊人久久| ponron亚洲| 国产不卡一卡二| www.999成人在线观看| 亚洲精品国产精品久久久不卡| 国产精品九九99| 国产精品精品国产色婷婷| 久久久国产精品麻豆| 大型av网站在线播放| 又大又爽又粗| 欧美乱妇无乱码| 日本vs欧美在线观看视频| 女人精品久久久久毛片| 亚洲一区高清亚洲精品| 人妻久久中文字幕网| 可以在线观看毛片的网站| 国产99白浆流出| 一二三四社区在线视频社区8| 亚洲成av人片免费观看| 亚洲午夜理论影院| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 长腿黑丝高跟| 亚洲免费av在线视频| 国产伦一二天堂av在线观看| 亚洲精品久久成人aⅴ小说| 亚洲国产精品成人综合色| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| 久久人人精品亚洲av| 精品国产乱码久久久久久男人| 欧美中文日本在线观看视频| 国产亚洲av高清不卡| 国产精品,欧美在线| 亚洲五月婷婷丁香| 看黄色毛片网站| av天堂在线播放| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 91在线观看av| 久久精品aⅴ一区二区三区四区| 一级,二级,三级黄色视频| 午夜久久久在线观看| 黄色成人免费大全| 国产一区二区三区综合在线观看| 国产麻豆69| 搡老熟女国产l中国老女人| 久久国产乱子伦精品免费另类| 久久精品国产亚洲av高清一级| 中出人妻视频一区二区| 中文亚洲av片在线观看爽| 人人妻人人爽人人添夜夜欢视频| 很黄的视频免费| 欧美乱色亚洲激情| 国产xxxxx性猛交| 日本 欧美在线| 午夜久久久久精精品| 欧美日韩黄片免| 美女高潮到喷水免费观看| 亚洲欧美激情综合另类| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| 成年女人毛片免费观看观看9| 欧美日韩瑟瑟在线播放| av欧美777| 色精品久久人妻99蜜桃| 麻豆一二三区av精品| 亚洲美女黄片视频| 国产精华一区二区三区| 亚洲专区字幕在线| 日本 av在线| www.www免费av| 中文字幕久久专区| 日韩成人在线观看一区二区三区| 久久久久九九精品影院| 丝袜美足系列| 国产精品久久久人人做人人爽| 桃红色精品国产亚洲av| 日日爽夜夜爽网站| 在线观看免费视频网站a站| 午夜免费激情av| 日韩大尺度精品在线看网址 | www国产在线视频色| 亚洲国产日韩欧美精品在线观看 | 国产精品精品国产色婷婷| 成人三级做爰电影| 亚洲五月色婷婷综合| 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 日日爽夜夜爽网站| 黄网站色视频无遮挡免费观看| 伊人久久大香线蕉亚洲五| 在线观看免费视频网站a站| videosex国产| 日韩大码丰满熟妇| 人人妻人人澡人人看| 法律面前人人平等表现在哪些方面| 国产1区2区3区精品| 一区二区三区激情视频| 人人妻,人人澡人人爽秒播| 人人妻,人人澡人人爽秒播| 日本精品一区二区三区蜜桃| av视频在线观看入口| 高清毛片免费观看视频网站| e午夜精品久久久久久久| 精品卡一卡二卡四卡免费| 啦啦啦免费观看视频1| 久久久久国内视频| 亚洲国产日韩欧美精品在线观看 | 性色av乱码一区二区三区2| 日本三级黄在线观看| 久久婷婷成人综合色麻豆| 国产av精品麻豆| 精品久久久久久成人av| 悠悠久久av| 精品国产乱码久久久久久男人| 国内久久婷婷六月综合欲色啪| 999精品在线视频| 天天添夜夜摸| 成人18禁在线播放| 午夜影院日韩av| 啪啪无遮挡十八禁网站| 国产精品野战在线观看| 婷婷六月久久综合丁香| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产一区二区精华液| 久久这里只有精品19| 在线观看免费日韩欧美大片| 欧美一区二区精品小视频在线| 一二三四在线观看免费中文在| 亚洲第一电影网av| 精品电影一区二区在线| 9热在线视频观看99| 最新美女视频免费是黄的| 亚洲人成电影免费在线| 国产私拍福利视频在线观看| 午夜福利高清视频| 亚洲七黄色美女视频| 级片在线观看| 97碰自拍视频| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频 | 亚洲五月婷婷丁香| 亚洲国产日韩欧美精品在线观看 | 性色av乱码一区二区三区2| 日本三级黄在线观看| 国产一区二区三区视频了| 一个人免费在线观看的高清视频| 久久伊人香网站| 在线观看www视频免费| 91成年电影在线观看| 国产成人欧美在线观看| 999精品在线视频| 99国产综合亚洲精品| 国产精品久久电影中文字幕| 欧美久久黑人一区二区| 大香蕉久久成人网| 变态另类丝袜制服| 久久人妻福利社区极品人妻图片| 在线观看免费视频网站a站| 亚洲国产欧美网| 色精品久久人妻99蜜桃| 久久精品aⅴ一区二区三区四区| 国产精品98久久久久久宅男小说| 伦理电影免费视频| 精品欧美国产一区二区三| 露出奶头的视频| 久久国产精品男人的天堂亚洲| 久热爱精品视频在线9| 国产人伦9x9x在线观看| 亚洲精品国产区一区二| 男女下面插进去视频免费观看| 9色porny在线观看| 在线视频色国产色| 久久午夜亚洲精品久久| 成人国产综合亚洲| 久久久久久大精品| 亚洲天堂国产精品一区在线| 久久久国产欧美日韩av| 久久午夜亚洲精品久久| 曰老女人黄片| 亚洲av电影在线进入| 国产精品 欧美亚洲| 精品电影一区二区在线| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 国产欧美日韩精品亚洲av| 久久精品国产99精品国产亚洲性色 | 日韩精品中文字幕看吧| 久久久国产精品麻豆| √禁漫天堂资源中文www| 久久久久久人人人人人| 在线观看午夜福利视频| 国产成+人综合+亚洲专区| 国产欧美日韩一区二区三| 免费在线观看亚洲国产| 国产一区二区三区视频了| 久久人妻熟女aⅴ| 午夜免费鲁丝| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 女生性感内裤真人,穿戴方法视频| 亚洲一区高清亚洲精品| 老熟妇仑乱视频hdxx| 人成视频在线观看免费观看| 欧美日本视频| 久久久水蜜桃国产精品网| 大码成人一级视频| 嫩草影视91久久| 久久精品91无色码中文字幕| 国产亚洲精品av在线| 黄片小视频在线播放| 久久久国产成人精品二区| 国产99白浆流出| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| 久久天堂一区二区三区四区| 99久久综合精品五月天人人| 此物有八面人人有两片| 波多野结衣一区麻豆| 一边摸一边抽搐一进一出视频| 男女床上黄色一级片免费看| 国产精品永久免费网站| 乱人伦中国视频| 日韩视频一区二区在线观看| 国产日韩一区二区三区精品不卡| 一区福利在线观看| 操美女的视频在线观看| 国产欧美日韩一区二区三区在线| 国产精华一区二区三区| 黄色成人免费大全| 大型av网站在线播放| 韩国av一区二区三区四区| 天堂动漫精品| 黄片播放在线免费| 国产精品,欧美在线| 美女扒开内裤让男人捅视频| 美女午夜性视频免费| 国内精品久久久久久久电影| 精品电影一区二区在线| 操出白浆在线播放| 国产精品综合久久久久久久免费 | 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 搡老熟女国产l中国老女人| 在线天堂中文资源库| 国产精品一区二区在线不卡| 少妇被粗大的猛进出69影院| 亚洲男人的天堂狠狠| 色在线成人网| 日本撒尿小便嘘嘘汇集6| 悠悠久久av| 嫁个100分男人电影在线观看| 色婷婷久久久亚洲欧美| 两个人视频免费观看高清| 一区二区三区国产精品乱码| 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看| 免费在线观看完整版高清| 欧洲精品卡2卡3卡4卡5卡区| 久久精品aⅴ一区二区三区四区| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 国产精品秋霞免费鲁丝片| 欧美成人午夜精品| 1024视频免费在线观看| 久热爱精品视频在线9| 国产成人精品无人区| 又黄又粗又硬又大视频| 欧美日韩乱码在线| 黄片播放在线免费| 久久中文看片网| 久久伊人香网站| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区| 丁香欧美五月| 91麻豆av在线| 国产不卡一卡二| 成年女人毛片免费观看观看9| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 好男人电影高清在线观看| 久久香蕉激情| 午夜精品国产一区二区电影| 精品熟女少妇八av免费久了| 天天躁夜夜躁狠狠躁躁| x7x7x7水蜜桃| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 女人被躁到高潮嗷嗷叫费观| 日韩有码中文字幕| 自线自在国产av| 99香蕉大伊视频| 欧美日韩黄片免| 亚洲五月婷婷丁香| 麻豆久久精品国产亚洲av| 嫁个100分男人电影在线观看| 久热爱精品视频在线9| 电影成人av| 97人妻天天添夜夜摸| 69av精品久久久久久| 在线十欧美十亚洲十日本专区| 大陆偷拍与自拍| 看片在线看免费视频| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看 | 久久精品aⅴ一区二区三区四区| 精品日产1卡2卡| 搡老岳熟女国产| 老司机午夜福利在线观看视频| 国产精品影院久久| 国产97色在线日韩免费| 亚洲欧美日韩无卡精品| 午夜福利成人在线免费观看| 午夜福利一区二区在线看| 日本在线视频免费播放| 亚洲视频免费观看视频| 亚洲情色 制服丝袜| 国产私拍福利视频在线观看| 欧美一级a爱片免费观看看 | 亚洲av美国av| 欧美最黄视频在线播放免费| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 国产精品九九99| 麻豆一二三区av精品| 久久久久久大精品| 中文字幕精品免费在线观看视频| 欧美成人性av电影在线观看| 亚洲色图av天堂| 色精品久久人妻99蜜桃| 在线观看www视频免费| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 99久久国产精品久久久| 91成人精品电影| 狂野欧美激情性xxxx| 精品国产一区二区三区四区第35| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 91精品国产国语对白视频| 国产一区二区三区在线臀色熟女| 国产成+人综合+亚洲专区| 18禁美女被吸乳视频| 色老头精品视频在线观看| 电影成人av| 欧美成人午夜精品| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美国产一区二区入口| 久久草成人影院| 国产一区在线观看成人免费| 国产高清videossex| 国产91精品成人一区二区三区| 久久人人爽av亚洲精品天堂| 国产精品日韩av在线免费观看 | 69av精品久久久久久| av免费在线观看网站| 亚洲人成电影观看| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 国产xxxxx性猛交| 欧洲精品卡2卡3卡4卡5卡区| 深夜精品福利| 亚洲中文日韩欧美视频| 精品免费久久久久久久清纯| 国产精品99久久99久久久不卡| 视频在线观看一区二区三区| 老汉色∧v一级毛片| 国产国语露脸激情在线看| 日韩精品青青久久久久久| 亚洲成a人片在线一区二区| 亚洲第一av免费看| 欧美大码av| 99国产精品免费福利视频| 可以在线观看毛片的网站| 免费高清在线观看日韩| 亚洲一区中文字幕在线| 麻豆av在线久日| 亚洲精品国产区一区二| 日本撒尿小便嘘嘘汇集6| 日本欧美视频一区| 日韩欧美国产在线观看| 欧美日本中文国产一区发布| 亚洲第一电影网av| 久久天堂一区二区三区四区| 中文字幕av电影在线播放| 嫩草影院精品99| 欧美日韩瑟瑟在线播放| 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 老司机午夜福利在线观看视频| 国产又色又爽无遮挡免费看| 九色国产91popny在线| 国产精品九九99| 午夜福利影视在线免费观看| 亚洲黑人精品在线| 日本黄色视频三级网站网址| 非洲黑人性xxxx精品又粗又长| 色在线成人网| 国产高清videossex| 99在线人妻在线中文字幕| 国产亚洲精品av在线| 69av精品久久久久久| 一区二区三区激情视频| 精品无人区乱码1区二区| 欧美在线黄色| 久久久久久久久免费视频了| 国产成人精品在线电影| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区精品| 午夜福利18| 欧美国产日韩亚洲一区| 国产精品九九99| 欧美绝顶高潮抽搐喷水| 桃红色精品国产亚洲av| av天堂在线播放| 免费久久久久久久精品成人欧美视频| 深夜精品福利| 午夜福利影视在线免费观看| 久久久久国内视频| 韩国精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区三区四区久久 | 777久久人妻少妇嫩草av网站| 国产av又大| 人人妻,人人澡人人爽秒播| 亚洲精品国产一区二区精华液| 深夜精品福利| 国产精品亚洲美女久久久| 视频在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 成人三级做爰电影| 国产欧美日韩精品亚洲av| 国产伦一二天堂av在线观看| www.www免费av| 欧美+亚洲+日韩+国产| 亚洲av电影不卡..在线观看| 老汉色av国产亚洲站长工具| 99国产精品一区二区三区| 一区二区三区精品91| 亚洲av成人不卡在线观看播放网| 免费久久久久久久精品成人欧美视频| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲| 又大又爽又粗| 精品人妻1区二区| 国产精品永久免费网站| 久久久国产精品麻豆| 欧美不卡视频在线免费观看 | 视频在线观看一区二区三区| 日韩精品青青久久久久久| www.精华液| 19禁男女啪啪无遮挡网站| 久久精品亚洲熟妇少妇任你| 给我免费播放毛片高清在线观看| 亚洲成人精品中文字幕电影| 黑人欧美特级aaaaaa片| 国产av精品麻豆| 欧美成人午夜精品| e午夜精品久久久久久久| 91麻豆精品激情在线观看国产| 精品高清国产在线一区| 国产精品久久视频播放| 韩国精品一区二区三区| 黄色丝袜av网址大全| 露出奶头的视频| 在线观看66精品国产| 黄色片一级片一级黄色片| 亚洲片人在线观看| 窝窝影院91人妻| 欧美乱码精品一区二区三区| 亚洲人成电影观看| 亚洲美女黄片视频| 91老司机精品| 亚洲七黄色美女视频| 欧美亚洲日本最大视频资源| 久久久国产成人精品二区| 欧美黑人欧美精品刺激| 国产精品乱码一区二三区的特点 | 色在线成人网| 黄色a级毛片大全视频| 51午夜福利影视在线观看| 久久婷婷成人综合色麻豆| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区久久 | 亚洲电影在线观看av| 女人精品久久久久毛片| 亚洲av美国av| 亚洲最大成人中文| 欧美日韩一级在线毛片| 日韩精品免费视频一区二区三区| 麻豆一二三区av精品| 1024视频免费在线观看| av天堂在线播放| 最近最新中文字幕大全电影3 | 久久久久国内视频| 91成人精品电影| 91老司机精品| 男女下面插进去视频免费观看| ponron亚洲| 欧美国产日韩亚洲一区| 成在线人永久免费视频| 岛国在线观看网站| 女警被强在线播放| 午夜免费观看网址| 熟妇人妻久久中文字幕3abv| 国产熟女午夜一区二区三区| 日本 av在线| 精品卡一卡二卡四卡免费| 99riav亚洲国产免费| 亚洲成人精品中文字幕电影| 看免费av毛片| 免费搜索国产男女视频| 日本五十路高清| 免费久久久久久久精品成人欧美视频| 久久久久久大精品| 日韩中文字幕欧美一区二区| 可以免费在线观看a视频的电影网站| 国产一区二区三区综合在线观看| 国语自产精品视频在线第100页| 国产三级黄色录像| 精品少妇一区二区三区视频日本电影| 欧美黄色淫秽网站| 天堂动漫精品| 国产乱人伦免费视频| 日本vs欧美在线观看视频| 男女床上黄色一级片免费看| 美女国产高潮福利片在线看| 热99re8久久精品国产| 久久中文看片网| www日本在线高清视频| 女警被强在线播放| 久久中文看片网| 岛国在线观看网站| 精品一区二区三区四区五区乱码| 亚洲第一青青草原| 成人永久免费在线观看视频| 中文字幕人妻熟女乱码| 男女做爰动态图高潮gif福利片 | 女生性感内裤真人,穿戴方法视频| 又紧又爽又黄一区二区| 国产国语露脸激情在线看| 亚洲第一青青草原| 亚洲一区中文字幕在线| x7x7x7水蜜桃| www.999成人在线观看| 国产精品98久久久久久宅男小说| 久久久久久亚洲精品国产蜜桃av| 长腿黑丝高跟| 一级a爱视频在线免费观看| 十分钟在线观看高清视频www| 日韩三级视频一区二区三区| 国产精品亚洲一级av第二区| 91麻豆av在线| 久久久精品欧美日韩精品| 老司机靠b影院|