• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    2017-05-10 17:42:42郭瑞張嘉霖趙宋燾余小江鐘舒孫碩李震宇陳偉
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:酞菁新加坡國立大學(xué)全氟

    郭瑞 張嘉霖, 趙宋燾 余小江 鐘舒 孫碩 李震宇 陳偉,,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    郭瑞1張嘉霖1,2趙宋燾3余小江4鐘舒1孫碩2李震宇3陳偉1,2,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    由于其獨(dú)特的分子構(gòu)型和電子結(jié)構(gòu),碗烯被認(rèn)為是組成有機(jī)分子電子器件的一種重要的結(jié)構(gòu)單元。在不同金屬表面上單一組分的碗烯或其衍生物進(jìn)行自組裝的行為,及其所形成自組裝薄膜的電子結(jié)構(gòu)已經(jīng)被廣泛研究。這里我們利用低溫掃描隧道顯微鏡(LT-STM),對全氟酞菁銅和碗烯兩種組分在高定向熱解石墨和銀(111)兩種不同襯底上的自組裝結(jié)構(gòu)進(jìn)行了報(bào)道。在石墨襯底上,全氟酞菁銅和碗烯分子間形成的氫鍵成為雙分子網(wǎng)絡(luò)結(jié)構(gòu)能夠形成的關(guān)鍵;同時(shí),由于這種分子間氫鍵的存在,碗烯分子大多采取“開口朝下”的空間構(gòu)型,以保證分子間氫鍵最大限度的形成。但在銀襯底上觀察到的碗烯分子則隨機(jī)采取“開口向上”或“開口向下”兩種構(gòu)型,并沒有一種優(yōu)勢構(gòu)型的存在。我們認(rèn)為此時(shí)銀(111)襯底和有機(jī)分子間強(qiáng)烈的相互作用限制了碗烯兩種構(gòu)型之間的翻轉(zhuǎn),使得碗烯分子一旦被吸附就只能保持其原本的構(gòu)型,從而導(dǎo)致了在結(jié)果上兩種構(gòu)型的隨機(jī)分布。

    分子自組裝;雙分子網(wǎng)絡(luò)結(jié)構(gòu);碗烯;低溫掃描隧道顯微鏡;分子間氫鍵

    1 Introduc tion

    Corannulene(COR)is a bow l-shaped molecule and can be regarded asa fragmentof fullerene,asshown in Fig.1a.Since its first successful synthesis in 19661,COR has attracted intensive attention due to several intriguing properties.W ith fivefold symmetry,COR provides a unique opportunity to study the symmetrymismatching betweenadsorbateand substrate,given the incom patibility betw een the fivefold rotational symmetry of moleculeand translationalorder of theunderneath crystal lattice2. The combination of non-planar shapeand aromaticitymakes COR an interesting system w ith unique geometry and electronic properties2c.Specificπ-πinteractionsbetween curved and planar structures give rise tofascinating photoelectric properties3. Buckybow ls also serve as ideal hosts toform the host-guest complexes in supramolecular chem istry4.COR has alw ays been regarded as a fragment of C60molecule for its symmetry and conformation.Butconsidering itshigh solubility inmost common solvents2c,COR can be a better choice than fullerenes as a prom ising candidate for acceptormaterials in organic optoelectronic devices2c.Itshould bementioned thatKuvychko etal.5have recently reported a COR derivative(w ith electron w ithdraw ing groups)that has a higher electron affinity and thus can be a strongerelectron acceptor than thewell-studied C60.

    Two-dimensional(2D)self-assembly of functional organic molecules into ordered arrays represents one of themost promising strategies tofabricate functionalmolecular nanostructures overmacroscopicareas6.Modification ofmetalsurfaceswith COR and its derivativeshasbeen studied for symmetrym ismatch between substrate and adsorbate2a,7,multi-component packing4,8, templated assembly8a,9,interface dipole formation10,aswell as2D phase transitions6c,11.The assembly behaviors of the single-componentmoleculeswith fivefold symmetry on surfaceareof fundamental interest12.The structureof self-assembled CORmonolayer on Cu(111)and Cu(110)has been reported.On Cu(111), each CORmolecule adsorbson either fcc orhcp threefold hollow sitewith itsbow lopening pointing up11b.Oneof the fivehexagonal ringsorients parallel to the surface planeand thereforea tiltbetween molecular bow l w ith respect to the surface exists.A temperature-controlled reversible phase transitionwasalso observed in this system.It isexplained that low tem perature constrains the vibration of COR molecules,thus leads to amore effective intermolecular attraction,and finally results in the transition to the phasewith higher packing density11b.On Cu(110),asimilarquasihexagonal lattice with slightly tilted COR moleculeswas observed2a.In addition tomonolayer,a bilayer bow l-in-bow l stacking structure of COR wasalso reported on Cu(111)at low temperature13.Each second-layermolecule locatesdirectly aboveone firstlayermolecule,leading to the formation ofabow l-in-bow ldimer.

    In contrast to the intensive studies on single component selfassembly of COR and its derivatives,investigation on multicomponentmolecular assembled system consisting of COR is rarely reported.Multicomponent 2D assemblies providemore functionality and tunability for themolecular nanostructures14. Calmettes etal.8areported binarymolecular networks comprising 2,3,9,10,16,17,23,24-octachlorozinc phthalocyanine(ZnPcCl8)and the COR derivative of 1,3,5,7,9-penta-tertbutylcorannulene (PTBC).In this case,themetastable phaseof ZnPcCl8can beused asa flexible template to realize the controllable insertion of PTBC molecule.By selecting different phases formed by ZnPcCl8,the final bimolecular 2D structure,w hich resembles the original packing of template,canbe regulated.Xiao etal.4reported aCORC60buckybow l-buckyballhost-guestcomplexesby depositing C60onto the ordered monolayer of COR on Cu(110).The concave structure of COR is optimal to realize a“face-to-face”contact w ith the convex surface of C60and their com plementary electron environmentsare favorable for binding.Via thermalactivation,a strongly bound COR-C60host-guest system is formed.Delicate balance betw een various intermolecular and interfacial interactions plays essential role in tailoring these supramolecular structures6b,8a,14a,15.

    Herein we report the formation of self-assembled binarymolecular networks of COR and copper hexadecafluorophthalocyanine(F16CuPc)on the highly oriented pyrolytic graphite(HOPG) and Ag(111).Thegeometrical arrangementsof the binary system on differentsubstrateswere systematically investigated by lowtemperature scanning tunneling m icroscopy/spectroscopy(LT-STM/STS).

    2 Experim en talm ethods

    TheAg(111)and HOPG single crystalsubstratesare purchased from MaTeck Material-Technologie&Kristalle GmbH.The F16CuPc molecules are tw ice sublimed and purchased from CREAPHYS.Both sample preparation and investigation were performed in an ultrahigh vacuum system at a base pressure around 10-10mbar(1mbar=101Pa).TheAg(111)surfacewas prepared via repeated cycles of sputtering by Ar+and then annealing to 750K.Freshly cleaved HOPGwas thoroughly degassed in UHV at800 K overnight.COR and F16CuPc were thermally evaporated from separate Knudsen cells at 380 and 670 K,respectively,onto the substrate(keptatroom temperature).

    In-situ STM investigation was carried out in a custom-designed Om icron LT-STM w ith an electrochem ically etched tungsten tip scanning at77K.All STM imageswere obtained under constant currentmodewith biasvoltagesapplied to the tip.To collect the differential conductance d I/d V(local density of states),a lock-in techniquewasadopted togetherwith amodulation voltageof 50 m V and a frequency of 625 Hz.When ram ping the voltage,the feedback loopwasopened16.

    3 Resu lts and discussion

    F16CuPc,asshown in Fig.1bwas firstdeposited onto HOPG toform a self-assembledmonolayer.STM image(Fig.1c)clearly revealsa typical close packing structurewhere F16CuPcmolecules lie flat on substrate with theirmolecular planes parallel to the substrate,arising from the interfacialπ-πinteraction17.A unitcell w ith a=1.66 nm,b=3.5 nm,θ1=108°isoutlined in Fig.1c and schematic packingmodelof oneunitcell is shown in Fig.1d.Two differentmolecular orientations exist in F16CuPcmonolayer on HOPG,which hasbeen concretely analyzed in previous report17. In oneunit cell,theorientation of four F16CuPcmoleculeson the corner is deviated from thatof two F16CuPcmolecules centered at the b edge.Then COR molecules were evaporated onto the F16CuPc covered HOPG.Co-assembly of F16CuPc and COR,as shown in Fig.1eand 1f,formsa long range-ordered structurewith an intermixing ratio of 1:2.A unitcellwith c=2.87 nm,d=2.17 nm,θ2=114°is highlighted in Fig.1f and the schematic packing modelof one unit cell is shown in Fig.1g.It isnoteworthy that in the supramolecular structure,only one orientation of F16CuPc molecule isobserved and each F16CuPcmolecule issurrounded by 6CORmolecules.

    Fig.1 M olecu lar structures for(a)COR and(b)F16CuPc;(c)STM imageof F16CuPcmonolayer deposited on HOPG;(d)schematic packing structure for F16CuPcm oleculeon HOPG;(e,f)STM images of long range-ordered binarym olecular networks form ed by F16CuPc and CORw ith amolecular ratio of 1:2 on HOPG;(g)schematic packingmodel for the F16CuPc-COR binary structureon HOPGIn figure c:Theunitcell ishighlightedwith a=1.66 nm,b=3.5 nm,θ1=108°.Vtip=1.654V,20 nm×20 nm.In figurese,f:TheCORmoleculesadopting thebow lup and bow ldown configurationsare indicated by thearrows.Theunitcellishighlighted in the imagewith c=2.87 nm,d=2.17 nm,θ2=114°.Vtip=1.496V,20nm×20 nm;Vtip=1.496V,10 nm×10 nm

    Herewe observe two kinds of dotsaround F16CuPc,including the dots thatarebrighterand the dots thatare slightly darker.We propose both kinds of dots are CORmoleculesbutw ith different configurations:bow lopening pointing up and pointing down.STS measurements(Fig.2b)confirm this assumption and reveals the highest occupied molecular orbital(HOMO)-the lowest unoccupiedmolecular orbital(LUMO)gap of around 3.10 eV,which agreesw ith the theoretically calculated HOMO-LUMO gap of CORmolecule18.The simulated topographic STM imagesof COR,based on semiempiricalextended H?ckel calculation,have been used to determine the configuration of adsorbed COR by Parschau etal.2a.For bow lup configuration,both the HOMO and LUMO topographic simulated images show a density m inimum at the centerof themolecule togetherwith a distinct fivefold doughnut shape.On the contrary,for bow l down configuration,both the HOMO and LUMO topographic simulated imagesshow a density maximum at the centerof themolecule and theoutline of COR molecule is rather vague2a.Hence by com paring the simulated STM imagewith our high resolution STM results in Fig.2a,we assign these brighter dots to COR with bow lopening down and darkerdots to CORwith bow lopening up.

    Fig.2(a)High resolution STM image of the F16CuPc-COR binarymolecu lar networkson HOPG; (b)d I/d V spectra recorded on the bow l-up and bow l-down COR molecules

    It is noticed that in the F16CuPc-COR binary molecular networks on HOPG,COR molecules that adopt bow l-down configuration hold majority.We propose that this configuration preferencemay arise from the formation ofmultiple intermolecular hydrogen bonding.As F16CuPcmolecules lie flat on the plane, peripheral hydrogen atoms of CORmolecule w ith bow l-down configuration can stand closer to the neighboring F16CuPc,which facilitates the formation of multiple intermolecular hydrogen bonding between neighboring F16CuPc and COR.In thisway,the binary supramolecular structure iseffectively stabilized and bow ldown configuration of COR thus isenergetically favorable.

    Wealsogrew the same F16CuPc-COR binary system on Ag(111) to compare the co-assembly structureson differentsubstrates.Ag (111)has shownmuch strongermolecule-substrate interactions for variousorganic adsorbates19,compared w ith HOPG.Hencewe were able to grow amonolayer of COR onto Ag(111).A large scaleand thecorresponding closeup STM imagesof COR on Ag (111)are shown in Fig.3(a,b)with aunitcelloutlined(e=1.02 nm,f=1.17 nm,θ3=73°).Each CORmolecule isshared by four unit cells(Fig.3c).Likew ise,w e observe brighter and slightly darker dots in the STM image of COR monolayer.Careful inspection of high-resolution STM(Fig.3d)confirms the co-existenceof CORmoleculeswith differentconfigurations.Herein the brighter dot obviously has an intensity minimum in the center. Hence by using the aforementioned comparison of high-resolution STM imageswith simulated results,these brighter dots should be assigned to CORmoleculeswith bow ls opening up and the darker and vague dots should be COR moleculesw ith bow ls opening down.

    Fig.3(a)Large scale STM imageofCORmonolayer deposited on Ag(111);(b)closeup STM image of COR on Ag(111); (c)proposed schem atic packingm odel for COR on Ag(111);(d)high resolution STM im ageof COR on Ag(111)w ith the bow l-up and bow l-down configurations indicated by red arrowsIn figurea:Vtip=1.0V;60 nm×60 nm.In figureb:Theunitcellishighlighted by the red rhombusw ith e=1.02 nm,f=1.17 nm,θ3=73°; Vtip=1.0V,10 nm×10 nm.In figured:Vtip=-1.5V;6nm×6 nm

    Tofurther confirm our assignment,a comparison of the brighter dotson HOPG and Ag(111)underhigh-resolution STM is shown in Fig.4.It isobvious thatin Fig.4a,the CORmoleculewithbow lup configuration possesses a hollow center w ith a rough pentagonal doughnutshape,which is consistentwith features of thesimulated bow l-up COR.While in Fig.4b,the COR molecule accounted asbow l-dow n configuration ismore protruding in the center and themolecule shape is obscure,which also resembles simulated bow l-down topography.We noted that on Ag(111) substrate,the configuration preference of COR disappears:both bow l-up and bow l-down COR exist in almostequalamount.In otherwords,the adoption of bow l-up or bow l-down configuration is random.We suggest that the strong COR-Ag(111)interfacial interaction constrains themovementand bow l inversion of COR molecules.Onceadsorbed on Ag(111),CORmolecule could only retain its initial configuration and therefore both configurations have equal chance to appear.

    Fig.4 Com parison of the brighter dotsunder high-resolution STM(a)CORmoleculew ith bow l-up configurationon Ag(111); (b)CORmoleculewith bow l-down configuration on HOPG

    Fig.5(a)High resolution STM imageof F16CuPc-COR binary m olecular networks on Ag(111)w ith am olecular ratio of 1:4; (b)schem atic pack ingm odel for the F16CuPc-COR b inary structureon Ag(111)In figurea:Theunitcellishighlighted by the red rhombusw ith g=h=2.73 nm,θ4=100°.Vtip=1.26V,10 nm×10 nm

    Co-assemblymonolayerof F16CuPc and COR on Ag(111)was also prepared by furtherevaporating F16CuPcmolecules onto the COR covered substrate.STM image reveals the long range-ordered binarymolecularnetworksw ith amolecular ratio of 1:4. The unit cell isoutlined in Fig.5aw ith features including g=h= 2.73 nm andθ4=100°.Corresponding schematic packingmodel for the binary structure is shown in Fig.5b.All the F16CuPc molecules lie in the same orientation and each F16CuPcmolecule issurrounded by 8CORmolecules.

    4 Conc lusions

    In summary,we have investigated the binary supramolecular structureof F16CuPc-CORmonolayerassembled on HOPGand Ag (111)substrates.The formation of multiple intermolecular hydrogen bonding between F16CuPc and COR could result in a preferred bow l-dow n configuration for COR molecules on the weakly interacting HOPG.In contrast,this configuration preference disappears on Ag(111)substrate where the adoption of bow l-up orbow l-down configuration is random,resulting from the strongmolecule-substrate interactions.Ourwork would further reinforce themodification of surfacew ith binarymolecular networks consisting ofCOR and itsderivatives.

    (1)Barth,W.E.;Law ton,R.G.J.Am.Chem.Soc.1966,88(2), 380.doi:10.1021/ja00954a049

    (2)(a)Parschau,M.;Fasel,R.;Ernst,K.H.;Gr?ning,O.; B randenberger,L.;Schillinger,R.;Greber,T.;Seitsonen,A.P.; Wu,Y.T.;Siegel,J.S.Angew.Chem.-Int.Edit.2007,46(43), 8258.doi:10.1002/anie.200700610

    (b)Shechtman,D.;Blech,I.;Gratias,D.;Cahn,J.W.Phys.Rev. Lett.1984,53(20),1951.doi:10.1103/PhysRevLett.53.1951

    (c)Bauert,E.FundamentalAspectsof the Self-assembly Behaviorand Electronic Propertiesof Corannulenes.Ph.D. Dissertation,University of Zurich,Zurich,2011.

    (3)Li,J.;Liu,Y.;Qian,Y.;Li,L.;Xie,L.;Shang,J.;Yu,T.;Yi,M.; Huang,W.Phys.Chem.Chem.Phys.2013,15(30),12694. doi:10.1039/C3CP51095F

    (4)Xiao,W.;Passerone,D.;Ruffieux,P.;A?t-M ansour,K.; G r?ning,O.;Tosatti,E.;Siegel,J.S.;Fasel,R.J.Am.Chem. Soc.2008,130(14),4767.doi:10.1021/ja077816l

    (5)Kuvychko,I.V.;Dubceac,C.;Deng,S.H.;Wang,X.B.; G ranovsky,A.A.;Popov,A.A.;Petrukhina,M.A.;Strauss,S. H.;Boltalina,O.V.Angew.Chem.-Int.Edit.2013,52(29), 7505.doi:10.1002/anie.201300796

    (6)(a)Baris,B.;Jeannoutot,J.;Luzet,V.;Palmino,F.;Rochefort, A.;Cherioux,F.ACSNano 2012,6(8),6905.doi:10.1021/ nn301827e

    (b)Mali,K.S.;De Feyter,S.Phil.Trans.R.Soc.A 2013,371 (2000),20120304.doi:10.1098/rsta.2012.0304

    (c)Zoppi,L.;Bauert,T.;Siegel,J.S.;Baldridge,K.K.;Ernst, K.H.Phys.Chem.Chem.Phys.2012,14(38),13365. doi:10.1039/C2CP41732D

    (7)Guillermet,O.;Niem i,E.;Nagarajan,S.;Bouju,X.;Martrou, D.;Gourdon,A.;Gauthier,S.Angew.Chem.-Int.Edit.2009,48 (11),1970.doi:10.1002/anie.200805689

    (8)(a)Calmettes,B.;Nagarajan,S.;Gourdon,A.;Abel,M.;Porte, L.;Coratger,R.Angew.Chem.-Int.Edit.2008,47(37),6994. doi:10.1002/anie.200802628

    (b)Yokoi,H.;Hiraoka,Y.;Hiroto,S.;Sakamaki,D.;Seki,S.; Shinokubo,H.Nat.Commun.2015,6.doi:10.1038/

    ncomms9215

    (9)Balandina,T.;Tahara,K.;Sandig,N.;Blunt,M.O.;Adisoejoso, J.;Lei,S.;Zerbetto,F.;Tobe,Y.;De Feyter,S.ACSNano 2012, 6(9),8381.doi:10.1021/nn303144r

    (10)Bauert,T.;Zoppi,L.;Koller,G.;Garcia,A.;Baldridge,K.K.; Ernst,K.H.J.Phys.Chem.Lett.2011,2(21),2805. doi:10.1021/jz2012484

    (11)(a)M erz,L.;Bauert,T.;Parschau,M.;Koller,G.;Siegel,J.S.; Ernst,K.H.Chem.Commun.2009,(39),5871.doi:10.1039/ B911056A (b)M erz,L.;Parschau,M.;Zoppi,L.;Baldridge,K.K.;Siegel, J.S.;Ernst,K.H.Angew.Chem.-Int.Edit.2009,48(11),1966. doi:10.1002/anie.200804563

    (12)(a)Bauert,T.;Merz,L.;Bandera,D.;Parschau,M.;Siegel,J.S.; Ernst,K.H.J.Am.Chem.Soc.2009,131(10),3460. doi:10.1021/ja8101083. (b)Merz,L.;Parschau,M.;Siegel,J.S.;Ernst,K.H.Chimia 2009,63(4),214.doi:10.2533/chim ia.2009.214

    (13)Bauert,T.;Baldridge,K.K.;Siegel,J.S.;Ernst,K.H.Chem. Commun.2011,47(28),7995.doi:10.1039/C1CC12540K.

    (14)(a)De Oteyza,D.G.MulticomponentAssembly Strategies for Supramolecular Systems.In SupramolecularMaterialsforOpto-Electronics;Nobert Korch;Royal Society of Chem istry: Cambridge,2014;pp 53-97.doi:10.1039/9781782626947-00053 (b)Huang,Y.L.;Chen,W.;Li,H.;Ma,J.;Pflaum,J.;Wee,A.T. S.Small2010,6(1),70.doi:10.1002/sm ll.200901291

    (15)Zhong,J.Q.;Qin,X.;Zhang,J.L.;Kera,S.;Ueno,N.;Wee,A. T.S.;Yang,J.;Chen,W.ACSNano 2014,8(2),1699. doi:10.1021/nn406050e

    (16)Zhang,J.;Wang,Z.;Niu,T.;Li,Z.;Chen,W.Appl.Phys.Lett. 2014,104(11),113506.doi:10.1063/1.4869115

    (17)Huang,Y.L.;Chen,W.;Chen,S.;Wee,A.T.S.Appl.Phys.A 2009,95(1),107.doi:10.1007/s00339-008-5000-6

    (18)dos Santos,R.B.;Rivelino,R.;de M ota,F.B.;Gueorguiev,G. K.J.Phys.Chem.A 2012,116(36),9080.doi:10.1021/ jp3049636

    (19)(a)Lackinger,M.;Griessl,S.;Heckl,W.M.;Hietschold,M. J.Phys.Chem.B 2002,106(17),4482.doi:10.1021/jp014275s (b)Lackinger,M.;Hietschold,M.Surf.Sci.2002,520(1), L619.doi:10.1016/S0039-6028(02)02269-0

    LT-STM Investigation of the Self-Assem bled F16CuPc-Co rannu lene Binary System on Ag(111)and Graphite Surfaces

    GUO Rui1ZHANG Jialin1,2ZHAO Songtao3YU Xiaojiang4ZHONG Shu1SUN Shuo2LIZhenyu3CHENWei1,2,5,6,*
    (1DepartmentofChemistry,NationalUniversity ofSingapore,3Science Drive 3,117543,Singapore;2DepartmentofPhysics,NationalUniversity ofSingapore,2Science Drive 3,117542,Singapore;3HefeiNational Laboratory for PhysicalSciencesat the Microscale,CASCentre for Excellence and Synergetic Innovation Center of Quantum Information and Quantum Physics,University ofScience and Technology ofChina,Hefei230026,P.R.China;
    4Singapore Synchrotron LightSource,National University ofSingapore,5 Research Link,117603,Singapore;
    5Centerfor Advanced 2DMaterialsand Graphene Research Center,NationalUniversity ofSingapore,3 Science Drive 3,117546,
    Singapore;6NationalUniversity ofSingapore(Suzhou)Research Institute,Suzhou 215123,Jiangsu Province,P.R.China)

    Mo lecularassembly;Binarymolecularnetworks;Corannulene;Low-temperature scanning tunne lingm icroscopy;Intermo lecularhyd rogen bonding

    O647

    10.3866/PKU.WHXB201612051

    www.whxb.pku.edu.cn

    Received:September 29,2016;Revised:December 2,2016;Published online:December 5,2016.

    *Corresponding author.Email:phycw@nus.edu.sg;Tel:+65-65161879.

    Theprojectwas supported by theNational Key Basic Research Program of China(973)(2015CB856505),SingaporeMOE(R143-000-652-112),

    Singapore NRF-CRPgrantof“Doped Contacts and Heterostructures for Solution-Processable Plastic Electronics”(R143-001-608-281),Jiangsu

    Province GovernmentResearch Platform Grant,China,and NUSRISeed Fund.

    國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2015CB856505),新加坡教育部(MOE,Tier II,R143-000-652-112),新加坡國家研發(fā)基金會(NRF,R143-001-608-281),江蘇省平臺建設(shè)項(xiàng)目和新加坡國立大學(xué)蘇州研究院資助?Editorialoffice of Acta Physico-Chim ica Sinica

    Abstract:Corannulene(COR)is considered a prom isingmolecularbuilding block fororganic electronics owing to its intriguing geome trical and e lec tronic p roperties.Intensive research e fforts have been devoted to understanding the assemb ly behavior and e lectronic structure of COR and its derivatives on variousmeta l surfaces via low-temperature scanning tunne lingm icroscopy(LT-STM).Here we report the formation ofbinary mo lecular networks of copperhexadeca fluorophtha locyanine(F16CuPc)-COR self-assembled on the highly oriented pyrolytic graphite(HOPG)and Ag(111)substrates.Intermo lecularhydrogen bonding between F16CuPc and COR facilitates the formation ofbina rymolecular networks on HOPG and further induces a pre ference for bow l-down configured CORmolecules.This observed configuration preference disappears on Ag(111)substrate, where CORmolecules lie on the substrate with theirbow lopenings pointing up and down random ly.We propose tha tstrong interfacia l interactions betw een them olecule and Ag(111)su rface constrain the bow l inve rsion of the CORmo lecule,which thus retains its initialconfiguration upon adsorption.

    猜你喜歡
    酞菁新加坡國立大學(xué)全氟
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    新加坡國立大學(xué)推出新型止血敷料
    新加坡國立大學(xué)助力重慶企業(yè)研發(fā)區(qū)塊鏈技術(shù)
    追光花園
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    新加坡國立大學(xué)卓越辦學(xué)經(jīng)驗(yàn)及啟示
    大學(xué)(2016年4期)2016-04-09 06:39:22
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    纖維素纖維負(fù)載鈷酞菁對活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    色精品久久人妻99蜜桃| 精品久久久久久,| 99精品在免费线老司机午夜| 亚洲欧美精品综合久久99| 免费看日本二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站高清观看| 亚洲欧美日韩高清在线视频| 国产色爽女视频免费观看| 最近最新中文字幕大全电影3| 日本一本二区三区精品| 丁香六月欧美| 少妇熟女aⅴ在线视频| 中文在线观看免费www的网站| 性欧美人与动物交配| 特大巨黑吊av在线直播| 亚洲av不卡在线观看| 亚洲精品乱码久久久v下载方式| 99热精品在线国产| 少妇熟女aⅴ在线视频| 悠悠久久av| 男人舔女人下体高潮全视频| 国产精品久久久久久精品电影| 亚洲精品粉嫩美女一区| 欧美在线一区亚洲| 久久九九热精品免费| 国产成人欧美在线观看| 亚洲久久久久久中文字幕| 成人欧美大片| 免费人成在线观看视频色| 一本综合久久免费| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线观看免费| 天天一区二区日本电影三级| 淫妇啪啪啪对白视频| 亚洲国产精品久久男人天堂| 成熟少妇高潮喷水视频| 久久久国产成人精品二区| 亚洲avbb在线观看| 九色国产91popny在线| 中文在线观看免费www的网站| 日韩欧美在线二视频| 老女人水多毛片| 亚洲三级黄色毛片| 国产精品一区二区免费欧美| 波多野结衣巨乳人妻| 欧美乱色亚洲激情| 久久久久久久久久成人| 国产精品一区二区三区四区免费观看 | 欧美色欧美亚洲另类二区| 美女 人体艺术 gogo| 国产亚洲欧美98| 色综合欧美亚洲国产小说| 亚洲美女搞黄在线观看 | 亚洲av美国av| 日本精品一区二区三区蜜桃| 丁香欧美五月| 午夜影院日韩av| 精品人妻1区二区| 97碰自拍视频| 日韩欧美精品v在线| 久久精品夜夜夜夜夜久久蜜豆| 免费电影在线观看免费观看| 亚洲内射少妇av| 观看美女的网站| 久久午夜福利片| 男人和女人高潮做爰伦理| 国内精品久久久久久久电影| 亚洲成a人片在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 国内久久婷婷六月综合欲色啪| 国产成人a区在线观看| 国产伦在线观看视频一区| 在线a可以看的网站| 国内少妇人妻偷人精品xxx网站| 国产高清激情床上av| 国产高清有码在线观看视频| 在线看三级毛片| 午夜免费男女啪啪视频观看 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丁香六月欧美| 久久久久国产精品人妻aⅴ院| 夜夜看夜夜爽夜夜摸| 国产av在哪里看| 3wmmmm亚洲av在线观看| 日本精品一区二区三区蜜桃| av在线天堂中文字幕| 嫩草影院精品99| 性色avwww在线观看| 欧美色视频一区免费| 欧美色欧美亚洲另类二区| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 国产视频一区二区在线看| 日韩中字成人| 午夜免费激情av| 国产精品永久免费网站| 国产精品一区二区性色av| 高清日韩中文字幕在线| 午夜精品久久久久久毛片777| 十八禁国产超污无遮挡网站| 91在线观看av| 国产伦一二天堂av在线观看| 天天躁日日操中文字幕| 亚洲av一区综合| 欧美一区二区亚洲| 亚洲精品影视一区二区三区av| 简卡轻食公司| 午夜福利成人在线免费观看| 国产激情偷乱视频一区二区| 好看av亚洲va欧美ⅴa在| 午夜福利高清视频| 精品人妻1区二区| 男女下面进入的视频免费午夜| 一个人免费在线观看的高清视频| 性插视频无遮挡在线免费观看| 国内精品久久久久久久电影| 日本一本二区三区精品| 小说图片视频综合网站| 国产一级毛片七仙女欲春2| 亚洲欧美日韩无卡精品| 国产一区二区亚洲精品在线观看| 男人狂女人下面高潮的视频| 欧美三级亚洲精品| 深爱激情五月婷婷| 精品久久久久久久久久久久久| 亚洲成人免费电影在线观看| 舔av片在线| 欧美中文日本在线观看视频| 亚洲人成网站在线播放欧美日韩| 国产免费av片在线观看野外av| 免费av毛片视频| 国产高清三级在线| 国产成人a区在线观看| 别揉我奶头 嗯啊视频| 真人做人爱边吃奶动态| 日韩国内少妇激情av| 国产视频一区二区在线看| 2021天堂中文幕一二区在线观| 国产欧美日韩一区二区三| 少妇裸体淫交视频免费看高清| 男插女下体视频免费在线播放| 欧美中文日本在线观看视频| 精品国内亚洲2022精品成人| 久久精品国产亚洲av涩爱 | 可以在线观看毛片的网站| 一个人看视频在线观看www免费| 亚洲欧美日韩高清在线视频| 美女xxoo啪啪120秒动态图 | 18禁在线播放成人免费| 亚洲性夜色夜夜综合| 综合色av麻豆| 岛国在线免费视频观看| 69av精品久久久久久| 午夜精品久久久久久毛片777| 内地一区二区视频在线| 成人美女网站在线观看视频| 一级黄色大片毛片| 村上凉子中文字幕在线| 亚洲自偷自拍三级| 69人妻影院| 色视频www国产| 人妻丰满熟妇av一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 免费黄网站久久成人精品 | 97碰自拍视频| 少妇丰满av| 欧美性猛交黑人性爽| 亚洲狠狠婷婷综合久久图片| 亚洲黑人精品在线| 性色avwww在线观看| 亚洲美女视频黄频| 99热只有精品国产| 麻豆国产97在线/欧美| 国产一区二区三区在线臀色熟女| 性色avwww在线观看| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 成年女人看的毛片在线观看| 男女做爰动态图高潮gif福利片| 天美传媒精品一区二区| 无人区码免费观看不卡| 免费观看精品视频网站| 在线a可以看的网站| 亚洲国产精品999在线| 露出奶头的视频| 亚洲成av人片免费观看| 特大巨黑吊av在线直播| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻偷拍中文字幕| 亚洲内射少妇av| 麻豆成人午夜福利视频| 免费看光身美女| 我的女老师完整版在线观看| 91麻豆av在线| 欧美+亚洲+日韩+国产| 91久久精品国产一区二区成人| 老女人水多毛片| 最好的美女福利视频网| 久久久国产成人免费| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 免费在线观看成人毛片| 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 内地一区二区视频在线| av中文乱码字幕在线| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av涩爱 | 又爽又黄a免费视频| 两个人的视频大全免费| 午夜亚洲福利在线播放| 首页视频小说图片口味搜索| 亚洲国产精品久久男人天堂| 成年女人永久免费观看视频| 一个人观看的视频www高清免费观看| 高清毛片免费观看视频网站| 亚洲一区高清亚洲精品| 亚洲午夜理论影院| 久久热精品热| 久久久久久久午夜电影| 久99久视频精品免费| 久久久精品大字幕| 亚洲av不卡在线观看| 麻豆一二三区av精品| 国产一区二区三区视频了| АⅤ资源中文在线天堂| 在现免费观看毛片| 国内精品久久久久精免费| 变态另类成人亚洲欧美熟女| 一个人免费在线观看的高清视频| 高潮久久久久久久久久久不卡| 91av网一区二区| 一级作爱视频免费观看| 午夜两性在线视频| 久久亚洲真实| 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 国产精品久久电影中文字幕| 亚洲成人精品中文字幕电影| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 一夜夜www| 久久久久久久亚洲中文字幕 | 亚洲人成伊人成综合网2020| 亚洲第一区二区三区不卡| 男女之事视频高清在线观看| 国产精品电影一区二区三区| 精品国产三级普通话版| 久久久国产成人精品二区| 免费av不卡在线播放| 最好的美女福利视频网| 亚洲 欧美 日韩 在线 免费| 五月伊人婷婷丁香| 极品教师在线免费播放| 一进一出抽搐动态| 日日摸夜夜添夜夜添av毛片 | 99热只有精品国产| 欧美xxxx性猛交bbbb| 激情在线观看视频在线高清| 国产欧美日韩精品亚洲av| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 麻豆国产97在线/欧美| 校园春色视频在线观看| 成人特级黄色片久久久久久久| 一二三四社区在线视频社区8| 亚洲国产精品成人综合色| 免费在线观看成人毛片| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久,| 亚洲av第一区精品v没综合| 精品熟女少妇八av免费久了| 日韩欧美在线乱码| 午夜影院日韩av| a级毛片a级免费在线| 国产美女午夜福利| 99精品在免费线老司机午夜| 精品一区二区三区人妻视频| 久久精品国产清高在天天线| 亚洲av第一区精品v没综合| 国产69精品久久久久777片| 国产精品亚洲美女久久久| 免费看a级黄色片| 免费大片18禁| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 哪里可以看免费的av片| 很黄的视频免费| 国产精品亚洲美女久久久| 久久亚洲精品不卡| 成年人黄色毛片网站| 日日夜夜操网爽| 日韩欧美精品v在线| 成人无遮挡网站| 免费在线观看日本一区| 此物有八面人人有两片| 18禁在线播放成人免费| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 欧美在线一区亚洲| 又黄又爽又免费观看的视频| 69人妻影院| 99久久精品一区二区三区| 亚洲成人中文字幕在线播放| 久久6这里有精品| 亚洲人成网站高清观看| 亚洲成人中文字幕在线播放| 国产欧美日韩一区二区精品| 国产精品国产高清国产av| 国产亚洲欧美在线一区二区| 中文字幕免费在线视频6| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添小说| 深夜a级毛片| 给我免费播放毛片高清在线观看| 午夜日韩欧美国产| 国产免费av片在线观看野外av| 国产欧美日韩一区二区精品| 久久久久久久久久成人| 国产精品免费一区二区三区在线| 一级作爱视频免费观看| 色5月婷婷丁香| 久久99热这里只有精品18| 欧美日韩福利视频一区二区| 国产精品亚洲美女久久久| 黄片小视频在线播放| 两人在一起打扑克的视频| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 国产精品av视频在线免费观看| 好男人在线观看高清免费视频| 亚洲,欧美,日韩| 宅男免费午夜| 99热6这里只有精品| 国内精品一区二区在线观看| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 国产精品98久久久久久宅男小说| 床上黄色一级片| 亚洲第一欧美日韩一区二区三区| 日本黄色视频三级网站网址| 99国产综合亚洲精品| 欧美潮喷喷水| 九色成人免费人妻av| 成人美女网站在线观看视频| 久久精品影院6| 亚洲av成人精品一区久久| 久久精品国产亚洲av香蕉五月| 亚洲avbb在线观看| 婷婷六月久久综合丁香| 精品久久久久久久久久久久久| 久久亚洲精品不卡| 国产av一区在线观看免费| 午夜影院日韩av| 桃红色精品国产亚洲av| 中出人妻视频一区二区| 91麻豆av在线| 成年女人看的毛片在线观看| 美女xxoo啪啪120秒动态图 | 国产黄片美女视频| 国产一区二区激情短视频| 亚洲欧美精品综合久久99| 国产免费一级a男人的天堂| 亚洲欧美日韩卡通动漫| 窝窝影院91人妻| 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产视频一区二区在线看| 国产一区二区亚洲精品在线观看| 中出人妻视频一区二区| 网址你懂的国产日韩在线| 国产三级黄色录像| 中文字幕高清在线视频| 深爱激情五月婷婷| 人妻制服诱惑在线中文字幕| 男女视频在线观看网站免费| 亚洲专区国产一区二区| 午夜福利视频1000在线观看| 国产视频一区二区在线看| 深爱激情五月婷婷| 亚洲欧美日韩高清在线视频| 九九久久精品国产亚洲av麻豆| 99久久精品国产亚洲精品| 精品一区二区三区人妻视频| 欧美xxxx黑人xx丫x性爽| 日韩欧美在线乱码| 美女黄网站色视频| 成人鲁丝片一二三区免费| 成人av一区二区三区在线看| 性插视频无遮挡在线免费观看| 内地一区二区视频在线| 美女免费视频网站| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| 一区二区三区免费毛片| 欧美日韩国产亚洲二区| 亚洲内射少妇av| 精品人妻一区二区三区麻豆 | bbb黄色大片| 精品福利观看| 久久久久久久午夜电影| 亚洲三级黄色毛片| 色吧在线观看| 老司机福利观看| 人人妻,人人澡人人爽秒播| 国产亚洲精品久久久com| 伦理电影大哥的女人| 99国产综合亚洲精品| 天堂av国产一区二区熟女人妻| 香蕉av资源在线| 中出人妻视频一区二区| 麻豆成人av在线观看| 99久久精品热视频| 51国产日韩欧美| 变态另类成人亚洲欧美熟女| 听说在线观看完整版免费高清| 乱码一卡2卡4卡精品| 亚洲国产高清在线一区二区三| 色哟哟·www| 99久久成人亚洲精品观看| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 久久久色成人| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影| 国产激情偷乱视频一区二区| 91麻豆精品激情在线观看国产| 如何舔出高潮| 亚洲精品一区av在线观看| 99久久99久久久精品蜜桃| 免费黄网站久久成人精品 | 嫩草影院新地址| 国产av麻豆久久久久久久| 我的女老师完整版在线观看| 精品午夜福利视频在线观看一区| 中文字幕av成人在线电影| 一夜夜www| 中文字幕av在线有码专区| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 成人特级黄色片久久久久久久| av视频在线观看入口| 中文资源天堂在线| 五月玫瑰六月丁香| 人妻久久中文字幕网| 日韩欧美 国产精品| 美女cb高潮喷水在线观看| 成年版毛片免费区| 日韩欧美免费精品| 亚洲中文日韩欧美视频| www.999成人在线观看| 久久久久精品国产欧美久久久| 亚洲自拍偷在线| 欧美日韩福利视频一区二区| 全区人妻精品视频| 国产精品久久久久久人妻精品电影| 搡老熟女国产l中国老女人| 国产成人福利小说| av在线老鸭窝| 久久这里只有精品中国| 99久国产av精品| 人人妻,人人澡人人爽秒播| 精品一区二区三区视频在线| 欧美三级亚洲精品| 97热精品久久久久久| 老熟妇乱子伦视频在线观看| 欧美日韩乱码在线| 国产精品不卡视频一区二区 | 亚洲人成网站在线播| 欧美日本亚洲视频在线播放| 真人一进一出gif抽搐免费| 欧美最新免费一区二区三区 | 中文字幕免费在线视频6| 日韩成人在线观看一区二区三区| 一级黄片播放器| 亚洲专区中文字幕在线| 在现免费观看毛片| 国产精品久久久久久久电影| 成人无遮挡网站| 少妇高潮的动态图| 制服丝袜大香蕉在线| 日日摸夜夜添夜夜添av毛片 | 免费观看人在逋| 9191精品国产免费久久| 99在线人妻在线中文字幕| 国内精品久久久久精免费| 欧美黄色片欧美黄色片| 一本精品99久久精品77| 97超视频在线观看视频| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 欧美黄色片欧美黄色片| 男人狂女人下面高潮的视频| av中文乱码字幕在线| 精品人妻熟女av久视频| 亚洲国产高清在线一区二区三| 久久精品综合一区二区三区| 精品免费久久久久久久清纯| 看片在线看免费视频| 天堂动漫精品| 久久国产精品人妻蜜桃| 国产蜜桃级精品一区二区三区| 人妻久久中文字幕网| av国产免费在线观看| 又爽又黄无遮挡网站| 亚洲真实伦在线观看| 网址你懂的国产日韩在线| 亚洲狠狠婷婷综合久久图片| 十八禁国产超污无遮挡网站| 亚洲国产精品999在线| 成人av在线播放网站| 999久久久精品免费观看国产| 毛片女人毛片| 国产一级毛片七仙女欲春2| a在线观看视频网站| 免费av不卡在线播放| 国产成人影院久久av| 看十八女毛片水多多多| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 一个人免费在线观看的高清视频| 赤兔流量卡办理| 国产午夜精品久久久久久一区二区三区 | 在线观看免费视频日本深夜| 国产一区二区激情短视频| 怎么达到女性高潮| 亚洲av免费在线观看| 蜜桃久久精品国产亚洲av| 男人舔女人下体高潮全视频| 成年女人毛片免费观看观看9| 色在线成人网| 国产v大片淫在线免费观看| eeuss影院久久| 蜜桃久久精品国产亚洲av| 黄色女人牲交| 国产成人啪精品午夜网站| 国产免费av片在线观看野外av| av黄色大香蕉| 久久精品国产亚洲av香蕉五月| 怎么达到女性高潮| 亚洲欧美日韩卡通动漫| 身体一侧抽搐| 国产午夜精品论理片| 特级一级黄色大片| 波多野结衣高清作品| 亚洲av成人精品一区久久| 久久精品国产亚洲av香蕉五月| 日韩有码中文字幕| 自拍偷自拍亚洲精品老妇| 亚洲不卡免费看| 少妇被粗大猛烈的视频| 精品久久久久久久久久久久久| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 听说在线观看完整版免费高清| 欧美日韩国产亚洲二区| 天天躁日日操中文字幕| 久久久久国产精品人妻aⅴ院| 欧美xxxx黑人xx丫x性爽| 人妻夜夜爽99麻豆av| 美女高潮的动态| 国产欧美日韩一区二区三| a级一级毛片免费在线观看| 午夜亚洲福利在线播放| 三级男女做爰猛烈吃奶摸视频| 国产人妻一区二区三区在| 美女大奶头视频| 九色国产91popny在线| 久久精品影院6| 国产免费男女视频| 亚洲五月婷婷丁香| 亚洲精品亚洲一区二区| 国产69精品久久久久777片| 国产精品av视频在线免费观看| 免费人成在线观看视频色| 搡老妇女老女人老熟妇| 欧美三级亚洲精品| 日本黄色片子视频| 国产91精品成人一区二区三区| 久久久久久久久中文| 夜夜爽天天搞| 日韩免费av在线播放| 一级av片app| 丰满人妻一区二区三区视频av| 人人妻人人看人人澡| 毛片一级片免费看久久久久 | 3wmmmm亚洲av在线观看| 天堂影院成人在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久国产精品人妻aⅴ院| 日韩 亚洲 欧美在线| 中文字幕人成人乱码亚洲影| 美女被艹到高潮喷水动态| 一区二区三区四区激情视频 | 国产成人aa在线观看| 精品久久久久久,| 高潮久久久久久久久久久不卡| 日韩av在线大香蕉| 91久久精品电影网| 国产成人啪精品午夜网站| 国产三级黄色录像| av天堂中文字幕网| 99热这里只有是精品在线观看 | 亚洲午夜理论影院| 亚洲欧美清纯卡通| 91av网一区二区| av专区在线播放| 色精品久久人妻99蜜桃|