• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銳鈦礦型TiO2擔(dān)載的Pd催化劑用于乙炔選擇加氫的催化性能及其表征

    2017-05-10 17:42:42高曉平郭章龍周亞男敬方梨儲(chǔ)偉
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:分散度銳鈦礦四川大學(xué)

    高曉平 郭章龍 周亞男 敬方梨 儲(chǔ)偉,*

    (1四川大學(xué)化學(xué)工程學(xué)院,成都610065;2四川大學(xué)新能源與低碳技術(shù)研究院,成都610207)

    銳鈦礦型TiO2擔(dān)載的Pd催化劑用于乙炔選擇加氫的催化性能及其表征

    高曉平1,2郭章龍1,2周亞男1,2敬方梨1儲(chǔ)偉1,2,*

    (1四川大學(xué)化學(xué)工程學(xué)院,成都610065;2四川大學(xué)新能源與低碳技術(shù)研究院,成都610207)

    采用水熱法合成了含有89%{101}晶面的TiO2納米錠(TiO2-101)和77%{001}晶面的TiO2納米片(TiO2-001),將其用作載體來制備擔(dān)載鈀催化劑;研究了上述制備的TiO2納米材料對(duì)Pd/TiO2-101和Pd/TiO2-001催化劑用于乙炔選擇加氫制聚合級(jí)乙烯催化性能的影響。結(jié)果表明,Pd/TiO2-101催化劑表現(xiàn)出更好的乙炔轉(zhuǎn)化率和乙烯收率。通過氫氣程序升溫脫附(H2-TPD)、氫氣程序升溫還原(H2-TPR)、透射電子顯微鏡(TEM)、CO化學(xué)吸附、X射線光電子能譜(XPS)和熱重分析儀(TGA)等對(duì)催化劑進(jìn)行了結(jié)構(gòu)表征和分析。TEM和CO化學(xué)吸附結(jié)果表明,Pd納米顆粒(NPs)在TiO2-101載體上有較小的顆粒尺寸(1.53 nm)和較高的分散度(15.95%);而Pd納米顆粒在TiO2-001載體上的顆粒尺寸是4.36 nm和9.06%的分散度。Pd/TiO2-101催化劑上較小的Pd顆粒尺寸及其較高的分散度使催化劑具有更多的反應(yīng)活性位點(diǎn),這促進(jìn)了其反應(yīng)的催化活性。

    Pd/TiO2催化劑;乙炔選擇加氫;銳鈦礦型TiO2;{101}晶面;結(jié)構(gòu)表征

    1 Introduc tion

    Pd-based catalyst is industrially used for the acetylene selective hydrogenation to remove traceamountof acetylene from ethylene feed stream in the commercial production of polymer-grade polyethylene1,2.However,mostof the supported Pd catalystsshow poor selectivity and stability due to strong adsorption of reactant and producton contiguous Pd sites3,4.Severalattemptshave been considered to improve itsselectivity and stability such as(i)inducing the strong metal-support interaction(SMSI)effect to weaken the adsorption strength of ethylene on Pd surface5,6,(ii) adding a secondmetal(e.g.Ag7-11,Zn12,Ga13,14,In15,16)toform alloywith Pd or to suppress themulti-coordination sitesof the Pd surface,(iii)inducting inertmaterial(e.g.carbonaceous deposits formed by pretreatment with feed gases17),(iv)pretreating by plasma18-20.Previousstudieshave showed that Ti3+specieson the support surface could have contact w ith the Pd nanoparticle surfaces,hereby leading to the SMSIeffect21,22.Mobility of the Ti3+from the lattice of TiO2to the surface of Pd particles is usually facilitated by reduction athigh temperature.According to reports in the literature,the specifically exposed planesof support play a crucial role in determining themetal-support interaction and catalytic behavior due to rather differentatomic species,electron density and coordination environment of various facets23.Some publicationshave clarified that the exposed facets of the support nanocrystals could exert a profound influence on the catalytic performances24,25.

    Recent progress in the synthesis of anatase TiO2nanomaterials enables to select theexposureof desirable crystalplanes,and thus benefitsmore detailed studies on the catalytic behavior of supportedmetalnanoparticleson TiO2.Forexample,Ru nanoparticles loaded on{101}facets of TiO2nanoparticles exhibited almost double higher turnover frequency in CO2methanation than those over{001}facets of TiO2nanosheets26.The{101}planes displayed amuch stronger interaction w ith Ru nanoparticles than the {001}planes,which enhanced the adsorption and activation of CO2and H2molecules.TiO2nanosheets and nanospindleswere applied to disperse vanadia speciesaswell.The{001}facets of TiO2nanosheets benefited the deposition of octahedral vanadia species,whereas the{101}facetsof TiO2nanospindles resulted in the generation of tetrahedral vanadia species.Octahedrally coordinated vanadia specieson TiO2nanosheets show ed amuch higher activity in selective reduction of NO with NH3mainly becauseof theexistenceofmoreV=O sitesand V―O―V links27. The{100}facets of TiO2promoted activation of O2and the formation of Auδ+and improved the catalytic activity for CO oxidation28.A theoretical study based on density functional theory calculationsw ith a Hubbard U correction(DFT+U)reveals that the catalytic activity of selective hydrogenation of acetylene on oxygen defectsurface ismuchhigher than on the perfectonewhen Pd4cluster supported on theanatase TiO2(101)surfaces29.However,the influence of the exposed crystalplanes of TiO2on the catalytic behavior of Pd nanoparticles for acetylene selective hydrogenation to ethylene,which iskey to enhance the catalytic efficiency of noble mental from the viewpoint of electronic structure,havebeen not reported.

    The objective of this reportw as composed in three aspects: firstly to synthesize TiO2nanosheetsmainlywith the{001}facets or nanospindlesmainlyw ith the{101}facets in the presence ofasmorphology-directing agents,respectively;secondly to load Pd NPs on the different shapes of TiO2carriers and characterization of theas-prepared supportsand catalysts;thirdly to investigate theeffectson acetylene selectivehydrogenation to ethylene on these catalysts,and supporting characterization evidences forexplanation of the better performanceof Pd/TiO2-101 sample.In detail,the sampleswere characterized by X-ray diffraction(XRD),Raman spectra,electron spin resonance(ESR), high-resolution transm ission electronm icroscope(HRTEM),X-ray photoelectron spectroscopy(XPS),N2adsorption-desorption, and hydrogen temperature-programmed desorption(H2-TPD), hydrogen temperature-programmed reduction(H2-TPR).In addition,the connection between surface properties of catalystsand catalytic behaviorwasalso investigated.

    2 Experim en tal

    2.1 Catalysts p reparation

    The chemicals(Chengdu Kelong ChemicalReagentCo.,Ltd.) are analyticalgrade and are utilized w ithout further purification. The dom inated{001}facets of anatase TiO2nanosheets were fabricated by hydrothermalmethod as reported in literature30. Typically,25m Lof Ti(OBu)4and 4mL of HFsolution(40%(w, mass fraction))werem ixed in a dried Teflon-lined autoclavew ith a volumeof 100mLand then keptat180°C for24 h.Afterbeing cooled down to ambient temperature,thehydrothermal product waswashedwith 0.1mol·L-1NaOH aqueoussolution to remove fluorine.Then,the white powder was filtrated,washed w ith ethanolaswellasdeionizedwater several times,and dried at80°C for6 h.Finally,theobtained samplewasdenoted asTiO2-001.

    Anatase TiO2nanoparticleswith exposed{101}facetswere prepared by amethod reported by Liu etal.28.TiCl4(6.6m L)was added dropw ise into a0.43mol·L-1aqueoussolution of HCl in an ice bath withmagnetic stirring.The resulting clear TiCl4solution was then added into NH3·H2O solution(5.5%(w))to generate thew hite precipitate Ti(OH)4.This system was kept pH around 6-7 by theaddition of 10mLaqueousNH3·H2O(4%(w)). This precipitatewas recovered by filtration and washing,after aging for 2 h at ambient tem perature.The resulting Ti(OH)4precursor and 0.4 g NH4Cldissolved in am ixture containing 30 mL ofwaterand 30m L of isopropyl alcohol.A suspension was gained after treating with stirring and ultrasonic.Then,the suspension w as transferred to a 100m L Teflon-lined autoclave and kept for 24 h at180°C.Finally,the powerswere filtrated and washed by w ater asw ellasethanoluntil therew asno Clin the mother solution determined by aqueousAgNO3(0.05mol·L-1). Theobtained samplewasnamed asTiO2-101.

    Pd nanoparticleswere loaded onto TiO2nanocrystals(TiO2-101 and TiO2-001)through impregnation.The loading of Pd is1%(w).TiO2nanocrystals(1 g)were put into an aqueousof PdCl2(0.0229 mol·L-1,4.15m L)atambient temperature for4 hw ith stirring. After drying at60°C for12 h,the derived powerswere treated at 400°C for 3 h under N2atmosphere.The gained catalystswere labeled to asPd/TiO2-001 and Pd/TiO2-101,respectively.Elemental analysis by inductively coupled plasma-atom ic em ission spectroscopy(ICP-AES)reveals that thecontentof Pd is0.56%(w)for Pd/TiO2-001 sam ple and 0.57%(w)for Pd/TiO2-101 sam ple, which are lower than theoriginal theoretical content.

    2.2 Characterization of catalysts

    The power X-ray diffraction patternsw ere recorded on DX-2700 diffractometer(Haoyuan,China)using Cu Kαradiation at40 kV and 30mA.The 2θscanning rangewas from 10°to 80°with a scan step of 0.03(°)·s-1in a continuousmode.

    Morphologieswere analyzed on a TecnaiG2F20 transmission electronm icroscope(TEM).The lattice fringes of the catalysts were characterized through ahigh-resolution transmission electron microscope(HRTEM).The sampleswere crushed and dispersed in ethanol,and the resulting suspensionsw ere allow ed to dry on carbon film supported on coppergrids.

    The N2adsorption-desorption isotherms were measured at-196°C using an automated surface area&pore size analyzer (Quantachrome NOVA 1000eapparatus).The specific surfacearea was calculated by the Brunauer-Emmett-Teller(BET)equation.

    The TiO2sampleswerealso investigated by Raman spectroscopy.Radiation of 532 nm from an argon-ion laserwasused for excitation.The instrumentversion is LabRAM HR800.

    Electron spin resonance spectroscopy was conducted under vacuum at-150°C using a JES-FA200 electron spin resonance spectrometer.Itwas performed to qualitativelymonitor the Ti3+specieson the surfaceof the TiO2.

    The hydrogen temperature-programmed reductionmeasurement wasperformed in a fixed-bed reactor atatmospheric pressure.50 mg samplewas loaded in them iddleof reactor tube,and the reductivegasof 5%H2/N2with a totalgas flow rateof 30mL·min-1was introduced.The system was keptat30°C for1 h until the baselinewas stable,and then itwas heated linearly from 30 to 600°C ata heating rate of 10°C·m in-1.The H2uptake amount during the reductionwas recorded by gas chromatograph(SC-200) equipped w ith a thermal conductivity detector(TCD).Prior to hydrogen temperature-programmed desorption(H2-TPD),100mg of catalystswere heated at120°C for 2 h in nitrogen and then placed in H2with a flow rateof 23mL·m in-1for0.5 h at30°C. TPD was carried out in a stream of nitrogenwith a flow rateof 40 m L·m in-1and a temperature ramp of 10°C·m in-1.

    Pulse CO chemisorption was employed to determ ine Pd dispersion on ChemStar TPx chemisorption analyzer.Prior to CO adsorptionmeasurements,the Pd/TiO2sampleswere purged in helium at room temperature for30min.The system wasswitched to H2(30m L·m in-1)and heated to 400°C w ith a heating rate of 5°C·min-1.CO pulseswere injected(50μL of 10%of CO in helium)from a calibrated loop over the Pd/TiO2catalystsat30°C and repeated until the desorption peakswere constant.Thenumber of exposed Pd atoms on the Pd/TiO2catalyst surface was calculated by the totalamountof CO adsorption.In this paper,the CO/ Pd stoichiometry of1 isused for calculation.

    The X-ray photoelectron spectroscopy datawere collected on XSAM 800 spectrometerw ith an A l Kα(hν=1486.6 eV)X-ray source.Thechargingeffectswerecorrected byadjusting thebinding energy ofC 1s peak from carbon contam ination to 284.6 eV.

    The amountof carbonaceous deposited on used catalystswas determ ined by running thermo-gravimetric analysis(on TGA Q500)in airatmosphere(40m L·m in-1).The temperaturewas first keptat30°C for30min,and then increased to 700°Cwitha ramp of 10°C·m in-1.Results of derivative thermogravimetry(DTG) wereobtained from the thermo-gravimetric analysis(TGA)curves by differentiating the latterwith respect to temperature.

    2.3 Se lec tive hyd rogenation of acetylene

    Acetylene selective hydrogenation reactionwas performed in a fixed-bed reactor in the tem perature range from 40 to 80°C at theatmospheric pressurewith agashourly spacevelocity(GHSV) of 30000mL·g-1·h-1.Thegaseous feedw ith a total flow of 50 m L·m in-1contained 1%C2H2,2%H2and the balance N2.0.1 g catalystwasdiluted by 0.4 g quartz sand for the sakeof avoiding temperatureand concentration gradients.Prior to the reaction,the catalystswere pretreated inhydrogen(20mL·min-1)at400°C for 2 h.Before sampling,the reaction temperaturewas keptconstant for 0.5 h before being raised to the next one.The reactants and productswere detected by gas chromatography(GC)equipped with a flame ionization detector(FID).For the sake of reproducible data,five testswere carried out.Conversion of acetylene, selectivity to ethylene,selectivity to ethane,yield towards ethylene,and carbon balance(Bc)are calculated as follow s31:

    3 Resu lts and discussion

    3.1 Crystalline s tructu re of TiO2nanopartic les

    To demonstrate the crystal structure of the TiO2materialsand the Pd/TiO2catalysts,XRD analysis was carried out and the corresponding resultsareexhibited in Fig.1.Allsamplesdisplayed several typical characteristic peaks attributed to theanatase TiO2phase(JCPDS#21-1272,space group:I41/amd(141))32,33.Obviously,the sample TiO2-001(curve C)exhibits relatively stronger diffraction peak at(200)than thatat(004)reflection,indicating a predominantexposureof the{001}facets30,34.Whereas the TiO2-101(curveA)displays a decrease in the(200)reflection and anim provement on intensity of diffraction peak at(004),imp lying theoccupancy of the{101}planes27.Moreover,noobvious change in reflections of Pd/TiO2-101(curve B)and Pd/TiO2-001 catalysts (curve D)is observed w hen com pared w ith the corresponded pristine supports,implying the TiO2nanoparticles remained in the originalstructure andmorphology26.Itshould benoted that there is no X-ray diffractions of Pd species,which is because of the comparatively low loading amount(1%(w),below the detection lim itof XRD)of Pd.The TiO2materialsare further analyzed by Raman spectra(Fig.S1(in Supporting Information))and the resultswere consistentwith the results from XRD analysis.

    Fig.1 XRD patternsof TiO2-101(A),Pd/TiO2-101(B), TiO2-001(C)and Pd/TiO2-001(D)

    Themorphology of the TiO2nanoparticles isstudied by TEM. As shown in Fig.2,TiO2-001 sample exhibits uniform sheet-like shape while the samp le TiO2-101 shows spindle-like shape.The average thickness and side length for the sample TiO2-001 are approximately 5 and 40 nm(Fig.2(a)),respectively.Fig.2(b) shows thatawell-defined sheetstructurewasobserved,which had an interplane spacing of 0.235 nm.A ll of these features implied that the exposed p lanes of anatase TiO2is the{001}facets.In contrast,TiO2-101 samplehasa spindle-likeshapewithan average size of 15.7 nm long and 10 nm w ide(Fig.2(c));from the side view,the interplanar spacing of 0.35 nm is corresponded with the {101}planes of anatase TiO2(Fig.2(d)).On the basis ofWulff construction(Fig.S2(a)and Fig.S2(b)(in Supporting Information)),the percentage of each crystalline facet in the applied samples is calculated.In signal-crystalline TiO2nanospindles,the {101}facetsare the dominant facetswith the ratio of 89%and the other 11%is the{001}facets,while the proportion of{001} planesasw ell as{101}planes in TiO2nanosheets are 77%and 23%,respectively.Hence,in our case,the percentage of each crystalline facet is beyond 75%,demonstrating that the applied TiO2nanomaterials can serveasmodelsupports28.

    Fig.2 TEM,HRTEM im ages of TiO2-001(a,b)and TiO2-101(c,d)

    3.2 Catalytic performances in selec tive hyd rogena tion of acety lene

    Fig.3 Acetylene conversion asa function of tem perature(a)and ethylene yield versus reaction tem perature(b)over Pd/TiO2-001 and Pd/TiO2-101 catalystsata total flow rate of 50m L·m in-1w ith varying reaction tem peratures from 40 to 80°C

    The catalytic behavior of the Pd/TiO2-101 and Pd/TiO2-001 catalystswasevaluated by using partialhydrogenation of acetylene to ethylene as probe reaction under the employed reaction conditions.The catalytic performances of both samples are represented in Fig.3,show ing globally an increase of acetylene conversion with the increasing reaction temperature from 40 to 80°C(Fig.3(a)).The Pd/TiO2-101 catalystexhibits higher acetylene conversion until the reaction temperature reached at70°C (100%for Pd/TiO2-101 vs94%for Pd/TiO2-001)afterwhich full conversion was obtained over the two samples.It isworth noting that the conversion of acetylene isashigh as92%over Pd/TiO2-101 while only 50%is gotten over Pd/TiO2-001.Ow ing to its preferred catalytic performance,Pd/TiO2-101 catalyst surely displays theexcellentyield in ethyleneof 57%at60°C,which is 1.9 timeshigher than thoseover Pd/TiO2-001 catalyst(Fig.3(b)). The preferable catalytic activity of the Pd/TiO2-101 catalystm ight be assigned to its large specific surface area35,high Pd dispersion36,37leading to the formation of more active centers.The selectivity toward ethylene on both catalysts decreased with the increasing conversion(Fig.S3(in Supporting Information)),which is due to the fact that the ethylene is produced asan intermediate in acetylene semi-hydrogenation reaction.Furthermore,Pd/TiO2-101 catalyst shows higher selectivity in ethylenewhen compared with that of the Pd/TiO2-001 catalyst on the basis of equal conversion.The selectivity to ethane(Fig.S4(a)(in Supporting Information))increasesw ith the increasing temperature,especially after60°C.As shown in Fig.S4(b)(in Supporting Information), the carbon balance in both cases is close to 100%.

    3.3 Tex ture p roperties of the cata lys ts

    In order to explain the difference in the catalytic activity of the two Pd/TiO2catalysts,the structure and size of the Pd nanoparticleswere characterized by TEM and HRTEM,and the resultsare shown in Fig.4.The HRTEM image of Pd/TiO2-101(Fig.4(d)) shows that Pd NPs distribute homogeneously w ithout apparent accumulation,while some Pd NPs on the Pd/TiO2-001 catalyst accumulate after reduction(Fig.4(a)).More than 100 Pd nanoparticlesare obtained from different regions,random ly selected for the sakeof getting theaverage sizeof Pd and the results aredisplayed in thehistograms(Fig.4(c,f)).Aswe can see,thePd/ TiO2-101 catalysthas anarrow size distribution in the range from 1.00 to 2.20 nm and the average size of Pd particles is 1.53 nm which is rather small than thatof Pd/TiO2-001 catalyst(4.36 nm). It is obviously observed that the dispersion of the Pd/TiO2-101 catalystishigher than thatof thePd/TiO2-001 catalyst.This result isw ellagreementw ith theCO chem isorption(Table 1).Remarkably,thenarrower size distribution,smalleraverage particle size and higher dispersion of the Pd/TiO2-101 catalyst can be ascribed to twofactors.The specific surface areas of TiO2-101 were significantly larger than thatof TiO2-001.The BET specific surface areas,nitrogen adsorption-desorption isothermsand BJH pore-size distributionsof the samp lesare given in Fig.S5 and Table S1(in Supporting Information).Generally,thehigher surface areaof the TiO2-101 could contribute to higher dispersion of Pd NPs,w hich facilitates theenhancementof the catalytic activity38,39.This result was accordancew ith the tendency of catalytic behavior in Fig.3. Besides,as reported in the literature,high dispersion of Pd NPs can also be attributed to the strongmetal-support interaction effect40,41.The follow ing section will demonstrate this effectof the Pd/TiO2-101 catalyst.

    Based on the reported results in literature42,we can conjecture that Ti3+species combined w ith Pd surface in the interfacem ight play the part of a new reaction sitewhich can greatly improve hydrogen activation aswellas itsdissociation.Although H2-TPD isunable to give direct information about the hydrogen activation/ dissociation ability of the catalysts,itcan supply evidenceon the recombination of atom ic hydrogen,quantity and which kind of hydrogen desorption.Therefore,H2-TPD tests over the two cat-

    Fig.4 TEM imagesand the corresponding Pd particlessizedistributionsof Pd/TiO2catalysts(a,b,c)Pd/TiO2-001 and(d,e,f)Pd/TiO2-101

    Tab le 1 Proper ties of the Pd/TiO2-001 and Pd/TiO2-101 catalysts

    Sample Pd/TiO2-001 Pd/TiO2-101 Pd loadinga/%

    0.56

    0.57 Pd/Ti 0.025 0.018adeterm ined by ICP-AES;bBET surface area;cdeterm ined by HRTEM;ddeterm ined by CO pu lse;ebased on XPS resu lts Surface areab/(m2·g-1)

    51

    89 Particlesizec/nm

    4.36

    1.53 Pd dispersiond/%

    9.06

    15.95 Surfaceatomic compositione/% Pd

    0.72

    0.48

    Ti 28.64 26.91 alystswere performed and the resultsare delivered in Fig.5.Both catalystsshow twomain peaks(α,β)of desorbed H2,indicating that at least two types of active centers exist on the catalysts surface.Theβ-peak athigher temperature isassociatedw ith the desorption of hydrogen adsorbed strongly,while theα-peak at low tem perature that ismore w eakly bounded to catalysts surface arises from the desorption of physically adsorbed hydrogen43-45. With regard to Pd/TiO2-101 catalyst,the intensity ofβ-peak remarkably increases comparing w ith Pd/TiO2-001 sample,suggesting thatH2dissociation/activation occursmoreeasily on the Pd/TiO2-101 catalyst.

    As reported in the literature46,the Ti3+species in TiO2materials are produced by trapping of electronsatdefectivesitesof TiO2and the quantity of gathered electronsm ight reflect the amount of defectsites.Nakaoka and Nosaka47reported six signals of ESR technology occurring on the surfaceof TiO2:(i)Ti4+OTi4+OH-

    ,(ii) surface Ti3+,(iii)adsorbed oxygen(O2-),(iv)Ti4+O2-Ti4+O2-,(v) inner Ti3+,and(vi)adsorbedwater.Therefore,ESR experiments were carried out over TiO2-001 and TiO2-101 catalysts for qualitatively studying the Ti3+defects,asshown in Fig.6.In our study, it isobviously seen thatboth TiO2-001 and TiO2-101 supportsshow only one strong signalat g valuesof 1.997(less than 2),which can beascribed to Ti3+(3d1)on the surface48.Moreover,the relatively higher intensity of the Ti3+signalover the TiO2-101 support than thatof the TiO2-001 implied significantamountof surface Ti3+defects on TiO2-101 support.In view of the catalytic results,the Pd NPs loaded on TiO2-101 withmore Ti3+defective sites presentedmuch higheractivity than thoseon the TiO2-001 support which indicated that the presence of Ti3+defectsmay contribute to the catalytic performance.

    H2-TPR experimentswere performed to investigate the influence of the supportmaterialson the reducibility of Pd speciesand the results are depicted in Fig.7.A negative peak is observed at about 80°C on both catalysts,which was attributed to the decomposition of the palladium hydride formed by exposure to hydrogen atambient temperature49.Noticeably,on Pd/TiO2-101 catalyst,this negative peak w ith slightly lower peak area occurs at slightly lower temperature and a small H2consumption peaks located at105°Cwasobserved.This resultsuggests that there is higher dispersion of Pd nanoparticles on the TiO2-101 supportand implied that the interaction between Pd nanoparticles and TiO2-101 supportm ightbe stronger than thatbetween Pd nanoparticles and TiO2-001 support50,51.Aswell-known,palladium hydride is related to the particle sizeof Pd,and palladium hydride decreases w ith increasing in dispersion of Pd(decreasing Pd crystallite size)52-54.The previous study indicated that the improvement in dispersion of Pdmay be correlatedwith the presence of abundant Ti3+specieson TiO2-101 support55.Considering the reduction peak of TiO2at high temperature,the broad peak between 300 and 450°C isbecause of the reduction of Ti4+(nearby or interactingwith the Pd nanoparticles)to Ti3+.Asdiscussed in the references56, the dissociative hydrogen chem isorbed on palladium may transfer from Pd nanoparticle surface to TiO2supportand thus reduce Ti4+to Ti3+.

    Fig.5 H2-TPD profilesof the Pd/TiO2-001 and Pd/TiO2-101 catalysts

    Fig.6 ESR spectra of TiO2-001 and TiO2-101 catalysts

    Fig.7 H2-TPR profilesof catalysts(a)Pd/TiO2-001 and (b)Pd/TiO2-101

    The surface atom ic compositionsof Pd/TiO2-001 and Pd/TiO2-101 catalystswere analyzed by XPSmeasurements.The results of Pd/TiO2-001 and Pd/TiO2-101 sampleswere given in Table1. Itcan be seen thatPd/TiO2-101 catalystgivesa lower atomic ratio of Pd/Ti(0.018)than thatof Pd/TiO2-001(0.025),which could be due to decoration of Pd0metal surface by themobile reducible TiO2.Reducible TiO2can be reduced at high temperature and consequentlymigrate onto the Pd surface,which enhanced the Pd electron density and thenweakened theethyleneadsorption,thus the selectivity of ethylene is improved19,50,57,58.

    The catalystswere characterized using CO pulse chem isorption to determ ine the palladium dispersion(Table 1).The dispersion of Pd/TiO2-101 is15.95%,which is higher than thatof Pd/TiO2-001(9.06%).Thisbetter dispersion of Pd/TiO2-101 catalyst implied a largernumberof active sites than thaton the Pd/TiO2-001 samp le,w hich is considered as one of the key reasons for the catalytic performanceenhancement.

    3.4 Catalytic stabilitym easu rem en t

    The catalyststabilitywas tested on both Pd/TiO2-001 and Pd/ TiO2-101 samplesat70°C.From the results in Fig.8,theacetylene conversion decreased from 100%to 97.1%for Pd/TiO2-101 catalystsw ith reaction time on stream of 900min.While thatwas from 95.5%to 92.4%for the Pd/TiO2-001 sample after reaction for900m in.

    The deactivation of Pd-based catalysts for selective hydrogenation of acetylene was mainly caused by accumulation of hydrocarbon specieswhich hindered notonly the pathway of H2and C2H2to the active sitesbutalso the release of C2H459.Thus TGA wasperformed to study the carbon deposition on the spentcatalystsafter the stability experiment,asshown in Fig.9.For the Pd/ TiO2-001 sam ple,the weight loss below 165°C can be assigned to the loss of water,while theweight loss after 165°C can be attributed to the oxidation or decomposition of carbonaceous deposits formed on the catalysts.The quantitative calculation is done based on the weight loss between 165 and 440°C.The amountof deposited carbonaceousspecies for theused Pd/TiO2-001 was13.6 g·g-1(gram carbonaceous per gram catalyst),and thatwas11.55 g·g-1(gram carbonaceouspergram catalyst)for the Pd/TiO2-101 catalysts.

    Fig.8 Durability test for Pd/TiO2-001 and Pd/TiO2-101 catalystsat70°C

    Fig.9 TGA/DTG resultsof(a)Pd/TiO2-001 and(b)Pd/TiO2-101 after the durability tests at 70°C for 900m in

    Moreover,the corresponding DTG results of Pd/TiO2-001 catalyst comprises two peaksat299 and 355°C,which imply two types of carbonaceousspecies.However,the DTG profiles of the spent Pd/TiO2-101 catalyst is sim ilar but less resolved after reaction of 900min.According to the literature60-62,the peak at 281°C is associated w ith the combustion of trapped hydrocarbons absorbed in catalyst pores or on the catalyst surface.The peak centered at343°C can be assigned to the combustion of amorphous carbon located on or in the vicinity of Pd NPs,a precursor of graphitic carbon thathasa structure of oligomeric hydrocarbon, CxHy,which decreases theutilizability of H2and/or C2H2.What′s more,thepeak areaof the Pd/TiO2-101 catalystathigh temperature issignificantly smaller than thatof Pd/TiO2-001,implying higher resistance against carbonaceous compound deposition and hence possessing better stability.

    4 Conc lusions

    We have synthesized two types of Pd/TiO2catalysts w ith differentcrystal-planeof TiO2supports({101}and{001}facets)and investigated the effects on catalytic properties in the selective hydrogenation of acetylene to ethylene reaction.The characterization resultsshowed thata smaller particles and higher Pd NPs dispersion on Pd/TiO2-101 catalyst than thaton the Pd/TiO2-001 catalyst.Pd/TiO2-101 catalystpresentsignificantly higher catalyticactivity than thatof Pd/TiO2-001 catalyst.The catalytic behavior is dependenton the exposed facetsof TiO2supports.These results notonlymanifested that the structureand catalytic properties of Pd/TiO2catalysts can be tuned by controlling the crystal-planeof the TiO2support,butalso greatly deepened the understanding of the selective hydrogenation of acetylene reaction by Pd/TiO2catalysts.

    Acknow ledgment:We would like to thank LIU Ming(Sichuan University),LIU Yue-Feng(Institute of Metal Research, CAS),and ZHENG Jian(Southwest University of Science and Technology)for their assistanceson TEM and Ramanmeasurement;meanwhile,wealso thank CHENMin(Sichuan University), LIAO Xue-Mei(Xihua University),DENG Jie(Chengdu University),and ZHENG Jian foruseful discussion and helps.GAO Xiao-Ping thanks the China ChengDa Engineering Co.,Ltd for scholarship.

    Suppo rting In form a tion:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)Kuhn,M.;Lucas,M.;Claus,P.Ind.Eng.Chem.Res.2015,54, 6683.doi:10.1021/acs.iecr.5b01682

    (2)Studt,F.;Abild-Pedersen,F.;Bligaard,T.;S?rensen,R.Z.; Christensen,C.H.;N?rskov,J.K.Science 2008,320,1320. doi:10.1126/science.1156660

    (3)Kim,S.K.;Kim,C.;Lee,J.H.;Kim,J.;Lee,H.;Moon,S.H. J.Catal.2013,306,146.doi:0.1016/j.jcat.2013.06.018

    (4)Crespo-Quesada,M.;Yarulin,A.;Jin,M.;Xia,Y.;Kiw i-M insker,L.J.Am.Chem.Soc.2011,133,12787.doi:10.1021/ ja204557m

    (5)Hong,J.;Chu,W.;Chen,M.;Wang,X.;Zhang,T.Catal. Commun.2007,8,593.doi:10.1016/j.catcom.2006.08.010

    (7)Pei,G.X.,Liu,X.Y.;Wang,A.;Lee,A.F.;Isaacs,M.A.;Li,L.; Pan,X.;Yang,X.;Wang,X.;Tai,Z.;Wilson,K.;Zhang,T.ACS Catal.2015,5,3717.doi:10.1021/acscatal.5b00700

    (8)Lee,J.H.;Kim,S.K.;Ahn,I.Y.;Kim,W.J.;Moon,S.H. Catal.Commun.2011,12,1251.doi:10.1016/j. catcom.2011.04.015

    (9)Wang,Z.Q.;Zhou,Z.M.;Zhang,R.;Li,L.;Cheng,Z.M.Acta Phys.-Chim.Sin.2014,30,2315.[王沾祺,周志明,張銳,李莉,程振民.物理化學(xué)學(xué)報(bào),2014,30,2315.]doi:10.3866/PKU. WHXB201410152

    (10)Gu,H.;Xu,B.L.;Zhou,J.;Li,Y.Z.;Fan,Y.N.Acta Phys.-Chim.Sin.2006,22,712.[顧虹,許波連,周靜,李遠(yuǎn)志,范以寧.物理化學(xué)學(xué)報(bào),2006,22,712.]doi:10.3866/ PKU.WHXB20060613

    (11)Guo,Z.L.;Huang,L.Q.;Chu,W.;Luo,S.Z.Acta Phys.-Chim. Sin.2014,30,723.[郭章龍,黃麗瓊,儲(chǔ)偉,羅仕忠.物理化學(xué)學(xué)報(bào),2014,30,723.]doi:10.3866/PKU.WHXB201402242

    (12)Kontapakdee,K.;Panpranot,J.;Praserthdam,P.Catal. Commun.2007,8,2166.doi:10.1016/j.catcom.2007.03.003

    (13)He,Y.;Liang,L.;Liu,Y.;Feng,J.;Ma,C.;Li,D.J.Catal. 2014,309,166.doi:10.1016/j.jcat.2013.09.017

    (14)Osswald,J.;Giedigkeit,R.;Jentoft,R.;Armbruster,M.; Girgsdies,F.;Kovnir,K.;Ressler,T.;Grin,Y.;Schlogl,R. J.Catal.2008,258,210.doi:10.1016/j.jcat.2008.06.013

    (15)Neumann,M.;Teschner,D.;Knop-Gericke,A.;Reschetilowski, W.;A rmbrüster,M.J.Catal.2016,340,49.doi:10.1016/j. jcat.2016.05.006

    (16)Gao,Z.;Zhang,Y.;Li,D.;Werth,C.J.;Zhang,Y.;Zhou,X. J.Hazard.Mater.2015,286,425.doi:10.1016/j. jhazmat.2015.01.005

    (17)Teschner,D.;Borsodi,J.;Wootsch,A.;Révay,Z.;H?vecker,M.; Knop-Gericke,A.;Jackson,S.D.;Schl?gl,R.Science2008, 320,86.doi:10.1126/science.1155200

    (18)Chen,M.H.;Chu,W.;Dai,X.Y.;Zhang,X.W.Catal.Today 2004,89,201.doi:10.1016/j.cattod.2003.11.027

    (19)Li,Y.;Jang,B.W.L.Appl.Catal.A 2011,392,173.doi:10.1016/ j.apcata.2010.11.008

    (20)Chu,W.;Xu,J.;Hong,J.;Lin,T.;Khodakov,A.Catal.Today 2015,256,41.doi:10.1016/j.cattod.2015.05.024

    (21)Panpranot,J.;Nakkararuang,L.;Ngamsom,B.;Praserthdam,P. Catal.Lett.2005,103,53.doi:10.1007/s10562-005-6502-x

    (22)Panpranot,J.;Kontapakdee,K.;Praserthdam,P.Appl.Catal.A 2006,314,128.doi:10.1016/j.apcata.2006.08.024

    (23)Wang,N.;Qian,W.;Chu,W.;Wei,F.Catal.Sci.Technol.2016, 6,3594.doi:10.1039/c5cy01790d

    (24)Si,R.;Flytzani-Stephanopoulos,M.Angew.Chem.Int.Ed. 2008,47,2884.doi:10.1002/anie.200705828

    (25)Liu,L.;Yao,Z.;Deng,Y.;Gao,F.;Liu,B.;Dong,L. ChemCatChem 2011,3,978.doi:10.1002/cctc.201000320

    (26)Wang,F.;Zhang,S.;Li,C.;Liu,J.;He,S.;Zhao,Y.;Yan,H.; Wei,M.;Evans,D.G.;Duan,X.RSCAdv.2014,4,10834. doi:10.1039/c3ra47076h

    (27)Shi,Q.;Li,Y.;Zhou,Y.;M iao,S.;Ta,N.;Zhan,E.;Liu,J.; Shen,W.J.Mater.Chem.A 2015,3,14409.doi:10.1039/ c5ta02897c

    (28)Liu,L.;Gu,X.;Cao,Y.;Yao,X.;Zhang,L.;Tang,C.;Gao,F.; Dong,L.ACSCatal.2013,3,2768.doi:10.1021/cs400492w

    (29)Yang,J.;Cao,L.X.;Wang,G.C.J.Mol.Model.2012,18, 3329.doi:10.1007/s00894-011-1337-4

    (30)Han,X.;Kuang,Q.;Jin,M.;Xie,Z.;Zheng,L.J.Am.Chem. Soc.2009,131,3152.doi:10.1021/ja8092373

    (31)He,Y.;Fan,J.;Feng,J.;Luo,C.;Yang,P.;Li,D.J.Catal.2015, 331,118.doi:10.1016/j.jcat.2015.08.012

    (32)Tan,Z.;Sato,K.;Takami,S.;Numako,C.;Umetsu,M.;Soga, K.;Nakayama,M.;Sasaki,R.;Tanaka,T.;Ogino,C.;Kondo, A.;Yamamoto,K.;Hashishin,T.;Ohara,S.RSCAdv.2013,3,19268.doi:10.1039/c3ra43383h

    (33)Zheng,J.;Liu,Z.;Liu,X.;Yan,X.;Li,D.;Chu,W.J.Alloy. Compd.2011,509,3771.doi:10.1016/j.jallcom.2010.12.152

    (34)Tian,F.;Zhang,Y.;Zhang,J.;Pan,C.J.Phys.Chem.C 2012, 116,7515.doi:10.1021/jp301256h

    (35)Komhom,S.;Mekasuwandum rong,O.;Praserthdam,P.; Panpranot,J.Catal.Commun.2008,10,86.doi:10.1016/j. catcom.2008.07.039

    (36)Sárkány,A.;Schay,Z.;Frey,K.;Széles,é.;Sajó,I.Appl.Catal. A 2010,380,133.doi:10.1016/j.apcata.2010.03.042

    (37)M enezes,W.G.;A ltmann,L.;Zielasek,V.;Thiel,K.;B?umer, M.J.Catal.2013,300,125.doi:10.1016/j.jcat.2012.12.023

    (38)Vincent,M.J.;Gonzalez,R.D.Appl.Catal.A 2001,217,143. doi:10.1016/S0926-860X(01)00586-5

    (39)Wang,N.;Xu,Z.;Deng,J.;Shen,K.;Yu,X.;Qian,W.;Chu,W.; Wei,F.ChemCatChem 2014,6,1470.doi:10.1002/ cctc.201300720

    (40)Douidah,A.;Marécot,P.;Szabo,S.;Barbier,J.Appl.Catal.A 2002,225,21.doi:10.1016/S0926-860X(01)00627-5

    (41)Dole,H.A.E.;Safady,L.F.;Ntais,S.;Couillard,M.;Baranova, E.A.J.Catal.2014,318,85.doi:10.1016/j.jcat.2014.07.003

    (42)Panagiotopoulou,P.;Kondarides,D.I.J.Catal.2009,267,57. doi:10.1016/j.jcat.2009.07.014

    (43)Yu,W.Y.;Mullen,G.M.;Mullins,C.B.J.Phys.Chem.C 2013, 117,19535.doi:10.1021/jp406736b

    (44)Huang,L.;Chu,W.;Zhang,T.;Yin,Y.;Tao,X.J.Nat.Gas Chem.2009,18,35.doi:10.1016/S1003-9953(08)60082-1

    (45)Han,X.;Chu,W.;Ni,P.;Luo,S.Z.;Zhang,T.J.Fuel Chem. Technol.2007,35,691.doi:10.1016/S1872-5813(08)60004-3

    (46)Ikeda,S.;Sugiyama,N.;Murakami,S.Y.;Kominami,H.;Kera, Y.;Noguchi,H.;Uosaki,K.;Torimoto,T.;Ohtani,B.Phys. Chem.Chem.Phys.2003,5,778.doi:10.1039/b206594k

    (47)Nakaoka,Y.;Nosaka,Y.J.Photochem.Photobiol.A 1997,110, 299.doi:10.1016/S1010-6030(97)00208-6

    (48)Salama,T.M.;Hattori,H.;Kita,H.;Ebitani,K.;Tanaka,T. J.Chem.Soc.Faraday Trans.1993,89,2067.doi:10.1039/ FT9938902067

    (49)M cCue,A.J.;M cKenna,F.M.;Anderson,J.A.Catal.Sci. Technol.2015,5,2449.doi:10.1039/c5cy00065c

    (50)Riyapan,S.;Boonyongmaneerat,Y.;Mekasuwandum rong,O.; Praserthdam,P.;Panpranot,J.Catal.Today 2015,245,134. doi:10.1016/j.cattod.2014.07.017

    (51)Neyertz,C.;Volpe,M.Co lloids Surf.A 1998,136,63. doi:10.1016/S0927-7757(97)00249-5

    (52)Ziemecki,S.B.;M ichel,J.B.;Jones,G.A.Reac.Solids1986, 2,187.doi:10.1016/0168-7336(86)80082-1

    (53)Gómez-Quero,S.;Cárdenas-Lizana,F.;Keane,M.A.Ind.Eng. Chem.Res.2008,47,6841.doi:10.1021/ie0716565

    (54)Aytam,H.P.;Akula,V.;Janmanchi,K.;Kamaraju,S.R.R.; Panja,K.R.;Gurram,K.;Niemantsverdriet,J.W.J.Phys. Chem.B 2002,106,1024.doi:10.1021/jp012357a

    (55)Panpranot,J.;Kontapakdee,K.;Praserthdam,P.J.Phys.Chem. B 2006,110,8019.doi:10.1021/jp057395z

    (56)Xu,J.;Sun,K.;Zhang,L.;Ren,Y.;Xu,X.Catal.Commun. 2005,6,462.doi:10.1016/j.catcom.2005.04.006

    (57)Liu,Y.N.;Feng,J.T.;He,Y.F.;Sun,J.H.;Li,D.Q.Catal.Sci. Techno l.2015,5,1231.doi:10.1039/c4cy01160k

    (58)Kim,E.;Shin,E.W.;Bark,C.W.;Chang,I.;Yoon,W.J.;Kim, W.J.Appl.Catal.A 2014,471,80.doi:10.1016/j. apcata.2013.11.036

    (59)Zhang,S.;Chen,C.Y.;Jang,B.W.L.;Zhu,A.M.Catal.Today 2015,256,161.doi:10.1016/j.cattod.2015.04.002

    (60)Pachulski,A.;Sch?del,R.;Claus,P.Appl.Catal.A 2011,400, 14.doi:10.1016/j.apcata.2011.03.019

    (61)Lopez,E.;Ordonez,S.;Diez,F.V.Appl.Catal.B 2006,62,57. doi:10.1016/j.apcatb.2005.06.014

    (62)Azizi,Y.;Petit,C.;Pitchon,V.J.Catal.2008,256,338. doi:10.1016/j.jcat.2008.04.003

    Cata lytic Perform ance and Charac terization of Anatase TiO2Suppo rted Pd Catalysts for the Selec tive Hyd rogenation of Acety lene

    GAO Xiao-Ping1,2GUO Zhang-Long1,2ZHOU Ya-Nan1,2JING Fang-Li1CHUWei1,2,*
    (1Schoo l ofChem ical Engineering,Sichuan University,Chengdu 610065,P.R.China;
    2Institute ofNew Energy and Low-Carbon Technology,Sichuan University,Chengdu 610207,P.R.China)

    Anatase TiO2nanospindles containing 89%exposed{101}facets(TiO2-101)and nanosheets with 77%exposed{001}facets(TiO2-001)were hydrotherma lly synthesized and used as supports for Pd catalysts. The effec ts of the TiO2m aterials on the cata lytic performance of Pd/TiO2-101 and Pd/TiO2-001 catalysts we re investigated in the selective hyd rogenation ofacetylene to po lymer-grade ethylene.The Pd/TiO2-101 catalyst exhibited enhanced performance in terms ofacetylene conversion and ethylene yield.To understand these effects,the cata lystswere characterized by H2temperature-programmed desorption(H2-TPD),H2temperatureprogrammed reduction(H2-TPR),transm ission electronm icroscopy(TEM),pulse CO chem isorption,X-ray photoelectron spectroscopy(XPS),and thermog ravim etric analysis(TGA).The TEM and CO chem isorption results confirmed thatPd nanoparticles(NPs)on the TiO2-101 supporthad a smalleraverage particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO2-001 support(average particle size of4.36 nm and dispersion of9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO2-101 catalystprovided more reaction active sites,which contributed to the im proved catalytic activity of this supported catalyst.

    Pd/TiO2catalyst;Acetylene selective hydrogenation;Anatase TiO2;{101}p lane;Structure characterization

    .Email:chuwei1965@scu.edu.cn;Tel:+86-28-85403836.

    Theprojectwas supported by theNationalNatural Science Foundation of China(21476145).

    國家自然科學(xué)基金(21476145)資助項(xiàng)目?Editorialoffice of Acta Physico-Chim ica Sinica

    O643

    im,W.J.;Moon,S.H.Catal.Today2012,185,2.

    10.1016/j.cattod.2011.09.037

    doi:10.3866/PKU.WHXB201611251

    www.whxb.pku.edu.cn

    Received:August26,2016;Revised:November25,2016;Published online:November25,2016.*

    猜你喜歡
    分散度銳鈦礦四川大學(xué)
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    貴州水城龍場銳鈦礦礦床地質(zhì)特征及成因
    燃?xì)廨啓C(jī)燃燒室部件故障研究
    熱力透平(2020年2期)2020-06-22 06:27:12
    基于第一性原理研究Y摻雜銳鈦礦TiO2的磁光性質(zhì)
    9FA燃機(jī)燃燒監(jiān)測系統(tǒng)介紹及案例分析
    一種銳鈦礦二氧化鈦/碳復(fù)合材料的制備方法
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計(jì)算
    百年精誠 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    開煉機(jī)混煉膠炭黑分散度數(shù)學(xué)模型研究
    亚洲国产精品成人综合色| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧洲日产国产| 午夜亚洲福利在线播放| 久久99热这里只频精品6学生| 亚洲婷婷狠狠爱综合网| 日韩 亚洲 欧美在线| 免费黄网站久久成人精品| 日韩电影二区| 精品不卡国产一区二区三区| 男人舔奶头视频| 日韩大片免费观看网站| 亚洲精品久久久久久婷婷小说| 亚洲av.av天堂| 天美传媒精品一区二区| 非洲黑人性xxxx精品又粗又长| 日本三级黄在线观看| 欧美 日韩 精品 国产| 亚洲精品一区蜜桃| 一个人看视频在线观看www免费| 国产一级毛片在线| 国产高清三级在线| 91狼人影院| 午夜福利在线观看免费完整高清在| 精华霜和精华液先用哪个| 欧美精品国产亚洲| 69人妻影院| 亚洲va在线va天堂va国产| 日韩一区二区三区影片| 青春草亚洲视频在线观看| 免费看美女性在线毛片视频| 大片免费播放器 马上看| 久久人人爽人人爽人人片va| 天堂中文最新版在线下载 | 69av精品久久久久久| 久久久久精品性色| 亚洲精品国产av成人精品| 国产v大片淫在线免费观看| 99久久人妻综合| 免费看不卡的av| 日韩欧美 国产精品| 精品国产三级普通话版| 一级二级三级毛片免费看| 美女cb高潮喷水在线观看| 久久人人爽人人片av| 真实男女啪啪啪动态图| 九草在线视频观看| 肉色欧美久久久久久久蜜桃 | 欧美日韩综合久久久久久| 插逼视频在线观看| 亚洲精品,欧美精品| 亚洲精品色激情综合| 嫩草影院入口| 嘟嘟电影网在线观看| 欧美变态另类bdsm刘玥| 精品国产一区二区三区久久久樱花 | 国产女主播在线喷水免费视频网站 | 色播亚洲综合网| 国产av国产精品国产| 水蜜桃什么品种好| 亚洲av不卡在线观看| 成人鲁丝片一二三区免费| 国产在视频线在精品| 日韩视频在线欧美| 欧美+日韩+精品| 成人亚洲精品一区在线观看 | av在线播放精品| 国产亚洲av嫩草精品影院| 成人二区视频| 精品国内亚洲2022精品成人| 国产精品综合久久久久久久免费| 欧美性感艳星| 亚洲图色成人| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 蜜桃亚洲精品一区二区三区| 国产毛片a区久久久久| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 内地一区二区视频在线| 国产熟女欧美一区二区| 亚洲av免费在线观看| 最近手机中文字幕大全| 国产免费又黄又爽又色| 精品一区二区三区人妻视频| 日本wwww免费看| 丰满人妻一区二区三区视频av| 日韩一区二区视频免费看| 别揉我奶头 嗯啊视频| 日韩欧美一区视频在线观看 | 日韩欧美国产在线观看| 久久亚洲国产成人精品v| 三级男女做爰猛烈吃奶摸视频| 边亲边吃奶的免费视频| 亚洲熟妇中文字幕五十中出| 欧美成人a在线观看| 99热这里只有是精品在线观看| 人人妻人人看人人澡| 人人妻人人澡欧美一区二区| 六月丁香七月| 夜夜爽夜夜爽视频| 91aial.com中文字幕在线观看| 成人午夜高清在线视频| 又黄又爽又刺激的免费视频.| 国产免费福利视频在线观看| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 夫妻性生交免费视频一级片| 日本午夜av视频| 在线免费观看的www视频| 亚洲国产日韩欧美精品在线观看| 国产一级毛片在线| 欧美xxxx黑人xx丫x性爽| 女的被弄到高潮叫床怎么办| 韩国av在线不卡| 免费黄网站久久成人精品| 国产伦精品一区二区三区四那| 在线a可以看的网站| 亚洲av中文av极速乱| 日韩大片免费观看网站| 少妇裸体淫交视频免费看高清| 精品欧美国产一区二区三| 特大巨黑吊av在线直播| 美女被艹到高潮喷水动态| 岛国毛片在线播放| 男人舔奶头视频| 97在线视频观看| 男插女下体视频免费在线播放| av线在线观看网站| 成人高潮视频无遮挡免费网站| 亚洲av国产av综合av卡| 精品午夜福利在线看| 毛片女人毛片| 真实男女啪啪啪动态图| 人体艺术视频欧美日本| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 久99久视频精品免费| 欧美日本视频| 色吧在线观看| 国产69精品久久久久777片| 精品少妇黑人巨大在线播放| 国产精品人妻久久久影院| 久久精品夜色国产| 一个人看视频在线观看www免费| 久久久成人免费电影| 99久国产av精品国产电影| 午夜免费男女啪啪视频观看| 国产精品久久久久久精品电影| 在线免费十八禁| 麻豆成人av视频| 日韩制服骚丝袜av| 青春草国产在线视频| 少妇高潮的动态图| 久久久精品94久久精品| 99久国产av精品| 精品国产露脸久久av麻豆 | 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| 男人舔女人下体高潮全视频| 最近2019中文字幕mv第一页| 欧美激情久久久久久爽电影| 夫妻午夜视频| 国产乱人偷精品视频| 男的添女的下面高潮视频| 一夜夜www| 国产综合懂色| 中文字幕av成人在线电影| 一区二区三区四区激情视频| 亚洲在线自拍视频| 国产一区二区在线观看日韩| 久99久视频精品免费| 亚洲欧美日韩东京热| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 男女国产视频网站| 精品久久久久久久久久久久久| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 秋霞伦理黄片| 国产成人91sexporn| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 国产av国产精品国产| 黄色欧美视频在线观看| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 国产伦一二天堂av在线观看| 国产成年人精品一区二区| 麻豆乱淫一区二区| 欧美xxⅹ黑人| 嫩草影院入口| 亚洲在久久综合| 黑人高潮一二区| 三级国产精品片| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 在线观看免费高清a一片| 日韩电影二区| 日韩精品有码人妻一区| 久久99热6这里只有精品| 国产av码专区亚洲av| 噜噜噜噜噜久久久久久91| av线在线观看网站| 日产精品乱码卡一卡2卡三| 成人无遮挡网站| 97超碰精品成人国产| 亚洲国产精品专区欧美| 婷婷色av中文字幕| 久久热精品热| 少妇猛男粗大的猛烈进出视频 | 日韩av不卡免费在线播放| 91精品伊人久久大香线蕉| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频 | 丰满少妇做爰视频| 成人高潮视频无遮挡免费网站| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 两个人的视频大全免费| 嫩草影院入口| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 男人狂女人下面高潮的视频| 身体一侧抽搐| 国语对白做爰xxxⅹ性视频网站| 国产伦在线观看视频一区| 免费电影在线观看免费观看| 亚洲人成网站在线播| 亚洲激情五月婷婷啪啪| 在现免费观看毛片| 波野结衣二区三区在线| 69人妻影院| 日韩欧美一区视频在线观看 | 免费av观看视频| 我的女老师完整版在线观看| 99久国产av精品| 国产爱豆传媒在线观看| 99久久精品国产国产毛片| 免费看光身美女| 有码 亚洲区| 精品久久久久久久久久久久久| 中文欧美无线码| 亚洲综合精品二区| 亚洲色图av天堂| 激情 狠狠 欧美| 国产日韩欧美在线精品| 久久精品国产自在天天线| 在线免费观看不下载黄p国产| 欧美激情久久久久久爽电影| 日韩强制内射视频| 秋霞伦理黄片| 久久久国产一区二区| 国产高清不卡午夜福利| 欧美另类一区| 国产淫语在线视频| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av蜜桃| 日韩一本色道免费dvd| 久久精品国产综合久久久| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 极品人妻少妇av视频| 深夜精品福利| 搡老乐熟女国产| 亚洲第一av免费看| 成人国产av品久久久| 精品国产一区二区三区四区第35| 国产97色在线日韩免费| 高清在线视频一区二区三区| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 永久免费av网站大全| 精品国产国语对白av| 久久精品国产亚洲av涩爱| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 十分钟在线观看高清视频www| 晚上一个人看的免费电影| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡 | 可以免费在线观看a视频的电影网站 | 国产亚洲av片在线观看秒播厂| 国产熟女午夜一区二区三区| 999精品在线视频| a级毛片在线看网站| 99久久精品国产国产毛片| 国产免费现黄频在线看| 国精品久久久久久国模美| 宅男免费午夜| 搡老乐熟女国产| 成年女人在线观看亚洲视频| 一边亲一边摸免费视频| 日韩电影二区| xxx大片免费视频| 极品少妇高潮喷水抽搐| 亚洲美女视频黄频| 久久人人97超碰香蕉20202| 亚洲美女黄色视频免费看| 国产成人aa在线观看| 你懂的网址亚洲精品在线观看| 毛片一级片免费看久久久久| av有码第一页| 毛片一级片免费看久久久久| 人人妻人人澡人人爽人人夜夜| 久久综合国产亚洲精品| 欧美激情 高清一区二区三区| 亚洲欧洲日产国产| 秋霞伦理黄片| 欧美少妇被猛烈插入视频| 免费少妇av软件| 最近最新中文字幕免费大全7| 丝瓜视频免费看黄片| 日本午夜av视频| 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 免费黄色在线免费观看| 中文天堂在线官网| 国产黄色视频一区二区在线观看| 国产精品 国内视频| 久久国内精品自在自线图片| 亚洲欧美一区二区三区黑人 | 国产欧美亚洲国产| 日韩av免费高清视频| 91在线精品国自产拍蜜月| 欧美 亚洲 国产 日韩一| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆 | 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 久久久精品94久久精品| tube8黄色片| 国产精品无大码| 日日摸夜夜添夜夜爱| 亚洲国产毛片av蜜桃av| 汤姆久久久久久久影院中文字幕| 午夜日韩欧美国产| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看| 纯流量卡能插随身wifi吗| freevideosex欧美| 久久 成人 亚洲| 亚洲精品一二三| xxx大片免费视频| 精品99又大又爽又粗少妇毛片| 国产精品 国内视频| 亚洲,一卡二卡三卡| 宅男免费午夜| 制服诱惑二区| 一本大道久久a久久精品| 亚洲视频免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| a 毛片基地| 久久久国产精品麻豆| 多毛熟女@视频| 久久精品国产亚洲av天美| 丝袜人妻中文字幕| 性色avwww在线观看| 国产精品不卡视频一区二区| 可以免费在线观看a视频的电影网站 | 青青草视频在线视频观看| 亚洲国产毛片av蜜桃av| 午夜av观看不卡| 不卡av一区二区三区| 在线天堂中文资源库| 男女国产视频网站| 高清在线视频一区二区三区| 国产黄频视频在线观看| 日本欧美国产在线视频| 国产成人精品福利久久| www.精华液| 97在线人人人人妻| 欧美日韩视频精品一区| 亚洲国产色片| 亚洲经典国产精华液单| 国产精品一区二区在线不卡| 亚洲三级黄色毛片| av免费在线看不卡| 女人被躁到高潮嗷嗷叫费观| 搡女人真爽免费视频火全软件| www.自偷自拍.com| 爱豆传媒免费全集在线观看| 久久这里有精品视频免费| 男女高潮啪啪啪动态图| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 国产一区二区激情短视频 | 一级,二级,三级黄色视频| 久久精品夜色国产| 制服诱惑二区| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 免费黄频网站在线观看国产| 国产精品免费大片| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| 日本黄色日本黄色录像| 久久精品国产综合久久久| 你懂的网址亚洲精品在线观看| 欧美国产精品va在线观看不卡| 亚洲精品aⅴ在线观看| 亚洲欧美精品综合一区二区三区 | 久久久久精品性色| 久久99精品国语久久久| 超碰成人久久| 久久女婷五月综合色啪小说| 免费在线观看视频国产中文字幕亚洲 | 日日摸夜夜添夜夜爱| 国产一区二区激情短视频 | 这个男人来自地球电影免费观看 | 九草在线视频观看| 日韩欧美精品免费久久| 欧美精品一区二区大全| 老司机影院成人| 天天躁夜夜躁狠狠久久av| 青春草国产在线视频| 一区在线观看完整版| 免费黄网站久久成人精品| 桃花免费在线播放| 午夜影院在线不卡| 国产片内射在线| 尾随美女入室| 亚洲成人手机| 制服丝袜香蕉在线| 国产日韩欧美视频二区| 最新中文字幕久久久久| 久久久国产欧美日韩av| 丰满乱子伦码专区| 久久精品国产亚洲av涩爱| av卡一久久| 日本-黄色视频高清免费观看| 国产精品久久久久久精品电影小说| 亚洲激情五月婷婷啪啪| 久久久久久久大尺度免费视频| 久久精品国产自在天天线| videos熟女内射| 欧美日韩亚洲国产一区二区在线观看 | 男男h啪啪无遮挡| 精品国产露脸久久av麻豆| av女优亚洲男人天堂| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| 亚洲成国产人片在线观看| 成年女人在线观看亚洲视频| 人人妻人人添人人爽欧美一区卜| 欧美日韩综合久久久久久| 亚洲国产色片| 国产 一区精品| 精品亚洲乱码少妇综合久久| 午夜久久久在线观看| 制服丝袜香蕉在线| 9热在线视频观看99| 超色免费av| 天天躁夜夜躁狠狠躁躁| 亚洲综合色网址| 美女午夜性视频免费| 中国国产av一级| 伦理电影大哥的女人| 国产精品久久久久成人av| 1024视频免费在线观看| 999久久久国产精品视频| av免费在线看不卡| 18+在线观看网站| 免费观看无遮挡的男女| 男女免费视频国产| 黄网站色视频无遮挡免费观看| 精品国产乱码久久久久久小说| 免费黄频网站在线观看国产| 搡老乐熟女国产| 性高湖久久久久久久久免费观看| 免费日韩欧美在线观看| av在线观看视频网站免费| 成年av动漫网址| 777米奇影视久久| 亚洲精品一二三| 久久韩国三级中文字幕| 人成视频在线观看免费观看| 丝袜在线中文字幕| 国产一区亚洲一区在线观看| 午夜福利,免费看| 久久精品国产综合久久久| 电影成人av| 女人被躁到高潮嗷嗷叫费观| 777米奇影视久久| 亚洲男人天堂网一区| 热re99久久国产66热| 欧美精品一区二区大全| 欧美日韩亚洲高清精品| 自拍欧美九色日韩亚洲蝌蚪91| 尾随美女入室| 性色avwww在线观看| 亚洲精品视频女| 18禁观看日本| 亚洲欧洲日产国产| 五月开心婷婷网| 久久久久网色| 欧美人与性动交α欧美精品济南到 | 叶爱在线成人免费视频播放| 99热全是精品| 亚洲综合色惰| 国产成人午夜福利电影在线观看| 亚洲婷婷狠狠爱综合网| 日韩av在线免费看完整版不卡| 亚洲国产成人一精品久久久| 高清av免费在线| 亚洲精品美女久久av网站| 日本欧美国产在线视频| 波多野结衣一区麻豆| 丝袜喷水一区| 两个人看的免费小视频| 日本免费在线观看一区| 性色av一级| 女人精品久久久久毛片| 18禁国产床啪视频网站| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 亚洲精品一区蜜桃| av天堂久久9| 久久久久久久久久人人人人人人| 亚洲av免费高清在线观看| 大话2 男鬼变身卡| 下体分泌物呈黄色| 欧美日韩视频精品一区| 涩涩av久久男人的天堂| 日韩中字成人| 一级a爱视频在线免费观看| 国产在视频线精品| 国产不卡av网站在线观看| 国产成人精品婷婷| 久久婷婷青草| 夫妻午夜视频| 亚洲精品一二三| 午夜激情久久久久久久| 国产精品麻豆人妻色哟哟久久| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 成人手机av| 丝袜在线中文字幕| 少妇人妻 视频| 精品亚洲成国产av| 国产亚洲欧美精品永久| 亚洲精品久久成人aⅴ小说| 男女国产视频网站| 国产成人一区二区在线| 中文字幕av电影在线播放| 亚洲人成77777在线视频| 免费在线观看视频国产中文字幕亚洲 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 日日啪夜夜爽| 欧美精品国产亚洲| kizo精华| 啦啦啦中文免费视频观看日本| 波野结衣二区三区在线| 老司机亚洲免费影院| 最新的欧美精品一区二区| 久久精品久久久久久久性| 免费在线观看黄色视频的| 国产亚洲av片在线观看秒播厂| 国产男女内射视频| 宅男免费午夜| 国产1区2区3区精品| 国产成人精品在线电影| 春色校园在线视频观看| 精品福利永久在线观看| 亚洲三区欧美一区| 26uuu在线亚洲综合色| 女人高潮潮喷娇喘18禁视频| av网站在线播放免费| 宅男免费午夜| 卡戴珊不雅视频在线播放| 日本免费在线观看一区| a 毛片基地| 成人国产麻豆网| 国产精品不卡视频一区二区| 日本欧美国产在线视频| 成人国产麻豆网| 久久亚洲国产成人精品v| 在现免费观看毛片| 高清视频免费观看一区二区| 热99国产精品久久久久久7| 久久精品久久久久久噜噜老黄| 18+在线观看网站| 2021少妇久久久久久久久久久| 久久精品国产自在天天线| 蜜桃在线观看..| 亚洲av免费高清在线观看| 国产国语露脸激情在线看| 亚洲视频免费观看视频| 热99国产精品久久久久久7| 人人妻人人澡人人看| 亚洲第一青青草原| 五月天丁香电影| 精品久久久久久电影网| 在线精品无人区一区二区三| 777久久人妻少妇嫩草av网站| 桃花免费在线播放| 国产欧美亚洲国产| 欧美成人午夜精品| 又粗又硬又长又爽又黄的视频| 欧美最新免费一区二区三区| 国产精品久久久久久精品古装| 一边亲一边摸免费视频| 99精国产麻豆久久婷婷| 女的被弄到高潮叫床怎么办| 久久午夜综合久久蜜桃| 国产女主播在线喷水免费视频网站| 国产乱人偷精品视频| av国产精品久久久久影院|