• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非水溶劑Li-O2電池鋰負(fù)極研究進(jìn)展

    2017-05-10 17:42:42張彥濤劉圳杰王佳偉王亮彭章泉
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:金屬鋰負(fù)極中國(guó)科學(xué)院

    張彥濤 劉圳杰 王佳偉 王亮 彭章泉,*

    (1中國(guó)科學(xué)院長(zhǎng)春應(yīng)用化學(xué)研究所,電分析化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春130022;2中國(guó)科學(xué)院大學(xué),北京100049)

    非水溶劑Li-O2電池鋰負(fù)極研究進(jìn)展

    張彥濤1,2劉圳杰1,2王佳偉1王亮1,2彭章泉1,*

    (1中國(guó)科學(xué)院長(zhǎng)春應(yīng)用化學(xué)研究所,電分析化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春130022;2中國(guó)科學(xué)院大學(xué),北京100049)

    非水溶劑Li-O2電池因其高的理論能量密度,近年來(lái)備受關(guān)注。非水溶劑Li-O2電池的典型結(jié)構(gòu)為金屬鋰負(fù)極、含Li+的非水溶劑電解液和多孔氧氣正極。目前,多數(shù)Li-O2電池研究集中在正極的氧氣電極反應(yīng);金屬鋰負(fù)極極強(qiáng)的還原性導(dǎo)致的副反應(yīng)使Li-O2電池中的化學(xué)和電化學(xué)反應(yīng)變得更為復(fù)雜。因?yàn)?,電解液和從正極擴(kuò)散來(lái)的O2都會(huì)與金屬鋰發(fā)生反應(yīng);鋰負(fù)極上生成的副反應(yīng)產(chǎn)物同樣會(huì)擴(kuò)散到正極一側(cè),干擾正極的O2反應(yīng)。此外,鋰負(fù)極上可能生成鋰枝晶,降低電池的安全性能,進(jìn)而阻礙Li-O2電池的實(shí)用化。因此,研究并解決鋰負(fù)極的電化學(xué)穩(wěn)定性和安全問(wèn)題迫在眉睫。本文綜述了近年來(lái)國(guó)內(nèi)外在非水溶劑Li-O2電池鋰負(fù)極保護(hù)和修飾方面的最新研究進(jìn)展,包括:可替代的對(duì)/參比電極的選擇、電解液和添加劑、復(fù)合保護(hù)層與隔膜的研究、先進(jìn)實(shí)驗(yàn)技術(shù)的開(kāi)發(fā)與應(yīng)用、并針對(duì)未來(lái)非水溶劑Li-O2電池的發(fā)展進(jìn)行了展望。

    鋰-氧電池;金屬鋰負(fù)極;鋰負(fù)極穩(wěn)定性;固態(tài)電解質(zhì)界面膜

    Key Words:Lithium-oxygen battery;Lithium metalanode;Lianode stability;Solid electrolyte interphase layer

    1 Introduc tion

    Confronted with the rapidly grow ing demands forhigh density energy storage applications,the aprotic Li-O2batteries,which are based on the Li-O2reaction of 2Li+O2?Li2O2(E?=2.96V(vs Li/Li+))with anultra-high theoreticalspecificenergy of 3500Wh· kg-1,have been proposed to be a holy grail for electric energystorageapplications1-8.Asearly as1996,theaprotic Li-O2battery was devised by Abraham and Jiang9.Subsequently,incessant effortshavebeenmade to contribute its further research and development.Despite considerate progresses,abunch of scientific and technological issues still impede the realization of practical Li-O2 cells,which include degraded capacity,limited cycle life, low energy efficiency,and instability of cell com ponents. Sofar,themajority of Li-O2 studies,using a standard configuration of Li|aprotic Li+electrolyte|porous cathode(O2),focuson theO2 reactions in the cathode.To alleviate theabovementioned problems,novel catalysts10-16,electrolytes17-22 and binders23,24 have been used.In addition,fundamental studies of understanding of the reactionmechanismsunder variousoperating conditions25-28 have been reported.However,the stability of the Lianode isstill another crucial issueand should notbe ignored.Especially,the reactions arising from themetallic Li becomemuchmore complicated w hen oxygen and water are involved in the electrolyte. Therefore,O2 shuttle is oneof themajor culprits thatcan cause passivation/parasitic reaction on Limetalanode.Moreover,some of the side reaction products could cross over to the cathode then interferew ith O2 electrochem istry,and degrade the overall performanceof Li-O2 cells29-31.In this light,stabilizing the Limetal anode interface could be as challenging as addressing the reversibility in air-cathode.Besides,Limetal electrode has been plagued for decadesw ith the problem of the dendrite formation during repeated stripping/plating,which lead to serious safety concernsand poor Coulombic efficiency32,33.

    ZHANG Yan-Tao,received his Bachelor degree of Applied Chemistry in Heibei University of Science and Technology in 2012.He earned his master degree from Tianjin University of Technology.Since 2015,he is pursuing a Ph.D.under the supervision of Prof.PENG Zhang-Quan at Changchun Institute of Applied Chem istry (CIAC),Chinese Academy of Sciences(CAS).His current research interest is focused on themetallic anode in rechargeable aproticmetal-oxygen batteries.

    LIU Zhen-Jie,comes from Shandong province and obtained his Bachelor degree in Department of Materials Chem istry at University of Jinan in 2013.He isnow aMaster student(M 3)in Prof.PENG Zhang-Quan′s group at Changchun Institute of Applied Chemistry(CIAC),Chinese Academy of Sciences(CAS).Recently,he is interested in the lithium deposition and stripping in different solvents and lithium anode protection.

    Wang Jia-Wei,received his Ph.D.from Northeast Normal University in 2012 majored in Physical Chem istry.In 2012,he joined Professor PENG Zhang-Quan′s group at Changchun Institute of Applied Chemistry (CIAC),Chinese Academy of Sciences (CAS),and worked as a Research Associate. His current research interest is focused on the understanding of fundamentalmechanisms in metal-oxygen batteries through SERS technique and various traditional electrochem ical techniques.

    WANG Liang,obtained his Bachelor degree in Instituteof PolymerMaterialsatSchoolof M aterials Science&Engineering,Shandong University in 2015.He is now a 2nd year Master student in Prof.PENG Zhang-Quan′s group at Changchun Institute of Applied Chemistry(CIAC),Chinese Academy of Sciences(CAS).His current research interest is focused on the fundamentalmechanisms of lithium anode in rechargeableaprotic lithium-oxygen batteries.

    PENG Zhang-Quan,obtained his Bachelor in Wuhan University in 1997 and received his MSc and Ph.D.in Analytical Chem istry from Changchun Institute of Applied Chem istry (CIAC),Chinese Academy of Sciences (CAS)in 2000 and 2003,respectively.He followed up by working as a postdoctoral fellow at University of Dusseldorf,Germany and University of Aarhus,Denmark,and asa Research Associate under the direction of Prof.Peter G.Bruce at University of St Andrews,UK from 2004 to 2012.Hewas selected in Recruitment Program of Global Youth Experts in 2012.Now,his current research interests are associated w ith interfacial electrochem istry, in situ spectra electrochemistry to study the fundamentalmechanismsof oxygen electrode reactions in aprotic Li-O2batteries.

    Toward a better understanding of the Li-O2reactions and realization of practical aprotic Li-O2batteries,it is critically necessary to develop novel strategies to im prove the stability of lithium metal electrode especially in the presence of O2.In this paper,the recentadvances in fundamentalscience of improving themetallic lithium stability have been reviewed,including(i) alternative counter/reference electrodes that reactw ith neither electrolyte nor O2;(ii)solid electrolyte interphase(SEI)modification,including in situ SEIformation and various artificial SEI; (iii)experimental techniques.Finally,we propose a perspective on challenges and opportunities for Limetalelectrode used in aprotic Li-O2batteries.

    2 A lternative counter/re ference elec trodes

    Limetal is recognized as themost promising anodematerial due to its high theoretical specific capacity(3860mAh·g-1)as wellas the lowestelectrochemicalpotential(-3.04V,vs SHE(the standard hydrogen electrode)).Theuseof the Limetalelectrode accompanied by safety concerns associated to itswell-known reactivity,possible dendrite formation leading to short circuit34-36, remainsgreat challenge on commercialization of Limetalbatteries (LMBs),Li-sulfur(Li-S)batteries and Li-oxygen(Li-O2)batteries2,4,37.M oreover,for Li-O2batteries operated under ambient atmosphere,the parasitic reactionsof Limetal and the permeated O2in theelectrolyte can notbeeliminated completely.The lithium metal can,in fact,reactwith theO2solubilized in theelectrolyte toform lithium oxideor hydroxide at themetalsurface,resulting in the increase of the cell resistance and polarization38,39.The replacementof the lithium metal by alternative lithium ion/alloy material represents one of the possible solutions to overcome the aforementioned issues.

    To identify thealternative counter/referenceelectrodematerials, severalworks havebeen reported.In 2012,Bruce etal.40initially introduced lithium iron phosphate(LiFePO4)as counter electrode to replace Limetal used in Li-O2batteries due to instability of metallic lithium toward dimethylformamide(DMF)electrolyte. For the sim ilarly reason,M cCloskey et al.41also adopted LiFePO4as the anode to conduct the quantitative analysis of O2using differential electrochem ical mass spectrometry(DEMS)in acetonitrile(CH3CN)electrolyte.As shown in Fig.1a,the partially charged Li1-xFePO4acting asnotonly counterelectrode(Li+rich) but also reference electrode(stabilized at~3.45 V,vs Li/Li+), involving in a two-phase reaction of Li1-xFePO4and FePO4,can significantly reduce the contam inations from the electrolyte decomposition on Li anode42.Thus,the obtained clean electrochem ical system of Li-O2batteries can ensure a better understanding of the reactionmechanisms and quantitativemeasurement of the O2reversibility43,44.From this view,the Li-ion intercalation materials,which reactw ith neither electrolyte nor O2, display significantpromiseasalternative anodematerialsused in Li-O2batteries.In the study reported by Lee etal.45,graphite and Li4Ti5O12showing high Coulombic efficiencies in Li-ion batteries, were successfully demonstrated their cyclability and reversibility asanode in Li-O2batteries(Fig.1b and 1c).Butsuch kindsof Liion intercalationmaterialsarenotsuitable to replacemetallic Li for rechargeable Li-O2cells,because thehigh energy density of Li-O2batterywasseriously discounted.

    Moreover,Hassoun et al.46,38have reported lithium-alloying composites,LixSi-C and LixSn-C electrodes,to replace the unsafe lithium metalanode.Asshown in Fig.1d and 1e,the LixSi-O2and LixSn-O2batteriesdischarged around 2.7 and 2.4V respectively, attributing to the lower anode potentialof LixSi(~0.3 V(vs Li/Li+)) and LixSn(~0.5V(vs Li/Li+)),unlike the LiFePO4(~3.45V(vs Li/ Li+)).A lthough the alloy materials show up big prom ise to the practical lithium ion-O2batteries,slight voltage decay isobserved only after several cycles in Fig.1d and 1e.A functional uniform SEIfilm that can alleviate the attack ofO2,was formed on lithiated Al-carbon(LixAl-C)anode47.As shown in Fig.1f,the invariable dischargeand charge profiles also verified the interfacialstability between LixAl-C and electrolyte.We speculate that the interface stability toward the permeated O2in theelectrolyteand the volume expansion during repeated stripping/plating stillneed to be further improved.

    3 SEIm od ification

    Asearly as in 1979,Peled49firstly identified the conceptof SEI, which constitutes of various organic and inorganic components and displays the properties of electrically insulating and ionically conducting.The SEI layerw ith a thicknessof~20 nm is formed from thespontaneous reactionsbetweenalkalinemetaland solvent/ slatanions in liquid electrolyte48.Although the consumed Li+used for the formation of SEI leads to a low efficiency,the SEIcan effectively prevent the further physical contact and chemical reaction betw een the Liand electrolyte.In addition,Li ions can be evenly distributed via functionalized SEIduring repeated stripping/ plating and the dendrite-freemorphology can beobtained.In order to protect the Lianode for Li-O2battery better,it is significantly important tomodify SEI.The following summarized theadvanced strategies tomodify SEI layer including adopting new electrolyte systems,additives and some artificial composite protect layers (CPLs).

    3.1 Electro ly te and add itives

    The conventionalelectrolyte systems in Li-O2batterymostly contain solvents and Li salts3-5.The w idely used organic alkyl carbonate-based and esters-based electrolyteswere demonstrated susceptible to theattack of the superoxide radicalanion and severe decomposed during the chargeand discharge processes.So it is critically necessary to adoptmore chemically/electrochem ically stable ether and glymes-based,e.g.dimethoxyethane(DME), tetraglyme(TEGDME);nitrile-based,e.g.acetonitrile(CH3CN),trimethylacetonitrile(TMA);sulfone-based,e.g.dimethyl sulfoxide(DMSO),amide-based,e.g.N,N-dimethylacetamide(DMA), dimethylformam ide(DMF);ionic liquid-based(IL)and gel/solid state-based electrolytes5.Although theabove-mentioned solvents showed relative stability towards oxygen reduction species,the unstable interphase,such as the SEIformed on the surfaceof the Limetalanode,w ill result in the deterioration of battery performance.

    Fig.1 Galvanostatic d ischarge-charge curves of Li ion-O2batteries fab ricated w ith(a)LiFePO442,(b)graphiteand(c)Li4Ti5O1245, (d)LixSi-C46,(e)LixSn-C38and(f)LixAl-C47ascounter/reference electrode instead of Limetalcolor online

    In order to enhance the interfacialstability of the straight-chain alkyl amidesw ith the Lianode,lithium nitrate(LiNO3),which previously was show n to improve battery performance by formation of a stable SEIin Li-S battery50-52,has been applied to enhance the interphase compatibility between Limetaland DMA electrolyte in Li-O2systems.Walker et al.53showed that some electroactive species generated from the reaction of Liand DMA, while the inclusion of LiNO3can substantially inhibit this reaction. The compatibility of thissystem with Limetal isattributed to the inertness of the am ide core combined with the nitrate anion contributing to the formation of a protective SEI.Thisassembled Li-O2battery show s com paratively high efficiency and stability over80 cycles(>2000 h)withminimal changes in the voltage in Fig.2a.Subsequently,Giordani et al.29demonstrated the synergistic effectof theO2and LiNO3on the formation of a stable SEI. The low overpotential and durable cyclic performance in symmetric Li-Li cellsunder O2isbetter than Ar as depicted in Fig.2b. Combined Fig.2b w ith 2c,we can conclude thatneither O2nor LiNO3alone is able to stabilize the Limetal interface in DMA. The further studiesabout theeffectof O2combiningw ith additives LiNO3and vinylene carbonate(VC)havebeen investigated on the typical1mol·L-1LiClO4/DMSO electrolyte by Roberts etal.30.As displayed in Fig.2d,the improved cyclenumbersof 25,27 and 33 wereachieved respectivelywith theaddition of O2,LiNO3and VC. It is obvious that the use of oxygen asan additive is sufficient to stabilize the surface,but this result isa little different from thatofGiordani etal.29,in DMA electrolyte.The positiveeffectiveabout theO2stabilizing effect is consistentwith Aurbach′s report54.

    Fig.2 Voltage profilesof(a)Li-O2cells53in 1mol·L-1LiNO3/DMA;(b)symmetric Li/Licellunder O2and Ar(inset)in 1m ol·L-1LiNO3/DM A,(c)pressu reand voltage p rofi les of symm etric Li/Licell cycled under O2in 1m ol·L-1LiTFSI/DM A29; (d)Li-Cu cells in 1mol·L-1LiClO4/DMSO electrolytew ith and w ithoutadditives in thep resenceand absence of oxygen301 bar=0.1MPa,color online

    However,contradictory resultswere proposed by Assary39and Younesi55et al.,Assary et al.39observed LiOH as well as carbonates rooting in theO2crossover from the cathode to anode in tetraglyme-based electrolyte.Younesi etal.55discussed the SEI components on the Lianodewith 1mol·L-1LiPF6/PC electrolyte used in Li-O2cell for the first time.The X-ray photoelectron spectra(XPS)analysis concludes that the SEI layer on the Li anode constantly changes during the charge and discharge processes in the presentO2,namely theonly existed O2isunable to stabilize the SEI.Theseworse impactsarebased on the unstable ether or carbonate-based electrolytes.The mechanism and reliability of oxygen stabilizing the SEIon the Limetal is complicated and isnot fully understand yet.We speculate that the partial pressureof oxygen,the identity of solvents,saltsand additivesact essential roleon fabricating a stable SEI.

    Except those additivesmentioned above,Bryantsev et al.56has demonstrated 2%N,N-dimethyltrifl uoroacetamide(DMTFA)as additiveswhich can effectively stabilize the Lielectrode in 0.5 mol·L-1LiTFSIand 98%DMA.Five different types of fluorinated amidessolventswere investigated to stabilize the lithium/ electrolyte interface as shown in Fig.3a and 3b.The LiTFSI/ DMTFA electrolyte shows the lowest interfacial resistance and exhibits the best cyclic performance.Combined the calculated energy barriers w ith XPS analysis,LiF was recognized to be formed on the Limetal surfacewith littleorno activation energy. Although DMTFA shows reduced ability toform an effective SEI upon extended cycling due to the instability to the O2reduction reactions,the presence of DMTFA significantly im proves the stability of the unprotected Lianode in rechargeable Li-O2battery. Zhang et al.57also discovered LiF in an artificial SEI layer synthesized by pre-charging a symmetric Li|1mol·L-1LiF3SO3-TEGDME-fluoroethylene carbonate|Li cell within a voltage w indow of 0-0.7 V.The cyclic performance of Li-O2batteries assembled w ith thus obtained Limetal significantly improved. Both of the results reveal that LiF is essential composition for stabilizing SEI.

    Zhang and co-workers58discovered a self-healing electrostatic shield mechanism by emp loying the Cs+additives in 1mol·L-1LiPF6/PC electrolyte.These additive cations form a positively charged electrostatic shield around the initial grow th tip of the protuberances to alter dendrite formation used in LMBs.On the basic of the above ingenious ideas,Lee and Park59successfullyintroduced CsIasamultifunctional redoxmedium,which coupled with the synergistic function of I-and Cs+,to reduceoverpotential

    and im prove the cyclic performance of Li-O2cells.Besides,the addition of the LiNO3salt in theelectrolyteactivates thesemultieffects and strengths the protection ofmetallic Li.Theobviously smooth surfacewithoutcracksand holeseven Lidendrites can be observed in Fig.4a-4d after disassembled the cell cycling with CsI.Thisw ork proposed a strategy by integrating the redoxmedium,addictives or salt tofacilitate the decomposition of the discharge product(e.g.Li2O2)and improve the stability of the metallic Li.Ishikawa etal.60provided anovelapproach that the additivealuminum iodide(AlI3,smallAl3+concentration of 600× 10-6(w,mass fraction))wasutilized asa pre-modification reagent for Limetalanode in binary electrolytes of propylene carbonate (PC)and dimethyl carbonate(DMC).Such type additive contributes tofabricating a durable Li-alloy layeron Limetal interface.But this formula stillneed to be provedwhether it is feasible in Li-O2battery.

    Fig.3 Tim eevolution of the in terfacial resistance(a)and cyclic per form ance(b)of symm etric Li/electrolyte/Licellsw ith 0.5m ol·L-1LiTFSI in five different solvents at 30°C under A r56color online

    Fig.4 SEM and op tical im agesof them etallic Lianodebefore and after treated w ith differentelectrolytes(a)pristine,aftercycling in(b)1mol·L-1LiTFSI,(c)mixtureof LiNO3and LiTFSI(50:50),(d)0.05mol·L-1CsIwith 0.5mol·L-1LiNO3and 0.5mol·L-1LiTFSI in TEGDME59;(e)from left to rightshows the lithium foil,PEO-based membrane and super Pcarbon grid after CV testin Li-O2cell67;Lisheet(f)w ith awaterdrop,(g)exposed in airw ith(left)andw ithout(right)gelelectrolyte75

    Currently,the solid-state electrolytes(SSEs),such as ceram ic solid electrolyte(CSE)and solid polymer electrolyte(SPE),are considered as competitive alternatives to the flammable and volatile liquid electrolytes in termsof safety issues.In contrast, unwanted chemical cross-over actions,severe anion and cation concentration gradientand dendrite formation can be effectively overcome by making use of the SSE.In addition,the robust mechanicalstrength,elevated thermal stability,uneasy-leaked and lower cost properties are pushing itsw idely application5.Now, moreandmoreworkshavebeen done to integrate theSSE into Li-O2batteries.

    The lithium-ion conducting glass ceramic of Li-Al-Ge-PO4(LAGP)61,62and Li-A l-Ti-PO4(LATP)63,64systemsw ith high ionic conductivity(in the range of 10-4-10-3S·cm-1)have been em ployed in Li-O2battery.Most lithium solid electrolytes are thermodynam ically unstable against Limetal.Various kindsof Liion conductors,such as lithium-nitride(Li3N),lithium phosphorous oxynitride(LiPON)and poly(ethylene)oxide(PEO),are applied as the protective interlayer to separate the CSE and Li metalelectrode.Kumar etal.61investigated one kind of solid state electrolyte combined LAGPwith polymer-ceramic(PC)membranes comprised of PC(BN),PC(AIN),PC(Si3N4)and PC(Li2O) in Li-O2batteries.Using PCmaterial can reduce the cell impedance and enhance the electrochem ical compatibilityw ith lithium. Another sim ilar optimized componentand configuration of SSE fabricated from glass-ceramic(GC)LAGPand polymer-ceramic (PC)containing Li2O and BN was assembled in Li-O2cells as shown in Fig.5a65.This sandwiched SSE exhibited excellent thermal stability and cyclic performance used in Li-O2cells operated in the tem perature range of 30-105°C and physically isolated lithium from air andmoisture.However,the limited cycle life(less than 40 cycles)needs to im prove further.A long-term cyclic performance(150 cycles)super-hydrophobic quasi-solid electrolyte Li-O2cell coupled with RuO2/MnO2/SPcathodewas proposed asdepicted in Fig.5b66.This specialsuper-hydrophobic SiO2-based composite solid-state electrolyte can resist hum idatmosphere(RH of 45%),which also displayed higher thermal tolerance,w ider operation electrochem icalw indow(>5.5 V)and bettermechanical flexibility in contrastw ith the traditional liquid electrolyte.

    Fig.5 Schematicsof(a)the sandw iched PC/GC/PC SSEmodel65and(b)the proposed super-hyd rophobic quasi-solid electrolyte66used in Li-O2cells color online

    Solvent-free polymer electrolytew ith a highmolecularweight PEO-LiCF3SO3was reported by Scrosati etal.67.The dissembled cell(Fig.4e)shows that the electrodesespecially the lithium is still in excellent condition,which confirms that the PEOmatrix can effectively protect lithium metal.Electrolytes with polymer additivesare reported as prom ising electrolyte systems thatpossess many advantagesover non-aqueous liquid or ionic liquid-based electrolytes in terms of electrochemicalstability.Recently Tokur et al.68reported that the selective amount of poly(vinylidene fluoride)(PVDF)and PEO additives can significantly increase the cyclability of Li-O2batteries.Another feature is visible from Fig.6a and 6b,in which PEO-based electrolyte exhibitsmore stable cyclic performancew ith lower overpotential than thatof PVDF.Itwassuggested thatpolymeradditivesnotonly provided high conductivity but also protected the Limetal against the corrosion.In order to improve the cyclic life,they69developed another highly reversible Li-O2batterywith addition of polymer (PEO)and ceramic(Al2O3)fillers in 1mol·L-1LiPF6/NMP-based composite polymer electrolyte.The voltage of the discharge scarcely changesparticularly after35 cyclesw ith a deep cycling capacity of 2.54 mAh in Fig.6c and 6d.The excellent electrochem ical properties indicate the stabile SEI formed on the Li anode.This result further demonstrates that the polymer electrolyte is prom ising to overcome the problem of anode corrosion and dendrite formation70.Such ceram ic fillers include Al2O371, TiO272,SiO273and ZrO274etc.Peng et al.75proposed a coaxialflexible-fiberarchitectureof all-solid-state Li-O2batteries coupled with gel electrolyte which mixed with lithium triflate(LiTF), tetraethyleneglycol dimethyl ether(TEGDME),poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP),N-methyl-2-pyrrolidinone(NMP),2-hydroxy-2-methyl-1-phenyl-1-propanone (HMPP),and tri-methylolpropaneethoxylate triacrylate(TMPET). Fig.4f and 4g present that this coating layerwith gelelectrolyte can effectively prevent the lithium anode from corrosion bywater, oxygen,etc.

    Theexploration of stableand compatible interphase established between SSE/CSE and electrodes becomes significant critical. Zhou etal.76reported a composite polymer electrolyte synthesized as polypropylene(PP)-supported poly(methyl methacrylate) (PMMA)-blend-poly(styrene)(PSt)with doping nanofumed SiO2. This novel gel polymer electrolyte displayed smaller interfacial resistance w ith Limetal than that of the liquid electrolyte.The better compatibility w ith Limetal anode contributes to durable cycling life comparedwith the traditional liquid one in Fig.7aand 7b.Besides,this polymer system can alleviate the corrosion of Li metal caused by airand H2O.Subsequently,in order to improve themechanical strength and ionic conductivity of SSE,Yiand Zhou77proposed a plausible solution by designing ahybrid quasisolid-state electrolyte combing a polymer electrolyte of poly (methylmethacrylate-styrene)w ith a ceram ic amorphous LiNbO3electrolyte.Thishybrid electrolyteoffersa stable interface toward Lianode and cathode electrode.The enhanced cycling stability shown in Fig.7c and 7d can be attributed to the stable interfacial resistancebetween hybrid quasi-solid-stateelectrolyte(HQSSE) and electrodes.

    Fig.6 Discharge and charge profiles of Li-O2cells in(a)1m ol·L-1EM ITFSI-LiTFSI-0.1%PVDF,(b)1m ol·L-1EM ITFSI-LiTFSI-0.1% PEO68,(c)1mol·L-1LiPF6(PEO 0.5%and Al2O31%,mass fraction),(d)1mol·L-1LiPF6w ithoutany additives in NMP69color online

    Fig.7 Voltage profilesof L i-O2cells at different cyclesusing(a)liquid electrolyte,(b)as-synthesized polym er electrolyte76; (c)the time-dependent EISof the Li/HQSSE/Licellatopen circuit potential, (d)the discharge-chargeprofilesof Li-O2cellassembled w ith HQSSE atdifferentcycles77color online

    A lthough the liquid or IL electrolyte own high ionic conduc-tivity,many safety issuesstill limited their application.Herein,the CSE,SPE or theirm ixture systems display satisfied advantages. Nevertheless,problems arising from all of electrolyte systems associated with the interphase stability will be exposed when permeated into O2,H2O,CO2used in lithium-air batteries.Somuch effortsshould be paid to exploreand developmore compatibleand durable electrolyte system s.

    3.2 Com posite p ro tec t layer and separator

    Except for the in situ SEI,someartificial SEI layers,such as some kinds of polymermembranes or separatorswhich can store electrolyte and provide pathway for ion transportation,havebeen synthesized via skillfulm ixture of ceram ic fillers and polymer additives.Forexample,a polymermembrane consisting of PVDF, LiTFSIand ZrO2exhibitsobviousadvantages to prevent the direct reaction between the LixSn-C anode and the liquid electrolyte (Fig.8aand 8b)78.Fig.8b also verifies the instability of the Li-Sn-C anodewith the permeated O2in theelectrolyte,whichwe have discussed above.

    Lee etal.79reported a composite protective layer comprising A l2O3and PVDF-HFP coated on the Limetal.The CPL closely contactswith Limetaland lowers the resistanceof the cell,which makesagreatcontribution to the cyclic performance(Fig.8c and 8d).The shiny silverand smooth surface of the disassembled Li foil in Fig.8f demonstrates that the CPL can effectively suppress the dendrite formation and separate the liquid electrolyte corrosion.Besides,they also demonstrated a high-performance nonaqueous Li-O2battery through synergistic combination of 2,2,6,6-tetramethylpiperidinyl-1-oxyl(TEMPO)as redoxmediator(RM) with theabovementioned CPL80.As reported81,the RM reactswith the Limetal in theelectrolyte,which isdescribed asself-discharge process.Their experimental results explain the stability of Li interface with CPL when it is in contact with the TEMPO-con-

    Fig.8 Com parison of the third cycle discharge-charge behavior(a)and time-dependent voltage evolution curves(b)of LixSn-C/O2cellsw ith and w ithout the gelpolymermembrane78;discharge-charge profilesof Li-O2cells fabricated using Lielectrode(c)w ithout CPL, (d)w ith CPL,and SEM and optical im ages of Lielectrode(e)w ithout CPL,(f)w ith CPL after 80 cycles79co lor online

    taining electrolyte with increasing storage time as depicted in Fig.9a-9d.

    Fig.9 Charge/discharge p rofiles of Li-O2cells(a)w ithout CPL and(b)w ith CPL at 250m A·g-1(based on them assof carbon),Nyquist plotsof the Li/Lisymmetric cell(c)w ithout CPL and(d)w ith CPL in 1mol·L-1LiClO4/TEGDME containing 0.05mol·L-1TEMPO80color online

    To our know ledge,thewidely-used separatorsareusually porous such as polyethylene(PE).K im et al.82synthesized the porelesspolyurethane(PU)separator resulting from thehigh chain packing density.The poreless PU can preventwater and oxygen from penetrating to Limetalwhile Liion can diffuse freely.They also use redox mediator LiI to test the protective ability in comparisonwith commercialporouspolyethylene(PE)for Li-O2cell (Fig.10aand 10b).Theabsenceof LiOH and uncorroded Limetal indicate that the PU separator can block the diffusion of the LiI and alleviate the side reaction.Besides,the smooth surfaceof Li metal was obtained by using a two-dimensionally ordered nanoporous aluminium oxide separator after 15 cycles in Li-O2cell (Fig.10c and 10d)83.The flatand smooth surface can be attributed to theuniform distribution Li+through porousseparator during the repeated charge and discharge processes.

    The abovementioned artificial SEI(CPL and separators), synthesized via the integrating the liquid electrolytewith ceramic solid or solid polymer fillers,can be w idely broadened.The properties e.g.sizeof the pore,elastic ormechanicalmodulus,ion conductivity,can be tuned or tailored via optimizing the composition and content.Although,the CPLorseparatorscan suppress the volume change of the Limetaland weaken the diffusion ofO2, waterand some other parasitic substances,their durability especially the electrochem icalstability against the Limetaland oxygen reduction species(e.g.O2-)isnotclearand need to be improved because of the lack of long-term cyclic performance in the reported studiesof Li-O2batteries.

    4 Experim en tal techniques

    In order tofully understand and solve the problemsarising from Lianode,the investigations on thenatureof Lianode interphase should rely on the rapid development of modern advanced characterization techniques.At present,the spectroscopic investigationsof SEIon negativeand positiveelectrodes for lithium-ion batterieshavew idely developed with Fourier transform infrared (FTIR)spectroscopy,X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),Raman and surface enhanced Raman scattering(SERS),scanning electronmicroscopy(SEM)and highresolution transm ission electron microscopy(HRTEM)etc.84,85These techniques can be used to study the structure,composition and evolution of thebulk,surfaceand interphaseof SEI.However, ex situ analysisof the SEI(or Limetal)requires to be separated and isolated,this disassemble processmay change the surface morphology,chem ical content and even the structure of SEI. Herein,in situ space-resolution,time-resolution and energy-resolution technologies are favored to providemore reliable and accurate information.

    Liu and his collaborators86reported an operando,spatially resolved phaseand structural investigation on the lithium anode in an operating Li-O2cellusing am icro-focused synchrotron X-ray diffraction(μ-XRD)technique.The experimental set-up and cell design are shown in Fig.11aand 11b.The specialpolyimide tube of the design cell can pass through the high-energy X rays.The results of this time and space-resolutionμ-XRD reveal the conversion of metallic lithium into LiOH in 1mol·L-1LiCF3SO3/ TEGDMEelectrolyte.The thicknessof the LiOH layer increased as the cycle progressed,possibly resulting from the reaction of Liwith H2O formed through the TEGDME decomposition.It prelim inary discloses the reason for the failureof Li-O2cell.The in situ XRD characterization can directly observe phase transition during the electrochem ical reaction.

    Fig.10(a)Voltagep rofiles in the first cycles for PE,PU,PE+LiIand PU+LiIcells in 1mol·L-1LiClO4/TEGDME,(b)XRD patternsand digital photograph im ages of the cyclic L im etal82;SEM im ages of the Lim etalafter 15 cycles(c)w ithout AAO and (d)w ith AAO of Li-O2cell in 1mol·L-1LiNO3/DMAc electrolyte cycled at0.5m A for 1000 s chargeor discharge83coloronline

    Fig.11 Schematic of operandom icro-focused synchrotron X-ray diffraction(μ-XRD)technique(a)and themodedesign of Li-O2cell(b)86

    Scanning probemicroscopy(SPM)in different variations,for example,theatomic forcem icroscopy(AFM)iswellknown for its high-resolution topographic imaging capabilities of characterizing thin film and quantifying 3D roughnessand texture,has been used to study evolution of SEIin Li-ion batteries87-90.Above all,the characterization of SEIon Limetal isa challengebecause of the variety of chemically similar components,enclosed electrolyte species and the sensitive interphase.Herein,the advanced in situ/operando combination techniques,e.g.in situ SERS-DEMS etc.are powerful tools to understand thenatureand quantitatively assess the relationship between Limetaland O2upon forming SEI. Furtherworksareurgent to be conducted.

    5 Conc lusions and ou tlook

    In this review,we summarize the current development on protecting the Limetalanode in aprotic Li-O2battery.Although parasitic reaction and dendrite can be avoided as long as the Li metal is replaced by the alternative counter electrodes,this sacrifices the high energy of Li anode.The integration of organic liquid,polymer,ceram ic and gelelectrolytesw ith robust additives shows promising to constructive electrochem icalandmechanical stable SEIon the Limetal.While the interface stability between the Limetal and the electrolytes,O2etc.still lack definite explanation.Besides,the thermodynamicsand kinetics properties, such as thickness,ion conductivity,mechanicalmodulus of durable SEIhave not be concluded.Fundamental understand the mechanisms of SEI formation are critical to develop safe,longterm rechargeable Li-O2batteries.

    (2)Girishkumar,G.;McCloskey,B.;Luntz,A.C.;Swanson,S.; W ilcke,W.J.Phys.Chem.Lett.2010,1(14),2193. doi:10.1021/jz1005384

    (3)Lu,J.;Li,L.;Park,J.B.;Sun,Y.K.;Wu,F.;Amine,K.Chem. Rev.2014,114(11),5611.doi:10.1021/cr400573b

    (4)Luntz,A.C.;M cCloskey,B.D.Chem.Rev.2014,114(23), 11721.doi:10.1021/cr500054y

    (5)Balaish,M.;K raytsberg,A.;Ein-Eli,Y.Phys.Chem.Chem. Phys.2014,16,2801.doi:10.1039/C3CP54165G

    (6)Chang,Z.W.;Xu,J.J.;Liu,Q.C.;Li,L.;Zhang,X.B.Adv. EnergyMater.2015,5(21),1500633.doi:10.1002/ aenm.201500633

    (7)Feng,N.N.;He,P.;Zhou,H.S.Adv.Energy Mater.2016,6(9), 1502303.doi:10.1002/aenm.201502303

    (8)Geng,D.S.;Ding,N.;Andy Hor,T.S.;Chien,S.W.;Liu,Z.L.; Wuu,D.;Sun,X.L.;Zong,Y.Adv.EnergyMater.2016,6(9), 1502164.doi:10.1002/aenm.201502164

    (9)Abraham,K.M.;Jiang,Z.J.Electrochem.Soc.1996,143(1),1. doi:10.1149/1.1836378

    (10)Oh,S.H.;Black,R.;Pomerantseva,E.;Lee,J.H.;Nazar,L.F. Nat.Chem.2012,4,1004.doi:10.1038/nchem.1499

    (11)Thapa,A.K.;Hidaka,Y.;Hagiwara,H.;Ida,S.;Ishihara,T. J.Electrochem.Soc.2011,158(12),A1483.doi:10.1149/ 2.090112jes

    (12)M cCloskey,B.D.;Scheffler,R.;Speidel,A.;Bethune,D.S.; Shelby,R.M.;Luntz,A.C.J.Am.Chem.Soc.2011,133(45), 18038.doi:10.1021/ja207229n

    (13)Lu,J.;Lei,Y.K.;Lau,C.;Luo,X.;Du,P.;Wen,J.;Assary,R. S.;Das,U.;M iller,D.J.;Elam,J.W.;A lbishri,H.M.;El-Hady, D.A.;Sun,Y.K.;Curtiss,L.A.;Am ine,K.Nat.Commun.2013, 4,2383.doi:10.1038/ncomms3383

    (14)Liu,B.;Yan,P.;Xu,W.;Zheng,J.;He,Y.;Luo,L.Bow den,M. E.;Wang,C.M.;Zhang,J.G.Nano.Lett.2016,16(8),4932. doi:10.1021/acs.nanolett.6b01556

    (15)Wang,Z.D.;You,Y.;Yuan,J.;Yin,Y.X.;Li,Y.T.;Xin,S.; Zhang,D.W.ACSAppl.Mater.Interfaces2016,8(10),6520. doi:10.1021/acsami.6b00296

    (16)Zhang,T.;Liao,K.;He,P.;Zhou,H.S.Energy Environ.Sci. 2016,9,1024.doi:10.1039/C5EE02803E

    (17)Elia,G.A.;Hassoun,J.;Kwak,W.J.;Sun,Y.K.;Scrosati,B.; Mueller,F.;Bresser,D.;Passerini,S.;Oberhumer,P.; Tsiouvaras,N.;Reiter,J.Nano Lett.2014,14(11),6572. doi:10.1021/nl5031985

    (18)Liu,B.;Xu,W.;Yan,P.F.;Sun,X.L.;Bowden,M.E.;Read,J.; Qian,J.F.;Mei,D.H.;Wang,C.M.;Zhang,J.G.Adv.Funct. Mater.2016,26(4),605.doi:10.1002/adfm.201503697

    (19)Le,H.T.T.;Kalubarme,R.S.;Ngo.D.T.;Jadhav,H.S.;Park, C.J.J.Mater.Chem.A 2015,3,22421.doi:10.1039/ C5TA06374D

    (20)M archini,F.;Herrera.S.;Torres,W.;Tesio,A.Y.;W illiams,F. J.;Calvo,E.J.Langmuir2015,319(33),9236.doi:10.1021/acs. langmuir.5b02130

    (21)Giordani,V.;Tozier,D.;Tan,H.J.;Burke,C.M.;Gallant,B. M.;Uddin,J.;Greer,J.R.;M cCloskey,B.D.;Chase,G.V., Addison,D.J.Am.Chem.Soc.2016,138(8),2656. doi:10.1021/jacs.5b11744

    (22)Kim,D.W.;Ahn,S.M.;Kang,J.W.;Suk,J.D.;Kim,H.K.; Kang,Y.K.J.Mater.Chem.A 2016,4,6332.doi:10.1039/ C6TA00371K

    (23)Black,R.;Oh,S.H.;Lee,J.H.;Yim,T.;Adams,B.;Nazar,L.F. J.Am.Chem.Soc.2012,134(6),2902.doi:10.1021/ja2111543

    (24)Nasybulin,E.;Xu,W.;Engelhard,M.H.;Nie,Z.;Li,X.S.; Zhang,J.G.J.Power Sources2013,243,899.doi:10.1016/j. jpow sour.2013.06.097

    (25)Scheers,J.;Lidberg,D.;Sodeyama,K.;Futera,Z.;Tateyama,Y. Phys.Chem.Chem.Phys.2016,18,9961.doi:10.1039/ C5CP08056H

    (26)Qiao,Y.;Ye,S.J.Phys.Chem.C 2016,120(15),8033. doi:10.1021/acs.jpcc.5b11692

    (27)Wang,J.W.;Zhang,Y.L.;Guo,L.M.;Wang,E.K.;Peng,Z.Q. Angew.Chem.Int.Ed.2016,55,1.doi:10.1002/anie.201600793

    (28)David,G.K.;M icha?,T.;Nir,P.;Daniil,M.I.;Carl,V.T.;Yang, S.H.J.Phys.Chem.Lett.2016,7(7),1204.doi:10.1021/acs. jpclett.6b00323

    (29)Giordani,V.;Walker,W.;Bryantsev,V.S.;Uddin,J.;Chase,G. V.;Addison,D.J.Electrochem.Soc.2013,160(9),A 1544. doi:10.1149/2.097309jes

    (30)Roberts,M.;Younesi,R.;Richardson,W.;Liu,J.;Gustafsson, T.;Zhu,J.F.;Edstr?m,K.ECSElectrochem.Lett.2014,3(6), A62.doi:10.1149/2.007406eel

    (31)Zhang,Y.T.;M a,L.P.;Zhang,L.Q.;Peng,Z.Q. J.Electrochem.Soc.2016,163(7),A1270.doi:10.1149/ 2.0871607jes

    (32)Bruce,P.G.;Freunberger,S.A.;Hardw ick,L.J.;Tarascon,J. M.;Nat.Mater.2012,11,19.doi:10.1038/nmat3191

    (33)Kim,H.;Jeong,G.;Kim,Y.U.;Kim,J.H.;Park,C.M.;Sohn, H.J.Chem.Soc.Rev.2013,42,9011.doi:10.1039/C3CS60177C

    (34)Cheng,X.B.;Zhang,R.;Zhao,C.Z.;Wei,F.;Zhang,J.G.; Zhang,Q.Adv.Sci.2015,3(3),1500213.doi:10.1002/ advs.201500213

    (35)Choi,N.S.;Chen,Z.;Freunberger,S.A.;Ji,X.;Sun,Y.K.; Am ine,K.;Yushin,G.;Nazar,L.F.;Cho,J.;Bruce,P.G.Angew. Chem.Int.Ed.2012,51(40),9994.doi:10.1002/ anie.201201429

    (36)Scrosati,B.;Garche,J.J.Power Sources2010,195(9),2419. doi:10.1016/j.jpowsour.2009.11.048

    (37)Zhang,R.;Cheng,X.B.;Zhao,C.Z.;Peng,H.J.;Shi,J.L.; Huang,J.Q.;Wang,J.;Wei,F.;Zhang,Q.Adv.Mater.2016,28 (11),2155.doi:10.1002/adma.201504117

    (38)Elia,G.A.;Bresser,D.;Reiter,J.;Oberhumer,P.;Sun,Y.K.; Scrosati,B.;Passerini,S.;Hassoun,J.ACSAppl.Mater. Interfaces2015,7(40),22638.doi:10.1021/acsami.5b07414

    (39)Assary,R.S.;Lu,J.;Du,P.;Luo,X.;Zhang,X.;Ren,Y.; Curtiss,L.A.;Am ine,K.ChemSusChem 2013,6(1),51. doi:10.1002/cssc.201200810

    (40)Chen,Y.H.;Freunberger,S.A.;Peng,Z.Q.;Bardé,F.;Bruce,P. G.J.Am.Chem.Soc.2012,134(18),7952.doi:10.1021/ ja302178w

    (41)M cCloskey,B.D.;Bethune,D.S.;Shelby,R.M.;M ori,T.; Scheffler,R.;Speidel,A.;Sherwood,M.;Luntz,A.C.J.Phys. Chem.Lett.2012,3(20),3043.doi:10.1021/jz301359t

    (42)Chen,Y.H.;Freunberger,S.A.;Peng,Z.Q.;Fontaine,O.; Bruce,P.G.Nat.Chem.2013,5,489.doi:10.1038/nchem.1646

    (43)Peng,Z.Q.;Freunberger,S.A.;Chen,Y.H.;Bruce,P.G. Science2012,337(6094),563.doi:10.1126/science.1223985

    (44)M a,S.C.;Wu,Y.;Wang,J.W.;Zhang,Y.L.;Zhang,Y.T.;Yan, X.X.;Wei,Y.;Liu,P.;Wang,J.P.;Jiang,K.L.;Fan,S.S.;Xu, Y.;Peng,Z.Q.Nano Lett.2015,15(12),8084.doi:10.1021/acs. nanolett.5b03510

    (45)Chun,J.Y.;Kim,H.;Jo,C.;Lim,E.;Lee,J.;Kim,Y. ChemPlusChem 2015,80(2),349.doi:10.1002/cplu.201402035

    (46)Hassoun,J.;Jung,H.G.;Lee,D.J.;Park,J.B.;Amine,K.;Sun, Y.K.;Scrosati,B.Nano Lett.2012,12(11),5775.doi:10.1021/ nl303087j

    (47)Guo,Z.Y.;Dong,X.L.;Wang,Y.G.;Xia,Y.Y.Chem. Commun.2015,51,676.doi:10.1039/C4CC07315K

    (48)Aurbach,D.;Zinigrad,E.;Cohen,Y.;Teller,H.Solid State Ionics 2002,148(3),405.doi:10.1016/S0167-2738(02)00080-2

    (49)Peled,E.J.Electrochem.Soc.1979,126(12),2047. doi:10.1149/1.2128859

    (50)Aurbach,D.;Pollak,E.;Elazari,R.;Salitra,G.;Kelley,C.; Affintio,J.J.Electrochem.Soc.2009,156(8),A694. doi:10.1149/1.3148721

    (51)Liang,X.;Wen,Z.;Liu,Y.;Wu,M.;Jin,J.;Zhang,H.;Wu,X. J.PowerSources2011,196(22),9839.doi:10.1016/j. jpow sour.2011.08.027

    (52)Zhang,S.S.J.Power Source 2016,322,99.doi:10.1016/j. jpow sour.2016.05.009

    (53)Walker,W.;Giordani,V.;Uddin,J.;Bryantsev,V.S.;Chase,G. V.;Addison,D.J.Am.Chem.Soc.2013,135(6),2076. doi:10.1021/ja311518s

    (54)Aurbach,D.;Daroux,M.;Faguy,P.;Yeager,E.J.Electroanal. Chem.1991,297(12),225.doi:10.1016/0022-0728(91)85370-5

    (55)Younesi,R.;Hahlin,M.;Roberts,M.;Edstrom,K.J.Power Sources2013,225(2),40.doi:10.1016/j.jpow sour.2012.10.011

    (56)Bryantsev,V.S.;Giordani,V.;Walker,W.;Uddin,J.;Lee,I.; Duin,A.C.T.;Chase,G.V.;Addison,D.J.Phys.Chem.C 2013,117(23),11977.doi:10.1021/jp402844r

    (57)Liu,Q.C.;Xu,J.J.;Yuan,S.;Chang,Z.W.;Xu,D.;Yin,Y.B.; Li,L.;Zhong,H.X.;Jiang,Y.S.;Yan,J.M.;Zhang,X.B.Adv. Mater.2015,27(35),5241.doi:10.1002/adma.201501490

    (58)Ding,F.;Xu,W.;Graff,G.L.;Zhang,J.;Sushko,M.L.;Chen, X.L.;Shao,Y.Y.;Engelhard,M.H.;Nie,Z.M.;Xiao,J.;Liu, X.J.;Sushko,P.V.;Liu,J.;Zhang,J.G.J.Am.Chem.Soc. 2013,135(11),4450.doi:10.1021/ja312241y

    (59)Lee,C.K.;Park,Y.J.ACSAppl.Mater.Interfaces2016,8(13), 8561.doi:10.1021/acsam i.5b11709

    (60)Ishikawa,M.;Kawasaki,H.;Yoshimoto,N.;Morita,M. J.PowerSources2005,146(1),199.doi:10.1016/j. jpow sour.2005.03.007

    (61)Kumar,J.;Kumar,B.J.Power Sources2009,194(2),1113. doi:10.1016/j.jpow sour.2009.06.020

    (62)Jadhav,H.S.;Kalubarme,R.S.;Jadhav,A.H.;Seo,J.G. Electrochim.Acta 2016,199,126.doi:10.1016/j. electacta.2016.03.143

    (63)Hasegawa,S.;Imanishi,N.;Zhang,T.;Xie,J.;Hirano,A.; Takeda,Y.;Yamamoto,O.J.Power Sources 2009,189(1),371. doi:10.1016/j.jpowsour.2008.08.009

    (64)Imanishi,N.;Hasegawa,S.;Zhang,T.Hirano,A.;Takeda,Y.; Yamamoto,O.J.Power Sources2008,185(185),1392. doi:10.1016/j.jpowsour.2008.07.080

    (65)Kumar,B.;Kumar,J.;Leese,R.;Fellner,J.P.;Rodrigues,S.J.; Abraham,K.M.J.Electrochem.Soc.2010,c157(1),A50. doi:10.1149/1.3256129

    (66)Wu,S.;Yi,J.;Zhu,K.;Bai,S.;Liu,Y.;Qiao,Y.;Ishida,M.; Zhou,H.Adv.EnergyMater.2016,1601759.doi:10.1002/ aenm.201601759

    (67)Hassoun,J.;Croce,F.;Armand,M.;Scrosati,B.Angew.Chem. Int.Ed.2011,50(13),2999.doi:10.1002/anie.201006264

    (68)Tokur,M.;Algul,H.;Ozcan,S.;Cetinkaya,T.;Uysal,M.; Guler,M.O.;Akbulut,H.Solid State Ionics 2016,286,51. doi:10.1016/j.ssi.2015.12.017

    (69)Tokur,M.;Algul,H.;Cetinkaya,T.;Uysal,M.;Akbulut,H. J.Electrochem.Soc.2016,163(7),A 1326.doi:10.1149/ 2.0961607jes

    (70)Rahman,M.A.;Wang,X.;Wen,C.A.J.Appl.Electrochem. 2014,44(1),5.doi:10.1007/s10800-013-0620-8

    (71)Croce,F.;Sacchetti,S.;Scrosati,B.J.Power Sources2006,161 (1),560.doi:10.1016/j.jpow sour.2006.03.069

    (72)Sarnowska,A.;Polska,I.;Niedzicki,L.;Marcinek,M.; Zalewska,A.Electrochim.Acta 2011,57,180.doi:10.1016/j. electacta.2011.04.079

    (73)Mazor,H.;Golodnitsky,D.;Peled,E.;Wieczorek,W.;Scrosati, B.A.J.Power Sources 2008,178(2),736.doi:10.1016/j. jpowsour.2007.09.056

    (74)Panero,S.;Scrosati,B.;Sumathipala,H.H.;W ieczorek,W. J.PowerSources2007,167(2),510.doi:10.1016/j. jpowsour.2007.02.030

    (75)Zhang,Y.;Wang,L.;Guo,Z.Y.;Xu,Y.F.;Wang,Y.G.;Peng, H.S.Angew.Chem.Int.Ed.2016,55,4487.doi:10.1002/ anie.201511832

    (76)Yi,J.;Liu,X.;Guo,S.;Zhu,K.;Xue,H.;Zhou,H.ACSAppl. Mater.Interfaces2015,7(42),23798.doi:10.1021/ acsami.5b08462

    (77)Yi,J.;Zhou,H.ChemSusChem 2016,9(17),2391.doi:10.1002/ cssc.201600536

    (78)Elia,G.A.;Hassoun,J.Solid State Ionics2016,287,22. doi:10.1016/j.ssi.2016.01.043

    (79)Lee,D.J.;Lee,H.;Song,J.;Ryou,M.H.;Lee,Y.M.;Kim,H. T.;Park,J.K.Electrochem.Commun.2014,40,45. doi:10.1016/j.elecom.2013.12.022

    (80)Lee,D.J.;Lee,H.;Kim,Y.J.;Park,J.K.;Kim,H.T.Adv. Mater.2016,28,857.doi:10.1002/adma.201503169

    (81)Wang,Y.;Xia,Y.Nat.Chem.2013,5,445.doi:10.1038/ nchem.1658

    (82)Kim,B.G.;Kim,J.S.;M in,J.;Lee,Y.H.;Choi,J.H.;Jang,M. C.;Freunberger,S.A.;Choi,J.W.Adv.Funct.Mater.2016,26 (11),1747.doi:10.1002/adfm.201504437

    (83)Kang,S.J.;Mori,T.;Suk,J.;Kim,D.W.;Kang,Y.;Wilcke,W.; Kim,H.C.J.Mater.Chem.A 2014,2,9970.doi:10.1039/ C4TA 01314J

    (84)Wu,C.H.;Weatherup,R.S.;Salmeron,M.B.Phys.Chem. Chem.Phys.2015,17,30229.doi:10.1039/C5CP04058B

    (85)Balbuena,P.B.;Wang,Y.X.Lithium-Ion Batteries:Solid Electrolyte Interphase;ImperialCollege Press:London,2004; pp 140-189.doi:10.1142/p291

    (86)Shui,J.L.;Okasinaki,J.S.;Kenesei,P.;Dobbs,H.A.;Zhao, D.;A lmer,J.D.;Liu,D.J.Nat.Commun.2013,4,2255. doi:10.1038/ncomms3255

    (87)Shen,C.;Wang,S.W.;Jin,Y.;Han,W.Q.ACSAppl.Mater. Interfaces2015,7,25441.doi:10.1021/acsami.5b08238

    (88)Koltypin,M.;Cohen,Y.S.;Markovsky,B.;Cohen,Y.;Aurbach, D.Electrochem.Commun.2002,4,17.doi:10.1016/S1388-2481 (01)00264-8

    (89)M ogi,R.;Inaba,M.;Jeong,S.K.;Iriyama,Y.;Abe,T.;Ogum i, Z.J.Electrochem.Soc.2002,149,A1578.doi:10.1149/ 1.1516770

    (90)Cohen,Y.S.;Cohen,Y.;Aurbach,D.J.Phys.Chem.B 2000, 104,12282.doi:10.1021/jp002526b

    Recent Advances in Li Anode for Aprotic Li-O2Batteries

    ZHANG Yan-Tao1,2LIU Zhen-Jie1,2WANG Jia-Wei1WANG Liang1,2PENG Zhang-Quan1,*
    (1State Key Laboratory ofElectroanalytical Chemistry,Changchun Institute ofApplied Chem istry,Chinese Academy ofSciences, Changchun 130022,P.R.China;2University ofChinese Academy ofSciences,Beijing 100049,P.R.China)

    The ap rotic Li-O2battery has attracted considerab le interest in recent years because of its high theoretica lspecific energy that is fargreater than thatachievable with state-of-the-art Li-ion technologies.To date,most Li-O2studies,based on a cellconfiguration w ith a Limetalanode,apro tic Li+electrolyte and po rous O2cathode,have focused on O2reactions at the cathode.However,these reactionsm ightbe com plicated by the use of Limetalanode.This is because both the electrolyte and O2(from cathode)can reactwith the Limetal and some parasitic products could cross over to the cathode and interferewith the O2reactions occurring therein. In addition,the possibility ofdendrite formation on the Lianode,during itsmultiple plating/stripping cycles,raises serious safety concerns tha t im pede the realization of practical Li-O2cells.Therefore,solutions to these issues are urgently needed to achieve a reversible and sa fety Lianode.This review summarizes recentadvances in this field and strategies forachieving high performance Lianode foruse in aprotic Li-O2batteries.Topics include alternative counter/reference electrodes,electrolytes and additives,composite protection layers and separators, and advanced experimental techniques for studying the Lianode|electrolyte interface.Future developments in rela tion to Lianode foraprotic Li-O2ba tteries a re also d iscussed.

    O646;TM911.41

    rmand,M.;Tarascon,J.M.Nature2008,451,652.

    10.1038/451652a

    doi:10.3866/PKU.WHXB201611181

    www.whxb.pku.edu.cn

    Received:September29,2016;Revised:November18,2016;Published online:November18,2016.

    *Corresponding author.Email:zqpeng@ciac.ac.cn;Tel:+86-431-85262660.

    The projectwas supported by the National Natural Science Foundation of China(21605136,91545129,21575135),“Strategic Priority Research

    Program”of the CAS(XDA09010401),“RecruitmentProgram of GlobalYouth Experts”of China,National Key Research and Development

    Program of China(2016YFB0100100),and Science and Technology Development Program of Jilin Province,China(20150623002TC,

    20160414034GH).

    國(guó)家自然科學(xué)基金(21605136,91545129,21575135),中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(A類)(XDA09010401),國(guó)家青年千人計(jì)劃,國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFB 0100100),吉林省科學(xué)技術(shù)廳科技發(fā)展項(xiàng)目(20150623002TC,20160414034GH)資助?Editorialoffice of Acta Physico-Chim ica Sinica

    猜你喜歡
    金屬鋰負(fù)極中國(guó)科學(xué)院
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    《中國(guó)科學(xué)院院刊》新媒體
    中國(guó)科學(xué)院院士
    ——李振聲
    鋰金屬負(fù)極用集流體改性研究及進(jìn)展
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    金屬鋰制備工藝研究進(jìn)展
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    鋰金屬原電池的發(fā)展與應(yīng)用
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    春色校园在线视频观看| 久久久久人妻精品一区果冻| 在线观看免费日韩欧美大片 | 成人毛片a级毛片在线播放| 久久久久久久久久成人| 蜜桃在线观看..| 老女人水多毛片| 最近2019中文字幕mv第一页| 婷婷色综合www| 一本一本综合久久| 啦啦啦视频在线资源免费观看| 美女内射精品一级片tv| 欧美精品国产亚洲| 精品人妻偷拍中文字幕| 熟女电影av网| av.在线天堂| 国产免费福利视频在线观看| 国产成人精品福利久久| 伦理电影大哥的女人| 欧美激情国产日韩精品一区| 不卡视频在线观看欧美| 久久久久国产网址| 国产白丝娇喘喷水9色精品| 午夜福利在线观看免费完整高清在| 欧美+日韩+精品| 亚洲丝袜综合中文字幕| a级一级毛片免费在线观看| 国产欧美日韩精品一区二区| 久久婷婷青草| 日韩电影二区| h视频一区二区三区| 美女中出高潮动态图| 日韩欧美一区视频在线观看 | 国产精品不卡视频一区二区| av视频免费观看在线观看| 国产成人午夜福利电影在线观看| 国产在线视频一区二区| 麻豆成人av视频| 国产精品一区二区三区四区免费观看| 国产欧美日韩精品一区二区| 国产美女午夜福利| 精品国产乱码久久久久久小说| 毛片女人毛片| 卡戴珊不雅视频在线播放| 超碰av人人做人人爽久久| av国产精品久久久久影院| 欧美zozozo另类| 六月丁香七月| 夜夜骑夜夜射夜夜干| 亚洲欧美清纯卡通| 在线观看免费高清a一片| 欧美日韩视频精品一区| 欧美激情国产日韩精品一区| 欧美激情国产日韩精品一区| 亚洲av二区三区四区| 欧美+日韩+精品| 国产欧美亚洲国产| 亚洲欧美成人精品一区二区| 少妇精品久久久久久久| 亚洲丝袜综合中文字幕| 九草在线视频观看| 亚洲色图av天堂| 亚洲精品aⅴ在线观看| 亚洲av国产av综合av卡| 亚洲欧美精品专区久久| 欧美亚洲 丝袜 人妻 在线| 99热国产这里只有精品6| 亚洲自偷自拍三级| 18禁在线播放成人免费| 高清不卡的av网站| 精品久久久久久久末码| 亚洲av免费高清在线观看| 少妇 在线观看| 亚洲成人一二三区av| 少妇精品久久久久久久| 国产精品99久久久久久久久| 美女脱内裤让男人舔精品视频| 成人毛片a级毛片在线播放| 中文天堂在线官网| 日本午夜av视频| 亚洲av男天堂| 麻豆国产97在线/欧美| 免费大片18禁| 国产在视频线精品| 麻豆精品久久久久久蜜桃| 亚洲美女搞黄在线观看| 亚洲丝袜综合中文字幕| 十八禁网站网址无遮挡 | 91精品一卡2卡3卡4卡| 亚洲色图av天堂| 天堂中文最新版在线下载| 日韩欧美 国产精品| 国产有黄有色有爽视频| 在线观看av片永久免费下载| 成人黄色视频免费在线看| 大码成人一级视频| 超碰av人人做人人爽久久| 日本欧美国产在线视频| 妹子高潮喷水视频| 精品亚洲成国产av| 日韩电影二区| 亚洲在久久综合| 免费av不卡在线播放| 汤姆久久久久久久影院中文字幕| 日本vs欧美在线观看视频 | 一区二区三区四区激情视频| 国产精品嫩草影院av在线观看| 男人狂女人下面高潮的视频| 涩涩av久久男人的天堂| 91狼人影院| 99视频精品全部免费 在线| 亚洲精品,欧美精品| 精品午夜福利在线看| 国产av国产精品国产| 少妇 在线观看| 老女人水多毛片| 日韩成人伦理影院| 全区人妻精品视频| 中文欧美无线码| 国产亚洲欧美精品永久| 欧美zozozo另类| 最近的中文字幕免费完整| 伊人久久国产一区二区| 亚洲国产精品999| 制服丝袜香蕉在线| 一区在线观看完整版| 国产一区亚洲一区在线观看| 一级毛片久久久久久久久女| 最近手机中文字幕大全| 国产无遮挡羞羞视频在线观看| 日本欧美视频一区| 性高湖久久久久久久久免费观看| 国产精品偷伦视频观看了| www.色视频.com| 超碰av人人做人人爽久久| 老司机影院成人| 午夜精品国产一区二区电影| 一级毛片aaaaaa免费看小| 成人免费观看视频高清| 精品人妻偷拍中文字幕| 日韩三级伦理在线观看| 高清不卡的av网站| a级毛色黄片| 久久精品熟女亚洲av麻豆精品| .国产精品久久| 亚洲欧美精品专区久久| 亚洲内射少妇av| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 欧美精品一区二区大全| 欧美亚洲 丝袜 人妻 在线| 国产精品人妻久久久影院| 在线观看免费高清a一片| 久久久久性生活片| 国产免费又黄又爽又色| 国产欧美亚洲国产| 天天躁夜夜躁狠狠久久av| 97超视频在线观看视频| 91久久精品国产一区二区成人| 国产乱来视频区| 国产日韩欧美在线精品| 黄色配什么色好看| 国产精品无大码| 成人特级av手机在线观看| 性色avwww在线观看| 国产精品蜜桃在线观看| 亚洲av在线观看美女高潮| 亚洲在久久综合| 国产极品天堂在线| 亚洲自偷自拍三级| 最后的刺客免费高清国语| 一级av片app| 欧美变态另类bdsm刘玥| 欧美日韩一区二区视频在线观看视频在线| 欧美精品一区二区免费开放| 高清av免费在线| 欧美成人一区二区免费高清观看| 欧美3d第一页| 欧美高清成人免费视频www| 制服丝袜香蕉在线| 久久99热这里只有精品18| 日本爱情动作片www.在线观看| 国产美女午夜福利| 成人综合一区亚洲| 黄色日韩在线| 亚洲精品日韩av片在线观看| 丰满乱子伦码专区| 国产精品久久久久久精品电影小说 | 国产精品99久久99久久久不卡 | 五月伊人婷婷丁香| 久久久久人妻精品一区果冻| 丝袜脚勾引网站| 少妇精品久久久久久久| 成人亚洲精品一区在线观看 | av国产久精品久网站免费入址| 成人二区视频| 色5月婷婷丁香| 2022亚洲国产成人精品| 精品久久国产蜜桃| 中文字幕精品免费在线观看视频 | 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 天美传媒精品一区二区| 免费黄色在线免费观看| 久久精品熟女亚洲av麻豆精品| 男女免费视频国产| 99久久中文字幕三级久久日本| 91精品国产国语对白视频| 建设人人有责人人尽责人人享有的 | 日日摸夜夜添夜夜添av毛片| 91午夜精品亚洲一区二区三区| 国产成人精品婷婷| 一本一本综合久久| 在线观看一区二区三区激情| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 亚洲国产最新在线播放| 老熟女久久久| 国产精品.久久久| 美女主播在线视频| 免费av中文字幕在线| 久久久久网色| 欧美一级a爱片免费观看看| 欧美三级亚洲精品| 日韩大片免费观看网站| 欧美日韩国产mv在线观看视频 | 亚洲成人中文字幕在线播放| 中国国产av一级| 久久精品夜色国产| 久热这里只有精品99| 日本免费在线观看一区| 美女国产视频在线观看| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜免费资源| 日本黄色日本黄色录像| 久久精品人妻少妇| 国产精品爽爽va在线观看网站| 亚洲精品第二区| 精品久久久噜噜| 亚洲黑人精品在线| 高清av免费在线| 丝袜脚勾引网站| 一区二区日韩欧美中文字幕| 人成视频在线观看免费观看| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| 伊人久久大香线蕉亚洲五| 久久女婷五月综合色啪小说| 国产麻豆69| 少妇猛男粗大的猛烈进出视频| 在线亚洲精品国产二区图片欧美| 90打野战视频偷拍视频| 国产精品秋霞免费鲁丝片| 少妇猛男粗大的猛烈进出视频| 极品少妇高潮喷水抽搐| 精品久久久久久久毛片微露脸 | 这个男人来自地球电影免费观看| 少妇的丰满在线观看| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 国精品久久久久久国模美| 超碰97精品在线观看| 色网站视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 脱女人内裤的视频| 国产爽快片一区二区三区| 90打野战视频偷拍视频| 中文字幕人妻熟女乱码| 国产一区二区 视频在线| 丰满饥渴人妻一区二区三| 91精品三级在线观看| 人人妻人人澡人人看| 99国产精品99久久久久| 亚洲精品国产av蜜桃| 性高湖久久久久久久久免费观看| 日本色播在线视频| 精品少妇久久久久久888优播| 精品国产超薄肉色丝袜足j| 亚洲,欧美,日韩| 视频区图区小说| 国产成人免费无遮挡视频| 好男人电影高清在线观看| 亚洲av电影在线进入| 大码成人一级视频| 一级a爱视频在线免费观看| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 18禁裸乳无遮挡动漫免费视频| 精品福利观看| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 黑人欧美特级aaaaaa片| 婷婷成人精品国产| 天天添夜夜摸| 一本—道久久a久久精品蜜桃钙片| 色婷婷久久久亚洲欧美| 少妇被粗大的猛进出69影院| 欧美精品一区二区大全| 久久久久精品国产欧美久久久 | 天天躁日日躁夜夜躁夜夜| 久久久国产欧美日韩av| 性高湖久久久久久久久免费观看| 精品久久久久久电影网| 中文字幕精品免费在线观看视频| av欧美777| 日韩人妻精品一区2区三区| 国产精品一区二区免费欧美 | 亚洲国产精品国产精品| 亚洲欧美精品自产自拍| 伦理电影免费视频| 悠悠久久av| 波野结衣二区三区在线| 91麻豆av在线| 天堂俺去俺来也www色官网| 亚洲精品美女久久av网站| 国产成人免费观看mmmm| a级毛片黄视频| 国产91精品成人一区二区三区 | 男女床上黄色一级片免费看| 国产成人91sexporn| 一边摸一边抽搐一进一出视频| 考比视频在线观看| 久久精品亚洲av国产电影网| 日日摸夜夜添夜夜爱| av在线老鸭窝| a级毛片在线看网站| 一区二区三区四区激情视频| 涩涩av久久男人的天堂| 一级片免费观看大全| 亚洲精品久久午夜乱码| 一个人免费看片子| 亚洲精品久久久久久婷婷小说| 精品高清国产在线一区| avwww免费| 亚洲色图 男人天堂 中文字幕| 又黄又粗又硬又大视频| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码 | 一二三四社区在线视频社区8| 亚洲精品日韩在线中文字幕| 国产免费视频播放在线视频| 亚洲第一av免费看| 在线观看免费日韩欧美大片| 欧美日韩国产mv在线观看视频| 国产又色又爽无遮挡免| 女警被强在线播放| 国产老妇伦熟女老妇高清| 欧美黑人欧美精品刺激| av片东京热男人的天堂| 亚洲欧美一区二区三区国产| 黄色一级大片看看| 亚洲精品国产一区二区精华液| 欧美日韩黄片免| 你懂的网址亚洲精品在线观看| 中国国产av一级| 午夜免费成人在线视频| 视频在线观看一区二区三区| 国产免费一区二区三区四区乱码| 亚洲视频免费观看视频| 久9热在线精品视频| 一本综合久久免费| 午夜福利,免费看| 国产一区亚洲一区在线观看| 亚洲精品国产区一区二| 国产成人精品久久二区二区91| 丁香六月欧美| av视频免费观看在线观看| 日本vs欧美在线观看视频| 国产日韩欧美视频二区| 国产有黄有色有爽视频| 久久久久久久精品精品| av视频免费观看在线观看| 亚洲av男天堂| 欧美亚洲日本最大视频资源| 最近最新中文字幕大全免费视频 | 人妻一区二区av| 极品人妻少妇av视频| 久久人人爽人人片av| 国产男女超爽视频在线观看| 国产精品三级大全| 男人舔女人的私密视频| 免费观看av网站的网址| 制服人妻中文乱码| 精品亚洲成a人片在线观看| 波多野结衣一区麻豆| www日本在线高清视频| 高清视频免费观看一区二区| 操美女的视频在线观看| 啦啦啦啦在线视频资源| 丝袜美腿诱惑在线| 久久99热这里只频精品6学生| 国产一区有黄有色的免费视频| 日本色播在线视频| 欧美日韩av久久| 成人亚洲欧美一区二区av| 日本猛色少妇xxxxx猛交久久| 每晚都被弄得嗷嗷叫到高潮| 亚洲九九香蕉| 国产精品一区二区在线不卡| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品成人在线| 亚洲自偷自拍图片 自拍| 亚洲成av片中文字幕在线观看| 一级片'在线观看视频| 国产欧美日韩一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 国产黄频视频在线观看| 欧美国产精品va在线观看不卡| 国产三级黄色录像| 欧美少妇被猛烈插入视频| 老熟女久久久| 久久精品亚洲av国产电影网| 久久精品亚洲熟妇少妇任你| av有码第一页| 国产精品一区二区在线不卡| 丁香六月天网| 日韩伦理黄色片| av不卡在线播放| 精品亚洲成国产av| 免费观看a级毛片全部| 热99国产精品久久久久久7| 亚洲男人天堂网一区| 国产精品人妻久久久影院| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 最近手机中文字幕大全| 五月开心婷婷网| 国产精品一区二区免费欧美 | kizo精华| 欧美日韩亚洲国产一区二区在线观看 | 精品少妇内射三级| 91麻豆精品激情在线观看国产 | 国产精品国产三级专区第一集| 老司机深夜福利视频在线观看 | 一级片免费观看大全| 人妻人人澡人人爽人人| 999久久久国产精品视频| 成年人黄色毛片网站| 午夜激情av网站| 男女免费视频国产| 午夜日韩欧美国产| 国产伦理片在线播放av一区| 熟女少妇亚洲综合色aaa.| av天堂在线播放| 亚洲精品久久久久久婷婷小说| 国产精品人妻久久久影院| 久久性视频一级片| 狂野欧美激情性bbbbbb| 亚洲精品日韩在线中文字幕| 侵犯人妻中文字幕一二三四区| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 亚洲七黄色美女视频| 中文字幕精品免费在线观看视频| 亚洲欧美精品自产自拍| 热99国产精品久久久久久7| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 国产欧美日韩精品亚洲av| 欧美日韩福利视频一区二区| 国产视频一区二区在线看| 又大又爽又粗| 欧美成人午夜精品| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载| 女人爽到高潮嗷嗷叫在线视频| 最近中文字幕2019免费版| 午夜福利影视在线免费观看| 欧美日韩综合久久久久久| 99九九在线精品视频| 你懂的网址亚洲精品在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美在线一区二区| av在线播放精品| 亚洲精品美女久久久久99蜜臀 | 午夜免费成人在线视频| 国产成人91sexporn| 欧美 日韩 精品 国产| 99国产精品一区二区蜜桃av | 日日爽夜夜爽网站| 久久狼人影院| 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 视频区欧美日本亚洲| 男女国产视频网站| 丝瓜视频免费看黄片| 男人操女人黄网站| 国产精品99久久99久久久不卡| 大型av网站在线播放| 国语对白做爰xxxⅹ性视频网站| 国产三级黄色录像| 久久午夜综合久久蜜桃| 欧美在线黄色| 国产欧美日韩综合在线一区二区| 久久久久网色| www.av在线官网国产| 高清不卡的av网站| 90打野战视频偷拍视频| 精品卡一卡二卡四卡免费| 一级毛片黄色毛片免费观看视频| 亚洲欧美清纯卡通| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 一级片免费观看大全| a级毛片黄视频| 国产精品久久久久久人妻精品电影 | 国产有黄有色有爽视频| 夜夜骑夜夜射夜夜干| 人体艺术视频欧美日本| 一级毛片我不卡| 男女之事视频高清在线观看 | 国产欧美日韩精品亚洲av| 久久99热这里只频精品6学生| 五月开心婷婷网| 天天躁日日躁夜夜躁夜夜| 国产免费福利视频在线观看| 97人妻天天添夜夜摸| 久久精品亚洲av国产电影网| 每晚都被弄得嗷嗷叫到高潮| 菩萨蛮人人尽说江南好唐韦庄| 天天影视国产精品| 国产精品 欧美亚洲| 一区福利在线观看| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 色综合欧美亚洲国产小说| 精品人妻在线不人妻| 亚洲一区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 欧美性长视频在线观看| 交换朋友夫妻互换小说| 国产黄色视频一区二区在线观看| 日韩大码丰满熟妇| 老司机亚洲免费影院| 一级,二级,三级黄色视频| 一区二区三区激情视频| 最新的欧美精品一区二区| 999精品在线视频| 中文字幕人妻熟女乱码| 99热全是精品| 久久精品亚洲av国产电影网| 欧美成人精品欧美一级黄| 这个男人来自地球电影免费观看| 久久久久久免费高清国产稀缺| 国产成人av教育| 欧美 日韩 精品 国产| 日本一区二区免费在线视频| 精品人妻1区二区| 中文精品一卡2卡3卡4更新| 日韩视频在线欧美| 美女扒开内裤让男人捅视频| 考比视频在线观看| 黄片播放在线免费| 亚洲成av片中文字幕在线观看| 久久国产精品人妻蜜桃| 人妻一区二区av| 日日摸夜夜添夜夜爱| 99国产综合亚洲精品| 美女国产高潮福利片在线看| 国产精品国产三级专区第一集| 国产成人欧美| 亚洲国产av新网站| 亚洲伊人色综图| 国产精品亚洲av一区麻豆| 精品亚洲成a人片在线观看| 日本猛色少妇xxxxx猛交久久| 18禁国产床啪视频网站| 高潮久久久久久久久久久不卡| 亚洲视频免费观看视频| 久久久久久久精品精品| 国产精品.久久久| 欧美 亚洲 国产 日韩一| av网站免费在线观看视频| 国产亚洲av高清不卡| 精品国产乱码久久久久久小说| videos熟女内射| www.精华液| 十八禁网站网址无遮挡| 男男h啪啪无遮挡| 丝袜美腿诱惑在线| a 毛片基地| 成年人黄色毛片网站| 女人被躁到高潮嗷嗷叫费观| 少妇人妻 视频| av在线老鸭窝| 激情五月婷婷亚洲| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 交换朋友夫妻互换小说| 热re99久久精品国产66热6| 国产精品秋霞免费鲁丝片| 天堂俺去俺来也www色官网| 99热国产这里只有精品6| 巨乳人妻的诱惑在线观看| 午夜激情久久久久久久| 国产又爽黄色视频| 亚洲综合色网址| 日韩精品免费视频一区二区三区| 搡老乐熟女国产| 久久精品人人爽人人爽视色| 下体分泌物呈黄色| 日本色播在线视频| 亚洲精品一区蜜桃| 国产男女内射视频| 在线精品无人区一区二区三| netflix在线观看网站| cao死你这个sao货| 亚洲精品国产区一区二| 亚洲伊人久久精品综合| 亚洲欧美色中文字幕在线| 国产日韩一区二区三区精品不卡| 久久国产精品大桥未久av|