• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Banach空間含導(dǎo)數(shù)項(xiàng)的二階脈沖微分方程的解

    2017-05-15 11:08:52尚亞亞史靜文李永祥
    關(guān)鍵詞:緊性有界邊值問(wèn)題

    尚亞亞, 史靜文, 李永祥

    (西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 甘肅 蘭州 730070)

    Banach空間含導(dǎo)數(shù)項(xiàng)的二階脈沖微分方程的解

    尚亞亞, 史靜文, 李永祥*

    (西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 甘肅 蘭州 730070)

    討論了抽象空間中非線性項(xiàng)含一階導(dǎo)數(shù)的二階脈沖微分方程邊值問(wèn)題

    Banach空間; 非緊性測(cè)度; 凝聚映射; 不動(dòng)點(diǎn)定理

    本文考慮Banach空間中非線性項(xiàng)含一階導(dǎo)數(shù)的二階常微分方程兩點(diǎn)邊值問(wèn)題(BVP)

    (1)

    解的存在性,其中J=[0,1],f∈C(J×E×E,E),Ik∈C(E×E,E)是脈沖函數(shù),k=1,2,…,m,0

    脈沖微分方程是描述在確定時(shí)刻其狀態(tài)發(fā)生瞬間改變的數(shù)學(xué)模型,具有廣泛的應(yīng)用背景,如生物技術(shù)、生態(tài)平衡、人口控制及經(jīng)濟(jì)發(fā)展等,成為近年來(lái)一個(gè)重要的研究領(lǐng)域[1-4].對(duì)于BVP(1)的特殊情形Ik=0,即邊值問(wèn)題

    當(dāng)E=R時(shí),文獻(xiàn)[5-6]應(yīng)用錐上的不動(dòng)點(diǎn)指數(shù)理論獲得了BVP(2)正解及多正解的存在性;文獻(xiàn)[7]對(duì)非線性項(xiàng)f(t,x,y)提出關(guān)于y的增長(zhǎng)條件(Nagumo條件),運(yùn)用上下解方法討論了其解的存在性;文獻(xiàn)[8]在錐上建立了一個(gè)新的泛函形式的不動(dòng)點(diǎn)定理,在f滿足一定的增長(zhǎng)條件下獲得了此問(wèn)題至少存在3個(gè)正解.

    在抽象空間中,文獻(xiàn)[9]考慮了‖f(t,x,y)‖≤M(M>0為常數(shù))時(shí)BVP(2)解的存在性,條件較強(qiáng).由于有限維與無(wú)限維空間的本質(zhì)差異,BVP(2)對(duì)應(yīng)的線性問(wèn)題的解算子不再具有緊性,而且對(duì)u′的處理比較困難,因而此類問(wèn)題的研究所獲結(jié)論相對(duì)較少,發(fā)展也較為緩慢.

    文獻(xiàn)[4]在抽象Banach空間中運(yùn)用上下解方法和單調(diào)迭代技巧研究了如下的二階脈沖微分方程邊值問(wèn)題

    解的存在性,并建立了極大解和極小解的存在性定理,但其非線性項(xiàng)與u′無(wú)關(guān).

    受上述文獻(xiàn)啟發(fā),本文在一般的抽象空間中考慮BVP(1)解的存在性與唯一性.通過(guò)選取適當(dāng)?shù)墓ぷ骺臻g及等價(jià)范數(shù),在較一般的條件下用新的非緊性測(cè)度估計(jì)技巧并結(jié)合Sadovskii不動(dòng)點(diǎn)定理,得到了解及正解的存在性結(jié)果.此外,在非線性項(xiàng)f(t,x,y)及脈沖函數(shù)Ik(x,y)滿足Lipschitz條件時(shí),運(yùn)用Banach不動(dòng)點(diǎn)定理獲得了該問(wèn)題的唯一解.

    1 預(yù)備知識(shí)

    PC1(J,E)=

    易證,PC(J,E)與PC1(J,E)分別按范數(shù)

    構(gòu)成Banach空間.

    若函數(shù)u∈PC1(J,E)∩C2(J′,E)滿足BVP(1)中所有等式,則稱其為BVP(1)的一個(gè)解.

    為了方便起見(jiàn),本文取PC1(J,E)的子空間

    構(gòu)成Banach空間.

    引理 1[10]設(shè)D?E有界,則存在D的可列子集D0,使α(D)≤2α(D0).

    引理 2[11]設(shè)D={xn}?L[J,E]有界可數(shù),則存在g∈L[J,R+]使得對(duì)一切{xn}∈D,‖xn‖≤g(t),a.e.t∈J,則α(D(t))∈L[J,R+],且

    引理 3[12]設(shè)B?PC(J,E)有界,在每個(gè)Jk上等度連續(xù),則α(B(t))在J上連續(xù),且

    2) 對(duì)?t∈J,α(B(t))≤αPC(B′),αPC(B′(t))≤αPC(B′).

    故由非緊性測(cè)度的定義易知

    按非緊性測(cè)度的定義,2)成立.證畢.

    由于非線性問(wèn)題與線性問(wèn)題密切相關(guān),對(duì)?h∈PC(J,E),先考慮BVP(1)對(duì)應(yīng)的線性問(wèn)題(LBVP)

    解的存在性,其中yk∈E,k=1,2,…,m.

    (5)

    的解,其中

    繼續(xù)在[0,t]上積分有

    (6)

    代入邊界條件有

    將(7)式代入(6)式中,即(5)式成立.

    且容易驗(yàn)證

    因此

    是LBVP(4)的解.證畢.

    (8)

    則Q連續(xù).對(duì)上式關(guān)于t求導(dǎo),即

    (9)

    引理 6 設(shè)E為Banach空間,f:J×E×E→E與Ik:E×E→E連續(xù).若f≥θ,Ik≥θ,則BVP(1)的解u(t)滿足:u(t)≥θ.

    證明 由于BVP(1)的解等價(jià)于算子Q的不動(dòng)點(diǎn),又因f≥θ,Ik≥θ,G(t,s)≥0,根據(jù)算子Q的表達(dá)式,顯然u(t)=Qu(t)≥0.

    定理 1(Sadovskii不動(dòng)點(diǎn)定理)[13]設(shè)X為Banach空間,Ω?X為有界凸閉集,Q:Ω→Ω為凝聚映射,則Q在Ω中有不動(dòng)點(diǎn).

    2 主要結(jié)果及證明

    定理 2 設(shè)E為Banach空間,f:J×E×E→E與Ik:E×E→E連續(xù),若下列條件成立:

    1)f把J×E×E中的有界集映為E中的有界集,Ik把E×E中的有界集映為E中的有界集,且存在常數(shù)L1,L2≥0及Mk1,Mk2≥0,使得對(duì)任意的有界集Di?E(i=1,2)有:

    其中

    2) 存在常數(shù)p0>0,p1,p2≥0,使得

    3) 對(duì)每個(gè)Ik,存在常數(shù)ck>0及ak,bk≥0,使得

    則BVP(1)至少有一個(gè)解.

    (10)

    再由引理1,存在可數(shù)集B1={un}?B,使得

    (11)

    而Q′(B1)為PC(J,E)中的等度連續(xù)集,因此

    (12)

    對(duì)?t∈J,結(jié)合條件1)、引理2及引理4,于是

    因此

    (13)

    結(jié)合(10)~(13)式及引理4,則

    這里

    (14)

    定理 3 設(shè)E為Banach空間,f:J×E×E→E及Ik:E×E→E連續(xù)且滿足條件:

    5) 存在常數(shù)c1,c2>0及Nk1,Nk2>0,使得對(duì)?t∈J,x1,x2,y1,y2∈E有:

    則BVP(1)存在唯一解.

    那么

    因此

    定理 4 設(shè)E為Banach空間,f:J×E×E→E與Ik:E×E→E連續(xù).若條件1)~4)成立且滿足f≥θ,Ik≥θ,則BVP(1)至少有一個(gè)正解.

    證明 由定理2,1)~4)成立,即BVP(1)至少有一個(gè)解u0(t).又因f≥θ,Ik≥θ,由引理6,u0(t)≥θ,因此BVP(1)至少存在一個(gè)正解.

    注 1 若BVP(1)中Ik(x,y)=0,即不含脈沖的情形,BVP(1)便退化為BVP(2),按照本文的論述方法可得類似結(jié)論,其結(jié)果在抽象空間也是新的.

    注 2 工作空間及等價(jià)范數(shù)的選取對(duì)于研究的問(wèn)題至關(guān)重要,不僅可以簡(jiǎn)化計(jì)算,而且可以得出較好的結(jié)果.鑒于對(duì)u′處理的難度,部分非線性項(xiàng)含導(dǎo)數(shù)的邊值問(wèn)題,可按本文的辦法進(jìn)行相關(guān)研究.比如,可進(jìn)一步討論問(wèn)題

    解的存在性,其中

    為Fredholm積分算子,K(t,s)∈C(J×J,R+).

    [1] LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations[J]. Aequationes Mathematicae,1989,6:288.

    [2] GUO D J. A class of second-order impulsive integro differential equations on unbounded domain in a Banach space[J]. Appl Math Comput,2002,125:59-77.

    [3] LIN X N, JIANG D Q. Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations[J]. J Math Anal Appl,2006,321:501-514.

    [4] 范虹霞. Banach空間中二階脈沖微分方程邊值問(wèn)題極解的存在性[J]. 蘭州交通大學(xué)學(xué)報(bào),2012,31(3):154-157.

    [5] 鄒玉梅,崔玉軍. 含有一階導(dǎo)數(shù)的二階邊值問(wèn)題的正解[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào),2009,32(1):106-111.

    [6] AGARWAL R P, O’REGAN D, YAN B Q. Multiple positive solutions of singular Dirichlet second-order boundary-value problems with derivative dependence[J]. J Dyn Control Sys,2009,15(1):1-26.

    [7] HENDERSON J, THOMPSON H B. Existence of multiple solutions of second order boundary value problems[J]. J Diff Eqns,2000,166:443-454.

    [8] BAI Z B, GE W G. Exsistence of three positive solutions for some second-order boundary value problems[J]. Comput Math Appl,2004,48:699-707.

    [9] M?NCH H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces[J]. Nonlinear Anal,1980,4(5):985-999.

    [10] 李永祥. 抽象半線性發(fā)展方程初值問(wèn)題解的存在性[J]. 數(shù)學(xué)學(xué)報(bào):中文版,2005,48(6):1089-1094.

    [11] HEINZ H P. On the behaviour of measure of non-compactness with respect to differentiation and integration of vector-valued functions[J]. Nonlinear Anal,1983,7:1351-1371.

    [12] GUO D J, LAKSHMIKANTHAM V, LIU X Z. Nonlinear Integral Equations in Abstrat[M]. Amsterdam:Kluwer Academic Publishers,1996.

    [13] DEMILING K. Nonlinear Functional Analysis[M]. New York:Springer-Verlag,1985.

    [14] LI Y X, JIANG X Y. Positive periodic solutions for second-order ordinary differential equations with derivative terms and singularity in nonlinearities[J]. J Funct Spaces Appl,2012,2012(19):4520-4562.

    [15] 何志乾. 奇異二階Neumann邊值問(wèn)題正解的存在性[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,38(2):190-193.

    [16] 覃燕梅,羅衛(wèi)華,孔花,等. 二階Fredholm積分微分方程的有限差分配置法[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,39(4):531-535.

    2010 MSC:34B37

    (編輯 余 毅)

    The Solutions for Second Order Impulsive Differential Equations with Dependence on the Derivative Terms in Banach Spaces

    SHANG Yaya, SHI Jingwen, LI Yongxiang

    (CollegeofMathematicsandStatistics,NorthwestNormalUniversity,Lanzhou730070,Gansu)

    In this paper, we consider the existence and uniqueness solutions for second order impulsive differential equations with dependence on the first order derivativein Banach spaces, where,f∈C(J×E×E,E),Ik∈C(E×E,E),k=1,2,…,m. By choosing proper working space and equivalent norm, while the nonlinear termf(t,x,y) andIk(x,y) satisfy more general non-compactness measure conditions, we obtain the existence results of solutions and positive solutions combining with the estimation skills of the non-compactness measure and the Sadovskii fixed-point theorem. Besides, we discuss the uniqueness of the solutions of this boundary value problem.

    Banach space; non-compactness measure; condensing mapping; fixed-point theorem

    2016-07-08

    國(guó)家自然科學(xué)基金(11261053)和甘肅省自然科學(xué)基金(1208R-JZA129)

    O

    A

    1001-8395(2017)01-0045-06

    10.3969/j.issn.1001-8395.2017.01.007

    *通信作者簡(jiǎn)介:李永祥(1963—),男,教授,主要從事非線性泛函分析的研究,Email:liyx@nwnu.edu.cn

    解的存在性與唯一性,其中f∈C(J×E×E,E),Ik∈C(E×E,E),k=1,2,…,m.通過(guò)選取恰當(dāng)?shù)墓ぷ骺臻g及等價(jià)范數(shù),在非線性項(xiàng)f(t,x,y)及脈沖函數(shù)Ik滿足較一般的非緊性測(cè)度條件下,結(jié)合新的非緊性測(cè)度估計(jì)技巧與凝聚映射的Sadovskii不動(dòng)點(diǎn)定理,得到解及正解的存在性結(jié)果.此外,進(jìn)一步討論該問(wèn)題唯一解的存在性.

    猜你喜歡
    緊性有界邊值問(wèn)題
    一類廣義Cartan-Hartogs域上加權(quán)Bloch空間之間復(fù)合算子的有界性和緊性
    復(fù)Banach空間的單位球上Bloch-型空間之間的有界的加權(quán)復(fù)合算子
    非線性n 階m 點(diǎn)邊值問(wèn)題正解的存在性
    帶有積分邊界條件的奇異攝動(dòng)邊值問(wèn)題的漸近解
    一類具低階項(xiàng)和退化強(qiáng)制的橢圓方程的有界弱解
    淺談?wù)?xiàng)有界周期數(shù)列的一些性質(zhì)
    非線性m點(diǎn)邊值問(wèn)題的多重正解
    L-拓?fù)淇臻g中Starplus-緊性的刻畫(huà)*
    一類非線性向量微分方程無(wú)窮邊值問(wèn)題的奇攝動(dòng)
    基于sub-tile的對(duì)稱有界DNA結(jié)構(gòu)自組裝及應(yīng)用
    中文亚洲av片在线观看爽| 日日啪夜夜撸| 人妻久久中文字幕网| 亚洲国产精品成人久久小说 | 成人一区二区视频在线观看| 国产v大片淫在线免费观看| 青春草国产在线视频 | 日本三级黄在线观看| 免费看av在线观看网站| 精品一区二区三区视频在线| 18禁在线无遮挡免费观看视频| 日本av手机在线免费观看| 观看美女的网站| 精品免费久久久久久久清纯| 免费看美女性在线毛片视频| 噜噜噜噜噜久久久久久91| 综合色av麻豆| 亚洲内射少妇av| 亚洲av男天堂| 国产高清激情床上av| 搡女人真爽免费视频火全软件| www日本黄色视频网| www日本黄色视频网| 看非洲黑人一级黄片| av天堂在线播放| 久久人人精品亚洲av| 中文字幕av成人在线电影| 久久久午夜欧美精品| 99国产极品粉嫩在线观看| 2022亚洲国产成人精品| 国内少妇人妻偷人精品xxx网站| 麻豆久久精品国产亚洲av| 身体一侧抽搐| 悠悠久久av| 小说图片视频综合网站| 亚洲电影在线观看av| 人体艺术视频欧美日本| 国产精品1区2区在线观看.| 美女脱内裤让男人舔精品视频 | 久久热精品热| 91午夜精品亚洲一区二区三区| 色哟哟哟哟哟哟| 我的老师免费观看完整版| 1000部很黄的大片| 成年女人看的毛片在线观看| 在线a可以看的网站| 熟妇人妻久久中文字幕3abv| 波多野结衣巨乳人妻| 麻豆av噜噜一区二区三区| 国产精品一二三区在线看| 久久久久性生活片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品蜜桃在线观看 | 久久精品国产亚洲av涩爱 | 亚洲最大成人av| 久久久久久大精品| 听说在线观看完整版免费高清| av在线天堂中文字幕| 色综合站精品国产| 亚洲最大成人av| 欧美zozozo另类| 中国美女看黄片| 禁无遮挡网站| 久久久久久久午夜电影| 国产精品三级大全| 五月伊人婷婷丁香| 久久久久久伊人网av| 我的女老师完整版在线观看| av又黄又爽大尺度在线免费看 | 欧美不卡视频在线免费观看| av天堂中文字幕网| 国产极品精品免费视频能看的| 永久网站在线| 国产成人精品久久久久久| 边亲边吃奶的免费视频| 日本五十路高清| 亚洲真实伦在线观看| 久久精品国产自在天天线| 久久久成人免费电影| 高清日韩中文字幕在线| 中文精品一卡2卡3卡4更新| 国产高清视频在线观看网站| 久久精品影院6| a级毛片a级免费在线| 淫秽高清视频在线观看| 我要搜黄色片| 夜夜爽天天搞| 春色校园在线视频观看| 午夜老司机福利剧场| 最近手机中文字幕大全| 国产人妻一区二区三区在| 成人av在线播放网站| a级毛色黄片| 蜜桃亚洲精品一区二区三区| 内地一区二区视频在线| 又黄又爽又刺激的免费视频.| 最近最新中文字幕大全电影3| 女的被弄到高潮叫床怎么办| 干丝袜人妻中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲美女搞黄在线观看| 尤物成人国产欧美一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 青春草视频在线免费观看| 99精品在免费线老司机午夜| 少妇的逼水好多| 搞女人的毛片| 国内精品一区二区在线观看| 三级经典国产精品| 成人特级黄色片久久久久久久| 久久久久久九九精品二区国产| 2022亚洲国产成人精品| 久久精品国产亚洲av香蕉五月| 亚洲熟妇中文字幕五十中出| 综合色丁香网| 国产精品日韩av在线免费观看| 中文精品一卡2卡3卡4更新| 免费av毛片视频| 国产成年人精品一区二区| 国产av不卡久久| 床上黄色一级片| 哪里可以看免费的av片| 国产黄片视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 51国产日韩欧美| 国产中年淑女户外野战色| 特大巨黑吊av在线直播| 尤物成人国产欧美一区二区三区| 青春草视频在线免费观看| 欧美日韩国产亚洲二区| 国语自产精品视频在线第100页| 免费av不卡在线播放| av免费观看日本| 亚洲国产欧洲综合997久久,| 欧美一区二区亚洲| 一个人观看的视频www高清免费观看| 给我免费播放毛片高清在线观看| 免费看日本二区| 欧美丝袜亚洲另类| 久久精品国产亚洲av天美| 国产色婷婷99| 亚洲人成网站在线观看播放| 免费无遮挡裸体视频| 日韩精品青青久久久久久| 91av网一区二区| 26uuu在线亚洲综合色| 精品午夜福利在线看| 校园人妻丝袜中文字幕| 一级黄片播放器| 我要搜黄色片| 91在线精品国自产拍蜜月| 欧美xxxx黑人xx丫x性爽| 一进一出抽搐动态| 精品人妻一区二区三区麻豆| 看片在线看免费视频| 国产精品1区2区在线观看.| 午夜福利在线在线| 变态另类丝袜制服| 岛国在线免费视频观看| 精品一区二区三区视频在线| 可以在线观看的亚洲视频| 蜜桃亚洲精品一区二区三区| 一级毛片aaaaaa免费看小| 网址你懂的国产日韩在线| 亚洲精品亚洲一区二区| 精华霜和精华液先用哪个| 亚洲av成人av| 少妇猛男粗大的猛烈进出视频 | 午夜免费激情av| 99热全是精品| 日韩欧美国产在线观看| 国产成人freesex在线| 欧美精品一区二区大全| 亚洲欧美成人综合另类久久久 | 中文字幕熟女人妻在线| 美女内射精品一级片tv| 久久精品久久久久久久性| 日韩欧美国产在线观看| 特级一级黄色大片| 国产成人精品久久久久久| 免费观看a级毛片全部| 亚洲无线在线观看| 欧美成人a在线观看| 熟女人妻精品中文字幕| 中文字幕人妻熟人妻熟丝袜美| 熟妇人妻久久中文字幕3abv| 人妻夜夜爽99麻豆av| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区激情短视频| 一区二区三区四区激情视频 | 亚洲色图av天堂| 欧美又色又爽又黄视频| 免费不卡的大黄色大毛片视频在线观看 | АⅤ资源中文在线天堂| 精品一区二区三区人妻视频| av福利片在线观看| 亚洲成人中文字幕在线播放| 丰满人妻一区二区三区视频av| av视频在线观看入口| 青春草国产在线视频 | 全区人妻精品视频| 男人舔女人下体高潮全视频| 舔av片在线| 老司机影院成人| 人妻久久中文字幕网| 成人综合一区亚洲| av在线亚洲专区| 九九在线视频观看精品| 日产精品乱码卡一卡2卡三| 日日撸夜夜添| 69人妻影院| 午夜精品在线福利| 女的被弄到高潮叫床怎么办| 亚洲人成网站高清观看| 成人永久免费在线观看视频| 久久热精品热| 91aial.com中文字幕在线观看| 婷婷色综合大香蕉| 国产精品国产三级国产av玫瑰| 亚洲内射少妇av| 亚洲无线在线观看| 一本久久精品| 欧美色欧美亚洲另类二区| 中文字幕人妻熟人妻熟丝袜美| 看免费成人av毛片| 亚洲精品亚洲一区二区| 国产蜜桃级精品一区二区三区| 精品免费久久久久久久清纯| 一进一出抽搐动态| 亚洲第一电影网av| 伊人久久精品亚洲午夜| 身体一侧抽搐| 久久中文看片网| 18禁在线无遮挡免费观看视频| 成年av动漫网址| 波多野结衣巨乳人妻| 看十八女毛片水多多多| 国产一区二区三区av在线 | 国产在视频线在精品| 亚洲色图av天堂| 久久精品国产自在天天线| 国产黄色小视频在线观看| 国产日本99.免费观看| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站 | 久久韩国三级中文字幕| 国产精品久久久久久久久免| 成人永久免费在线观看视频| 午夜福利高清视频| 国产男人的电影天堂91| 亚洲国产色片| 国内精品久久久久精免费| 69人妻影院| 亚洲国产色片| 免费观看精品视频网站| 不卡一级毛片| 国产成人精品婷婷| 亚洲av免费高清在线观看| av黄色大香蕉| 在线观看免费视频日本深夜| 久久亚洲精品不卡| 美女xxoo啪啪120秒动态图| 欧美xxxx性猛交bbbb| 久久久精品大字幕| 国产精品国产高清国产av| 日韩精品青青久久久久久| 欧美一区二区国产精品久久精品| 午夜免费激情av| 国产 一区 欧美 日韩| 久久久久久久久久久免费av| 91av网一区二区| 日本免费a在线| 女人被狂操c到高潮| 欧美激情久久久久久爽电影| 18禁黄网站禁片免费观看直播| 久久久精品欧美日韩精品| 简卡轻食公司| 国产欧美日韩精品一区二区| 国内少妇人妻偷人精品xxx网站| 国产男人的电影天堂91| 亚洲最大成人手机在线| 亚洲欧美日韩高清在线视频| 不卡一级毛片| 精品久久国产蜜桃| 老司机影院成人| 啦啦啦观看免费观看视频高清| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 亚洲四区av| 国产在线精品亚洲第一网站| 18+在线观看网站| av黄色大香蕉| 国产视频内射| 亚洲av第一区精品v没综合| 亚洲国产精品sss在线观看| 成熟少妇高潮喷水视频| avwww免费| 亚洲欧美精品专区久久| av在线天堂中文字幕| 人妻久久中文字幕网| 国产精品一区二区在线观看99 | 国产成人a∨麻豆精品| 如何舔出高潮| 久久久久久久久久久免费av| 国产蜜桃级精品一区二区三区| 99riav亚洲国产免费| 久久久a久久爽久久v久久| 成年女人看的毛片在线观看| 又粗又硬又长又爽又黄的视频 | 久久这里有精品视频免费| 只有这里有精品99| 91在线精品国自产拍蜜月| 特大巨黑吊av在线直播| 网址你懂的国产日韩在线| 日韩精品有码人妻一区| 99riav亚洲国产免费| 久久人妻av系列| 亚洲中文字幕一区二区三区有码在线看| 又粗又硬又长又爽又黄的视频 | 欧美潮喷喷水| 免费av不卡在线播放| 久久久久久久久久黄片| 亚洲欧美日韩高清专用| 黄色欧美视频在线观看| 精品人妻偷拍中文字幕| 91久久精品国产一区二区三区| 人妻系列 视频| 亚洲在久久综合| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 如何舔出高潮| 免费无遮挡裸体视频| 国产精品久久久久久精品电影| 麻豆成人午夜福利视频| 精品国内亚洲2022精品成人| 亚洲一区二区三区色噜噜| 午夜a级毛片| 久久久色成人| 欧美变态另类bdsm刘玥| 村上凉子中文字幕在线| 精品久久久久久久末码| 国产色爽女视频免费观看| 日本黄大片高清| 亚洲无线在线观看| 美女高潮的动态| 欧美日韩综合久久久久久| 麻豆国产97在线/欧美| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| 午夜福利视频1000在线观看| 精品久久久噜噜| 国产精品久久久久久亚洲av鲁大| 岛国在线免费视频观看| 国产色爽女视频免费观看| 大型黄色视频在线免费观看| 亚洲av熟女| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| a级毛片a级免费在线| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 欧美一区二区国产精品久久精品| 嘟嘟电影网在线观看| 美女脱内裤让男人舔精品视频 | 男人和女人高潮做爰伦理| 国产成人午夜福利电影在线观看| 精品人妻视频免费看| 成人无遮挡网站| 国产精品电影一区二区三区| 日韩一本色道免费dvd| 夜夜爽天天搞| 最近最新中文字幕大全电影3| 精品人妻偷拍中文字幕| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 久久精品人妻少妇| 欧美激情在线99| 成人美女网站在线观看视频| 亚洲一区高清亚洲精品| 日韩在线高清观看一区二区三区| 少妇丰满av| 一本久久中文字幕| 久久久久久久久中文| 一区福利在线观看| 久久国内精品自在自线图片| 一级毛片aaaaaa免费看小| 婷婷色综合大香蕉| 亚洲精品久久国产高清桃花| 久久久精品大字幕| 91aial.com中文字幕在线观看| 一级毛片我不卡| 午夜免费男女啪啪视频观看| 国产一区二区在线观看日韩| 亚洲国产精品成人久久小说 | av在线天堂中文字幕| av黄色大香蕉| 日韩精品青青久久久久久| 久久6这里有精品| 久久久久久久久中文| 最新中文字幕久久久久| 午夜爱爱视频在线播放| 日韩,欧美,国产一区二区三区 | 亚洲av成人av| 久久精品国产99精品国产亚洲性色| .国产精品久久| 一级毛片电影观看 | 婷婷六月久久综合丁香| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 色噜噜av男人的天堂激情| 免费看美女性在线毛片视频| 国产精品伦人一区二区| 免费无遮挡裸体视频| 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| 欧美激情国产日韩精品一区| 丰满人妻一区二区三区视频av| 久久精品夜色国产| 亚洲国产高清在线一区二区三| 最近视频中文字幕2019在线8| 中文字幕人妻熟人妻熟丝袜美| 波多野结衣高清无吗| 久久韩国三级中文字幕| 啦啦啦观看免费观看视频高清| 看非洲黑人一级黄片| 99在线视频只有这里精品首页| 免费看光身美女| 有码 亚洲区| 一级av片app| 国产极品精品免费视频能看的| 嫩草影院新地址| av在线老鸭窝| 村上凉子中文字幕在线| 日韩高清综合在线| 91精品一卡2卡3卡4卡| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 天堂网av新在线| 亚洲欧美精品专区久久| 久久九九热精品免费| 亚洲欧美日韩东京热| 免费不卡的大黄色大毛片视频在线观看 | 欧美成人精品欧美一级黄| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 中文字幕制服av| 国内少妇人妻偷人精品xxx网站| av在线天堂中文字幕| 日本一本二区三区精品| 最好的美女福利视频网| 能在线免费看毛片的网站| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看 | av视频在线观看入口| 天堂网av新在线| 亚洲精品成人久久久久久| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 97在线视频观看| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 一本久久中文字幕| 国产精品人妻久久久久久| 亚洲熟妇中文字幕五十中出| 91午夜精品亚洲一区二区三区| 99国产极品粉嫩在线观看| 中国国产av一级| 国产又黄又爽又无遮挡在线| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av涩爱 | 亚洲av不卡在线观看| 亚洲精品亚洲一区二区| 午夜福利在线观看吧| 久久久欧美国产精品| 亚洲av男天堂| 亚洲精品456在线播放app| 久久精品国产亚洲av涩爱 | 日韩欧美国产在线观看| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产国拍精品亚洲av在线观看| 天堂影院成人在线观看| 国产 一区精品| 麻豆国产av国片精品| 日本成人三级电影网站| 成人特级av手机在线观看| 别揉我奶头 嗯啊视频| 国产真实伦视频高清在线观看| 麻豆国产av国片精品| 在线观看66精品国产| 卡戴珊不雅视频在线播放| 久久久久免费精品人妻一区二区| 免费电影在线观看免费观看| 欧美成人免费av一区二区三区| 国产精品久久久久久久电影| 女人十人毛片免费观看3o分钟| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 国产久久久一区二区三区| 国产精华一区二区三区| 91精品一卡2卡3卡4卡| 日韩三级伦理在线观看| 日本撒尿小便嘘嘘汇集6| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 亚洲在线观看片| 色吧在线观看| 午夜福利成人在线免费观看| 日韩精品青青久久久久久| 国内精品宾馆在线| 国产精品.久久久| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 男女边吃奶边做爰视频| 国产色爽女视频免费观看| 国产精品av视频在线免费观看| 人妻系列 视频| 91久久精品电影网| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 日韩欧美三级三区| 高清毛片免费看| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 日本五十路高清| 亚洲欧美日韩高清专用| 亚洲人成网站在线播放欧美日韩| 一区二区三区四区激情视频 | 波多野结衣高清作品| 欧美成人免费av一区二区三区| 日韩人妻高清精品专区| videossex国产| 波多野结衣巨乳人妻| 丰满人妻一区二区三区视频av| 精品99又大又爽又粗少妇毛片| 91久久精品电影网| 亚洲欧美清纯卡通| 日本成人三级电影网站| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 最后的刺客免费高清国语| 国产黄片美女视频| 久久韩国三级中文字幕| 小说图片视频综合网站| 国模一区二区三区四区视频| av天堂中文字幕网| 亚洲五月天丁香| www.av在线官网国产| 色播亚洲综合网| 国产精品一区二区三区四区免费观看| 岛国在线免费视频观看| 黄色配什么色好看| 日日干狠狠操夜夜爽| 国产毛片a区久久久久| 搡老妇女老女人老熟妇| 97超碰精品成人国产| 中文字幕熟女人妻在线| 97超碰精品成人国产| 偷拍熟女少妇极品色| 久久久久免费精品人妻一区二区| 最近中文字幕高清免费大全6| 亚洲在久久综合| 校园人妻丝袜中文字幕| 亚洲国产精品合色在线| 日本爱情动作片www.在线观看| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 色5月婷婷丁香| 岛国在线免费视频观看| 熟妇人妻久久中文字幕3abv| 18禁在线播放成人免费| 久久亚洲国产成人精品v| 一级毛片电影观看 | 午夜激情欧美在线| 日日啪夜夜撸| 久久草成人影院| 日本色播在线视频| 又爽又黄无遮挡网站| 哪个播放器可以免费观看大片| 欧美成人精品欧美一级黄| 久久精品国产亚洲av香蕉五月| 天堂影院成人在线观看| 又粗又硬又长又爽又黄的视频 | 中文亚洲av片在线观看爽| 免费观看的影片在线观看| 免费无遮挡裸体视频| 99久久精品国产国产毛片| 三级国产精品欧美在线观看| 国产精品一区www在线观看| 又粗又爽又猛毛片免费看| 美女 人体艺术 gogo| 1000部很黄的大片| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 能在线免费观看的黄片| 寂寞人妻少妇视频99o| 国产真实乱freesex| 国产乱人视频| 久久草成人影院| 久久亚洲精品不卡| 别揉我奶头 嗯啊视频| 亚洲av免费在线观看| 亚洲三级黄色毛片| 综合色av麻豆| 成人高潮视频无遮挡免费网站| 六月丁香七月| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕av成人在线电影|