• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Investigation on Photoionization and D issociative Photoionization of Toluene

    2017-07-05 13:06:15YujieZhaoYoushengZhanLiLiXinLiXiangyuLianPeiHuangLiusiShengJunChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Yu-jie ZhaoYou-sheng ZhanLi LiXin LiXiang-yu LianPeiHuangLiu-siShengJun Chen

    a.Engineering Research Center of Nuclear Technology Application(East China University of Technology),M inistry ofEducation,Nanchang 330013 China

    b.School ofNuclear Science and Engineering,East China University of Technology,Nanchang 330013, China

    c.National Synchrotron Radiation Laboratory,School ofNuclear Science and Technology,University of Science and Technology ofChina,Hefei230029,China

    Theoretical Investigation on Photoionization and D issociative Photoionization of Toluene

    Yu-jie Zhaoa,b,c??,You-sheng Zhana,b?,Li Lia,b,Xin Lia,b,Xiang-yu Liana,b,PeiHuanga,b,Liu-siShengc?,Jun Chenc

    a.Engineering Research Center of Nuclear Technology Application(East China University of Technology),M inistry ofEducation,Nanchang 330013 China

    b.School ofNuclear Science and Engineering,East China University of Technology,Nanchang 330013, China

    c.National Synchrotron Radiation Laboratory,School ofNuclear Science and Technology,University of Science and Technology ofChina,Hefei230029,China

    The photoionization and dissociation photoionization of toluene have been studied using quantum chem istry methods.The geometries and frequencies of the reactants,transition states and products have been performed at B3LYP/6-311++G(d,p)level,and single-point energy calculations for all the stationary pointswere carried out at DFT calculations of the optim ized structures w ith the G3B3 level.The ionization energies of toluene and the appearance energies formajor fragment ions,C7H7+,C6H5+,C5H6+,C5H5+,are determ ined to be 8.90,11.15 or 11.03,12.72,13.69,16.28 eV,respectively,which are all in good agreem ent w ith published experim ental data.W ith the help of availab le published experim ental data and theoretical results,four dissociative photoionization channels have been proposed: C7H7++H,C6H5++CH3,C5H6++C2H2,C5H5++C2H2+H.Transition structures and intermediates for those isomerization processes are determ ined in this work.Especially,the structures of C5H6+and C5H5+produced by dissociative photoionization of toluene have been defined as chain structure in thiswork w ith theoretical calculations.

    Quantum chem ical calculations,Toluene,Dissociative photoionization m echanism,Density functional theory,Transition states

    I.INTRODUCTION

    Aromatichydrocarbonssuch asbenzene,toluene,and xylene are major com ponents of volatile organic compounds(VOCs)in urban areas,w ith toluene being themost abundant aromatic hydrocarbon am ong them, which play an im portant role in the formation of secondary organic aerosols[1?4].Moreover,toluene has strong stimulation to eyes,skin,mucousmembrane and respiratory system.Toluene also takes a part in reactions to promote photochem ical smog and other local atmospheric effects,which may contribute significantly to ozone formation in the troposphere[5?9].Therefore,the understanding of the process for dissociative photoionization of toluene is needed for evaluating the risks involved in aromatic compounds.

    The photoionization of toluene has been studied by various experimentalmethods.By using electron impact techniques,M cloughlinet al.[10,11]obtained theionization energy(IE)of toluene and the appearance energy(AE)of C7H7+,which are 8.82 and 10.71 eV, respectively.Lifshitzet al.[12,13]investigated two dissociative photoionization channels of C7H7+, through time resolved photoionizationmass spectrometry(TPIMS)by combining w ithab initiocalculations, in which the AEs of C7H7+being determ ined to be 11.1 and 10.7 eV atT=0 andT=298 K,respectively.Shawetal.[14]used threeexperimental techniques(photoabsorption,photoelectron and photoion spectroscopy),togetherw ithmany-body Green’s function calculations to investigate the spectroscopic and therm odynam ic properties of toluene and obtained the IE of the parent ion to be 8.845 eV and the AEs of major fragment ions C7H7+,C6H5+,C5H5+arem easured to be 11.8,14.4, 16.5 eV,respectively.Especially,the obtained AE of C5H6+was 13.5 eV.

    However,as far as we know,there is few theoretical investigations on dissociative photoionization of toluene.In particular,there is very lim ited information about the geometries of the parent ion and the m ain fragment ions in the literatures up to date.Moreover, the dissociative photoionization mechanism s of toluene are still unclear so far.Therefore,in the present work, DFT m ethod is em p loyed to investigate the dissocia-tive photoionization of toluene.The theoretical IE of toluene,AEs for its fragment ions,transition structures (TS)and intermediates(INT)are determ ined.The m echanism s of the dissociative photoionization pathways are also discussed on the basis of theoretical and experimental data from literature.In addition,the transition and interm ediatesstates involved in the pathways are also obtained by theoretical calculations and described in detail in thiswork.

    II.QUANTUM CHEM ICAL CALCULATIONS

    In this theoretical study,all the geometry optim izations of the reactants,transition states,intermediates, and other productsare done at the B3LYP levelw ith 6-311++G(d,p)basis sets,and harmonic vibrational frequencies are also com puted analytically at the sam e level in order to characterize the optim ized geometries as potentialm inima or saddle points.The structures of transition states(TS)and interm ediates(INT)for dissociative photoionization channels are also identified in this study.To confi rm that the obtained transition states connect w ith the right reactants and products,the intrinsic reaction coordinate(IRC)calculations were performed at B3LYP/6-311++G(d,p)level. On the basisof theobtained stationary points,moreaccurate energieswere then obtained by single-point calculations at the G3B3 level.

    The m ethod of G3B3 has been reported elsewhere [15],and only a brief summary is given here.(i)Step 1:produce an initial equilibrium structure at the Hartree-Fock level using the 6-31G(d)basis set.Verify that it is a m inimum w ith a frequency calculation and predict the zero-point energy(ZPE).This quantity is scaled by 0.8929.(ii)Step 2:beginning w ith the final optim ized structure from step 1,obtain the final equilibrium geometry using the full MP2 method w ith the 6-31G(d)basis set.This geometry is used for all subsequent calculations.(iii)Step 3:a series of single-point energies calculations are carried out at higher levelsof theory.The fi rst higher level calculation is MP4/6-31G(d).This energy is then modified by a series of corrections from additional calculations.(iv) Step 4:the MP4/6-31G(d)energy and four corrections from step 3 are combined in an additivemanner along w ith a spin-orbit correction,?E(SO),for atom ic species only.(v)Step 5:a“higher level correction”(HLC)isadded to take into account rem aining deficiencies in the energy calculations:(vi)Step 6:finally,the total energy at 0 K is obtained adding the zero-point energy,obtained from the frequencies of step 1 to the energy.This energy is referred to as the“G3 energy”. A ll calculations above-mentioned are all performed w ith the Gaussian 03 program.

    TABLE I Calculated energies of species(neutral toluene and its cation,p roducts,by-p roduced fragm ents,interm ediates(INT),transition states(TS))involved in the photodissociation of toluene at the G3B3 level.

    III.RESULTS

    W ith the theoretical calculation,the totalenergies of species involved in the study of dissociative photoionization of toluene areobtained at theG3B3 level,which are listed in Table I.Especially,the imaginary frequenciesof transition states(TS)aregiven in Tables S3?S17 (see supp lementarym aterials).Because thereare lotsof diff erent products,intermediates and transition states in the present work,they are named by using their prefix w ith a unique number,such as P1,INT 1 and TS1, which can make them distinguished easily.In the case of isomers,suffi xes of a,b,c,etc.are app lied(for exam p le,P5a)in the dissociative photoionization channel of C5H5+.

    It is well known that the parent ion C7H8+can be generated directly by a single-photon ionization[10, 14].The present calculation using G3B3 m ethod gives an adiabatic IE of8.90 eV,which is in reasonableagreementw ith theavailableexperimentalvalue,8.82 eV[10] and 8.845 eV[14].The IE of C7H8is calculated as follows:IE(C7H8+)=E(C7H8+)?E(C7H8)=8.90 eV.In the case of possible dissociation channel C7H8→C7H7+(P1a)+H,the AE of C7H7+(P1a)is obtained from: AE(C7H7+(P1a))=E(C7H7+(P1a))+E(H)?E(C7H8)= 11.15 eV,which is in good agreement w ith the exper-imental value of 11.1±0.1 eV by Lifshitzet al.[12]. As the dissociation energy(Ed)can be calculated by subtracting the IE of parent molecu les from the AE of the corresponding fragment ion,theEdof C7H7+(P1a) can be expressed in the follow ing form:

    TABLE II Theoretical and literature values of the ionization energy(IE),appearance energy(AE),and dissociation energy (Ed,theoretical)of possible dissociative photoionization channels.

    FIG.1 The optim ized geom etries of the neutral toluene and itscation.(a)C7H8,(b)C7H8+.Bond length is in unit of?A.

    In addition,the AEs andEds of other p roducts are also obtained in the sameway,which are listed in Table II.

    The optim ized geometries of neutral toluene and its parent cation are obtained at the B3LYP/6-311++G(d,p)level,and all their C?C bond lengthsare also calculated,which areallshown in the FIG.1.From FIG.1,we can know that some C?C bonds of parent cation becom e shorter,while someothersbecom e longer in comparison w ith those of neutralmolecule,which indicates that dissociation of parent cation w ill undergo diff erent pathwaysw ith the photon energy increase.

    IV.DISCUSSION

    FIG.2 The dissociation channels for toluene cation to produce fragment ions,C7H7+(P1)calculated at the G3B3 level.The energy of neutral toluene is defined to be zero.

    FIG.3 The dissociation channel for toluene cation to produce fragm ent ion,C7H7+(P2)calculated at the G 3B 3 level. The energy of neutral toluene is defined to be zero.

    The fragm ent ions of toluene in the dissociative photoionization have already been discussed elsewhere [10,12,16,17,18],wherein the main fragmentation channels have been proposed as follows:C7H7++H, C6H5++CH3,C5H6++C2H2,C5H5++C2H2+H.However,the detailed dissociative photoionization mechanisms of the fragmentation pathways have not been clarified.In this work,the dissociativem echanism s of C7H8+are discussed based on our theoretical results and available experimental data[10?30].These disso-ciativephotoionization channelsareshown in FIG.2?4, respectively.In addition,the detailed information on the geom etries of the optim ized reactants,transition states,intermediates and products are also shown in FIG.5?7,where the main bond angles and distances are indicated.

    FIG.4 The dissociation channels for toluene cation to produce fragm ent ions C6H5+(P3)and C5H6+(P4a),C5H6+(P4b) and C5H5+,calculated at the G 3B 3 level.The energy of neutral toluene is defined to be zero.

    FIG.5 The geom etries of the transition states at the B3LYP/6-311++G(d,p)level.Bond length is in unit of?A and bond angel in unit of(?).

    As the photon energy increases,the parent ion w illundergo different dissociative photoionization pathways.Generally,there are two types of mechanism s for dissociation:direct sim p le bond cleavage or indirect bond cleavage via transition states and interm ediates.For instance,the C6H5+ion are formed by loss of CH3from the parent ion(C7H8+).This is one-step dissociation process w ith no distinct transition states as reported previously[19].AE of the C6H5+ion is predicted to be 12.72 eV,which is in good agreement w ith available theoretical value(12.72 eV) [16].By com paring w ith the structure of parent cation and neutralmolecule(see FIG.1),we found that the C3?C12 and C2?C1 bond lengths are increased by about 0.0350 and 0.0257?A,respectively,while the C2?C3 and C5?C6 bond lengths are decreased by about 0.0395 and 0.0287?A,respectively.Especially,the C3?C12 bond is the longest in the parent ion.Therefore,excited by higher photon energy,the C3?C12 bond can be cleaved easily and dissociated to form C6H5++CH3,which agreesw ith the results in Ref.[14].

    A.C7H7++H

    The structure of C7H7+ion has been investigated by various methods[20?22].Two im portant isom ers of C7H7+:benzyl(six-membered ring)and tropylium cation(seven-membered ring),are themost im portant dissociation products of parent ion(C7H8+)near the threshold[12,18,23,24].Therefore,there are two possible formation pathwayswhich can produce C7H7++H (shown in FIG.2 and 3).

    The benzyl ion is form ed by direct loss of H from the parent ion.It is obvious that there are four types of hydrogen atom s in the parent ion.We calculated the AEs of four possible fragment ion isomers,and the outcom es are shown in Table Iand FIG.2.

    FIG.6 The geom etries of the reactant interm ediates at the B3LYP/6-311++G(d,p)level.Bond length is in unit of?A and bond angel in unit of(?).

    P1a((C7H7+)in Table I)is formed from the cleavageofC12?H15 bond,which is1.1064?A in length.The other three isomers are the H elim ination from C1 for P1b,C2 for P1c and C6 for P1d.These C?H bond lengths are 1.0831,1.0838 and 1.0847?A correspondingly.And the theoretical AEs for P1a,P1b,P1c and P1d are 11.15,12.89,12.95,and 13.04 eV,respectively. It is not surprising to find that the P1a channel is the lowest energy required.There are also possible TS for the other three channels,but their AEs are apparently much higher than the experimentalvalue(11.1±0.1 eV) [12].Ow ing to the former theoretical result is in good accordance w ith the experimental value,11.1±0.1 eV [12],we tend to consider the H elim inates from the C12. Thegeometry of the fragment ion P1a at the B3LYP/6-311++G(d,p)level is shown in FIG.7.

    The process for Tropylium cation(seven-m embered ring,P2)is somewhat com p licated,which need to be carried out via TSand INT,asshown in FIG.3.Firstly, the hydrogen atom H15 of themethyl group is transferred to the C3 of the benzene ring to form INT 1 via TS1.Then,because of the steric effect[29]from the ortho C4 of benzene ring,C12?C4 bond reconstructs to form INT 2.Third ly,INT 3 is form ed through C3?C2 bond cleavage via TS3.Finally,the INT 3 tends to produce P2 by further loss of the H radical via TS4. Calculated AE of this channel is 11.03 eV,which is also in agreement w ith available experimental value (11.1±0.1 eV)[12].

    B.C5H6++C2H2

    Further dissociation of C7H8+can produce C5H6+and C2H2when the photon energy rises[14,25].Flammang and Meyrantet al.[25]have studied the structures of gas phase C5H6+ions,which are generated by direct electron ionization of C5H6isomers or dissociative ionization of other precursormolecules(phenol, thiophenol and so on).They have concluded the geometry of C5H6+ion can be identified as the ring structure (P4a),which are from phenol and thiophenol.

    FIG.7 The geom etries of the neutral toluene,its cation and its fragm ents(ions and neutrals)at the B3LYP/6-311++G(d,p) level.Bond length is in unit of?A and bond angel in unit of(?).

    Sim ilarly,the geometry of C5H6+ion from C7H8+can also be fi rstly proposed as the ring structure(P4a), which is shown in FIG.7.The detailed form ation pathway of C5H6+w ith potential energy is depicted in FIG.4(a)and(b).For the ring structure of C5H6+(P4a),the decom position reaction is initiated by methyl H-m igration to an ortho carbon,followed by the decom position to C5H6+and C2H2from C7H8+.To make it more feasible,the dissociation mechanism is described as follows.(i)First,a TS7 is proposed and the H 15 transfers from C12 to C4 w ith an energy barrier of 1.52 eV,giving rise to INT6.(ii)Second,one H atom on the C4 transfers to C5 via TS8 to produce INT7.(iii)Third,Because of ortho effect,INT8 can be formed via TS9w ith an energy barrier of3.14 eV.Then, onehydrogen atom on C12 is transferred to C3,form ing INT9 before C2H2elim ination.(iv)Finally,the C5H6+is form ed by C3?C4 bond cleavage.The theoretical AE in this dissociation pathway is 12.32 eV,which ismuch lower than the experimental value of 13.50 eV[14].On the other hand,Liet al.[26]has performed experimentaland theoretical studies on the dissociative photoionization oftrans-2-methyl-2-butenal.In their study,the structure of C5H6+ion can be identified as chain structure.According to the above situation,the geometry of C5H6+ion from C7H8+is tentatively identified as the chain structure(P4b)in the present work,which is also shown in FIG.7.For the chain structure of C5H6+(P4b),the calculated AE of C5H6+is determ ined to be 13.69 eV,which is in agreem ent w ith the previous value 13.50 eV[14].FIG.4(b)shows that the parent cation undergoesa hydrogen atom shift to C6 from C5 to yield the INT12 via TS13.Next,thehydrogen atom m igrates from the C4 to its neighboring C3 through TS14 to produce INT13 by overcom ing an energy barrier of3.17 eV. Then,INT14 is formed through C3?C2 bond cleavage via TS15.Finally,C5H6+(P4b)is yielded w ith loss of C2H2from INT 14,and no barrier for this elim ination reaction is found at the B3LYP/6-311++G(d,p)level. The reaction barrier for the formation of C5H6+(P4b) is 4.79 eV(relative to parent ion),which is in agreement w ith the experim ental value,13.50 eV,obtained by Shawet al.[14].

    C.C5H5++C2H2+H

    It iswell known that the C7H7+(P1a)ion produced from parent ion decom poses into C5H5+ion by losing C2H2[27].However,the structure for C5H5+is controversial.On the one hand,Occolow itz and W hite have concluded the geometry of C5H5+ion was identified as the chain structure rather than the ring structure by m easuring the heat of formation[28].On the other hand,in the studies on the dissociative photoionization ofp-nitrotoluene by Zhanget al.in 2012,the structure of C5H5+ion was identified as ring structure[29].

    In this work,both structures are calculated,and we get the TSsand INTs involved in the processusing DFT theory.Detailed pathway is described in FIG.4(c).For the ring structure of C5H5+(P5a),fi rst,in the benzyl ion(P1a),C2?C4 bond reconstructs via TS5 to form INT 4.Next,INT 4 undergoes a hydrogen atom shift to C12 from C3 to yield INT5 via TS5.The barrier of this step is calculated to be 1.48 eV.Finally,C5H5+(P5a)is produced by the fission of C3?C4 bond w ithout any apparent TS.AE of C5H5+(P5a)obtained from our theoretical(15.47 eV)ismuch lower than the previous value (16.4±0.2 eV)reported by Tajimaet al.[30].

    For the chain structure of C5H5+(P5b),the benzyl ion(P1a)undergoes a hydrogen atom shift to C4 from C1 to yield INT10 via TS11.The barrier of this step is calculated to be 5.13 eV.The energies of TS11 and INT 10 are higher than that of parent ion by 7.38 and 5.16 eV,respectively.The breaking and form ing C?H bond lengths at TS11 are 1.3686 and 1.2801?A,respectively.Next process is from INT 10 to INT 11,in which the hydrogen atom m igrates from C12 to its neighboring C3 through TS12 by overcom ing an energy barrier of 1.77 eV.Finally,P5b is generated by the C3?C4 bond broken in INT 11,coup led w ith a C2H2loss.The overall barrier for the form ation of C5H5+(P5b)is 16.28 eV (relative to neutral toluene),which is in good agreement w ith the experimental value(16.4±0.2 eV)by Tajimaet al.[30].

    V.CONCLUSION

    In thiswork,quantum chem istry methods have been used to study the photoionization and dissociative photoionization of toluene.The present theoretical results provide several new insights into the dissociative photoionization m echanism s of toluene.The energies and possible dissociative channels for fragm ent ions from toluene have been estimated on the basis of the quantum chem ical calculations.Specific inform ation of fragmentation pathways are discussed in detail.Generally speaking,the dissociative photoionization processes of toluene are somewhat comp licated, m any of them undergo diff erent dissociative photoionization pathways,such as transition structures,intermediates,H-m igration and/or H-elim ination,except for the channel(C6H5++CH3),which undergoes direct simp le bond cleavage.And some dissociative products have diff erent isom ers,which are all distinguished in the present work.In particular,according to calculation and comparison,the C5H5+and C5H6+can be identified as the chain structure in the dissociative photoionization of toluene.The m echanistic study of dissociative photoionization of toluene w ill be help ful in understanding the fragmentation.

    Supp lem entary m aterials:The imaginary frequencies of transition states pertinent to thiswork are given in Tables S3?S17.

    VI.ACKNOW LEDGM ENTS

    This work was supported by the National Natural Science Foundation of China(No.11275006, No.U1232209,No.U1232130,No.41275127, No.11575178,No.U1532137),Nuclear Technology App lication Engineering Research Center Open Foundation of M inistry of Education(No.HJSJYB2015-6), the Chinese Scholarship Council(No.201608360053), the G raduate Students High-Quality Course Construction Program of Jiangxi Province(No.JXYYK 2016-12),the China Postdoctoral Science Foundation (No.2013M 531530),the Doctoral Foundation of East China University of Technology(No.DHBK 201401) and the Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (No.KJ2012B086).

    [1]Y.J.Zhang,Y.J.Mu,J.F.Liu,and A.Mellouki,J. Environ.Sci.24,124(2012).

    [2]H.J.Avens,K.M.Unice,J.Sahm el,S.A.G ross,J.J. Keenan,and D.J.Paustenbach,Environ.Sci.Technol. 45,7372(2011).

    [3]S.Vardoulakis,E.Solazzo,and J.Lumbreras,Atmos. Environ.45,5069(2011)

    [4]L.Fishbein,Sci.Total Environ.40,189(1984).

    [5]L.Fishbein,Sci.Total Environ.43,165(1985).

    [6]V.Cocheo,P.Sacco,C.Boaretto,E.D.Saeger,P.P Ballesta,H.Skov,E.Goelen,N.Gonzalez,and A.B. Caracena,Nature 404,141(2000).

    [7]E.Borras and L.A.Tortajada-Genaro,Int.J.Environ. Anal.Chem.92,110(2012).

    [8]E.Durmusoglu,F.Taspinar,and A.Karadem ir,J.Hazard.Mater.176,870(2010).

    [9]Y.Zhou,H.F.Zhang,H.M.Parikh,E.H.Chen,W. Rattanavaraha,E.P.Rosen,W.X.Wang,and R.M. Kam ens,A tm os.Environ.45,3382(2011).

    [10]R.G.M cloughlin,J.D.M orrison,and J.C.Traeger, Org.Mass Spectrom.14,104(1979).

    [11]J.C.Traeger and R.G.M cloughlin,Int.J.M ass Spectrom.Ion Phys.27,319(1978).

    [12]C.Lifshitz,Y.Gotkis,A.Ioff e,J.Laskin,and S.Shaik, Int.J.M ass Spectr.Ion Proc.125,196(1993).

    [13]C.Lifshitz,Y.Gotkis,J.Laskin,A.Ioff e,and S.Shaik, J.Phys.Chem.97,12291(1993).

    [14]D.A.Shaw,D.M.P.Holland,M.A.M acDonald,M.A. Hayes,L.G.Shpinkova,E.E.Rennie,C.A.F.Johnson, J.E.Parker,and W.von Niessen,Chem.Phys.230, 97(1998).

    [15]L.A.Curtiss,K.Raghavachari,P.C.Red fern,V.Rassolov,and J.A.Pop le,J.Chem.Phys.109,7764(1998)

    [16]L.Tao,Master Thesis,Hefei:Anhui Institute of Optics and Fine M echanics,Chinese Academ y of Sciences, China(2010).

    [17]M.Schwell,F.Du lieu,C.G′ee,H.W.Jochim s,J.L. Chotin,H.Baum g¨artel,and S.Leach,Chem.Phys. 260,261(2000).

    [18]C.J.Chul,J.Phys.Chem.A 110,7655(2006).

    [19]J.R.Majer and C.R.Patrick,J.Chem.Soc.Faraday Trans.58,17(1962).

    [20]K.R.Jennings and J.H.Futrell,J.Chem.Phys.44, 4315(1966).

    [21]P.N.Rylander,S.M eyerson,and H.M.G rubb,J.Am. Chem.Soc.79,842(2002).

    [22]C.Q.Jiao and S.F.Adam s,Chem.Phys.Lett.573, 24(2013).

    [23]R.Bombach,J.Dannacher,and J.P.Stadelm ann,J. Am.Chem.Soc.105,4205(2002).

    [24]R.Bombach,J.Dannacher,and J.P.Stadelmann, Chem.Phys.Lett.95,259(1983).

    [25]R.Flammang,P.M eyrant,A.Maquestiau,E.E. K ingston,and J.H.Beynon,O rg.M ass Spectrom.20, 253(1985).

    [26]Y.Li,M.Cao,J.Chen,Y.Song,X.Shan,Y.Zhao,F. Liu,Z.W ang,and L.Sheng,J.M ol.Struct.1068,130 (2014).

    [27]S.M eyerson and P.N.Rylander,J.Chem.Phys.27, 901(1957).

    [28]J.L.Occolow itz and G.L.W hite,Aust.J.Chem.21, 997(1968).

    [29]Q.Zhang,W.Z.Fang,Y.Xie,M.Q.Cao,Y.J.Zhao, X.B.Shan,F.Y.Li,Z.Y.Wang,and L.S.Sheng,J. Mol.Struct.1020,105(2012)

    [30]S.Tajim a and T.Tsuchiya,Bu ll.Chem.Soc.Jpn.46, 3291(1973).

    ceived on March 20,2017;Accepted on March 27,2017)

    ?These authors contributed equally to this work.

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: jackzy j@ustc.edu.cn,lssheng@ustc.edu.cn

    亚洲av男天堂| 中文欧美无线码| 最新中文字幕久久久久| 久久综合国产亚洲精品| 妹子高潮喷水视频| 久久毛片免费看一区二区三区| 国产成人精品久久二区二区91 | 叶爱在线成人免费视频播放| 精品一区二区免费观看| av国产久精品久网站免费入址| 日韩中文字幕欧美一区二区 | 精品99又大又爽又粗少妇毛片| 亚洲男人天堂网一区| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 丝袜脚勾引网站| 欧美精品高潮呻吟av久久| 久久女婷五月综合色啪小说| av免费在线看不卡| 99久久精品国产国产毛片| 亚洲精品国产av蜜桃| 亚洲在久久综合| 亚洲人成电影观看| 国产成人av激情在线播放| 韩国av在线不卡| 亚洲国产毛片av蜜桃av| 中文天堂在线官网| 久久久久人妻精品一区果冻| 丝袜在线中文字幕| 十八禁网站网址无遮挡| 国产极品粉嫩免费观看在线| 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 中文字幕另类日韩欧美亚洲嫩草| 在线观看三级黄色| 久久精品夜色国产| 97在线视频观看| 99久国产av精品国产电影| 男女午夜视频在线观看| 亚洲av电影在线进入| 免费在线观看黄色视频的| 久久久久久久精品精品| 亚洲精品国产av蜜桃| 大香蕉久久网| 国产一区二区在线观看av| 黄色毛片三级朝国网站| videos熟女内射| 色网站视频免费| 日本vs欧美在线观看视频| 午夜日韩欧美国产| 亚洲av在线观看美女高潮| 国产免费现黄频在线看| 人人妻人人澡人人看| 亚洲色图综合在线观看| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 成年女人毛片免费观看观看9 | 一区二区av电影网| 咕卡用的链子| 国产色婷婷99| 18在线观看网站| 久久ye,这里只有精品| 狂野欧美激情性bbbbbb| 高清视频免费观看一区二区| 亚洲色图 男人天堂 中文字幕| 校园人妻丝袜中文字幕| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 午夜激情av网站| 一区二区日韩欧美中文字幕| 日本av免费视频播放| 欧美日韩视频高清一区二区三区二| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 日本色播在线视频| 最近手机中文字幕大全| 日本91视频免费播放| 日本免费在线观看一区| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 国产人伦9x9x在线观看 | 美女国产视频在线观看| 热99国产精品久久久久久7| 天天影视国产精品| 亚洲人成电影观看| 毛片一级片免费看久久久久| 亚洲国产看品久久| 91国产中文字幕| 色视频在线一区二区三区| 美女视频免费永久观看网站| 国产男女超爽视频在线观看| 午夜久久久在线观看| 丝袜脚勾引网站| 久久久欧美国产精品| 国产极品天堂在线| 黄色毛片三级朝国网站| 女人高潮潮喷娇喘18禁视频| 日韩人妻精品一区2区三区| 亚洲精品国产色婷婷电影| 国产乱来视频区| 欧美人与善性xxx| 五月伊人婷婷丁香| 久久精品国产综合久久久| 精品亚洲成国产av| av网站免费在线观看视频| 丰满乱子伦码专区| 如何舔出高潮| 免费观看在线日韩| 男女高潮啪啪啪动态图| 中文字幕亚洲精品专区| 日本-黄色视频高清免费观看| 欧美精品国产亚洲| 少妇 在线观看| 人妻一区二区av| av免费观看日本| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 一本大道久久a久久精品| 国产精品香港三级国产av潘金莲 | 男女免费视频国产| av天堂久久9| 欧美日韩亚洲高清精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 在线天堂最新版资源| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 看十八女毛片水多多多| √禁漫天堂资源中文www| 欧美成人午夜精品| 大陆偷拍与自拍| 欧美精品国产亚洲| 国产一级毛片在线| 最近中文字幕2019免费版| 亚洲av福利一区| 侵犯人妻中文字幕一二三四区| 高清视频免费观看一区二区| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 一级毛片黄色毛片免费观看视频| 在线观看国产h片| 国产爽快片一区二区三区| 精品国产乱码久久久久久男人| 一边亲一边摸免费视频| 久热久热在线精品观看| 日本免费在线观看一区| 中国国产av一级| 久久久久久久国产电影| 老鸭窝网址在线观看| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| 日本av手机在线免费观看| 国产在线一区二区三区精| 永久免费av网站大全| 国产人伦9x9x在线观看 | 一级片'在线观看视频| 99热全是精品| 叶爱在线成人免费视频播放| 色视频在线一区二区三区| 女人高潮潮喷娇喘18禁视频| 两性夫妻黄色片| 天天躁日日躁夜夜躁夜夜| 日韩欧美一区视频在线观看| 国产一区二区在线观看av| 精品久久久精品久久久| 欧美+日韩+精品| 极品人妻少妇av视频| 97人妻天天添夜夜摸| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站 | 久久精品久久精品一区二区三区| 国产精品香港三级国产av潘金莲 | 视频在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 男女无遮挡免费网站观看| 男人操女人黄网站| av女优亚洲男人天堂| 老汉色av国产亚洲站长工具| 一本色道久久久久久精品综合| 秋霞在线观看毛片| 亚洲av电影在线进入| 色哟哟·www| 如何舔出高潮| 亚洲精品日韩在线中文字幕| 亚洲综合精品二区| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 秋霞在线观看毛片| 男女免费视频国产| 国精品久久久久久国模美| 国产精品麻豆人妻色哟哟久久| 18在线观看网站| 欧美日韩国产mv在线观看视频| 免费看不卡的av| 国产精品秋霞免费鲁丝片| 人妻少妇偷人精品九色| 99国产综合亚洲精品| www.熟女人妻精品国产| 黑人巨大精品欧美一区二区蜜桃| freevideosex欧美| 丰满少妇做爰视频| 久久久久精品人妻al黑| 久久久精品94久久精品| 男人舔女人的私密视频| 丝袜人妻中文字幕| www日本在线高清视频| 亚洲成av片中文字幕在线观看 | 丝瓜视频免费看黄片| 老鸭窝网址在线观看| av卡一久久| 亚洲人成网站在线观看播放| 七月丁香在线播放| 婷婷成人精品国产| 91午夜精品亚洲一区二区三区| 美女福利国产在线| 两个人免费观看高清视频| 亚洲欧洲国产日韩| 精品国产超薄肉色丝袜足j| 色94色欧美一区二区| 男女国产视频网站| 青春草视频在线免费观看| 99热国产这里只有精品6| 下体分泌物呈黄色| 精品国产乱码久久久久久男人| 久久综合国产亚洲精品| 美女中出高潮动态图| 99热国产这里只有精品6| 国产精品免费视频内射| 国产成人精品福利久久| 国产精品 欧美亚洲| 自线自在国产av| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产| 青春草视频在线免费观看| 又大又黄又爽视频免费| 久久久久久免费高清国产稀缺| 免费观看在线日韩| 久久精品国产综合久久久| 久久av网站| 中文精品一卡2卡3卡4更新| 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 女性被躁到高潮视频| 国产欧美亚洲国产| 欧美日韩视频高清一区二区三区二| 日韩电影二区| av又黄又爽大尺度在线免费看| 国产欧美日韩一区二区三区在线| 国产黄频视频在线观看| 少妇 在线观看| 免费观看av网站的网址| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 色哟哟·www| 国产亚洲精品第一综合不卡| 亚洲美女视频黄频| 纯流量卡能插随身wifi吗| 亚洲精品日韩在线中文字幕| 欧美精品亚洲一区二区| 午夜福利在线观看免费完整高清在| 久久青草综合色| 考比视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | av免费在线看不卡| 久热久热在线精品观看| 国产精品无大码| 中文乱码字字幕精品一区二区三区| 亚洲成色77777| 丰满乱子伦码专区| 精品人妻在线不人妻| 色吧在线观看| 中文字幕制服av| 一区二区三区精品91| 曰老女人黄片| 亚洲欧美精品自产自拍| videossex国产| 91精品三级在线观看| 免费av中文字幕在线| 国产亚洲精品第一综合不卡| 亚洲综合色惰| 十八禁高潮呻吟视频| 国产精品一国产av| 婷婷色av中文字幕| 成人手机av| 97精品久久久久久久久久精品| 亚洲第一区二区三区不卡| 亚洲国产欧美网| 久久久久精品人妻al黑| 精品少妇久久久久久888优播| 久久这里有精品视频免费| 99久久中文字幕三级久久日本| 久久久久久久大尺度免费视频| 国产极品天堂在线| 人妻系列 视频| 人成视频在线观看免费观看| 亚洲国产精品成人久久小说| 欧美xxⅹ黑人| 色婷婷久久久亚洲欧美| 亚洲欧美精品自产自拍| 免费日韩欧美在线观看| 满18在线观看网站| 一本久久精品| 国产男女超爽视频在线观看| 99九九在线精品视频| 成年人免费黄色播放视频| 久久影院123| h视频一区二区三区| 99久久中文字幕三级久久日本| 日韩制服丝袜自拍偷拍| 又大又黄又爽视频免费| 欧美成人午夜免费资源| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲av欧美aⅴ国产| 一区二区三区乱码不卡18| 久久精品aⅴ一区二区三区四区 | 亚洲国产成人一精品久久久| 中文天堂在线官网| 午夜福利视频精品| 久久精品人人爽人人爽视色| 9191精品国产免费久久| 大陆偷拍与自拍| 99久久综合免费| 国产精品.久久久| 亚洲色图综合在线观看| 国产精品.久久久| 久久97久久精品| 久久人人爽av亚洲精品天堂| 少妇被粗大的猛进出69影院| 欧美精品国产亚洲| 在线观看免费视频网站a站| 777米奇影视久久| 久久久a久久爽久久v久久| 亚洲美女视频黄频| av在线app专区| 亚洲欧美成人综合另类久久久| 国产精品蜜桃在线观看| av免费观看日本| 免费黄色在线免费观看| 大香蕉久久成人网| 成人二区视频| 免费在线观看黄色视频的| 18禁动态无遮挡网站| 欧美日韩视频精品一区| 国产欧美日韩一区二区三区在线| 亚洲av成人精品一二三区| 中文字幕制服av| av福利片在线| 亚洲精品一区蜜桃| 七月丁香在线播放| 久久国产精品男人的天堂亚洲| 中国三级夫妇交换| 国产免费又黄又爽又色| 夫妻午夜视频| 欧美激情 高清一区二区三区| 制服人妻中文乱码| 国产精品二区激情视频| 91在线精品国自产拍蜜月| 捣出白浆h1v1| 丝袜美足系列| 国产av码专区亚洲av| 性色avwww在线观看| 成人亚洲欧美一区二区av| 色播在线永久视频| 99精国产麻豆久久婷婷| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 国语对白做爰xxxⅹ性视频网站| 老司机影院毛片| 王馨瑶露胸无遮挡在线观看| 欧美激情高清一区二区三区 | 国产日韩欧美在线精品| √禁漫天堂资源中文www| 考比视频在线观看| 人人澡人人妻人| 国产伦理片在线播放av一区| 久久99热这里只频精品6学生| 欧美日本中文国产一区发布| 大片免费播放器 马上看| 国产男女超爽视频在线观看| 热99国产精品久久久久久7| 国产成人精品久久二区二区91 | 18禁动态无遮挡网站| 免费在线观看黄色视频的| 成年av动漫网址| 亚洲美女视频黄频| 一个人免费看片子| 久久久国产一区二区| 久久精品aⅴ一区二区三区四区 | 一区二区日韩欧美中文字幕| 两个人看的免费小视频| 黄色配什么色好看| 国产免费一区二区三区四区乱码| 制服丝袜香蕉在线| 一二三四在线观看免费中文在| 国产精品国产三级专区第一集| 国产日韩欧美视频二区| 欧美日韩精品成人综合77777| 晚上一个人看的免费电影| 26uuu在线亚洲综合色| 亚洲av在线观看美女高潮| 最近最新中文字幕免费大全7| 国产xxxxx性猛交| 一边亲一边摸免费视频| 亚洲,欧美精品.| 久久青草综合色| 久久女婷五月综合色啪小说| 免费日韩欧美在线观看| 国产精品国产三级专区第一集| 亚洲av综合色区一区| 久久精品国产自在天天线| 黑人巨大精品欧美一区二区蜜桃| 久久久久国产一级毛片高清牌| 青春草视频在线免费观看| 国产片内射在线| 国产伦理片在线播放av一区| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 亚洲四区av| 成人毛片a级毛片在线播放| 国产日韩欧美视频二区| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片| 国产成人精品婷婷| 免费在线观看完整版高清| av国产精品久久久久影院| 久久久久久久久久久免费av| 老司机亚洲免费影院| 日韩av在线免费看完整版不卡| 韩国高清视频一区二区三区| 精品国产一区二区久久| 欧美97在线视频| 黑人猛操日本美女一级片| 久久亚洲国产成人精品v| 黄色怎么调成土黄色| av有码第一页| 好男人视频免费观看在线| 香蕉丝袜av| 亚洲一区中文字幕在线| 亚洲美女黄色视频免费看| 久久久久久人妻| 国产97色在线日韩免费| 考比视频在线观看| 一区二区三区四区激情视频| 叶爱在线成人免费视频播放| 亚洲欧美精品综合一区二区三区 | 欧美日韩av久久| 2022亚洲国产成人精品| 免费黄网站久久成人精品| 一本色道久久久久久精品综合| 久久精品aⅴ一区二区三区四区 | 欧美老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| 欧美激情高清一区二区三区 | 1024香蕉在线观看| 久久 成人 亚洲| 永久网站在线| 国产乱来视频区| 成人国产麻豆网| 欧美在线黄色| 日韩成人av中文字幕在线观看| 夫妻性生交免费视频一级片| 欧美日韩av久久| 成人黄色视频免费在线看| 极品少妇高潮喷水抽搐| 男女边吃奶边做爰视频| 欧美激情极品国产一区二区三区| 日本欧美国产在线视频| 91国产中文字幕| 亚洲av在线观看美女高潮| 日韩av免费高清视频| 99re6热这里在线精品视频| 亚洲婷婷狠狠爱综合网| 母亲3免费完整高清在线观看 | 2022亚洲国产成人精品| 久久精品国产亚洲av天美| 大码成人一级视频| 欧美人与善性xxx| 一级毛片我不卡| 亚洲精品视频女| 熟妇人妻不卡中文字幕| 国产精品免费大片| 免费大片黄手机在线观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产最新在线播放| 1024视频免费在线观看| 999久久久国产精品视频| av又黄又爽大尺度在线免费看| 欧美激情 高清一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 久久人人97超碰香蕉20202| 大片电影免费在线观看免费| 精品人妻熟女毛片av久久网站| 亚洲精品国产av成人精品| 最新的欧美精品一区二区| 伊人久久大香线蕉亚洲五| 国产成人精品婷婷| 欧美日本中文国产一区发布| 久久久久网色| 哪个播放器可以免费观看大片| 欧美精品高潮呻吟av久久| 9色porny在线观看| 精品国产乱码久久久久久男人| 欧美成人午夜精品| 国产成人免费观看mmmm| 1024香蕉在线观看| 亚洲国产最新在线播放| 超色免费av| 亚洲少妇的诱惑av| 91久久精品国产一区二区三区| 亚洲经典国产精华液单| 国产成人aa在线观看| 国产欧美日韩综合在线一区二区| 秋霞伦理黄片| 国产免费视频播放在线视频| 欧美精品人与动牲交sv欧美| 男人舔女人的私密视频| 丰满乱子伦码专区| 久久女婷五月综合色啪小说| 秋霞在线观看毛片| av免费在线看不卡| 深夜精品福利| 我要看黄色一级片免费的| 免费人妻精品一区二区三区视频| 午夜福利视频在线观看免费| 久久影院123| 国产熟女欧美一区二区| 久久久久久免费高清国产稀缺| 免费不卡的大黄色大毛片视频在线观看| 亚洲第一青青草原| 亚洲欧美日韩另类电影网站| 久久精品国产自在天天线| 精品一品国产午夜福利视频| 黄色毛片三级朝国网站| 久久久亚洲精品成人影院| 丝瓜视频免费看黄片| 国产片内射在线| 大陆偷拍与自拍| 国产精品一二三区在线看| 成人国语在线视频| 91精品三级在线观看| 国产老妇伦熟女老妇高清| 少妇被粗大猛烈的视频| 成年女人在线观看亚洲视频| 免费观看无遮挡的男女| 国产精品 国内视频| 亚洲伊人色综图| 亚洲av电影在线观看一区二区三区| 一级毛片黄色毛片免费观看视频| 成人二区视频| 免费久久久久久久精品成人欧美视频| 性高湖久久久久久久久免费观看| 免费黄色在线免费观看| 99久久中文字幕三级久久日本| 欧美人与善性xxx| 亚洲精品日本国产第一区| 99热国产这里只有精品6| av视频免费观看在线观看| 亚洲国产最新在线播放| 日本av免费视频播放| 久久狼人影院| 毛片一级片免费看久久久久| 欧美亚洲 丝袜 人妻 在线| 老女人水多毛片| 观看美女的网站| 成人毛片60女人毛片免费| 中文字幕制服av| 国产片内射在线| 欧美日韩一区二区视频在线观看视频在线| 丝袜在线中文字幕| 亚洲欧洲日产国产| 最近中文字幕2019免费版| 999精品在线视频| 高清av免费在线| 夫妻性生交免费视频一级片| 妹子高潮喷水视频| 久久这里只有精品19| 亚洲第一青青草原| 亚洲精品日本国产第一区| 搡女人真爽免费视频火全软件| 熟女av电影| 久久久久网色| 精品一区二区免费观看| 亚洲久久久国产精品| 久久久久精品性色| 亚洲综合色惰| 亚洲精品美女久久av网站| 久久久久国产精品人妻一区二区| 国产精品亚洲av一区麻豆 | 人人妻人人澡人人看| 亚洲,欧美精品.| av女优亚洲男人天堂| 美女国产视频在线观看| 日本黄色日本黄色录像| 国产精品免费视频内射| 各种免费的搞黄视频| 免费大片黄手机在线观看| 韩国av在线不卡| 久久久国产一区二区| 99精国产麻豆久久婷婷| 欧美 日韩 精品 国产| av天堂久久9|