• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Cum ene from Lignin by Catalytic Transform ation

    2017-07-05 13:06:15FengJinMinghuiFnQifngJiQunxinLi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Feng JinM ing-hui FnQi-fng JiQun-xin Li

    a.Department ofChem ical Physics,Key Laboratory ofUrban Polxlutant Conversion,Chinese Academy of Sciences,Anhui Key Laboratory of Biomass Clean Energy,University of Science and Technology of China,Hefei230026,China

    b.Anhui Key Laboratory of Tobacco Chem istry,China Tobacco Anhui Industrial.Co.,LTD,Hefei 230088,China

    Synthesis of Cum ene from Lignin by Catalytic Transform ation

    Feng Jina,M ing-hui Fanb,Qi-fang Jiaa,Quan-xin Lia?

    a.Department ofChem ical Physics,Key Laboratory ofUrban Polxlutant Conversion,Chinese Academy of Sciences,Anhui Key Laboratory of Biomass Clean Energy,University of Science and Technology of China,Hefei230026,China

    b.Anhui Key Laboratory of Tobacco Chem istry,China Tobacco Anhui Industrial.Co.,LTD,Hefei 230088,China

    Cumene is an im portant intermediate and chem ical in chem ical industry.In this work, directional preparation of cumene using lignin was achieved by a three-step cascade process. The m ixture arom atics were fi rst produced by the catalytic pyrolysis of lignin at 450?C over 1%Zn/HZSM-5 catalyst,monocyclic arom atics w ith the selectivity of 85.7 w t%were obtained.Then,the catalytic dealkylation ofheavier aromatics resulted in benzene-rich aromatics w ith 93.6 w t%benzene at 600?C over Hβcatalyst.Finally,the cumene synthesis was performed by the arom atic alkylation,giving cum ene selectivity of 91.6 C-m ol%using the[bm im]Cl-2A lCl3ionic liquid at room tem perature for 15 m in.Besides,adding a sm all amount ofmethanol to the feed can effi ciently suppress the coke yield and enhance the aromatics yield.The proposed transformation potentially providesa useful route for production of cumene using renewable lignin.

    Lignin,Cumene,Catalytic pyrolysis,Dealkylation,A lkylation

    I.INTRODUCTION

    Over the past decade,the development of alternative bio-fuels or bio-chem icals from renewable biomass has stimulated significant interest,main ly because of its potential environm ental benefi ts and the continual decrease in fossil sources[1–3].Lignin,a natural polymer consisting of phenylpropane type unitsbonded through several diff erent C?O and C?C linkages,is a main constituent of lignocellulosic biomass.Considering its aromatic structure characteristics,lignin can be used potentially as a p lentiful and renewable starting m aterial for the production of green aromatics[1–6]. So far,there has been considerable work involved in the lignin chem istry aswell as its utilization by means of lignin hydrogenation reduction,oxidation,pyrolysis, catalytic pyrolysis,aqueous phase reform ing,or enzymatic conversion[2,7–10].Catalytic pyrolysis of lignin over zeolites,for instance,hasbeen w idely investigated, m ainly producing a variety of the m ixture arom atics such as benzene,alkylbenzenes,naphthalenes and indenes[5,7,10–13].Another typical conversion route for lignin use is the hydrogenation of lignin,which involves lignin depolymerization followed by the rem oval of the functionality of the lignin subunits to form simp ler monomeric com pounds.The products,depending on catalysts and reaction conditions,generally con-tain a w ide range of compounds such as phenols,aromatics,alkanes,and low oligom ers[8,14–16].And the directional transform ation of lignin into the desired chem icals is still a challenging task.

    Cumene is an im portant basic organic chem ical raw material that ism ainly used for the production of phenol and acetone,and more than 90%of the worldw ide phenol production is based on the cumene process[17–19].Besides,cum ene is also in demand for the manufacture of bisphenol-A,α-m ethylstyrene,cymene,the synthesis of perfume and the additive for high octane number of fueloiland so on[17].Currently,the capacity of cumene production throughout the world,which is only 9.5 m illion m t/yr by the end of 1998 and up to 550.0m t/yr in 2014,has increased significantly[20,21]. Traditionally,cumene is prepared by the isopropylation of benzene w ith propylene or isopropanol(namely the Friedel-Craft alkylation reactions)[21–23].For examp le,UOP’s Cumox process and Monsanto-Lummus cumene process are the two typical technique w idely used on industrial scale.Cum ox process is conducted in the m ixture reaction system of p ropylene w ith excess benzene using solid phosphoric acid catalyst,offering a high propylene conversion and high selectivity of cum ene[22].For the M onsanto-Lummus p rocess,dry benzene and propylene are reacted through the alkylation reaction under low benzene recycle ratio using the A lCl3-HCl catalyst,and this process p roduces the lowest cost[22].However,the traditional technique of the cumene productionmay suffer from someproblem ssuch as equipment corrosion and pollutant discharge due totheuseofstrong acid catalysts.A lternatively,theuseof zeolite catalystsoffersan environmentally friend ly route to produce cumene,which can achieve a high selectivity of the desired product through pore size and acidity control[17,24–27].The ZSM-5 catalyst is one of the most prom ising candidates for the selective conversion of benzene into cum ene.Other zeolites w ith diff erent structures and acidities have also been investigated in alkylation of benzene,such as beta,mordenite,TNU-9 and SSZ-33[27].The remaining challenges for the production of cum ene by the benzene alkylation using zeolite catalysts include im proving the selectivity and yield of the target product,especially enhancing the benzene conversion.

    As far aswe know,there isno report regarding directional p roduction of cum ene from lignin.In this work, wedemonstrated that lignin wasdirectionally converted into cumene by a three-step process.This process included the catalytic pyrolysis of lignin into them ixture aromatics,followed by the dealkylation of arom atics to benzene-rich aromatics and the alkylation of benzenerich aromatics to cumene by room-tem perature liquid phase reactions using the ionic liquid catalysts.Potentially,the proposed cum ene synthesis route p rovides a usefulway for the production of the basic petrochemicalmaterial and of the high-value chem ical using the abundant natural arom atic resource of lignin.

    II.EXPERIM ENTS

    A.M aterials

    The lignin was purchased from Lanxu Biotechnology Co.Ltd.(Hefei,China).It was a brown and sulfurfree lignin powder manufactured from wheat straw. And the lignin contained carbon of 63.18 w t%,hyd rogen of 5.72 w t%,oxygen of 29.45 w t%and nitrogen of 1.65 w t%,which was carried out by the elementalanalysisw ith an elemental analyzer(Vario EL-III,Elementar,Germ any).A ll analytical reagents used were purchased from Sinopharm Chem ical Reagent Com pany Ltd.(Shanghai,China).

    B.Catalysts preparation and characterization

    The zeolite catalysts including HZSM-5,Hβ,and Re/HY were supplied by Nankai University catalyst Co.,Ltd.(Tianjin,China).Prior to use,the zeolite catalystswere calcined at 550?C for 4 h at nitrogen atm osphere.The catalyst of1%Zn/HZSM-5wasprepared by the impregnation method.The HZSM-5 zeolitewas im pregnated in the corresponding zinc nitrate solution over night,followed by rotary-evaporation at 60?C,and drying at 110?C for 6 h.Finally,the dried sam p lewas calcined at 550?C for 5 h,and crushed to 40?60mesh. The[bm im]Cl-xA lCl3(x=1?2)(bm im refers to 1-butyl-3-methylim idazolium chloroalum inate)ionic liquid was prepared by the samemethod described in our previouswork[28].Briefl y,[bm im]Cl was fi rst prepared by the reactions of N-methylim idazolium w ith 1-chlorobutane at the tem perature of80?85?C for 24 h.Then them ixturewascooled to room tem perature,and theunreacted reactantswere removed using a rotary evaporator.The resulting im idazolium saltwaswashed using acetonitrile as solvent,and dried in a vacuum drying box to remove the residual solvent and water.Finally,the ionic liquid of[bm im]Cl-xA lCl3(x=1?2)was prepared by slow ly adding the dried alum inum chloride to the im idazolium salt w ith a given m olar ratio of 1.0?2.0 between A lCl3and[bm im]Cl and stirring overnight.The ionic liquid, once prepared,wasstored in a dry nitrogen atmosphere.

    TABLE I M ain propertiesof the catalysts.Si/A l is the ratio of silicon to alum inum in the zeolites,SBETis Brunauer-Emm ett-Teller surface area in m2/g andVpis pore volume in cm3/g.The acid density was estimated by the Gaussian fi tting of NH3-TPD profi les.Total acidity is in μmol NH3/gcat.

    The metallic element contents in the catalysts were determ ined by inductively coup led p lasm a and atom ic em ission spectroscopy(ICP/AES,Atomscan Advantage,Thermo Jarrell Ash Corporation,USA). The zeolite catalysts were also characterized by N2adsorp tion/desorption and amm onia tem peratureprogrammed desorption(NH3-TPD)analyses[29]. Typically,the N2adsorption/desorption isotherms of the catalysts were performed at 77 K using the M icrom eritics ASAP 2020 V 3.00 analyzer.The acidity of the catalystswasmeasured by NH3-TPD from 100?C to 800?C w ith a heating rate of 10?C/m in.M ain properties of the catalystswere summ arized in Table I. M oreover,acidity characterizations of the ionic liquid were carried out by infrared spectroscopy(Bruker Tensor 27FT-IR spectrometer)using pyridineas theprober molecule of Lew is and Bronsted acid at room tem perature.The sam p les were prepared by m ixing pyridine and the ionic liquid in a volume ratio of 5:1,and then smeared into liquid fi lms on KBr w indows.A ll spectra were acquired at a 1 cm?1resolution w ith a total of 16 scans.The1H NMR and27A lNMRmeasurementswere carried on a high-resolution liquid nuclearmagnetic resonance spectrometer(Bruker Avance 300 MHz).

    C.Procedures for production of cumene using lignin

    The lignin was directionally converted into cumene by a three-step process under atmospheric pressure,including the catalytic pyrolysis of lignin into them ixed aromatics(fi rst step),the dealkylation of the alkylaro-matic com pounds to benzene(second step),and the alkylation of the benzene-rich aromatics to cumene by the low-tem perature liquid phase reactions(third step).

    In the fi rst step,the production of aromatics by the catalytic pyrolysis of lignin was performed in the continuous flow pyrolysis reactor using the 1%Zn/HZSM-5 catalyst[30,31].The system wasm ainly com posed of a tube reactor,a feeder for solid reactants,two condensers and a gas analyzer.Before each run,the reactor was flushed w ith nitrogen(300 m L/m in)for 2 h,and was externally heated to a given tem perature by the carborundum heater.To reduce the coke deposition and the deactivation of the catalysts,co-feeding lignin w ith m ethanol was conducted in this step.Generally,the catalytic pyrolysis experim ents were carried out under the follow ing reaction conditions:400?550?C,N2gas flow rate of 200m L/m in,and themethanol content of 0?50w t%in the lignin/methanolm ixture.The organic liquid products(nam ed as catalytic pyrolysis oil,CPO) were collected by two condensers,weighed and analyzed by a GC-MSmass spectrometer.

    In the second step,the catalytic dealkylation of alkylaromatic com pounds(namely CPO)to benzene was conducted over the zeolite catalysts(HZSM-5,Hβ,and Re/HY).The dealkylation reactionswere run in a fixedbed reactor,sim ilar to the procedures described in the fi rst step.Typical reaction condition for the catalytic dealkylation process was as follows:temperature of 560?C,space velocity of 0.5 h?1,and the methanol content of 30 w t%in the CPO/methanolm ixture.The resulting organic liquid products(named as catalytic dealkylation aromatics,CDA)were collected by two condensers,weighed,and analyzed by a GC-MSm ass spectrometer.

    In the third step,the alkylation of rich-benzene aromatics of CDA to cumene was conducted by the lowtem perature liquid phase reactions using the catalysts of ionic liquid,in which propylenewas used as an alkylating agent.The alkylation reactions were run in batch mode in a 20-m L reactor equipped w ith a gasin let,a reflux cooler,sam p ling exit and a m agnetic stirrer under the follow ing reaction conditions:mass ratio of CDA/catalyst of 4:1,propylene flow rate(f) of 30 m L/m in,tem perature of 20?80?C and time of 5?90m in.At the end of the reactions,the products on the upper layer were separated from the ionic liquid catalyst at the bottom of the flask by decantation, weighted and analyzed.

    D.Products analysis and evaluation

    The gas products obtained in each run were analyzed using a gas chrom atograph(GC-SP6890,Shandong Lunan Co.,Ltd.,China).The gas chromatograph equipped w ith two detectors:a TCD for analysis of H2, CO,CH4,and CO2separated on TDX-01 column and a FID for gas hydrocarbons separated on Porapak Q column.Themoles of the gas products were determ ined by the normalization method w ith standard gases.The com positions of the liquid products were analyzed by GC-MS(Thermo Trace GC/ISQ MS,USA;FID detector w ith a TR-5 capillary colum n).Them oles ofm ain organic liquid productswere determ ined by thenormalizationmethod w ith standard samp lesand a known concentration.The conversion,yield,selectivity and distribution of the products were calculated as described in our previouswork[30,31].

    whereYi,Yj,Yk,Yl,andSiare overall weight yields, liquid products distribution,distribution of gas products,conversion,and selectivity of products.A ll the tests were repeated three tim es and the reported data are themean values of three trials.

    III.RESULTS AND DISCUSSION

    A.Transform ation of lignin into aromatics

    To produce cumene from the lignin,fi rst of all,the transform ation of lignin into aromatics is required.This conversion was conducted through the catalytic depolymerization and deoxygenation of lignin over theselected 1%Zn/HZSM-5 catalyst.As shown in FIG.1(a),cofeeding lignin w ith methanol significantly decreased the formation of coke and tar,as a result,enhanced the yield of the resulting organic liquid products(namely CPO)as well as the gas products.For exam p le,the yield of cokeand tar derived from the catalytic pyrolysis of lignin was 40.2 w t%,and reduced to 27.2 w t%when co-feeding lignin and methanol w ith themass ratio of 1:1.Addingm ethanol into lignin also changed the aromatic distribution in the aromatics(FIG.1(b)).W ithout addingmethanol,the com position of CPO obtained from the lignin essentially consisted of 17.3 w t%benzene,27.9 w t%toluene,26.2 w t%xylenesand 15.5 w t% naphthalenes.For co-feeding lignin w ith m ethanol, however,the content of benzene was obviously decreased accom panied by the increase in contents of toluene and xylenes,indicating that part of benzene was converted into toluene and xylenes by themethylation process.Besides,adding methanol into the lignin also suppressed the form ation of polycyclic arom atics caused by the polym erization of arom atics.Considering that methanol itself also formed aromatics by thearomatization of methanol,as a result,the CPO distribution for co-feeding m ethanol w ith lignin was determ ined by the competitive reaction pathways,mainly including the catalytic pyrolysis of lignin,aromatization of methanol,methylation of arom atics and polym erization ofaromatics[13,32,33].In addition,adding methanol increased the gas products of H2,alkenesand alkanes,along w ith the decline of carbon oxides and m ethane.So m ethanol also influenced the distribution of gas.

    FIG.1 The eff ect of co-feeding methanol(M eOH)on the production of aromatics by the catalytic pyrolysis of lignin(LN) over 1%Zn/HZSM-5.Reaction conditions:the weight ratio of catalyst to lignin of 2 at 450?C.CPO:catalytic pyrolysis oil. (a)Yield,(b)distribution of CPO,(c)distribution of gas.

    FIG.2 Eff ect of tem perature on the p roduction of arom atics by the catalytic pyrolysis of lignin/m ethanol m ixture over 1%Zn/HZSM-5.Reaction conditions:the weight ratio of catalyst to lignin=2,lignin/methanol=1:1,T=400?550?C.(a) Y ield,(b)distribution of CPO,(c)distribution of gas.

    FIG.2 shows the eff ect of tem perature on the production of aromatics by the catalytic pyrolysis of lignin/methanolm ixture over 1%Zn/HZSM-5 catalyst. Increasing the reaction tem peratures resulted in the decrease in the yields of CPO and coke/tar,accom panied by the increase in the gas yield(FIG.2(a)).This indicates that high tem peratures enhance the catalytic depolym erization and gasification of lignin,and reduce the polymerization ofaromatics.For the distribution of organic liquid products(FIG.2(b)),the CPO consisted primarily of C6?C8m onocyclic aromatics and a small amount of polycyclic aromatics.For exam p le,the typicalCPO obtained at450?C contained 8.4w t%benzene, 30.2 w t%toluene and 47.1 w t%xylenes.Thesem ixed aromaticsm ainly originated from the C?C and C?O bonds cleavage of lignin together w ith the decarboxylation,decarbonylation,dehydration,aromatization and polym erization over the zeolite catalyst[34–36].Notably,the form ation of benzene and toluene increased w ith increasing tem perature along w ith a decrease in the heavier aromatics(like xylenes and other C8+aromatics),attributed to the rem oval of the alkyl groups in the heavier arom atics at higher tem peratures.In addition,oxygen in the lignin was removed mainly by the decarbonylation,decarboxylation,and dehydration, considering that CO,CO2and H2O were the dom inant oxygen-containing products observed.Gaseous olefins and alkanes that come from the catalytic pyrolysisof the lignin/methanolm ixture exhibited a descending trend w ith increasing the tem perature(FIG.2(c)),because of the enhanced decom position and/or aromatization of light olefinsand alkanesat higher tem peratures[34–36].

    B.Reform ing of arom aticsm ixture into benzene

    FIG.3 Transform ation of CPO into benzene over the diff erent catalysts.Reaction conditions:T=560?C, CPO:M eOH=0.7:0.3.CPO was obtained by the catalytic pyrolysis of lignin atT=450?C,lignin/m ethanol=1:1,and the weight ratio of catalyst to lignin=2.CDA:catalytic dealky lation aromatics.(a)Yield,(b)distribution of CDA,(c) distribution of gas.

    FIG.4 Infl uence of methanol on the production of benzene by the catalytic dealkylation of CPO over Hβ.Reaction conditions:T=560?C.CPO was the sam e sam p le as described in FIG.3.(a)Y ield,(b)distribution of CDA;(c)distribution of gas.

    Since CPO derived from the direct catalytic pyrolysis of lignin was comp lex aromatic com pounds,the transformation of these aromatics into the key intermediate of benzene was further conducted by the catalytic dealkylation process.As can be seen from FIG.3(a), w ithin the tested catalysts,the HZSM-5 catalyst produced m ore organic liquid products(CDA)along w ith lower yields of coke/tar and gas.The CDA,after the catalytic dealkylation reactions at 560?C over HZSM-5,consisted of 67.9 w t%benzene together w ith toluene (21.7 w t%),xylenes(8.6 w t%)and other heavier aromatics(1.8 w t%).The Re/HY catalyst that had a strong acidity(Table I),present the highest dealkylation effi ciency for the C6+arom atics,leading to the highest content of benzene(95.9 w t%)in the liquid products(FIG.3(b)).However,the catalytic dealkylation using this catalyst produced m ore coke/tar by the oligom erizationsof arom aticsand m ore gas productsby gasification of aromatics(FIG.3(a)and(c)).Another catalyst Hβw ith a medium acidity exhibited the high activity for the transform ation of them ixture arom atics into benzenew ith a high liquid yield(FIG.3(a)and (b)),which was selected in the catalytic dealkylation process.

    FIG.4 shows the influence of m ethanol on the catalytic dealkylation ofalkylaromatic com poundsover the Hβcatalyst.Adding methanol into CPO was able to eff ectively inhibit the formation of coke/tar.For exam p le,the yield of coke/tar w ithout adding methanol was 32.8 w t%,but in the cases of 30 w t%and 50 w t% methanoladded,was significantly reduced to 21.2 w t% and 15.1 w t%respectively.W hat’s m ore,co-feeding methanol also apparently changed the arom atic distribution in the CDA.W hen 30 w t%methanol was co-fed w ith CPO,the content of benzene slightly decreased to 82.7 w t%along w ith the increase in the contents of toluene and xylenes.In view of thatmethanol also formed aromaticsby thearomatization ofmethanol (FIG.4(b)),the content of benzene in CDA should be aff ected by the dealkylation of arom atics,the oligomerizationsofaromaticsand thearomatization ofmethanol in the presence of methanol.Besides,the temperature also influenced the transform ation of alkylaromatic com pounds into benzene during the dealkylation of aromatics(FIG.5).Increasing the reaction temperature decreased the CDA yield mainly due to theincrease in the gas yield by the decom position of aromatics.Notably,the content of benzene increased from 41.8 w t%to 93.6 w t%w ith increasing the temperature from 520?C to 600?C(FIG.5(b)),accom panied by the decrease in toluene,xylenes and other C8+heavier aromatics.This suggested that high temperatures enhanced the removal of the alkyl groups in the alkylarom atic com pounds such as toluene and xylenes.In addition,the gas productsmainly consisted of H2,and CH4(FIG.5(c)),which come from the catalytic cracking of arom atics and methanol.

    FIG.5 Eff ect of tem perature on the production of benzene by the catalytic dealkylation of CPO over Hβ.Reaction conditions:T=520?600?C,CPO:MeOH=0.7:0.3.CPO was the same sam p le described in FIG.3.(a)Yield,(b)distribution of CD,(c)distribution of gas.

    FIG.6 Production of cumene by the alkylation of CDA over diff erent ionic liquid catalysts.Reaction conditions:mass ratio of CDA/catalyst=4:1,f(propylene)=30m L/m in,T=20?C,t=15m in.CDA contained 93.6 w t%benzene,5.1 w t%toluene, 0.5 w t%xylenes and other aromatics of 0.8 w t%.(a)Conversion,(b)selection,(c)distribution.

    C.Synthesis of cum ene by the alkylation of lignin derived arom atics

    In the follow ing step,we demonstrated that directional p roduction of cumene was able to be realized by the room-tem prature liquid-phase alkylation of the benzene-rich aromatics(CDA)using the ionic liquids.Three ionic liquid catalysts,[bm im]Cl-2A lCl3, [bm im]Cl-1.5A lCl3,[bm im]Cl-A lCl3,have been tested for thealkylation ofCDA to cumene via propyleneasan alkylating agent(FIG.6).The[bm im]Cl-2A lCl3ionic liquid,even at the room tem prature(20?C),showed excellent catalytic activity for the CDA alkylation w ith a propylene conversion of 97.3 m ol%(FIG.6(a)).Especially,the products obtained using[bm im]Cl-2A lCl3were dom inated by the desired cumene with a selectivity of 91.6 C-mol%(FIG.6(b)),together w ith small amount ofp,m,o-diisopropylbenzene(p,m,o-DIPB) andp,m,o-isopropyltoluene(p,m,o-cymene).

    FIG.7 Influence of the reaction tim e on the production of cum ene by the alky lation of CDA using[bm im]C l-2A lC l3ionic liquid catalyst.Reaction conditions:mass ratio of CDA/catalyst=4:1,f(propylene)=30 m L/m in,T=20?C.CDA was the sam e sam p le as described in FIG.6.(a)Conversion,(b)selection,(c)distribution.

    It was found that the m olar ratio between the 1-butyl-3-methylim idazolium chloride([bm im]Cl)and alum inum chloride(A lCl3)in the ionic liquids greatly aff ected the alkylation activity of CDA and the product selectivity.W hen the[bm im]Cl-A lCl3catalyst was used,for exam p le,the conversion of propylenewasonly 4.6 mol%(FIG.6(a))and the main products becamep,m,o-cym ene(FIG.6(b)),which was clearly diff erent from the behavior of the[bm im]Cl-2A lCl3ionic liquid. Chem ically,the[bm im]Cl-2A lCl3ionic liquid consists of the cations of 1,3-two alkyl substituted im idazolium together w ith the anions of A l2Cl7?,as dem onstrated by the27A l NMR analysis(FIG.S1 in the supp lementary materials)and1H NMR analysis(FIG.S2 in the supp lementary materials).In addition,the acidic characteristicsof the ionic liquid were also conducted by infrared spectroscopy using pyridine as a probemolecule of Lew is and Bronsted acid(FIG.S3 in the supp lem entary m aterials).The bands at 1454 and 1540 cm?1for pyridine/[bm im]Cl-2A lCl3ionic liquid were observed, corresponding to the characteristic peaks of Lew is acid (pyridinebonded at a Lew isacid site)and Bronsted acid (pyridine bonded at a Bronsted acid site),respectively (Table S1 in the supplementarymaterials).In addition, the increase in the molar ratio of A lCl3to[bm im]Cl obviously increased the Lew is acid of the ionic liquids (FIG.S4 in the supplementary materials).The above characterization results supported that the ionic liquid [bm im]Cl-2A lCl3had the properties of both Lew is acid and Bronsted acid.The ionic liquid could enhance the olefinic protonation and the formation of active electrophilic species(positive ions of olefins or carbenium ions),leading to the enhancem ent of the alkylation reactions of arom atics[37].

    FIG.7 presents the influence of the reaction time on the alkylation of CDA at room temprature(20?C). As increasing reaction tim e from 5 m in to 90 m in,the propylene conversion slightly reduced from 97.6%to 86.4%.Notably,the selectivity and distribution of the productswere shifted towards the heavier arom atics by prolonging reaction tim e.The cumene selectivity decreased from 91.6C-mol%to 25.3C-mol%w ith increasing reaction time from 5 m in to 90 m in,accompanied w ith an increase ofp,m,o-DIPB from 2.2 C-m ol%to 59.3 C-m ol%.The alkylation of aromatics in CDA is a consecutive reaction process,and the primary products (like the benzene alkylation to cumene)can generally undergo the second alkylation reactions(like the alkylation of cumene top,m,o-DIPB).Asa result,increasing the reaction time enhanced the cascade reaction,leading to the rise in the by-products for longer reaction time.

    Moreover,the influences of tem perature on the alkylation of CDA using the[bm im]Cl-2A lCl3ionic liquid was investigated(Table II).The conversions of propylenewere slightly increased w ith the increasing temperature in the range of 20?50?C,and then,showed a reduction trend over 50?C.Considering that the aromatic alkylation is an exotherm ic reaction[38],increasing temperature results in the decrease of equilibrium constants and is not beneficial to the aromatic alkylation.But increasing tem perature is conducive to overcom e the activation energy required to the alkylation reactions.Meanwhile,the collision probability between ionic liquid and reactants could be enhanced at higher tem peratures,leading to the increase in the reaction ratesof thearomatic alkylation.Accordingly,the directional products of cumene were able to be expediently tuned via the reaction tim e and/or the the tem prature during the alkylation of lignin derived aromatics using the[bm im]Cl-2A lCl3ionic liquid catalyst.

    IV.CONCLUSION

    Thiswork demonstrated that lignin can be directionally converted into cum ene by the catalytic pyrolysis of lignin into the m ixture arom atics,followed by the dealkylation of alkylaromatic com pounds to benzenerich aromatics and the alkylation of benzene-rich aromatics to cumene under the moderate reactions.The liquid products consisted primarily of C6?C8monocyclic aromatics and a small amount of polycyclic aromatics for the catalytic depolymerization and deoxygenation of lignin over the 1%Zn/HZSM-5 catalyst. Then,the key intermediate of benzene was produced w ith a high content of93.6w t%by dealkylation process at 600?C over the Hβcatalyst.The[bm im]Cl-2A lCl3ionic liquid,even at the room tem prature(20?C), showed excellent catalytic activity for the aromatic alkylation in the third step.The desired production of cum ene was obtained through the alkylation of the benzene-rich aromatics w ith a selectivity of 91.6 C-mol%at 20?C,and can be tunablevia the reaction timeand/or the the tem prature.Moreover,a small amount ofmethanol into the feed is benefi tial for suppressing the coke yield and enhancing the yield of aromatics. Potentially,the proposed cumene synthesis route providesa usefulway for the production of the basic petrochem icalmaterialusing the abundant naturalaromatic resource of lignin.

    TABLE II Eff ect of tem perature on the production of cumeneby thealkylation of lignin-derived CDA using[bm im]Cl-2A lCl3ionic liquid catalysta.

    Supp lem entary m aterials:The results of the ionic liquid characterization are shown.The[bm im]Cl-2A lCl3ionic liquid consists of the cations of 1,3-two alkyl substituted im idazolium together w ith the anions of A l2Cl7?,as demonstrated by the27A lNMR analysis w ith the peak around 103 ppm(see FIG.S1).Based on the com parison of1H NMR spectra before and after being titrated w ith KOH solution(FIG.S2),the absence of H in the star site after titrated w ith KOH solution suggests that the ionic liquid can provide protons from the ionic liquid.Furthermore,the acidic characteristics of the ionic liquid were conducted by infrared spectroscopy using pyridine as a probemolecule of Lew is and Bronsted acid.The bands at 1454 and 1540 cm?1for pyridine/[bm im]Cl-2A lCl3ionic liquid were observed(FIG.S3).These bandswere attributed to the characteristic peaks of Lew is acid(pyridine bonded at a Lew is acid site)and Br?nsted acid(pyridine bonded at a Br?nsted acid site)respectively(see Table S1 in the Supporting Information).W ith increasing the content of A lCl3in the ionic liquid,the peak intensity at 1454 cm?1increased(FIG.S4),indicating Br?nsted acid was enenhaned at higher content of A lCl3.In conclusion,the above observations supported that the ionic liquid had thepropertiesofboth Br?nsted acid and Lew is acid.

    V.ACKNOW LEDGM ENTS

    Thiswork was supported by the National Key Basic Program ofChina(No.2013CB228105),the Program for Changjiang Scholars and Innovative Research Team in University and the FundamentalResearch Funds for the Central Universities(No.wk2060190040).

    [1]C.Xu,R.A.D.A rancon,J.Labidi,and R.Luque, Chem.Soc.Rev.43,7485(2014).

    [2]Q.Yao,Z.Tang,J.H.Guo,Y.Zhang,and Q.X.Guo, Chin.J Chem.Phys.28,209(2015).

    [3]L.Zhang,R.Liu,R.Y in,and Y.M ei,Renew.Sustain. Energy Rev.24,66(2013).

    [4]Q.Y.Wu,L.L.M a,J.X.Long,R.Y.Shu,Q.Zhang, T.J.Wang,and Y.Xu,Chin.J.Chem.Phys.29,474 (2016).

    [5]P.Huang and L.F.Yan,Chin.J.Chem.Phys.29,742 (2016).

    [6]Y.Zhao,L.Deng,B.Liao,Y.Fu,and Q.X.Guo, Energy Fuels 24,5735(2010).

    [7]J.Chen,C.Liu,and S.B.Wu,BioResources 11,663 (2015).

    [8]W.W ei,S.W u,and S.Xu,J.Chem.Technol.Biotechnol.92,580(2017).

    [9]L.P.Xiao,Z.J.Shi,F.Xu,and R.C.Sun,Bioresour. Technol.118,619(2012).

    [10]L.Xu,Y.Zhang,and Y.Fu,Energy Technol.4,1 (2016).

    [11]B.Zhang,Z.P Zhong,X.B.Wang,K.Ding,and Z.W. Song,Fuel Process Technol.138,430(2015).

    [12]C.Li,X.Zhao,A.W ang,G.W.Huber,and T.Zhang, Chem.Rev.115,11559(2015).

    [13]S.Adhikari,V.Srinivasan,and O.Fasina,Energy Fuels 28,4532(2014).

    [14]S.Kang,X.Li,J.Fan,and J.Chang,Renew.Sus. Energy Rev.27,546(2013).

    [15]W.Y.Xu,S.J.M iller,P.K.Agrawal,and C.W.Jones, Chem SusChem 5,667(2012).

    [16]C.Rutten,A.Ram′?rez,and J.Posada Duque,J.Chem. Technol.Biotechnol.92,257(2016).

    [17]Y.Zou,H.Jiang,Y.Liu,H.Gao,W.Xing,and R. Chen,Sep.Purif.Technol.170,49(2016).

    [18]J.Zhai,Y.Liu,L.Li,Y.Zhu,W.Zhong,and L.Sun, Chem.Eng.Res.Des.102,138(2015).

    [19]R.Navarro,S.Lopez-Pedrajas,D.Luna,J.M.Marinas, and F.M.Bautista,App l.Catal.A 474,272(2014).

    [20]T.F.Degnan,C.M.Sm ith,and C.R.Venkat,App l. Catal.A 221,283(2001).

    [21]M.P.Bailey,Chem.Eng.121,79(2014).

    [22]V.V.Bokade and U.K.Kharu l,Chem.Eng.J.147, 97(2009).

    [23]O.V.Shutkina,O.A.Ponomareva,and II.Ivanova, Catal.Ind.7,282(2015).

    [24]H.R.Norouzi,M.A.Hasani,B.Haddadi-Sisakht,and N.M ostou fi,Chem.Eng.Commun.201,1270(2014).

    [25]C.Perego and P.Ingallina,Catal.Today 73,3(2002).

    [26]C.Dai,Z.Lei,J.Zhang,Y.Li,and B.Chen,Chem. Eng.Sci.100,342(2013).

    [27]T.Odedairo and S.A l-Khattaf,Catal.Today 204,73 (2013).

    [28]P.W.Jiang,X.P.Wu,L.J.Zhu,F.Jin,J.X.Liu, T.Y.X ia,T.J.Wang,and Q.X.Li,Energ.Convers. M anage.120,338(2016).

    [29]F.Gong,Z.Yang,C.Hong,W.Huang,S.Ning,Z. Zhang,and Q.Li,Bioresour.Technol.102,9247(2011).

    [30]M.H.Fan,S.M.Deng,T.J.Wang,and Q.X.Li,Chin. J.Chem i.Phys.27,221(2014).

    [31]J.C.Wang,P.Y.Bi,Y.J.Zhang,H.Xue,P.W.Jiang, X.P.Wu,J.X.Liu,T.J.W ang,and Q.X.Li,Energy 86,488(2015).

    [32]P.S.Rezaei,H.Shafaghat,and W.M.A.W.Daud, App l.Catal.A 469,490(2014).

    [33]G.Q.Zhang,T.Bai,T.F.Chen,W.T.Fan,and X. Zhang,Ind.Eng.Chem.Res.53,14932(2014).

    [34]G.Caeiro,R.H.Carvalho,X.W ang,M.A.N.D.A. Lemos,F.Lemos,M.Guisnet,and F.R.Ribeiro,J. M ol.Catal.A 255,131(2006).

    [35]Y.Ono,Catal.Rev.34,179(1992).

    [36]N.Rahim i and R.Karim zadeh,J.Anal.App l.Pyrolysiss 115,242(2015).

    [37]Z.Zhao,W.Qiao,X.Wang,G.Wang,Z.Li,and L. Cheng,App l.Catal.A 290,133(2005).

    [38]T.F.Degnan,C.M.Sm ith,and C.R.Venkat,App l. Catal.A 221,283(2001).

    ceived on March 17,2017;Accepted on April 10,2017)

    ?Author to whom correspondence shou ld be addressed.E-m ail: liqx@ustc.edu.cn

    99久久精品热视频| 欧美精品国产亚洲| 亚洲国产精品久久男人天堂| 国产单亲对白刺激| 国产大屁股一区二区在线视频| 在线观看舔阴道视频| 亚洲 欧美 日韩 在线 免费| 18禁黄网站禁片免费观看直播| 久久久成人免费电影| 色哟哟哟哟哟哟| 成人国产综合亚洲| 久久精品国产亚洲av涩爱 | 嫩草影院入口| 久久久精品欧美日韩精品| 色吧在线观看| 日韩欧美一区二区三区在线观看| 国产伦精品一区二区三区视频9| 99热只有精品国产| 精品久久久久久久久av| 亚洲av美国av| 欧美在线黄色| 亚洲精品亚洲一区二区| 亚洲人成网站在线播放欧美日韩| 日日夜夜操网爽| 精品人妻一区二区三区麻豆 | 给我免费播放毛片高清在线观看| 国内久久婷婷六月综合欲色啪| 日日摸夜夜添夜夜添小说| 在线观看舔阴道视频| 国产又黄又爽又无遮挡在线| 99riav亚洲国产免费| 五月玫瑰六月丁香| 国产精品一及| 欧美在线黄色| 丁香欧美五月| av欧美777| 深爱激情五月婷婷| 国产中年淑女户外野战色| 国产色爽女视频免费观看| 韩国av一区二区三区四区| 少妇高潮的动态图| 成年女人看的毛片在线观看| 国产真实伦视频高清在线观看 | 亚洲精品亚洲一区二区| 亚洲激情在线av| 欧美日韩中文字幕国产精品一区二区三区| а√天堂www在线а√下载| 亚洲国产色片| 国产三级中文精品| 中文字幕av在线有码专区| 日本熟妇午夜| 精品一区二区三区视频在线观看免费| 国产乱人视频| 搡女人真爽免费视频火全软件 | 免费人成视频x8x8入口观看| 亚洲欧美日韩高清专用| 男人的好看免费观看在线视频| 老司机午夜十八禁免费视频| 日本三级黄在线观看| 18+在线观看网站| 白带黄色成豆腐渣| 国产爱豆传媒在线观看| 丁香欧美五月| 99热只有精品国产| 久久人人爽人人爽人人片va | 一级a爱片免费观看的视频| 国产老妇女一区| 伦理电影大哥的女人| h日本视频在线播放| 在线国产一区二区在线| 18+在线观看网站| 12—13女人毛片做爰片一| 亚洲av美国av| 在线免费观看不下载黄p国产 | 1000部很黄的大片| 亚洲狠狠婷婷综合久久图片| 精品午夜福利视频在线观看一区| 亚洲精品一卡2卡三卡4卡5卡| 九九久久精品国产亚洲av麻豆| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 男女那种视频在线观看| 国产 一区 欧美 日韩| 性欧美人与动物交配| 日韩有码中文字幕| 一本一本综合久久| 亚洲最大成人手机在线| 一边摸一边抽搐一进一小说| 一本一本综合久久| 精品熟女少妇八av免费久了| 亚洲乱码一区二区免费版| 12—13女人毛片做爰片一| 波野结衣二区三区在线| 老司机深夜福利视频在线观看| 毛片一级片免费看久久久久 | av专区在线播放| 一级av片app| 校园春色视频在线观看| 亚洲男人的天堂狠狠| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 九色国产91popny在线| 啦啦啦韩国在线观看视频| 国产精品一区二区三区四区免费观看 | 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 精品乱码久久久久久99久播| 午夜激情欧美在线| 特级一级黄色大片| 中文字幕av成人在线电影| 久久精品国产亚洲av香蕉五月| 男人舔女人下体高潮全视频| 亚洲精品在线美女| 国产乱人伦免费视频| 白带黄色成豆腐渣| 日韩人妻高清精品专区| 村上凉子中文字幕在线| 五月玫瑰六月丁香| 美女高潮的动态| 人妻制服诱惑在线中文字幕| 在线免费观看的www视频| 国产淫片久久久久久久久 | 国产老妇女一区| 国产高潮美女av| 自拍偷自拍亚洲精品老妇| 欧美又色又爽又黄视频| 午夜福利高清视频| 午夜福利欧美成人| 亚洲激情在线av| 色综合站精品国产| bbb黄色大片| 亚洲无线观看免费| 国产精品,欧美在线| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 最新中文字幕久久久久| 国产淫片久久久久久久久 | 久久精品国产清高在天天线| 一区二区三区免费毛片| 免费看日本二区| 国产在线精品亚洲第一网站| 尤物成人国产欧美一区二区三区| 亚洲精品乱码久久久v下载方式| 如何舔出高潮| 国产精品电影一区二区三区| 人妻制服诱惑在线中文字幕| 我的老师免费观看完整版| 亚洲片人在线观看| 精品欧美国产一区二区三| 美女被艹到高潮喷水动态| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 亚洲国产色片| 九色国产91popny在线| 亚洲va日本ⅴa欧美va伊人久久| 老司机深夜福利视频在线观看| 久久久久免费精品人妻一区二区| 天天一区二区日本电影三级| 国产亚洲精品久久久久久毛片| 色在线成人网| 我的女老师完整版在线观看| 亚洲精品粉嫩美女一区| 亚洲av第一区精品v没综合| 亚洲人成电影免费在线| 99精品在免费线老司机午夜| 成年女人看的毛片在线观看| 内地一区二区视频在线| 久久久久久久久中文| 一区二区三区激情视频| 久久精品国产亚洲av香蕉五月| 亚洲av第一区精品v没综合| 中国美女看黄片| 老司机午夜十八禁免费视频| 国产伦人伦偷精品视频| 精品国产三级普通话版| av欧美777| 99热只有精品国产| 在线播放无遮挡| 亚洲专区国产一区二区| 男人舔女人下体高潮全视频| 国产高清有码在线观看视频| 最近在线观看免费完整版| 国产美女午夜福利| 亚洲久久久久久中文字幕| 日本在线视频免费播放| 亚洲欧美日韩高清在线视频| 成人高潮视频无遮挡免费网站| 成人av一区二区三区在线看| 五月玫瑰六月丁香| 亚洲五月婷婷丁香| 两人在一起打扑克的视频| 日本三级黄在线观看| 国产午夜精品论理片| 免费看a级黄色片| 国产免费男女视频| 黄色配什么色好看| 国产精品一区二区性色av| 最新中文字幕久久久久| 一a级毛片在线观看| 久久久成人免费电影| 99久久99久久久精品蜜桃| 一个人看视频在线观看www免费| 网址你懂的国产日韩在线| 国产一区二区三区视频了| 少妇被粗大猛烈的视频| 一二三四社区在线视频社区8| 99久久无色码亚洲精品果冻| 精品午夜福利视频在线观看一区| 9191精品国产免费久久| 亚洲成人免费电影在线观看| 精品人妻1区二区| 九九热线精品视视频播放| 成熟少妇高潮喷水视频| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 中文字幕人妻熟人妻熟丝袜美| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看 | 中文字幕免费在线视频6| 色在线成人网| 成人毛片a级毛片在线播放| 3wmmmm亚洲av在线观看| 亚洲狠狠婷婷综合久久图片| 很黄的视频免费| 精品一区二区三区av网在线观看| 在线十欧美十亚洲十日本专区| 婷婷精品国产亚洲av在线| 亚洲五月天丁香| 人妻丰满熟妇av一区二区三区| 在线观看免费视频日本深夜| 国产高清三级在线| 亚洲欧美日韩高清在线视频| 三级男女做爰猛烈吃奶摸视频| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 精品乱码久久久久久99久播| www日本黄色视频网| 免费高清视频大片| 国模一区二区三区四区视频| 色视频www国产| 欧美最黄视频在线播放免费| 757午夜福利合集在线观看| av在线蜜桃| 亚洲av.av天堂| 深爱激情五月婷婷| 1024手机看黄色片| 十八禁国产超污无遮挡网站| 亚洲成人免费电影在线观看| 成年女人永久免费观看视频| 91麻豆av在线| 亚洲精品在线美女| 国产av不卡久久| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 色哟哟·www| 级片在线观看| 亚洲欧美日韩无卡精品| av女优亚洲男人天堂| 成年版毛片免费区| 国内毛片毛片毛片毛片毛片| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 99久国产av精品| 欧美一区二区精品小视频在线| 亚洲精华国产精华精| 日日摸夜夜添夜夜添av毛片 | 国产黄a三级三级三级人| 欧美日韩亚洲国产一区二区在线观看| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 最近在线观看免费完整版| 丰满人妻熟妇乱又伦精品不卡| 成人国产综合亚洲| 美女大奶头视频| 十八禁人妻一区二区| 国产免费男女视频| 丰满乱子伦码专区| 九色国产91popny在线| eeuss影院久久| bbb黄色大片| 成人特级黄色片久久久久久久| 岛国在线免费视频观看| 久久久久久久久久成人| 亚洲最大成人av| 夜夜躁狠狠躁天天躁| 欧美bdsm另类| 欧美成人免费av一区二区三区| 日韩人妻高清精品专区| 久9热在线精品视频| 亚洲专区国产一区二区| 欧美激情在线99| 韩国av一区二区三区四区| 亚洲18禁久久av| 国产成人啪精品午夜网站| 无遮挡黄片免费观看| 国产人妻一区二区三区在| 日本成人三级电影网站| 久久久久久久精品吃奶| 亚洲欧美日韩东京热| 亚洲最大成人av| 99热精品在线国产| 国产精品一区二区三区四区久久| 久久久精品大字幕| 一a级毛片在线观看| 亚洲成a人片在线一区二区| 两个人的视频大全免费| 一本一本综合久久| 亚洲第一区二区三区不卡| 我的女老师完整版在线观看| 久久6这里有精品| 日韩有码中文字幕| 少妇人妻一区二区三区视频| 国产精品久久视频播放| 天堂av国产一区二区熟女人妻| av欧美777| 日韩有码中文字幕| 少妇高潮的动态图| 有码 亚洲区| 中出人妻视频一区二区| av福利片在线观看| 淫秽高清视频在线观看| 性欧美人与动物交配| 婷婷精品国产亚洲av| 精品久久久久久久久av| 午夜福利成人在线免费观看| 在线观看av片永久免费下载| 久久久久九九精品影院| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| 欧美高清性xxxxhd video| 中文字幕av成人在线电影| 一区二区三区免费毛片| 欧美日本视频| 国产91精品成人一区二区三区| 一级黄片播放器| 亚洲中文字幕一区二区三区有码在线看| 深夜精品福利| 人妻久久中文字幕网| 久久热精品热| 日韩av在线大香蕉| 国产欧美日韩精品一区二区| 久久久成人免费电影| 国产单亲对白刺激| 国产高清视频在线播放一区| 欧美zozozo另类| 国产精品野战在线观看| 国产精品av视频在线免费观看| 99精品久久久久人妻精品| 久久久久久国产a免费观看| 老司机午夜十八禁免费视频| 亚洲av二区三区四区| 精品久久国产蜜桃| 国产精品久久电影中文字幕| 悠悠久久av| 69av精品久久久久久| 99久久精品一区二区三区| 国产伦精品一区二区三区视频9| 亚洲人与动物交配视频| 日本成人三级电影网站| 偷拍熟女少妇极品色| 男女那种视频在线观看| 国产精品女同一区二区软件 | 国产精品,欧美在线| 听说在线观看完整版免费高清| 国产精品久久电影中文字幕| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 国产伦精品一区二区三区四那| 精品久久久久久,| 麻豆国产av国片精品| 成人一区二区视频在线观看| 日本 av在线| 国产美女午夜福利| 动漫黄色视频在线观看| 亚洲黑人精品在线| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 中文字幕免费在线视频6| 不卡一级毛片| 嫩草影院入口| 搞女人的毛片| 成人特级av手机在线观看| 真实男女啪啪啪动态图| 亚洲 国产 在线| 日韩亚洲欧美综合| 亚洲在线自拍视频| 亚洲国产精品999在线| 成年人黄色毛片网站| 日韩精品中文字幕看吧| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| 国产三级在线视频| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 国产国拍精品亚洲av在线观看| 亚洲不卡免费看| 久久国产乱子伦精品免费另类| 午夜激情福利司机影院| 日韩免费av在线播放| 在现免费观看毛片| 免费无遮挡裸体视频| 国产一区二区激情短视频| 亚洲三级黄色毛片| 热99在线观看视频| 国产精品亚洲av一区麻豆| 国产极品精品免费视频能看的| 日韩av在线大香蕉| 午夜视频国产福利| 宅男免费午夜| 又爽又黄a免费视频| 一a级毛片在线观看| xxxwww97欧美| 三级国产精品欧美在线观看| 俺也久久电影网| 亚洲最大成人中文| 乱人视频在线观看| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 欧美一区二区精品小视频在线| 国产淫片久久久久久久久 | 日韩精品青青久久久久久| 久久6这里有精品| 精品久久久久久成人av| 亚洲精品成人久久久久久| 老熟妇乱子伦视频在线观看| 我要搜黄色片| 99精品在免费线老司机午夜| 精品人妻视频免费看| 无人区码免费观看不卡| 9191精品国产免费久久| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡免费网站照片| 韩国av一区二区三区四区| 久久人人爽人人爽人人片va | 国内揄拍国产精品人妻在线| 观看免费一级毛片| 国产成年人精品一区二区| 国产精品电影一区二区三区| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 久久香蕉精品热| 亚洲国产色片| 日韩成人在线观看一区二区三区| 国产精品永久免费网站| 婷婷色综合大香蕉| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 少妇的逼好多水| 国产精品久久久久久亚洲av鲁大| 欧美日韩国产亚洲二区| 黄色日韩在线| 九色国产91popny在线| 午夜久久久久精精品| 麻豆一二三区av精品| 午夜免费成人在线视频| 亚洲激情在线av| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久久久黄片| 18禁在线播放成人免费| 少妇的逼好多水| 黄色视频,在线免费观看| 一个人免费在线观看的高清视频| www.www免费av| 亚洲欧美激情综合另类| 午夜视频国产福利| 国产毛片a区久久久久| 成人高潮视频无遮挡免费网站| 色在线成人网| 男女之事视频高清在线观看| 国产大屁股一区二区在线视频| av福利片在线观看| 国产精品久久久久久精品电影| 性插视频无遮挡在线免费观看| 99热6这里只有精品| 欧美乱色亚洲激情| 国产伦精品一区二区三区视频9| 免费人成视频x8x8入口观看| 亚洲欧美日韩高清专用| 国产精品伦人一区二区| 日韩欧美在线乱码| 色综合亚洲欧美另类图片| 久久九九热精品免费| 亚洲美女搞黄在线观看 | 真人一进一出gif抽搐免费| 成年免费大片在线观看| 黄色一级大片看看| 悠悠久久av| 精品久久久久久久久亚洲 | 小说图片视频综合网站| 亚洲成人中文字幕在线播放| 啪啪无遮挡十八禁网站| 日韩欧美在线二视频| 99视频精品全部免费 在线| 国产精品爽爽va在线观看网站| 麻豆av噜噜一区二区三区| 国产精品亚洲一级av第二区| 亚洲av.av天堂| 亚洲最大成人手机在线| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄 | 极品教师在线视频| 日本熟妇午夜| 91狼人影院| 成人三级黄色视频| 嫩草影院新地址| 两人在一起打扑克的视频| .国产精品久久| 一区福利在线观看| а√天堂www在线а√下载| 中文在线观看免费www的网站| 日韩免费av在线播放| 床上黄色一级片| 97超级碰碰碰精品色视频在线观看| 国产精品人妻久久久久久| 日本与韩国留学比较| 禁无遮挡网站| netflix在线观看网站| 日本精品一区二区三区蜜桃| 在线看三级毛片| 一区二区三区激情视频| 亚洲av一区综合| 色av中文字幕| 麻豆成人av在线观看| 久久人人爽人人爽人人片va | 性欧美人与动物交配| 亚洲色图av天堂| 亚洲真实伦在线观看| 亚洲人与动物交配视频| 免费无遮挡裸体视频| 不卡一级毛片| 少妇的逼好多水| 一级av片app| 色哟哟哟哟哟哟| 一级毛片久久久久久久久女| 一级黄片播放器| 午夜福利高清视频| 亚洲欧美日韩卡通动漫| 精品久久久久久久久久免费视频| 最新中文字幕久久久久| 精品熟女少妇八av免费久了| 国产亚洲精品久久久久久毛片| 欧美精品国产亚洲| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 日日干狠狠操夜夜爽| netflix在线观看网站| 最新中文字幕久久久久| 国产真实乱freesex| 亚洲第一区二区三区不卡| 欧美性感艳星| 丁香六月欧美| 国产私拍福利视频在线观看| 91麻豆av在线| 全区人妻精品视频| 俄罗斯特黄特色一大片| 啦啦啦观看免费观看视频高清| 大型黄色视频在线免费观看| 亚洲欧美日韩卡通动漫| 中文资源天堂在线| 丰满人妻一区二区三区视频av| 特大巨黑吊av在线直播| 日本成人三级电影网站| 黄色女人牲交| 极品教师在线视频| 精品人妻1区二区| 免费在线观看成人毛片| 亚洲专区国产一区二区| 欧美在线一区亚洲| 亚洲成av人片在线播放无| 久久精品国产亚洲av香蕉五月| 国产69精品久久久久777片| 国产精品亚洲av一区麻豆| 国产在线精品亚洲第一网站| 18禁黄网站禁片免费观看直播| 国产麻豆成人av免费视频| 亚洲成人久久性| 日韩亚洲欧美综合| 99视频精品全部免费 在线| 成人午夜高清在线视频| 欧美激情国产日韩精品一区| 欧美精品国产亚洲| 九色国产91popny在线| 久久精品久久久久久噜噜老黄 | 91麻豆av在线| 人人妻,人人澡人人爽秒播| 非洲黑人性xxxx精品又粗又长| 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 欧美高清性xxxxhd video| 亚洲美女黄片视频| 首页视频小说图片口味搜索| 久久国产精品影院| 波多野结衣高清作品| 女人被狂操c到高潮| 国产精品亚洲一级av第二区| 欧美激情在线99| 成人国产综合亚洲| 我要搜黄色片| 啦啦啦韩国在线观看视频| 婷婷色综合大香蕉| 亚洲avbb在线观看| av中文乱码字幕在线| xxxwww97欧美| 永久网站在线| 老鸭窝网址在线观看| 日本熟妇午夜| 嫩草影院精品99| 亚洲三级黄色毛片| www.999成人在线观看| 97超级碰碰碰精品色视频在线观看| 永久网站在线| 久久亚洲真实| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产|