• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phosphorescent Cationic Iridium(III)Com p lexes w ith 1,3,4-Oxadiazole Cyclom etalating Ligands:Solvent-Dependent Excited-State Dynam ics

    2017-07-05 13:06:15ZhuornKungXinWngZhenWngGuiyingHeQinjinGuoLeiHeAndongXi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Zhuorn KungXin WngZhen WngGuiying HeQinjin GuoLeiHeAndong Xi

    a.Beijing National Laboratory for Molecular Sciences(BNLMS),Key Laboratory of Photochem istry, Institute ofChem istry,Chinese Academy ofSciences,Beijing 100190,China

    b.University of Chinese Academy of Sciences,Beijing 100049,China

    c.College ofChem istry and Chem ical Engineering,Central South University,Changsha 410083,China

    Phosphorescent Cationic Iridium(III)Com p lexes w ith 1,3,4-Oxadiazole Cyclom etalating Ligands:Solvent-Dependent Excited-State Dynam ics

    Zhuoran Kuanga,b,Xian Wanga,b,Zhen Wangc,Guiying Hea,b,Qianjin Guoa,LeiHec?,Andong Xiaa,b?

    a.Beijing National Laboratory for Molecular Sciences(BNLMS),Key Laboratory of Photochem istry, Institute ofChem istry,Chinese Academy ofSciences,Beijing 100190,China

    b.University of Chinese Academy of Sciences,Beijing 100049,China

    c.College ofChem istry and Chem ical Engineering,Central South University,Changsha 410083,China

    To elucidate the nature of low-lying trip let states and the effect of ligand modifications on the excited-state properties of functional cationic iridium com p lexes,the solventdependent excited-state dynam ics of two phosphorescent cationic iridium(III)com p lexes, namely[Ir(dph-oxd)2(bpy)]PF6(1)and[Ir(dph-oxd)2(pzpy)]PF6(2),were investigated by fem tosecond and nanosecond transient absorption spectroscopy.Upon photoexcitation to them etal-to-ligand charge-transfer(M LCT)states,the excited-state dynam ics showsa rapid process(τ=0.7?3 ps)for the formation of solvent stabilized3M LCT states,which significantly depends on the solvent polarity for both 1 and 2.Sequentially,a relatively slow process assigned to the vibrational cooling/geometrical relaxation and a long-lived phosphorescent em issive state is identified.Due to the diff erent excited-state electronic structures regulated by ancillary ligands,the solvation-induced stabilization of the3M LCT state in 1 is faster than that in 2.The present results provide a better sight of excited-state relaxation dynam ics of ligand-related iridium(III)com p lexes and solvation effects on trip letmanifolds.Key words:Iridium comp lex,Phosphorescence,Metal-to-ligand charge transfer,Transient absorption,Solvation

    I.INTRODUCTION

    In recent years,the study of phosphorescent cyclometalated iridium(III)com p lexes have attracted enormous attention from academ ic to industrial communities in the development of phosphorescent organic light-em itting diodes(PHOLEDs)due to their potentialapp lications in full-color disp lays and energy-saving solid-state lightings[1–3].In addition to their superior photolum inescence and electrolum inescence properties, cyclom etalated iridium(III)com p lexes have been found to act as long-lived trip let photosensitizers w ith outstanding performances,which extensively expand app lications in trip let-triplet annihilation(TTA)[4,5],dyesensitized solar cells(DSSCs)[6],sensitization of singlet oxygen[7],and photocatalytic water sp litting[8].

    As a third-row transition metal cation w ith an electron configuration of 5d6,iridium(III)is capable of form ing cyclom etalated cationic com p lexes,referred as [Ir(C∧N)2(N∧N)]+A?,w ith the cyclometalating ligands (C∧N),the ancillary ligand(N∧N)and the counter an-ion(A?)[9,10].For this typeof iridium(III)com p lexes, the frontier m olecular orbitals are delocalized over the entire m olecule w ith rem arkab le charge-transfer characteristics.The highest occupied molecular orbitals (HOMOs)are usually delocalized on the d orbitals of iridium(III)andπorbitals of cyclom etalating ligands, while the lowest unoccupied molecu lar orbitals(LUMOs)have dom inant contributions fromπ?orbitals of ancillary ligands[11,12].The HOMO and LUMO energies can be m odified by respectively alternating the C∧N and N∧N ligands,and then the characteristics of excited-states and the photochem ical performances are artificially controlled[12].The photoexcitation mainly promotes three electronic transitions,which are characterized as metal-to-ligand charge-transfer(MLCT), ligand-to-ligand charge-transfer(LLCT)and ligandcentered(LC)transitions[12].Im portantly,the excited singlet states undergo very rapid intersystem crossing (ISC),resulting in the excited trip let manifold population,as a consequence of a high spin-orbit coup ling(SOC)constant(3909 cm?1)com pared to some well-known octahedral coordination com p lexes of Fe (431 cm?1),Ru(1042 cm?1),Os(3381 cm?1),which is in direct proportion to the biquadrate of the atom ic number[13,14].Thus,the strong SOC in iridium(III) com p lexes achieves the internal quantum effi ciency ap-proaching~100%[1,3,15–17].The kinetic of ISC process of some iridium(III)comp lexes has been investigated using fem tosecond photolum inescence spectroscopy,which reveals that the ISC has a tim e scale down to or even less than 100 fs[18,19].The rate of the ultrafast ISC is equivalent to that of internal conversion(IC),indicating that the spin-fl ipped transition is not a rate-determ ining process[20].Furthermore,the spin-forbidden nature of the transitions from the trip let manifold to theground statearemoderately removed by the strong SOC,inducing the intense room-tem perature phosphorescence[21].

    For iridium(III)com p lexesw ith effi cient ISC,the lowest triplet state em itting phosphorescence,according to Kasha’s rule,iseither a3MLCT ora3LC state[22].The relaxation processes of excited-states,which are accompanied by the intram olecular charge-transfer(ICT),are significantly affected by solvation effects[23–25].A fter the redistribution of charge density on solutemolecules induced by the photoexcitation,the surrounding solvent electric dipoles rearrange around the excited solute molecules,which affects the excited-state relaxation processes[26,27].By investigating the solutesolvent interaction,especially the dynam ics response, the sequential evolution am ong the excited-statemanifold could be resolved clearly w ith the aid of ultrafast pum p-probe transient absorption techniques[28].So far,for a w ide variety of ligand-dependent functional transition m etal com p lexes w ith effi cient ISC,excitedstate deactivation processes from Franck-Condon excitations to em issive triplet states,which are accompanied w ith changes of electronic configuration,solvent response,geometric structure and thermal equilibrium, still remain a sub ject of debate and confusion regarding the photophysical nature and characteristic time scale [29–33].

    Currently,much attention concentrates on the structure-property relationship of heavy metal comp lexes to design,modify and optim ize their photolum inescence and photosensitization properties,where ligands are the key factors to control the relative energies of frontier orbitals and excited-state relaxation dynamics[34].We recently reported the synthesis of[Ir(dphoxd)2(bpy)]PF6(1)and[Ir(dph-oxd)2(pzpy)]PF6(2) (their m olecular structures are shown in Scheme 1), w ith the cyclom etalating ligand of 2,5-diphenyl-1,3,4-oxadiazole(dph-oxd)and the ancillary ligands of 2,2′-bipyridine(bpy)and 2-(1H-pyrazol-1-yl)pyridine (pzpy),respectively[10].Due to the stabilization of HOMO levels induced by the electron-deficient oxadiazole heterocycle in dph-oxd,comp lexes 1 and 2 have w ideenergy gaps(~2.8?3.5 eV)and effi cient blue-green (480?580 nm)phosphorescent em issions[10,34].In addition,com plex 2 in which theelectron-rich pzpy substitutes the bpy,presents a largely enhanced LUMO level relative to com p lex 1.A lthough their basic photophysical and electrochem ical properties have been discussed, the excited-state dynam ic processesof com plexes 1 and 2 are unclear and need to be investigated.Above all, elucidating the nature of their low-lying trip let states is ofgreat significant to understand the origin of phosphorescence and further reveal the ligand-related excitedstate behaviours in iridium(III)com p lexes.

    Schem e 1 M olecular structures of(a)[Ir(dph-oxd)2(bpy)] PF6(1)and(b)[Ir(dph-oxd)2(pzpy)]PF6(2).

    In the present work,to reveal and understand the photolum inescence properties and solvent-dependent excited states dynam icsof iridium(III)com p lexes in the excited trip let m anifold,ultrafast transient absorption spectroscopy isem p loyed for comp lexes1 and 2 in solutions.Threeaprotic solvents(chloroform,tetrahydrofuran and acetonitrile)w ith diff erent polaritiesareused to monitor the excited-state relaxation dynam ics and the electronic state evolutions.Focusing on the solvation response induced by dipole-dipole interaction,the temporal electric dipole change of excited com p lexes could be identified.W ith steady-state spectralmeasurem ents and theoretical calculations,the ICT characteristic in excited states of both comp lexes have been intensively studied.The fem tosecond transient absorption spectroscopy upon theM LCT stateexcitation showsa rapid processattributed to thegeneration of solvent stabilized3M LCT state,which is relevant to the solvent polarity. In addition,the vibrational cooling/geom etrical relaxationsand long-lived phosphorescent em ission statesare also identified.

    II.EXPERIM ENTS

    A.M aterials

    The synthesisof[Ir(dph-oxd)2(bpy)]PF6(com p lex 1) and[Ir(dph-oxd)2(pzpy)]PF6(com p lex 2)has been described in detail elsewhere[10].Briefl y,for the synthesis of com p lex 1,[Ir(dph-oxd)2Cl]2reacted w ith bpy in CH2Cl2/CH3OH.A fter evaporation,and the residual was dissolved in deionized water and KPF6was added to the solution to form[Ir(dph-oxd)2(bpy)]+.The synthesis of comp lex 2 was sim ilar to that for comp lex 1, except that pzpy substituted bpy.Purified comp lexes were dissolved in solvents(i.e.dichloromethane,acetonitrile,tetrahydrofuran)for spectroscopic m easurements.A ll solvents involved were spectroscopic gradeand used as received.

    B.Quantum chem ical calculations

    On the basis of density-functional theory(DFT), quantum-chem ical calculations were performed to obtain the optim ized geom etries and electronic structures for com plex 1 and com plex 2.The method using B3LYP w ith basis sets of 6-31G(d,p)for C,H,N and O,and LANL2DZ for Ir was em p loyed to fu lly optim ize the ground-state geom etries w ithout any symm etry constraints.The verticalexcitation energies of lowlying excited-states were calculated on the optim ized ground-state geom etriesw ith the tim e-dependent DFT (TD-DFT)approach.Considering the solvent eff ects, self-consistent reaction field(SCRF)theory adopting the polarized continuum model(PCM)wasapp lied.A ll calculationswere carried out for isolated m olecules and conducted w ith the Gaussian 09 software package[35].

    C.Steady state and transient absorption spectral measurements

    The steady-state ultraviolet-visible absorption and photolum inescence spectra werem easured on a U3010 (Hitachi)spectrometer and an F4600(Hitachi)fluorescence spectrometer,respectively.The nanosecond transient absorp tion measurementswere perform ed using a nanosecond flash photolysis spectrometer(LP920, Edinburgh Instruments),excited by a Nd:YAG laser (Quanta-Ray,Spectra-Physics)at 355 nm w ith the FWHM of 8 ns.The fem tosecond transient absorption spectra w ith~100 fs time-resolution were measured on a home-built fem tosecond broadband pum p-probe setup,which has been described elsewhere[36,37]. Briefl y,a pulsew ith 400 nm,50 fs,90 nJand 1 kHz from a regenerative amplified fem tosecond laser acts as the pum p beam focused(spot size is about 130μm)on the sam p le.A white light supercontinuum(420?780 nm) generated by a water cell acts as a probe beam after an opticaldelay up to 1 ns.The thicknessof flow ing samp le cells is 1mm for transientmeasurements.For isotropic m easurements,the angle of pum p and probe beam polarization was set to themagic angle(54.7?).Before the data analysis,the chirp correction has been conducted to calibrate the spectral chirp caused by group velocity delay dispersion of the supercontinuum probe beam in fem tosecond transient absorption spectra.The tim e evolution differentialabsorbance?A(t,λ)wasanalyzed by singular value decom position(SVD)and globalanalysisusing G lotaran and TIMP software package[38,39].?A(t,λ)is a superposition of several principal spectral com ponentsεi(λ)weighed by their concentrationsci(t) [38,40]:

    FIG.1 Normalized steady-state absorp tion and PL spectra of(a)com p lex 1 and(b)com p lex 2.The PL spectra were measured w ith excitation at 400 nm.The PL spectra at 77 K werem easured in M eCN glass.

    III.RESULTS AND DISCUSSION

    A.Steady state spectra

    The normalized absorp tion and lum inescence spectra of com p lexes 1 and 2 in acetonitrile(M eCN),tetrahydrofuran(THF)and chloroform(CHCl3)at 298 and 77 K(in MeCN glass)are shown in FIG.1.The profi les of the absorption spectra are sim ilar for both comp lexes 1 and 2 in diff erent polar solvents.The intense absorption bandsbelow 350 nm in ultraviolet region are assigned to the spin-allowed1π-π?transitionsof the cyclometalating ligands or ancillary ligands,form ing the intramolecular1LC states[41].These bands extending from 350 nm to 450 nm show relatively lower absorption features,which are ascribed to spin-allowed or forbidden1M LCT/3M LCT states,1LLCT/3LLCT states and weak3LC transitions[41].Here,the spin-forbidden transitions aremoderately released by the strong SOC endowed by the heavy atom eff ect,which brings a certain extent of absorption and effi cient phosphorescence em ission at room-temperature[14].

    Both comp lexes 1 and 2 em it green phosphorescence at 298 and 77 K w ith structured em ission spectra.Detailed em ission characteristics are disp layed in Table I. At 298 K,their em ission peaks show slight red-shifts relative to those at 77 K.The structured phosphorescence em ission curves w ith weak solvatochrom ism and rigidochrom ism indicate that3π-π?character dominates the lowest em issive trip let states[12].The sim-ilar em ission curves of com p lexes 1 and 2 indicate that their em ission properties are dom inated by the cyclometalating ligands of dph-oxd,which bears an electron-w ithdraw ing group,form ing the em issive dphoxd-centered(3π-π?)states[10,42,43].

    TABLE I Em ission characteristics of com p lexes 1 and 2 in solutions.εis the dielectric constant of the solvent[44].

    FIG.2 TDDFT calculated MOs contour p lots of com p lex 1 in MeCN associated w ith1MLCT transitions.

    For general iridium(III)complexes,on account of the spin-fl ip exchange energy,the energetic order of these transition is1LC>1M LCT>3M LCT>3LC[12].The lowest triplet states,which em it effi cient phosphorescence,have a hybrid feature of3MLCT and3LC.It is found that the lum inescence quantum yields of both com p lexes 1 and 2 are remarkably solvent-dependent, as shown in Table I.For complex 1,the quantum yields aremeasured to be~0.31 in MeCN(ε=35.94),~0.48 in THF(ε=7.58)and~0.68 in CHCl3(ε=4.81),which are sim ilar to those for com p lex 2.For com p lexes1 and 2,strong non-radiative transitions induced by solvation occur before reaching the lowest em issive state,leading to the quenching of lum inescence in highly polar solvents[45].In this case,the3M LCT states,which are closely associated w ith solvation processes,are located at higher energy than the em issive3LC states.

    In our previouswork,the em ission spectrum of comp lex 1 exhibited an obvious red-shift and a structureloss when increasing its doping concentration in the poly(methylm ethacrylate)m atrix,whereas com p lex 2 always exhibited structured em ission spectra w ith negligible red-shifts.A lso,a reversible piezochrom ic behaviorwasobserved for com p lex 1[10].Theseexperimental results indicate that for com p lex 1,the LC3π-π?and3MLCT/3LLCT triplet states are close-lying in energy and account for the finalem itting states[10,46–50].In contrast,the lowest trip let states of com p lex 2 m aintain dom inant3π-π?character w ith less attributes of ICT character[42,51,52].Quantum chem ical calculations are expected to have amore accurate description of the excited-state electronic structures,which is helpful to understand the solvent-dependent excited-state relaxation processes.

    B.Quantum chem ical calculations

    FIG.3 TDDFT calculated MOs contour p lots of com p lex 2 in M eCN associated w ith1M LCT transitions.

    On the basisof DFT and TD-DFT calculations,optim ized ground-state geometriesand the contour p lots of molecular orbitals for com p lexes 1 and 2 in M eCN are shown in FIG.2 and 3;their corresponding simulated energies,oscillator strengths and main orbital contributions of vertical transitions,including the1M LCT transitions,are depicted in Tables IIand III.

    In M eCN as solvent,all frontier orbitalsexhibit localizationsand distributionson segmentsof themolecules, as shown in FIG.2 and 3.For both com p lexes1 and 2, the HOMO orbitalsare localized on d orbitalsof iridium ions andπorbitals of the dph-oxd ligands.The LUMO of com p lex 1 is delocalized over the bpy ligand,and the LUMO of com p lex 2 isdelocalized over the dph-oxd ligand.For com p lex 2,the localization of LUMO on dphoxd rather on pzpy should be caused by theelectron-rich characteristic(leading to higher energy levels of unoccupied m olecular orbitals)of the pzpy ligand.Accordingly,the absorption bands between 360 and 450 nm, as shown in FIG.1,are mainly attributed to the contributions from Ir→ligands(1MLCT,d→π?)and ligand-centered(1LC,π→π?)transitions.M ore specifically,the1M LCT/1LC transitions(Ir→dph-oxd/dphoxd-centered,S0→S2for 1 and S0→S1for 2)have major contribution to the 400 nm(Ephoton=3.10 eV) absorption for both com p lexes 1 and 2.For comp lex 1,the1M LCT/1LLCT transition(Ir→bpy/dphoxd→bpy,S0→S1),as shown in Table II,exists at a relatively low energy(2.87 eV)and has considerable contribution to the 400 nm absorption.Nevertheless,for com p lex 2,the1M LCT/1LLCT(Ir→pzpy/dphoxd→pzpy,S0→S2)transition,as shown in Table III, has an excessive excitation energy(3.31 eV)that is larger than 400 nm absorption.Therefore,for com p lex 2,the1MLCT/1LC transition dom inates the 400 nm absorption.Sim ilarly,in THF and CHCl3,the S0→S1transition of com p lex 1 exhibits the1M LCT/1LLCT (Ir→bpy/dph-oxd→bpy)character w ith relatively low excitation energies(~2.8 eV),whereas in comp lex 2,the1M LCT/1LLCT transitions show higher excitation energies(~3.2 eV)and the1MLCT/1LC(Ir→dphoxd/dph-oxd-centered)transitions show the lowest excitation energies.

    TABLE II TDDFT calculated electronic transition p roperties of com p lex 1 in M eCN(Et:transition energy,f:oscillator strength).

    TABLE III TDDFT calculated electronic transition p roperties of com p lex 2 in MeCN.

    Furtherm ore,from our previous calculation results on trip let manifolds[10],for com p lex 1,the T 3 (3MLCT/3LLCT,Ir→bpy and dph-oxd→bpy)and T1(3LC/3MLCT,dph-oxd-centered and Ir→dph-oxd) states have close-lying energy levels(2.70vs.2.54 eV). For com p lex 2,the3M LCT/3LLCT state(T 7)lies much higher in energy than T1(3.11vs.2.55 eV)and the lower triplet states all have dom inant3LC/3MLCT character.

    Therefore,both com p lexes 1 and 2 could be selectively excited to the1MLCT states upon the 400 nm excitation.Due to their sim ilar structures but diff erent ancillary ligands,the low-lying singlet and trip let states of com p lex 1 have M LCT/LLCT character w ith remarkable changes of electric dipole moments;however,for com plex 2,only the MLCT transition could be induced,form ing partial ICT states along w ith less changes of electric dipole mom ents.The noteworthy ICT diff erences between com plexes 1 and 2 could be further determ ined by the follow ing time-resolved transient absorp tion measurements,where the solventdependent excited-state dynam ics for both com p lexes 1 and 2 were explored.

    C.Fem tosecond transient absorption spectra

    The fem tosecond transient absorption spectra of comp lexes 1 and 2 in MeCN upon 400 nm excitation and the transient absorption kinetics curves are depicted in FIG.4.It is found that,the board excited-state absorption(ESA)bands are generated in initial several hundred fem toseconds.In a few picoseconds,the ESA bands decay gradually.Then,they become stable in the entire delay tim e down to 1 ns,indicating a longlived spectral species left.According to steady-state spectra of com p lexes 1 and 2,the ground-state absorptions aremainly below 420 nm.Thus,there is negligible spectral overlapping of ground-state bleaching w ith the ESA spectral range in the observed transient absorption spectra.Furthermore,due to the heavy atom effect,the strong SOC results in an ultrafast ISC w ithin the tim e scale of severalhund red fem tosecondsafter the Franck-Condon excitation,leading to an accumulation of excited electrons on the trip let manifolds[30,41]. According to the transition selection rules,the transitions between the trip let and the singlet excited-states are highly forbidden.Therefore,there is no stimulated em ission in the observed transient absorption spectra.

    In order to exp lore the relaxation dynam ic processes of excited states,global analysiswas used to obtain the best fi ts of the time-resolved absorption spectra w ith a sequentialmodel,as shown in Scheme 2.For comp lex 1 in M eCN,three lifetim es are required to adequately fi t the evolution dynam ics data.As depicted in FIG.4(c),the rapid,slow and long-lived dynam ic processesw ith the time constants of 0.7 ps,20 ps,and>1 ns are obtained from the iterative calculations,respectively.The absolute am p litude of each dynam ic curve represents the time-dependent concentration evolution of three components,respectively[53].The fi rst rapid process about 0.7 ps is assigned to the ultrafast ISC and the inertial part of solvent response[54–58], leading to the formation of3MLCT state[41,58].Simultaneously,the energy of themolecular system dissipates to the solvent environm ent by the inertial part of solvent response,further lowering the energy of the3MLCT state[40].The slow component about 20 ps is attributed to the intramolecular vibrational relaxation (IVR)and internal conversion(IC)of the trip letm anifold,including thegeometrical relaxation of ligandsand aromatic nucleus[41,59],together w ith the diffusive part of solvation response[55],resulting in the form ation of the lowest trip let state.The slowest com ponent w ith a time constant of>1 ns is attributed to the relaxation from the lowest em issive trip let state to the ground stateby radiativeand non-radiative relaxations. Actually,the lifetim e should be around~1μs,which is further measured by the nanosecond transient absorption spectroscopy in the condition ofair-saturated solution.As shown in FIG.5,the nanosecond probe transient spectra taken at the delay of 10?800 ns for comp lex 2 in MeCN were p lotted w ith the phosphorescence em ission curve and the fem tosecond transient absorption spectrum taken at 1 ns.Considering the em ission curve,the 100 ns time scale transient absorption spectral profi les are spectrally identicalw ith those taken at 1 ns.The nanosecond transient absorption decay monoexponentially back to the ground state,and no intermediate state is observed.Thus,these spectral decayindicates the lifetim e of the lowest trip let state,while the fi tting results of comp lexes 1 and 2 were shown in Table IV.

    FIG.4 Fem tosecond transient absorp tion spectra of(a)com p lex 1 and(b)com p lex 2 in MeCN follow ing the excitation at 400 nm.Transient absorption kinetics curves of(c)com p lex 1 and(d)com p lex 2 probed at 570 nm.The dotted,dashed and dashed-dotted lines obtained from the best fi tting,represent the rapid,slow,and the long-lived com ponents,respectively. The solid curves are the best-fi tted data as indicated for show ing the quality of global fi tting results.

    Schem e 2 Relaxation pathway of cationic iridium(III) com p lexes 1 and 2.IC=internal conversion,ISC=intersystem crossing,GS=ground state,M LCT=m etal-to-ligand charge-transfer state,LC=ligand-centered state.

    FIG.5 Fem tosecond and nanosecond transient absorp tion spectra of com p lex 2 in MeCN taken at the delay of 1 and 10,200,400,600,800 ns,along w ith the phosphorescence em ission spectral p rofi le.

    For com p lex 2 in M eCN,as depicted in FIG.4(b) and(d),three lifetimes of 0.8 ps,7 ps,and>1 ns are obtained from the global fi tting.Sim ilarly,these components are assigned to the solvent stabilized3MLCT state,vibrational cooling and geom etrical relaxation w ithin the trip letmanifold,and long-lived3LC,respectively.

    FIG.6 Fem tosecond transient absorption spectra of(a)com p lex 1 and(b)com p lex 2 in CHC l3follow ing the excitation at 400 nm.Transient absorption kinetics curves of(c)com p lex 1 and(d)com p lex 2 p robed at 570 nm,the dotted,dashed and dashed-dotted lines obtained from the best fi tting,rep resent the rapid,slow,and the long-lived com ponents,respectively; the solid curves are the best-fi tted data as indicated for show ing the quality of global fi tting dotted.

    Generally,the excited state dynam ics,especially for moleculesw ith ICT character,are intensely aff ected by the nature of solvent[60].Besides the strong polar solvent M eCN(ε=35.94),we further investigated the excited-state relaxations of complexes 1 and 2 by femtosecond transient absorption spectroscopy in less polar solvent CHCl3(ε=4.81)and THF(ε=7.58)[44].As shown in FIG.6,sim ilarly to the spectral evolutions in MeCN,the broad ESA bands form rapidly after the optical excitations,followed by a decay in the time scale of several picoseconds till a long-lived species remained w ithin themeasuring time range.Through the global analysis,three components corresponding to the rapid, slow,and long-lived dynam ic processes,respectively,are also obtained.A ll fi tting results are listed in Table IV.

    The solvation mainly affects the rapid decay component w ithin~1 ps,which includes the ISC and the generation of solvent stabilized ICT states[59,61].For com p lex 1,the solvent-dependent tim e of the rapid process increases from 0.7 ps in MeCN,and 1.0 ps in THF to 1.4 ps in CHCl3,along w ith the decrease of the solvent polarity.The sam e tendency is observed for comp lex 2 as well.In a polar solvent,such as M eCN,the3MLCT is highly stabilized by the fast solvation because of the strong dipole-dipole interaction,while the potential energy surface lowers and lies at an energy level close to the em issive3LC state[40].According to the energy gap law,such solvation-induced stabilization results in a decrease of the trip let-state lifetim e and the lum inescence quantum yield[60].In contrast, in less polar solvents,such as THF and CHCl3,the3M LCT states are destabilized w ith a higher energy to3LC statesbecauseofweak solvation,leading to longerlived em issive trip let states and higher quantum yields.

    TABLE IV Solvent-dependent relaxation dynam ics parameters for com p lexes 1 and 2 after 400 nm excitation.

    Furthermore,comp lexes 1 and 2 show a small discrepancy in solvent-dependent excited-state dynamics due to their different excited-state ICT features. As shown in the steady-state spectra and quantum chem ical calculations,the lowest excited-states of comp lexes 1 and 2 both contain dom inantπ-π?characteristics.However,considerable MLCT/LLCT transitionsof com plex 1 can be induced by the low-energy excitation at 400 nm.In fem tosecond transient absorption spectra,the lifetim es(τ1)for the form ation of solvent stabilized3M LCT states are relatively shorter for comp lex 1 than that for complex 2 in the same solvent as shown in Table IV.Because solvent molecules rearrange around the excited molecu les according to the charge-density redistribution[40],the solvation process is faster and more drastic for solutemolecules containing strong ICT character[60].As shown in Scheme 2, the S0→S1/S2(1M LCT/1LLCT)transitions of comp lex 1 can be effi ciently excited w ith 400 nm excitation (Ephoton=3.10 eV),which facilitates the population of T3(3M LCT/3LLCT)through the rapid ISC.During this process,the charge density of com p lex 1 is highly separated,and molecules on ICT states are solvated simultaneously till the charge recombination happens. For com p lex 2,after the S0→S1(1M LCT)excitation at 400 nm,excited m olecules undergo ISC quickly and accumulate on triplet manifolds.Due to the excessive energy levelof3LLCT/3MLCT(T7)state,excited comp lex 2 at1M LCT state has greater odds to straightly relax to lower-lying trip let states w ith weak ICT character,leading to weaker and slower solvation relative to that of com plex 1.The fi rst component in relaxation process is associated w ith the solute ICT property and solvent polarity.The second com ponent includes the IC from the3MLCT state to the lowest em issive3LC state, togetherw ith an electron-hole recombination in excited states along w ith a solvation process of an IVR of the solutemolecules about~10 ps.Specifically,the octahedral coordination complexesmay also havemultip le rotationaland vibrationaldegreesof freedom since comp lexes 1 and 2 have diff erent ancillary ligands,which can not be identified from observed results.

    IV.CONCLUSION

    In this work,we have investigated two phosphorescent cationic iridium(III)com plexes[Ir(dphoxd)2(bpy)]PF6(1)and[Ir(dph-oxd)2(pzpy)]PF6(2)to reveal their solvent-dependent photolum inescence propertiesand excited-state dynam ics.Based on the steadystate spectra and quantum chem ical calculations,both com plexes have remarkable MLCT character in their low-energy transitions,while the LLCT transition in com plex 1 is easier to be formed than that in comp lex 2 upon 400 nm excitation.Through the transient absorption spectroscopy measurements w ith the excitation of1M LCT state,we have figured out the formation(τ=0.7?3 ps)of solvent stabilized3MLCT via ISC,which is affected by the solvent polarity.In addition,the vibrational cooling/geometry relaxation (τ=5?20 ps)and long-lived phosphorescent em ission processes(τ=~1μs)were identified.

    In summ ary,for spin-m ixed phosphorescent iridium(III)com p lexes,the solvation inducesa prom pt generation of solvent stabilized3MLCT states and lowers the potential energy surfaces,which indeed influence the phosphorescence quantum yield.The present work provides a better insight of solvent dependent em ission propertiesand excited state relaxation dynam icsof iridium(III)comp lexes.

    V.ACKNOW LEDGM ENTS

    This work is supported by the National Basic Research Program of China(No.2013CB834604),the National Natural Foundation of China(No.21673252, No.21333012,No.21373232,and No.51403240)and the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB12020200).

    [1]M.A.Baldo,M.E.Thom pson,and S.R.Forrest,Nature 403,750(2000).

    [2]X.L.Yang,G.J.Zhou,and W.Y.Wong,Chem.Soc. Rev.44,8484(2015).

    [3]C.Adachi,M.A.Baldo,M.E.Thom pson,and S.R. Forrest,J.App l.Phys.90,5048(2001).

    [4]A.Monguzzi,R.Tubino,and F.Meinardi,Phys.Rev. B 77,155122(2008).

    [5]T.N.Singh-Rach ford and F.N.Castellano,Coord. Chem.Rev.254,2560(2010).

    [6]W.Y.Wong and C.L.Ho,Acc.Chem.Res.43,1246 (2010).

    [7]S.Y.Takizawa,R.Aboshi,and S.M urata,Photochem. Photobiol.Sci.10,895(2011).

    [8]J.I.Goldsm ith,W.R.Hudson,M.S.Low ry,T.H. Anderson,and S.Bernhard,J.Am.Chem.Soc.127, 7502(2005).

    [9]L.He,D.X.M a,L.Duan,Y.G.Wei,J.Qiao,D.Q. Zhang,G.F.Dong,L.D.Wang,and Y.Qiu,Inorg. Chem.51,4502(2012).

    [10]Z.Wang,L.He,L.Duan,J.Yan,R.R.Tang,C.Y. Pan,and X.Z.Song,Dalton Trans.44,15914(2015).

    [11]Y.M.You and S.Y.Park,Dalton Trans.1267(2009).

    [12]Y.M.You and W.Nam,Chem.Soc.Rev.41,7061 (2012).

    [13]E.M.Kober and T.J.M eyer,Inorg.Chem.21,3967 (1982).

    [14]L.Flam igni,A.Barbieri,C.Sabatini,B.Ventura, and F.Barigelletti,Photochem istry and Photophysics of Coordination Com pounds:Iridium,V.Balzani and S.Cam pagna Eds.,Berlin,Heidelberg:Sp ringer,143 (2007).

    [15]B.M a,P.I.D jurovich,S.Garon,B.A lleyne,and M. E.Thom pson,Adv.Funct.M ater.16,2438(2006).

    [16]M.Pfeiff er,S.R.Forrest,K.Leo,and M.E.Thom pson, Adv.Mater.14,1633(2002).

    [17]J.Li,P.I.D jurovich,B.D.A lleyne,M.Yousu fuddin, N.N.Ho,J.C.Thom as,J.C.Peters,R.Bau,and M. E.Thom pson,Inorg.Chem.44,1713(2005).

    [18]G.J.Hed ley,A.Ruseckas,and I.D.W.Samuel,Chem. Phys.Lett.450,292(2008).

    [19]G.J.Hed ley,A.Ruseckas,and I.D.W.Samuel,J. Phys.Chem.A 113,2(2009).

    [20]G.J.Hed ley,A.Ruseckas,and I.D.W.Samuel,J. Phys.Chem.A 114,8961(2010).

    [21]C.H.Yang,Y.M.Cheng,Y.Chi,C.J.Hsu,F.C. Fang,K.T.Wong,P.T.Chou,C.H.Chang,M.H. Tsai,and C.C.Wu,Angew.Chem.Int.Ed.46,2418 (2007).

    [22]D.Escudero and W.Thiel,Inorg.Chem.53,11015 (2014).

    [23]P.T.Chou,Y.I.Liu,H.W.Liu,and W.S.Yu,J.Am. Chem.Soc.123,12119(2001).

    [24]J.Seo,S.Kim,and S.Y.Park,J.Am.Chem.Soc.126, 11154(2004).

    [25]W.Dang,J.J.Bai,L.S.Zhang,and Y.X.W eng,Chin. J.Chem.Phys.29,147(2016).

    [26]J.K.M cCusker,Acc.Chem.Res.36,876(2003).

    [27]S.A.Kovalenko,R.Schanz,H.Hennig,and N.P.Ernsting,J.Chem.Phys.115,3256(2001).

    [28]L.L.Jiang,W.L.Liu,Y.F.Song,X.He,Y.Wang,H. L.Wu,and Y.Q.Yang,Chin.J.Chem.Phys.25,577 (2012).

    [29]S.Murphy,L.B.Huang,and P.V.Kamat,J.Phys. Chem.C 115,22761(2011).

    [30]G.B.Shaw,C.D.Grant,H.Shirota,E.W.Jr.Castner, G.J.M eyer,and L.X.Chen,J.Am.Chem.Soc.129, 2147(2007).

    [31]L.Q.Song,J.Feng,X.S.Wang,J.H.Yu,Y.J.Hou, P.H.X ie,B.W.Zhang,J.F.X iang,X.C.A i,and J. P.Zhang,Inorg.Chem.42,3393(2003).

    [32]C.S.M a,C.T.L.Chan,W.M.Kwok,and C.M.Che, Chem.Sci.3,1883(2012).

    [33]J.H.Hu,Q.Zhang,and Y.Luo,J.Phys.Chem.Lett. 7,3908(2016).

    [34]W.Y.Wong and C.L.Ho,Coord.Chem.Rev.253, 1709(2009).

    [35]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheesem an,G.Scalm ani, V.Barone,B.M ennucci,G.A.Petersson,H.Nakatsu ji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izm ay lov,J.B loino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajim a,Y.Honda,O.K itao,H. Nakai,T.Vreven,J.A.M ontgom ery,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Norm and, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tom asi,M.Cossi,N.Rega,J.M.M illam,M. K lene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaram illo,R.Gom perts,Stratm ann,O.Yazyev,A. J.Austin,R.Camm i,C.Pom elli,J.W.Ochterski,R. L.M artin,K.M orokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslow ski,and D.J.Fox,Gaussian 09(Revision A.02), W allingford CT:Gaussian Inc.,(2009).

    [36]Y.Li,M.Zhou,Y.L.Niu,Q.J.Guo,and A.D.Xia, J.Chem.Phys.143,034309(2015).

    [37]M.Zhou,S.Vdovi′c,S.Long,M.Z.Zhu,L.Y.Yan,Y. Y.Wang,Y.L.Niu,X.F.W ang,Q.J.Guo,R.C.Jin, and A.D.Xia,J.Phys.Chem.A 117,10294(2013).

    [38]I.H.M.van Stokkum,D.S.Larsen,and R.van G rondelle,Biochim.Biophys.Acta 1657,82(2004).

    [39]J.J.Snellenburg,S.P.Laptenok,R.Seger,K.M. M u llen,and I.H.M.van Stokkum,J.Stat.Soft.49,1 (2012).

    [40]M.Zhou,Z.Lei,Q.J.Guo,Q.M.Wang,and A.D. X ia,J.Phys.Chem.C 119,14980(2015).

    [41]C.Y.Chen,H.R.Tsai,K.Y.Lu,H.H.Yao,Y.H. O.Yang,C.H.Cheng,and I.C.Chen,J.Chin.Chem. Soc.60,965(2013).

    [42]M.G.Colombo,T.C.Brunold,T.Riedener,H.U. Guedel,M.Fortsch,and H.B.Buergi,Inorg.Chem. 33,545(1994).

    [43]S.Sprouse,K.A.K ing,P.J.Spellane,and R.J.Watts, J.Am.Chem.Soc.106,6647(1984).

    [44]M.L.Horng,J.A.Gardecki,A.Papazyan,and M. M aroncelli,J.Phys.Chem.99,17311(1995).

    [45]M.L.Jia,X.N.M a,L.Y.Yan,H.F.Wang,Q.J.Guo, X.F.W ang,Y.Y.Wang,X.W.Zhan,and A.D.X ia, J.Phys.Chem.A 114,7345(2010).

    [46]G.G.Shan,H.B.Li,H.T.Cao,D.X.Zhu,P.Li,Z. M.Su,and Y.Liao,Chem.Commun.48,2000(2012).

    [47]T.F.Mastropietro,Y.J.Yadav,E.I.Szerb,A.M. Talarico,M.Ghedini,and A.Crispini,Dalton Trans. 41,8899(2012).

    [48]H.B.Sun,S.J.Liu,W.P.Lin,K.Y.Zhang,W.Lv,X. Huang,F.W.Huo,H.R.Yang,G.Jenkins,Q.Zhao, and W.Huang,Nat.Commun.5,3601(2014).

    [49]X.Q.Zhang,Z.G.Chi,Y.Zhang,S.W.Liu,and J. R.Xu,J.Mater.Chem.C 1,3376(2013).

    [50]Y.Han,H.T.Cao,H.Z.Sun,Y.Wu,G.G.Shan,Z. M.Su,X.G.Hou,and Y.Liao,J.M ater.Chem.C 2, 7648(2014).

    [51]H.J.Bolink,L.Cappelli,S.Cheylan,E.Coronado,R. D.Costa,N.Lardi′es,M.K.Nazeeruddin,and E.Ort′?, J.M ater.Chem.17,5032(2007).

    [52]A.B.Tam ayo,S.Garon,T.Sajoto,P.I.D jurovich,I. M.Tsyba,R.Bau,and M.E.Thom pson,Inorg.Chem. 44,8723(2005).

    [53]Y.P.Wang,S.Zhang,S.M.Sun,K.Liu,and B.Zhang, Chin.J.Chem.Phys.26,651(2013).

    [54]J.R.Huang,O.Buyukcakir,M.W.Mara,A.Coskun, N.M.Dim itrijevic,G.Barin,O.Kokhan,A.B.Stickrath,R.Ruppert,D.M.Tiede,J.F.Stoddart,J.P. Sauvage,and L.X.Chen,Angew.Chem.Int.Ed.51, 12711(2012).

    [55]M.Zhou,S.R.Long,X.K.Wan,Y.Li,Y.L.Niu,Q.J. Guo,Q.M.W ang,and A.D.X ia,Phys.Chem.Chem. Phys.16,18288(2014).

    [56]X.X.Zhang,M.Liang,N.P.Ernsting,and M.M aroncelli,J.Phys.Chem.B 117,4291(2013).

    [57]V.A.Lenchenkov,C.X.She,and T.Q.Lian,J.Phys. Chem.B 108,16194(2004).

    [58]G.Ram akrishna,T.Goodson III,J.E.Rogers-Haley, T.M.Cooper,D.G.M cLean,and A.U rbas,J.Phys. Chem.C 113,1060(2009).

    [59]Y.J.Sun,Y.Liu,and C.Turro,J.Am.Chem.Soc. 132,5594(2010).

    [60]Y.J.Sun and C.Turro,Inorg.Chem.49,5025(2010).

    [61]S.Q.Yang and K.L.Han,J.Phys.Chem.A 120,4961 (2016).

    ceived on March 29,2017;Accepted on May 16,2017)

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: andong@iccas.ac.cn,helei06@csu.edu.cn

    亚洲,一卡二卡三卡| 男女那种视频在线观看| www.av在线官网国产| 男人舔奶头视频| 丰满人妻一区二区三区视频av| 欧美性感艳星| 亚洲国产精品成人久久小说| 天堂网av新在线| 美女脱内裤让男人舔精品视频| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 国产人妻一区二区三区在| 在线观看人妻少妇| 国产男女超爽视频在线观看| 久久精品国产自在天天线| 国产精品三级大全| 欧美日韩视频高清一区二区三区二| 欧美成人一区二区免费高清观看| 亚洲欧美一区二区三区国产| 国产精品伦人一区二区| 免费人成在线观看视频色| 黄色一级大片看看| 亚洲精品自拍成人| 亚洲国产av新网站| 欧美国产精品一级二级三级 | 亚洲精品乱码久久久v下载方式| 嘟嘟电影网在线观看| 嘟嘟电影网在线观看| av在线app专区| 亚洲在线观看片| 赤兔流量卡办理| 特级一级黄色大片| 黄色一级大片看看| 搞女人的毛片| 老师上课跳d突然被开到最大视频| 男人和女人高潮做爰伦理| 欧美国产精品一级二级三级 | 亚洲精品中文字幕在线视频 | 18禁裸乳无遮挡免费网站照片| 亚洲av中文av极速乱| 精品久久久噜噜| 亚洲欧美一区二区三区国产| 一个人观看的视频www高清免费观看| 亚洲伊人久久精品综合| 午夜福利网站1000一区二区三区| 欧美日本视频| 日日啪夜夜爽| 国产精品99久久99久久久不卡 | 精品视频人人做人人爽| 日韩亚洲欧美综合| 久久久久国产精品人妻一区二区| 99久久人妻综合| 色5月婷婷丁香| 国产成人精品久久久久久| 精品人妻视频免费看| 麻豆国产97在线/欧美| 欧美激情在线99| 国产精品久久久久久精品电影小说 | 精品久久国产蜜桃| 欧美xxxx黑人xx丫x性爽| 免费黄色在线免费观看| 欧美成人午夜免费资源| 尾随美女入室| 亚洲色图av天堂| 国产有黄有色有爽视频| av网站免费在线观看视频| 国产黄频视频在线观看| 天天躁夜夜躁狠狠久久av| 国产黄色免费在线视频| 亚洲一级一片aⅴ在线观看| 国产精品爽爽va在线观看网站| 亚洲最大成人手机在线| 日本爱情动作片www.在线观看| 性插视频无遮挡在线免费观看| 亚洲精品日本国产第一区| 久久精品久久久久久久性| 亚洲精品国产av蜜桃| 赤兔流量卡办理| 亚洲av二区三区四区| 国产熟女欧美一区二区| 欧美bdsm另类| 精品久久久久久久久亚洲| 亚洲一级一片aⅴ在线观看| 欧美一区二区亚洲| 国产成人免费无遮挡视频| 成年人午夜在线观看视频| 美女高潮的动态| 国产色婷婷99| 亚洲最大成人中文| 欧美日韩一区二区视频在线观看视频在线 | 小蜜桃在线观看免费完整版高清| 国产精品99久久久久久久久| 免费观看在线日韩| 国产爱豆传媒在线观看| av国产免费在线观看| 国产成年人精品一区二区| 久久人人爽av亚洲精品天堂 | 一区二区三区免费毛片| 亚洲欧美日韩另类电影网站 | av女优亚洲男人天堂| 中文字幕免费在线视频6| 日本一本二区三区精品| 欧美激情久久久久久爽电影| 午夜福利在线在线| 亚洲av免费在线观看| 国精品久久久久久国模美| 日韩 亚洲 欧美在线| a级毛色黄片| 观看美女的网站| 欧美日韩视频精品一区| 高清av免费在线| 欧美成人a在线观看| 在线亚洲精品国产二区图片欧美 | 赤兔流量卡办理| 亚洲成人av在线免费| 麻豆久久精品国产亚洲av| 国产伦精品一区二区三区四那| 欧美最新免费一区二区三区| av.在线天堂| 97在线人人人人妻| 尤物成人国产欧美一区二区三区| 欧美激情国产日韩精品一区| 免费观看av网站的网址| 一区二区av电影网| 国产黄片视频在线免费观看| 亚洲欧美一区二区三区国产| 别揉我奶头 嗯啊视频| 看免费成人av毛片| 只有这里有精品99| 丰满人妻一区二区三区视频av| 99久久精品国产国产毛片| 男人爽女人下面视频在线观看| 久久精品国产亚洲av天美| 免费av观看视频| 永久网站在线| 欧美日韩在线观看h| 大片电影免费在线观看免费| 国产精品精品国产色婷婷| 一二三四中文在线观看免费高清| 亚洲人与动物交配视频| 亚洲图色成人| 伦精品一区二区三区| av在线观看视频网站免费| 有码 亚洲区| 毛片女人毛片| 97精品久久久久久久久久精品| 日韩欧美 国产精品| 自拍偷自拍亚洲精品老妇| 久久久久久伊人网av| 18禁在线无遮挡免费观看视频| 欧美3d第一页| 熟女av电影| 欧美激情久久久久久爽电影| 国产精品国产三级专区第一集| 久久久久久伊人网av| 国产精品精品国产色婷婷| 亚洲精品日本国产第一区| 在线亚洲精品国产二区图片欧美 | 中文资源天堂在线| 我的老师免费观看完整版| 一区二区av电影网| 在线观看美女被高潮喷水网站| 精品人妻熟女av久视频| 蜜桃久久精品国产亚洲av| 中国美白少妇内射xxxbb| 我的老师免费观看完整版| 亚洲国产精品专区欧美| 女人十人毛片免费观看3o分钟| 亚洲精品第二区| 黄色欧美视频在线观看| 久久精品熟女亚洲av麻豆精品| 欧美最新免费一区二区三区| 亚洲性久久影院| 欧美激情久久久久久爽电影| 波野结衣二区三区在线| 国产精品久久久久久久电影| 大香蕉久久网| 国产成人精品福利久久| 日韩,欧美,国产一区二区三区| 三级国产精品欧美在线观看| 啦啦啦在线观看免费高清www| 一个人观看的视频www高清免费观看| 成年免费大片在线观看| 亚洲性久久影院| 91午夜精品亚洲一区二区三区| 日韩三级伦理在线观看| 春色校园在线视频观看| 丰满少妇做爰视频| 国产成人aa在线观看| 真实男女啪啪啪动态图| 精品国产一区二区三区久久久樱花 | 国产精品蜜桃在线观看| 色5月婷婷丁香| 亚洲欧美精品专区久久| 综合色av麻豆| 男人和女人高潮做爰伦理| 成年av动漫网址| 一个人看视频在线观看www免费| 2021天堂中文幕一二区在线观| 欧美国产精品一级二级三级 | 免费观看a级毛片全部| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 赤兔流量卡办理| 男女啪啪激烈高潮av片| 激情五月婷婷亚洲| 国产美女午夜福利| 看黄色毛片网站| 国产黄色免费在线视频| 一级毛片 在线播放| 日本免费在线观看一区| 亚洲精品日韩av片在线观看| 中国国产av一级| 简卡轻食公司| 99热这里只有是精品50| 亚洲成人av在线免费| 久久久久久伊人网av| 亚洲欧美清纯卡通| 丝袜喷水一区| 国产女主播在线喷水免费视频网站| 搡老乐熟女国产| 九九爱精品视频在线观看| 亚洲av二区三区四区| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 国产日韩欧美在线精品| 国产高潮美女av| 搡老乐熟女国产| 国产亚洲一区二区精品| 人妻制服诱惑在线中文字幕| 免费播放大片免费观看视频在线观看| 六月丁香七月| 真实男女啪啪啪动态图| 大话2 男鬼变身卡| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 最近中文字幕2019免费版| 一区二区av电影网| 五月天丁香电影| 国产日韩欧美在线精品| 久久久午夜欧美精品| 久久久久久久午夜电影| 国产精品伦人一区二区| 亚洲色图av天堂| 国产熟女欧美一区二区| 91久久精品电影网| 欧美xxxx黑人xx丫x性爽| 男女国产视频网站| 2018国产大陆天天弄谢| 少妇人妻 视频| 精品久久久久久电影网| 一区二区av电影网| 日日撸夜夜添| 精品久久国产蜜桃| 久久人人爽av亚洲精品天堂 | 国产有黄有色有爽视频| 日韩av不卡免费在线播放| 91aial.com中文字幕在线观看| 国产精品秋霞免费鲁丝片| 大片电影免费在线观看免费| 18禁在线播放成人免费| 性插视频无遮挡在线免费观看| 99热这里只有是精品在线观看| 欧美日本视频| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 1000部很黄的大片| 高清欧美精品videossex| 久久鲁丝午夜福利片| 97在线视频观看| 久久精品国产鲁丝片午夜精品| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 白带黄色成豆腐渣| 综合色丁香网| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 国产精品一二三区在线看| av在线蜜桃| 91久久精品国产一区二区成人| 人妻 亚洲 视频| 国产精品久久久久久精品电影| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 一级二级三级毛片免费看| 国产探花在线观看一区二区| 国产成年人精品一区二区| 精品99又大又爽又粗少妇毛片| freevideosex欧美| 在线免费十八禁| 老司机影院毛片| 天美传媒精品一区二区| 97超碰精品成人国产| 亚洲国产欧美在线一区| 国产在视频线精品| 在线精品无人区一区二区三 | 在线 av 中文字幕| 熟女电影av网| 国产精品久久久久久av不卡| 少妇高潮的动态图| 久久99热这里只频精品6学生| 秋霞伦理黄片| 国产精品国产三级国产av玫瑰| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 在线 av 中文字幕| 日本黄大片高清| 国产成人a∨麻豆精品| 一个人看视频在线观看www免费| av一本久久久久| 欧美97在线视频| 日本wwww免费看| 超碰97精品在线观看| 久久久久久九九精品二区国产| 久久久久九九精品影院| 国产有黄有色有爽视频| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合| 亚洲内射少妇av| 男女那种视频在线观看| 国产精品国产三级国产av玫瑰| 高清毛片免费看| 精品人妻视频免费看| 久久人人爽人人片av| 亚洲av欧美aⅴ国产| 2021少妇久久久久久久久久久| 成年版毛片免费区| 亚洲av一区综合| 小蜜桃在线观看免费完整版高清| 一级毛片电影观看| 人妻 亚洲 视频| 大片电影免费在线观看免费| 男人添女人高潮全过程视频| 高清av免费在线| 亚洲av成人精品一区久久| 国产伦精品一区二区三区视频9| 亚洲精品中文字幕在线视频 | 97超碰精品成人国产| 色哟哟·www| 黄色欧美视频在线观看| 一级片'在线观看视频| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 麻豆乱淫一区二区| 99精国产麻豆久久婷婷| 3wmmmm亚洲av在线观看| 男的添女的下面高潮视频| 亚洲美女视频黄频| 久久久色成人| 可以在线观看毛片的网站| 汤姆久久久久久久影院中文字幕| 免费观看无遮挡的男女| 又爽又黄无遮挡网站| 欧美变态另类bdsm刘玥| 亚洲国产高清在线一区二区三| 久久久成人免费电影| 国产av国产精品国产| 国产视频内射| 小蜜桃在线观看免费完整版高清| 麻豆久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频 | 美女被艹到高潮喷水动态| 国产精品久久久久久久电影| 99久久精品热视频| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 国产av码专区亚洲av| 国产一区亚洲一区在线观看| 亚洲综合精品二区| 久久久久久久大尺度免费视频| 国产精品不卡视频一区二区| 亚洲激情五月婷婷啪啪| 九色成人免费人妻av| 男人和女人高潮做爰伦理| 免费人成在线观看视频色| 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 亚洲色图av天堂| 亚洲精品国产色婷婷电影| 中文字幕人妻熟人妻熟丝袜美| 国产精品福利在线免费观看| 2021少妇久久久久久久久久久| 岛国毛片在线播放| a级毛片免费高清观看在线播放| 久久精品国产鲁丝片午夜精品| 国产精品成人在线| 春色校园在线视频观看| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说 | 国产精品一区二区性色av| 一本一本综合久久| 中文天堂在线官网| 青春草国产在线视频| 一区二区三区精品91| 国产视频内射| 精华霜和精华液先用哪个| 狠狠精品人妻久久久久久综合| 黄片wwwwww| 国产91av在线免费观看| 色吧在线观看| 青春草视频在线免费观看| 大片电影免费在线观看免费| 国产成人午夜福利电影在线观看| 综合色丁香网| 成年版毛片免费区| 日本一二三区视频观看| 国产爱豆传媒在线观看| 国产69精品久久久久777片| av免费观看日本| 亚洲人成网站在线播| 免费av毛片视频| 老女人水多毛片| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 国产综合精华液| 免费大片黄手机在线观看| 91精品伊人久久大香线蕉| 欧美区成人在线视频| 一本一本综合久久| 亚洲精品久久久久久婷婷小说| 欧美3d第一页| 99热国产这里只有精品6| 高清在线视频一区二区三区| 国产av不卡久久| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 五月开心婷婷网| 国产免费一区二区三区四区乱码| 我的老师免费观看完整版| 久久久久国产精品人妻一区二区| 成人黄色视频免费在线看| 中文字幕制服av| 久久久久久久久大av| 在线观看一区二区三区激情| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 亚洲成人中文字幕在线播放| 一本久久精品| 午夜激情福利司机影院| 噜噜噜噜噜久久久久久91| 欧美 日韩 精品 国产| 久久热精品热| 最后的刺客免费高清国语| 天天一区二区日本电影三级| 嫩草影院精品99| 一级毛片aaaaaa免费看小| 亚洲av男天堂| 日日撸夜夜添| 欧美日韩亚洲高清精品| 一区二区三区精品91| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 美女内射精品一级片tv| 国产精品99久久久久久久久| 噜噜噜噜噜久久久久久91| 午夜免费观看性视频| 亚洲精品乱久久久久久| 日日啪夜夜爽| 精品国产乱码久久久久久小说| 久久精品久久久久久久性| 少妇丰满av| 老师上课跳d突然被开到最大视频| 日韩av免费高清视频| 人妻一区二区av| 国产成人a∨麻豆精品| 亚洲第一区二区三区不卡| 在线免费观看不下载黄p国产| 日韩欧美精品v在线| 久久精品国产鲁丝片午夜精品| 啦啦啦在线观看免费高清www| 欧美高清成人免费视频www| 女人十人毛片免费观看3o分钟| 在线天堂最新版资源| 简卡轻食公司| 欧美日韩精品成人综合77777| 老女人水多毛片| 成人特级av手机在线观看| 十八禁网站网址无遮挡 | 一级毛片 在线播放| 99久久精品一区二区三区| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃 | 精品国产三级普通话版| 国产亚洲av片在线观看秒播厂| 久久精品综合一区二区三区| 国产毛片a区久久久久| 毛片女人毛片| 中文欧美无线码| 中文字幕人妻熟人妻熟丝袜美| 97在线视频观看| 黄色一级大片看看| 中文乱码字字幕精品一区二区三区| 国产精品成人在线| 国产综合懂色| 综合色av麻豆| 夫妻性生交免费视频一级片| 国产片特级美女逼逼视频| 亚洲自拍偷在线| 极品少妇高潮喷水抽搐| 国产高清国产精品国产三级 | 久久久成人免费电影| 午夜免费观看性视频| 国精品久久久久久国模美| 国内精品美女久久久久久| 干丝袜人妻中文字幕| 色吧在线观看| 人妻一区二区av| 性色avwww在线观看| 久久久午夜欧美精品| 99久久人妻综合| 欧美国产精品一级二级三级 | 色视频www国产| 午夜免费男女啪啪视频观看| 国产精品无大码| 午夜激情福利司机影院| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 欧美日韩综合久久久久久| 丝袜脚勾引网站| 看非洲黑人一级黄片| 免费少妇av软件| 天美传媒精品一区二区| 欧美xxⅹ黑人| 91精品国产九色| 777米奇影视久久| 伊人久久精品亚洲午夜| 男人和女人高潮做爰伦理| 国产 一区精品| 真实男女啪啪啪动态图| 色视频在线一区二区三区| 国产午夜福利久久久久久| 成年免费大片在线观看| 日韩三级伦理在线观看| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 日本色播在线视频| 日韩电影二区| 91精品伊人久久大香线蕉| 国产乱人视频| 内地一区二区视频在线| 久久久精品94久久精品| 亚洲经典国产精华液单| 少妇熟女欧美另类| 丰满人妻一区二区三区视频av| 亚洲性久久影院| 大香蕉97超碰在线| 五月伊人婷婷丁香| 秋霞伦理黄片| 好男人视频免费观看在线| 2022亚洲国产成人精品| 观看免费一级毛片| 校园人妻丝袜中文字幕| 国产高潮美女av| 熟妇人妻不卡中文字幕| 精品一区在线观看国产| 大陆偷拍与自拍| 久久人人爽人人片av| 最近最新中文字幕免费大全7| 中国美白少妇内射xxxbb| 午夜福利视频1000在线观看| 免费观看a级毛片全部| 一级毛片aaaaaa免费看小| 毛片一级片免费看久久久久| 日日啪夜夜撸| 涩涩av久久男人的天堂| 色视频在线一区二区三区| 午夜福利网站1000一区二区三区| 欧美高清性xxxxhd video| 亚洲最大成人av| 人体艺术视频欧美日本| 一级av片app| 日本猛色少妇xxxxx猛交久久| 亚洲成色77777| 99热这里只有是精品在线观看| 免费不卡的大黄色大毛片视频在线观看| 欧美高清成人免费视频www| 嫩草影院新地址| 夫妻性生交免费视频一级片| 超碰av人人做人人爽久久| 热99国产精品久久久久久7| 22中文网久久字幕| 香蕉精品网在线| 丰满人妻一区二区三区视频av| 午夜免费观看性视频| 国产黄片视频在线免费观看| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 亚洲成人中文字幕在线播放| 直男gayav资源| xxx大片免费视频| 国产淫语在线视频| 青春草亚洲视频在线观看| 国产欧美亚洲国产| av国产久精品久网站免费入址| 欧美三级亚洲精品| 国产美女午夜福利| 亚洲欧美精品专区久久| 亚洲av在线观看美女高潮| 大片电影免费在线观看免费| av在线亚洲专区| av卡一久久| 我的老师免费观看完整版| 色视频www国产| 久久99热这里只有精品18| 精品一区二区三卡| 欧美一区二区亚洲| 国产白丝娇喘喷水9色精品| 久久久色成人| 中文欧美无线码| 乱码一卡2卡4卡精品|