• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    2017-05-10 17:42:42郭瑞張嘉霖趙宋燾余小江鐘舒孫碩李震宇陳偉
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:酞菁新加坡國立大學(xué)全氟

    郭瑞 張嘉霖, 趙宋燾 余小江 鐘舒 孫碩 李震宇 陳偉,,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    郭瑞1張嘉霖1,2趙宋燾3余小江4鐘舒1孫碩2李震宇3陳偉1,2,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    由于其獨(dú)特的分子構(gòu)型和電子結(jié)構(gòu),碗烯被認(rèn)為是組成有機(jī)分子電子器件的一種重要的結(jié)構(gòu)單元。在不同金屬表面上單一組分的碗烯或其衍生物進(jìn)行自組裝的行為,及其所形成自組裝薄膜的電子結(jié)構(gòu)已經(jīng)被廣泛研究。這里我們利用低溫掃描隧道顯微鏡(LT-STM),對全氟酞菁銅和碗烯兩種組分在高定向熱解石墨和銀(111)兩種不同襯底上的自組裝結(jié)構(gòu)進(jìn)行了報(bào)道。在石墨襯底上,全氟酞菁銅和碗烯分子間形成的氫鍵成為雙分子網(wǎng)絡(luò)結(jié)構(gòu)能夠形成的關(guān)鍵;同時(shí),由于這種分子間氫鍵的存在,碗烯分子大多采取“開口朝下”的空間構(gòu)型,以保證分子間氫鍵最大限度的形成。但在銀襯底上觀察到的碗烯分子則隨機(jī)采取“開口向上”或“開口向下”兩種構(gòu)型,并沒有一種優(yōu)勢構(gòu)型的存在。我們認(rèn)為此時(shí)銀(111)襯底和有機(jī)分子間強(qiáng)烈的相互作用限制了碗烯兩種構(gòu)型之間的翻轉(zhuǎn),使得碗烯分子一旦被吸附就只能保持其原本的構(gòu)型,從而導(dǎo)致了在結(jié)果上兩種構(gòu)型的隨機(jī)分布。

    分子自組裝;雙分子網(wǎng)絡(luò)結(jié)構(gòu);碗烯;低溫掃描隧道顯微鏡;分子間氫鍵

    1 Introduc tion

    Corannulene(COR)is a bow l-shaped molecule and can be regarded asa fragmentof fullerene,asshown in Fig.1a.Since its first successful synthesis in 19661,COR has attracted intensive attention due to several intriguing properties.W ith fivefold symmetry,COR provides a unique opportunity to study the symmetrymismatching betweenadsorbateand substrate,given the incom patibility betw een the fivefold rotational symmetry of moleculeand translationalorder of theunderneath crystal lattice2. The combination of non-planar shapeand aromaticitymakes COR an interesting system w ith unique geometry and electronic properties2c.Specificπ-πinteractionsbetween curved and planar structures give rise tofascinating photoelectric properties3. Buckybow ls also serve as ideal hosts toform the host-guest complexes in supramolecular chem istry4.COR has alw ays been regarded as a fragment of C60molecule for its symmetry and conformation.Butconsidering itshigh solubility inmost common solvents2c,COR can be a better choice than fullerenes as a prom ising candidate for acceptormaterials in organic optoelectronic devices2c.Itshould bementioned thatKuvychko etal.5have recently reported a COR derivative(w ith electron w ithdraw ing groups)that has a higher electron affinity and thus can be a strongerelectron acceptor than thewell-studied C60.

    Two-dimensional(2D)self-assembly of functional organic molecules into ordered arrays represents one of themost promising strategies tofabricate functionalmolecular nanostructures overmacroscopicareas6.Modification ofmetalsurfaceswith COR and its derivativeshasbeen studied for symmetrym ismatch between substrate and adsorbate2a,7,multi-component packing4,8, templated assembly8a,9,interface dipole formation10,aswell as2D phase transitions6c,11.The assembly behaviors of the single-componentmoleculeswith fivefold symmetry on surfaceareof fundamental interest12.The structureof self-assembled CORmonolayer on Cu(111)and Cu(110)has been reported.On Cu(111), each CORmolecule adsorbson either fcc orhcp threefold hollow sitewith itsbow lopening pointing up11b.Oneof the fivehexagonal ringsorients parallel to the surface planeand thereforea tiltbetween molecular bow l w ith respect to the surface exists.A temperature-controlled reversible phase transitionwasalso observed in this system.It isexplained that low tem perature constrains the vibration of COR molecules,thus leads to amore effective intermolecular attraction,and finally results in the transition to the phasewith higher packing density11b.On Cu(110),asimilarquasihexagonal lattice with slightly tilted COR moleculeswas observed2a.In addition tomonolayer,a bilayer bow l-in-bow l stacking structure of COR wasalso reported on Cu(111)at low temperature13.Each second-layermolecule locatesdirectly aboveone firstlayermolecule,leading to the formation ofabow l-in-bow ldimer.

    In contrast to the intensive studies on single component selfassembly of COR and its derivatives,investigation on multicomponentmolecular assembled system consisting of COR is rarely reported.Multicomponent 2D assemblies providemore functionality and tunability for themolecular nanostructures14. Calmettes etal.8areported binarymolecular networks comprising 2,3,9,10,16,17,23,24-octachlorozinc phthalocyanine(ZnPcCl8)and the COR derivative of 1,3,5,7,9-penta-tertbutylcorannulene (PTBC).In this case,themetastable phaseof ZnPcCl8can beused asa flexible template to realize the controllable insertion of PTBC molecule.By selecting different phases formed by ZnPcCl8,the final bimolecular 2D structure,w hich resembles the original packing of template,canbe regulated.Xiao etal.4reported aCORC60buckybow l-buckyballhost-guestcomplexesby depositing C60onto the ordered monolayer of COR on Cu(110).The concave structure of COR is optimal to realize a“face-to-face”contact w ith the convex surface of C60and their com plementary electron environmentsare favorable for binding.Via thermalactivation,a strongly bound COR-C60host-guest system is formed.Delicate balance betw een various intermolecular and interfacial interactions plays essential role in tailoring these supramolecular structures6b,8a,14a,15.

    Herein we report the formation of self-assembled binarymolecular networks of COR and copper hexadecafluorophthalocyanine(F16CuPc)on the highly oriented pyrolytic graphite(HOPG) and Ag(111).Thegeometrical arrangementsof the binary system on differentsubstrateswere systematically investigated by lowtemperature scanning tunneling m icroscopy/spectroscopy(LT-STM/STS).

    2 Experim en talm ethods

    TheAg(111)and HOPG single crystalsubstratesare purchased from MaTeck Material-Technologie&Kristalle GmbH.The F16CuPc molecules are tw ice sublimed and purchased from CREAPHYS.Both sample preparation and investigation were performed in an ultrahigh vacuum system at a base pressure around 10-10mbar(1mbar=101Pa).TheAg(111)surfacewas prepared via repeated cycles of sputtering by Ar+and then annealing to 750K.Freshly cleaved HOPGwas thoroughly degassed in UHV at800 K overnight.COR and F16CuPc were thermally evaporated from separate Knudsen cells at 380 and 670 K,respectively,onto the substrate(keptatroom temperature).

    In-situ STM investigation was carried out in a custom-designed Om icron LT-STM w ith an electrochem ically etched tungsten tip scanning at77K.All STM imageswere obtained under constant currentmodewith biasvoltagesapplied to the tip.To collect the differential conductance d I/d V(local density of states),a lock-in techniquewasadopted togetherwith amodulation voltageof 50 m V and a frequency of 625 Hz.When ram ping the voltage,the feedback loopwasopened16.

    3 Resu lts and discussion

    F16CuPc,asshown in Fig.1bwas firstdeposited onto HOPG toform a self-assembledmonolayer.STM image(Fig.1c)clearly revealsa typical close packing structurewhere F16CuPcmolecules lie flat on substrate with theirmolecular planes parallel to the substrate,arising from the interfacialπ-πinteraction17.A unitcell w ith a=1.66 nm,b=3.5 nm,θ1=108°isoutlined in Fig.1c and schematic packingmodelof oneunitcell is shown in Fig.1d.Two differentmolecular orientations exist in F16CuPcmonolayer on HOPG,which hasbeen concretely analyzed in previous report17. In oneunit cell,theorientation of four F16CuPcmoleculeson the corner is deviated from thatof two F16CuPcmolecules centered at the b edge.Then COR molecules were evaporated onto the F16CuPc covered HOPG.Co-assembly of F16CuPc and COR,as shown in Fig.1eand 1f,formsa long range-ordered structurewith an intermixing ratio of 1:2.A unitcellwith c=2.87 nm,d=2.17 nm,θ2=114°is highlighted in Fig.1f and the schematic packing modelof one unit cell is shown in Fig.1g.It isnoteworthy that in the supramolecular structure,only one orientation of F16CuPc molecule isobserved and each F16CuPcmolecule issurrounded by 6CORmolecules.

    Fig.1 M olecu lar structures for(a)COR and(b)F16CuPc;(c)STM imageof F16CuPcmonolayer deposited on HOPG;(d)schematic packing structure for F16CuPcm oleculeon HOPG;(e,f)STM images of long range-ordered binarym olecular networks form ed by F16CuPc and CORw ith amolecular ratio of 1:2 on HOPG;(g)schematic packingmodel for the F16CuPc-COR binary structureon HOPGIn figure c:Theunitcell ishighlightedwith a=1.66 nm,b=3.5 nm,θ1=108°.Vtip=1.654V,20 nm×20 nm.In figurese,f:TheCORmoleculesadopting thebow lup and bow ldown configurationsare indicated by thearrows.Theunitcellishighlighted in the imagewith c=2.87 nm,d=2.17 nm,θ2=114°.Vtip=1.496V,20nm×20 nm;Vtip=1.496V,10 nm×10 nm

    Herewe observe two kinds of dotsaround F16CuPc,including the dots thatarebrighterand the dots thatare slightly darker.We propose both kinds of dots are CORmoleculesbutw ith different configurations:bow lopening pointing up and pointing down.STS measurements(Fig.2b)confirm this assumption and reveals the highest occupied molecular orbital(HOMO)-the lowest unoccupiedmolecular orbital(LUMO)gap of around 3.10 eV,which agreesw ith the theoretically calculated HOMO-LUMO gap of CORmolecule18.The simulated topographic STM imagesof COR,based on semiempiricalextended H?ckel calculation,have been used to determine the configuration of adsorbed COR by Parschau etal.2a.For bow lup configuration,both the HOMO and LUMO topographic simulated images show a density m inimum at the centerof themolecule togetherwith a distinct fivefold doughnut shape.On the contrary,for bow l down configuration,both the HOMO and LUMO topographic simulated imagesshow a density maximum at the centerof themolecule and theoutline of COR molecule is rather vague2a.Hence by com paring the simulated STM imagewith our high resolution STM results in Fig.2a,we assign these brighter dots to COR with bow lopening down and darkerdots to CORwith bow lopening up.

    Fig.2(a)High resolution STM image of the F16CuPc-COR binarymolecu lar networkson HOPG; (b)d I/d V spectra recorded on the bow l-up and bow l-down COR molecules

    It is noticed that in the F16CuPc-COR binary molecular networks on HOPG,COR molecules that adopt bow l-down configuration hold majority.We propose that this configuration preferencemay arise from the formation ofmultiple intermolecular hydrogen bonding.As F16CuPcmolecules lie flat on the plane, peripheral hydrogen atoms of CORmolecule w ith bow l-down configuration can stand closer to the neighboring F16CuPc,which facilitates the formation of multiple intermolecular hydrogen bonding between neighboring F16CuPc and COR.In thisway,the binary supramolecular structure iseffectively stabilized and bow ldown configuration of COR thus isenergetically favorable.

    Wealsogrew the same F16CuPc-COR binary system on Ag(111) to compare the co-assembly structureson differentsubstrates.Ag (111)has shownmuch strongermolecule-substrate interactions for variousorganic adsorbates19,compared w ith HOPG.Hencewe were able to grow amonolayer of COR onto Ag(111).A large scaleand thecorresponding closeup STM imagesof COR on Ag (111)are shown in Fig.3(a,b)with aunitcelloutlined(e=1.02 nm,f=1.17 nm,θ3=73°).Each CORmolecule isshared by four unit cells(Fig.3c).Likew ise,w e observe brighter and slightly darker dots in the STM image of COR monolayer.Careful inspection of high-resolution STM(Fig.3d)confirms the co-existenceof CORmoleculeswith differentconfigurations.Herein the brighter dot obviously has an intensity minimum in the center. Hence by using the aforementioned comparison of high-resolution STM imageswith simulated results,these brighter dots should be assigned to CORmoleculeswith bow ls opening up and the darker and vague dots should be COR moleculesw ith bow ls opening down.

    Fig.3(a)Large scale STM imageofCORmonolayer deposited on Ag(111);(b)closeup STM image of COR on Ag(111); (c)proposed schem atic packingm odel for COR on Ag(111);(d)high resolution STM im ageof COR on Ag(111)w ith the bow l-up and bow l-down configurations indicated by red arrowsIn figurea:Vtip=1.0V;60 nm×60 nm.In figureb:Theunitcellishighlighted by the red rhombusw ith e=1.02 nm,f=1.17 nm,θ3=73°; Vtip=1.0V,10 nm×10 nm.In figured:Vtip=-1.5V;6nm×6 nm

    Tofurther confirm our assignment,a comparison of the brighter dotson HOPG and Ag(111)underhigh-resolution STM is shown in Fig.4.It isobvious thatin Fig.4a,the CORmoleculewithbow lup configuration possesses a hollow center w ith a rough pentagonal doughnutshape,which is consistentwith features of thesimulated bow l-up COR.While in Fig.4b,the COR molecule accounted asbow l-dow n configuration ismore protruding in the center and themolecule shape is obscure,which also resembles simulated bow l-down topography.We noted that on Ag(111) substrate,the configuration preference of COR disappears:both bow l-up and bow l-down COR exist in almostequalamount.In otherwords,the adoption of bow l-up or bow l-down configuration is random.We suggest that the strong COR-Ag(111)interfacial interaction constrains themovementand bow l inversion of COR molecules.Onceadsorbed on Ag(111),CORmolecule could only retain its initial configuration and therefore both configurations have equal chance to appear.

    Fig.4 Com parison of the brighter dotsunder high-resolution STM(a)CORmoleculew ith bow l-up configurationon Ag(111); (b)CORmoleculewith bow l-down configuration on HOPG

    Fig.5(a)High resolution STM imageof F16CuPc-COR binary m olecular networks on Ag(111)w ith am olecular ratio of 1:4; (b)schem atic pack ingm odel for the F16CuPc-COR b inary structureon Ag(111)In figurea:Theunitcellishighlighted by the red rhombusw ith g=h=2.73 nm,θ4=100°.Vtip=1.26V,10 nm×10 nm

    Co-assemblymonolayerof F16CuPc and COR on Ag(111)was also prepared by furtherevaporating F16CuPcmolecules onto the COR covered substrate.STM image reveals the long range-ordered binarymolecularnetworksw ith amolecular ratio of 1:4. The unit cell isoutlined in Fig.5aw ith features including g=h= 2.73 nm andθ4=100°.Corresponding schematic packingmodel for the binary structure is shown in Fig.5b.All the F16CuPc molecules lie in the same orientation and each F16CuPcmolecule issurrounded by 8CORmolecules.

    4 Conc lusions

    In summary,we have investigated the binary supramolecular structureof F16CuPc-CORmonolayerassembled on HOPGand Ag (111)substrates.The formation of multiple intermolecular hydrogen bonding between F16CuPc and COR could result in a preferred bow l-dow n configuration for COR molecules on the weakly interacting HOPG.In contrast,this configuration preference disappears on Ag(111)substrate where the adoption of bow l-up orbow l-down configuration is random,resulting from the strongmolecule-substrate interactions.Ourwork would further reinforce themodification of surfacew ith binarymolecular networks consisting ofCOR and itsderivatives.

    (1)Barth,W.E.;Law ton,R.G.J.Am.Chem.Soc.1966,88(2), 380.doi:10.1021/ja00954a049

    (2)(a)Parschau,M.;Fasel,R.;Ernst,K.H.;Gr?ning,O.; B randenberger,L.;Schillinger,R.;Greber,T.;Seitsonen,A.P.; Wu,Y.T.;Siegel,J.S.Angew.Chem.-Int.Edit.2007,46(43), 8258.doi:10.1002/anie.200700610

    (b)Shechtman,D.;Blech,I.;Gratias,D.;Cahn,J.W.Phys.Rev. Lett.1984,53(20),1951.doi:10.1103/PhysRevLett.53.1951

    (c)Bauert,E.FundamentalAspectsof the Self-assembly Behaviorand Electronic Propertiesof Corannulenes.Ph.D. Dissertation,University of Zurich,Zurich,2011.

    (3)Li,J.;Liu,Y.;Qian,Y.;Li,L.;Xie,L.;Shang,J.;Yu,T.;Yi,M.; Huang,W.Phys.Chem.Chem.Phys.2013,15(30),12694. doi:10.1039/C3CP51095F

    (4)Xiao,W.;Passerone,D.;Ruffieux,P.;A?t-M ansour,K.; G r?ning,O.;Tosatti,E.;Siegel,J.S.;Fasel,R.J.Am.Chem. Soc.2008,130(14),4767.doi:10.1021/ja077816l

    (5)Kuvychko,I.V.;Dubceac,C.;Deng,S.H.;Wang,X.B.; G ranovsky,A.A.;Popov,A.A.;Petrukhina,M.A.;Strauss,S. H.;Boltalina,O.V.Angew.Chem.-Int.Edit.2013,52(29), 7505.doi:10.1002/anie.201300796

    (6)(a)Baris,B.;Jeannoutot,J.;Luzet,V.;Palmino,F.;Rochefort, A.;Cherioux,F.ACSNano 2012,6(8),6905.doi:10.1021/ nn301827e

    (b)Mali,K.S.;De Feyter,S.Phil.Trans.R.Soc.A 2013,371 (2000),20120304.doi:10.1098/rsta.2012.0304

    (c)Zoppi,L.;Bauert,T.;Siegel,J.S.;Baldridge,K.K.;Ernst, K.H.Phys.Chem.Chem.Phys.2012,14(38),13365. doi:10.1039/C2CP41732D

    (7)Guillermet,O.;Niem i,E.;Nagarajan,S.;Bouju,X.;Martrou, D.;Gourdon,A.;Gauthier,S.Angew.Chem.-Int.Edit.2009,48 (11),1970.doi:10.1002/anie.200805689

    (8)(a)Calmettes,B.;Nagarajan,S.;Gourdon,A.;Abel,M.;Porte, L.;Coratger,R.Angew.Chem.-Int.Edit.2008,47(37),6994. doi:10.1002/anie.200802628

    (b)Yokoi,H.;Hiraoka,Y.;Hiroto,S.;Sakamaki,D.;Seki,S.; Shinokubo,H.Nat.Commun.2015,6.doi:10.1038/

    ncomms9215

    (9)Balandina,T.;Tahara,K.;Sandig,N.;Blunt,M.O.;Adisoejoso, J.;Lei,S.;Zerbetto,F.;Tobe,Y.;De Feyter,S.ACSNano 2012, 6(9),8381.doi:10.1021/nn303144r

    (10)Bauert,T.;Zoppi,L.;Koller,G.;Garcia,A.;Baldridge,K.K.; Ernst,K.H.J.Phys.Chem.Lett.2011,2(21),2805. doi:10.1021/jz2012484

    (11)(a)M erz,L.;Bauert,T.;Parschau,M.;Koller,G.;Siegel,J.S.; Ernst,K.H.Chem.Commun.2009,(39),5871.doi:10.1039/ B911056A (b)M erz,L.;Parschau,M.;Zoppi,L.;Baldridge,K.K.;Siegel, J.S.;Ernst,K.H.Angew.Chem.-Int.Edit.2009,48(11),1966. doi:10.1002/anie.200804563

    (12)(a)Bauert,T.;Merz,L.;Bandera,D.;Parschau,M.;Siegel,J.S.; Ernst,K.H.J.Am.Chem.Soc.2009,131(10),3460. doi:10.1021/ja8101083. (b)Merz,L.;Parschau,M.;Siegel,J.S.;Ernst,K.H.Chimia 2009,63(4),214.doi:10.2533/chim ia.2009.214

    (13)Bauert,T.;Baldridge,K.K.;Siegel,J.S.;Ernst,K.H.Chem. Commun.2011,47(28),7995.doi:10.1039/C1CC12540K.

    (14)(a)De Oteyza,D.G.MulticomponentAssembly Strategies for Supramolecular Systems.In SupramolecularMaterialsforOpto-Electronics;Nobert Korch;Royal Society of Chem istry: Cambridge,2014;pp 53-97.doi:10.1039/9781782626947-00053 (b)Huang,Y.L.;Chen,W.;Li,H.;Ma,J.;Pflaum,J.;Wee,A.T. S.Small2010,6(1),70.doi:10.1002/sm ll.200901291

    (15)Zhong,J.Q.;Qin,X.;Zhang,J.L.;Kera,S.;Ueno,N.;Wee,A. T.S.;Yang,J.;Chen,W.ACSNano 2014,8(2),1699. doi:10.1021/nn406050e

    (16)Zhang,J.;Wang,Z.;Niu,T.;Li,Z.;Chen,W.Appl.Phys.Lett. 2014,104(11),113506.doi:10.1063/1.4869115

    (17)Huang,Y.L.;Chen,W.;Chen,S.;Wee,A.T.S.Appl.Phys.A 2009,95(1),107.doi:10.1007/s00339-008-5000-6

    (18)dos Santos,R.B.;Rivelino,R.;de M ota,F.B.;Gueorguiev,G. K.J.Phys.Chem.A 2012,116(36),9080.doi:10.1021/ jp3049636

    (19)(a)Lackinger,M.;Griessl,S.;Heckl,W.M.;Hietschold,M. J.Phys.Chem.B 2002,106(17),4482.doi:10.1021/jp014275s (b)Lackinger,M.;Hietschold,M.Surf.Sci.2002,520(1), L619.doi:10.1016/S0039-6028(02)02269-0

    LT-STM Investigation of the Self-Assem bled F16CuPc-Co rannu lene Binary System on Ag(111)and Graphite Surfaces

    GUO Rui1ZHANG Jialin1,2ZHAO Songtao3YU Xiaojiang4ZHONG Shu1SUN Shuo2LIZhenyu3CHENWei1,2,5,6,*
    (1DepartmentofChemistry,NationalUniversity ofSingapore,3Science Drive 3,117543,Singapore;2DepartmentofPhysics,NationalUniversity ofSingapore,2Science Drive 3,117542,Singapore;3HefeiNational Laboratory for PhysicalSciencesat the Microscale,CASCentre for Excellence and Synergetic Innovation Center of Quantum Information and Quantum Physics,University ofScience and Technology ofChina,Hefei230026,P.R.China;
    4Singapore Synchrotron LightSource,National University ofSingapore,5 Research Link,117603,Singapore;
    5Centerfor Advanced 2DMaterialsand Graphene Research Center,NationalUniversity ofSingapore,3 Science Drive 3,117546,
    Singapore;6NationalUniversity ofSingapore(Suzhou)Research Institute,Suzhou 215123,Jiangsu Province,P.R.China)

    Mo lecularassembly;Binarymolecularnetworks;Corannulene;Low-temperature scanning tunne lingm icroscopy;Intermo lecularhyd rogen bonding

    O647

    10.3866/PKU.WHXB201612051

    www.whxb.pku.edu.cn

    Received:September 29,2016;Revised:December 2,2016;Published online:December 5,2016.

    *Corresponding author.Email:phycw@nus.edu.sg;Tel:+65-65161879.

    Theprojectwas supported by theNational Key Basic Research Program of China(973)(2015CB856505),SingaporeMOE(R143-000-652-112),

    Singapore NRF-CRPgrantof“Doped Contacts and Heterostructures for Solution-Processable Plastic Electronics”(R143-001-608-281),Jiangsu

    Province GovernmentResearch Platform Grant,China,and NUSRISeed Fund.

    國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2015CB856505),新加坡教育部(MOE,Tier II,R143-000-652-112),新加坡國家研發(fā)基金會(NRF,R143-001-608-281),江蘇省平臺建設(shè)項(xiàng)目和新加坡國立大學(xué)蘇州研究院資助?Editorialoffice of Acta Physico-Chim ica Sinica

    Abstract:Corannulene(COR)is considered a prom isingmolecularbuilding block fororganic electronics owing to its intriguing geome trical and e lec tronic p roperties.Intensive research e fforts have been devoted to understanding the assemb ly behavior and e lectronic structure of COR and its derivatives on variousmeta l surfaces via low-temperature scanning tunne lingm icroscopy(LT-STM).Here we report the formation ofbinary mo lecular networks of copperhexadeca fluorophtha locyanine(F16CuPc)-COR self-assembled on the highly oriented pyrolytic graphite(HOPG)and Ag(111)substrates.Intermo lecularhydrogen bonding between F16CuPc and COR facilitates the formation ofbina rymolecular networks on HOPG and further induces a pre ference for bow l-down configured CORmolecules.This observed configuration preference disappears on Ag(111)substrate, where CORmolecules lie on the substrate with theirbow lopenings pointing up and down random ly.We propose tha tstrong interfacia l interactions betw een them olecule and Ag(111)su rface constrain the bow l inve rsion of the CORmo lecule,which thus retains its initialconfiguration upon adsorption.

    猜你喜歡
    酞菁新加坡國立大學(xué)全氟
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    新加坡國立大學(xué)推出新型止血敷料
    新加坡國立大學(xué)助力重慶企業(yè)研發(fā)區(qū)塊鏈技術(shù)
    追光花園
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    新加坡國立大學(xué)卓越辦學(xué)經(jīng)驗(yàn)及啟示
    大學(xué)(2016年4期)2016-04-09 06:39:22
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    纖維素纖維負(fù)載鈷酞菁對活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    在线免费十八禁| 亚洲成人av在线免费| av在线观看视频网站免费| 熟女电影av网| 亚洲av免费高清在线观看| 夫妻午夜视频| 最近最新中文字幕免费大全7| 国产乱人视频| 欧美激情久久久久久爽电影| 日韩电影二区| 欧美日韩亚洲高清精品| 久久久色成人| 色播亚洲综合网| 噜噜噜噜噜久久久久久91| av国产免费在线观看| 麻豆久久精品国产亚洲av| 搞女人的毛片| 久热这里只有精品99| 欧美极品一区二区三区四区| 午夜爱爱视频在线播放| 91久久精品国产一区二区成人| 亚洲内射少妇av| 亚洲美女视频黄频| 日韩欧美精品v在线| 国内精品美女久久久久久| 天天一区二区日本电影三级| 亚洲三级黄色毛片| 18禁动态无遮挡网站| 简卡轻食公司| 欧美zozozo另类| 国产视频首页在线观看| av又黄又爽大尺度在线免费看| 汤姆久久久久久久影院中文字幕| 老司机影院毛片| 久久久久久久久久成人| 又爽又黄a免费视频| 国语对白做爰xxxⅹ性视频网站| 丰满乱子伦码专区| 亚洲国产精品专区欧美| 日日啪夜夜撸| 国产成人精品久久久久久| 人妻 亚洲 视频| 内地一区二区视频在线| 51国产日韩欧美| 丝袜美腿在线中文| 一级毛片久久久久久久久女| 最近最新中文字幕免费大全7| 久久久亚洲精品成人影院| 黄色配什么色好看| 热re99久久精品国产66热6| 天天躁日日操中文字幕| 精品久久国产蜜桃| 街头女战士在线观看网站| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲av涩爱| 成年女人在线观看亚洲视频 | 国产精品99久久99久久久不卡 | 自拍欧美九色日韩亚洲蝌蚪91 | 少妇的逼好多水| 精品国产乱码久久久久久小说| 高清午夜精品一区二区三区| kizo精华| 国产乱人偷精品视频| 在线 av 中文字幕| av一本久久久久| av免费在线看不卡| 神马国产精品三级电影在线观看| 国产男女超爽视频在线观看| 成人午夜精彩视频在线观看| 精品人妻一区二区三区麻豆| 99热这里只有是精品在线观看| 禁无遮挡网站| 免费观看无遮挡的男女| 成人特级av手机在线观看| 国产精品国产三级国产av玫瑰| 国产精品国产三级专区第一集| 亚洲第一区二区三区不卡| 国产精品99久久久久久久久| 国产成人a区在线观看| 午夜精品国产一区二区电影 | 国产 一区 欧美 日韩| 美女视频免费永久观看网站| 亚洲欧美一区二区三区国产| 卡戴珊不雅视频在线播放| 激情五月婷婷亚洲| 美女国产视频在线观看| 美女主播在线视频| 国内少妇人妻偷人精品xxx网站| 亚洲第一区二区三区不卡| 欧美最新免费一区二区三区| 最近中文字幕2019免费版| 欧美+日韩+精品| 免费人成在线观看视频色| 国产高清三级在线| 在线亚洲精品国产二区图片欧美 | 一二三四中文在线观看免费高清| 啦啦啦在线观看免费高清www| 免费播放大片免费观看视频在线观看| 国产精品无大码| 纵有疾风起免费观看全集完整版| 黄色一级大片看看| 内射极品少妇av片p| 国产又色又爽无遮挡免| av在线app专区| 国产91av在线免费观看| 在线免费十八禁| 久久国内精品自在自线图片| 婷婷色综合www| 一区二区三区乱码不卡18| 一二三四中文在线观看免费高清| 五月玫瑰六月丁香| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产av新网站| 哪个播放器可以免费观看大片| 国产黄色免费在线视频| av在线蜜桃| 色网站视频免费| 精品酒店卫生间| 日日摸夜夜添夜夜添av毛片| 美女被艹到高潮喷水动态| 久久精品国产a三级三级三级| 久久精品国产亚洲网站| 亚洲婷婷狠狠爱综合网| 视频中文字幕在线观看| av一本久久久久| 午夜激情久久久久久久| 亚洲av免费在线观看| 国产成人91sexporn| 3wmmmm亚洲av在线观看| 免费观看a级毛片全部| 汤姆久久久久久久影院中文字幕| 亚洲精品乱码久久久久久按摩| av在线蜜桃| 亚洲欧美精品自产自拍| 身体一侧抽搐| 午夜福利高清视频| 国内精品美女久久久久久| 夜夜看夜夜爽夜夜摸| 夫妻性生交免费视频一级片| 九草在线视频观看| 岛国毛片在线播放| 久久久久国产网址| 国产毛片在线视频| 伊人久久精品亚洲午夜| 黄色一级大片看看| 亚洲成色77777| 成人高潮视频无遮挡免费网站| 91精品国产九色| 水蜜桃什么品种好| 下体分泌物呈黄色| 亚洲精品日本国产第一区| 亚洲四区av| 久久久久九九精品影院| 春色校园在线视频观看| 午夜福利视频1000在线观看| 插阴视频在线观看视频| 色婷婷久久久亚洲欧美| 国产精品99久久99久久久不卡 | 一级毛片黄色毛片免费观看视频| 波野结衣二区三区在线| 夫妻性生交免费视频一级片| 国产男女超爽视频在线观看| 亚洲国产高清在线一区二区三| 看十八女毛片水多多多| 人人妻人人澡人人爽人人夜夜| 亚洲,欧美,日韩| 亚洲精华国产精华液的使用体验| 97超碰精品成人国产| 伦精品一区二区三区| 人妻一区二区av| 欧美+日韩+精品| 亚洲色图av天堂| 欧美日韩一区二区视频在线观看视频在线 | 性色avwww在线观看| 日日摸夜夜添夜夜爱| 国产免费视频播放在线视频| 色播亚洲综合网| 久久久色成人| 国产精品久久久久久av不卡| 精品少妇久久久久久888优播| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美一区二区三区国产| 丝袜脚勾引网站| 亚洲国产精品成人久久小说| 国产亚洲一区二区精品| 99热这里只有精品一区| 国产91av在线免费观看| 涩涩av久久男人的天堂| 赤兔流量卡办理| 国产伦理片在线播放av一区| 不卡视频在线观看欧美| 老司机影院毛片| 91午夜精品亚洲一区二区三区| 91aial.com中文字幕在线观看| 哪个播放器可以免费观看大片| www.色视频.com| 国产男女内射视频| 国产综合精华液| 最后的刺客免费高清国语| 亚洲人与动物交配视频| 女的被弄到高潮叫床怎么办| av在线app专区| 波多野结衣巨乳人妻| 欧美日本视频| 日韩,欧美,国产一区二区三区| 亚洲色图av天堂| 麻豆久久精品国产亚洲av| 免费看a级黄色片| 国产成人免费观看mmmm| 久久精品综合一区二区三区| 午夜亚洲福利在线播放| 欧美成人a在线观看| 国产淫片久久久久久久久| 久久精品国产亚洲网站| 欧美极品一区二区三区四区| 亚洲在线观看片| 欧美日本视频| 伦理电影大哥的女人| 纵有疾风起免费观看全集完整版| 国产精品成人在线| 最新中文字幕久久久久| 精品一区在线观看国产| 视频中文字幕在线观看| 大片免费播放器 马上看| 国内精品宾馆在线| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 久久精品熟女亚洲av麻豆精品| 欧美+日韩+精品| 国产av码专区亚洲av| 精品人妻偷拍中文字幕| 少妇人妻一区二区三区视频| 欧美日韩视频精品一区| 日韩三级伦理在线观看| 国产乱人视频| 日本色播在线视频| 永久网站在线| 蜜臀久久99精品久久宅男| 国产精品秋霞免费鲁丝片| 一级a做视频免费观看| 精品少妇久久久久久888优播| 99久久精品国产国产毛片| 男人狂女人下面高潮的视频| 国产精品蜜桃在线观看| av黄色大香蕉| 少妇的逼水好多| 国产男女超爽视频在线观看| 精品人妻偷拍中文字幕| 精品一区二区免费观看| 中文欧美无线码| 少妇人妻久久综合中文| 欧美国产精品一级二级三级 | 免费看不卡的av| 五月开心婷婷网| 91午夜精品亚洲一区二区三区| 少妇被粗大猛烈的视频| 久久久成人免费电影| 永久网站在线| 国产精品一二三区在线看| 色网站视频免费| 91aial.com中文字幕在线观看| 国产一级毛片在线| 乱系列少妇在线播放| 免费黄色在线免费观看| 新久久久久国产一级毛片| a级一级毛片免费在线观看| 精品少妇黑人巨大在线播放| 我的老师免费观看完整版| 五月伊人婷婷丁香| 777米奇影视久久| 国精品久久久久久国模美| 日本一二三区视频观看| 91精品国产九色| 午夜免费观看性视频| 久久久久国产网址| 男人舔奶头视频| 99久久精品热视频| 少妇的逼好多水| 日日摸夜夜添夜夜爱| 99热6这里只有精品| 又黄又爽又刺激的免费视频.| 国产精品99久久久久久久久| 国产熟女欧美一区二区| 神马国产精品三级电影在线观看| 亚洲av成人精品一二三区| a级毛片免费高清观看在线播放| 性插视频无遮挡在线免费观看| 在线免费观看不下载黄p国产| 欧美97在线视频| 欧美老熟妇乱子伦牲交| 精品熟女少妇av免费看| 男女下面进入的视频免费午夜| 国产欧美另类精品又又久久亚洲欧美| 国产黄片视频在线免费观看| 日韩免费高清中文字幕av| 婷婷色av中文字幕| 观看免费一级毛片| 欧美激情久久久久久爽电影| 边亲边吃奶的免费视频| www.色视频.com| 久久影院123| 国产精品一区www在线观看| 欧美成人午夜免费资源| av在线亚洲专区| 日韩不卡一区二区三区视频在线| 国产国拍精品亚洲av在线观看| 卡戴珊不雅视频在线播放| 女人被狂操c到高潮| 亚洲人成网站在线观看播放| 亚洲电影在线观看av| 2021天堂中文幕一二区在线观| 国产av不卡久久| 97热精品久久久久久| 亚洲精品国产av蜜桃| kizo精华| 男女啪啪激烈高潮av片| 一本色道久久久久久精品综合| 欧美zozozo另类| 免费看日本二区| 欧美人与善性xxx| 亚洲精品视频女| 亚洲伊人久久精品综合| 亚洲色图综合在线观看| 国产中年淑女户外野战色| 又黄又爽又刺激的免费视频.| 夫妻性生交免费视频一级片| av国产免费在线观看| 欧美一区二区亚洲| 亚洲精品第二区| 亚洲av中文字字幕乱码综合| 寂寞人妻少妇视频99o| 我的女老师完整版在线观看| 女人十人毛片免费观看3o分钟| 青春草国产在线视频| 美女被艹到高潮喷水动态| 欧美xxⅹ黑人| 亚洲伊人久久精品综合| 国产成人a∨麻豆精品| 极品教师在线视频| 久久久久久久久久成人| 免费高清在线观看视频在线观看| 国产黄a三级三级三级人| 国产在视频线精品| 成人亚洲精品av一区二区| 国产精品99久久久久久久久| 亚洲精品,欧美精品| 激情五月婷婷亚洲| a级毛色黄片| 色5月婷婷丁香| 日韩一本色道免费dvd| 久久人人爽人人爽人人片va| 大香蕉97超碰在线| 精品视频人人做人人爽| 欧美三级亚洲精品| 18禁裸乳无遮挡动漫免费视频 | 极品少妇高潮喷水抽搐| 最近中文字幕2019免费版| 亚洲怡红院男人天堂| 精品少妇久久久久久888优播| 亚洲精品456在线播放app| 国产伦理片在线播放av一区| 国产亚洲5aaaaa淫片| 欧美性感艳星| 国产精品一区www在线观看| 老师上课跳d突然被开到最大视频| 国产成人午夜福利电影在线观看| 午夜福利高清视频| 亚洲内射少妇av| av女优亚洲男人天堂| 最近最新中文字幕大全电影3| 熟女电影av网| www.色视频.com| 久久久久九九精品影院| 在线亚洲精品国产二区图片欧美 | 老师上课跳d突然被开到最大视频| 三级男女做爰猛烈吃奶摸视频| 又大又黄又爽视频免费| 女人十人毛片免费观看3o分钟| 极品教师在线视频| 国产成人freesex在线| 蜜臀久久99精品久久宅男| 亚洲av电影在线观看一区二区三区 | 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 国产极品天堂在线| 深爱激情五月婷婷| 99热这里只有是精品在线观看| 久久久久久久久久成人| 国产精品无大码| 国产高清有码在线观看视频| 又爽又黄a免费视频| 国产精品.久久久| av免费观看日本| 欧美xxxx黑人xx丫x性爽| 在线观看人妻少妇| 大话2 男鬼变身卡| 国产国拍精品亚洲av在线观看| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 亚洲国产高清在线一区二区三| 国产成人91sexporn| 禁无遮挡网站| 国产成人a区在线观看| 在线看a的网站| 亚洲精品国产成人久久av| 国产69精品久久久久777片| 国产精品一区二区三区四区免费观看| 亚洲精品乱码久久久久久按摩| 麻豆国产97在线/欧美| 亚洲欧美清纯卡通| 观看免费一级毛片| 国产黄频视频在线观看| 欧美日韩视频高清一区二区三区二| 99热全是精品| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 亚洲av免费在线观看| 在现免费观看毛片| 亚洲图色成人| 我的老师免费观看完整版| 欧美一区二区亚洲| 亚洲av在线观看美女高潮| 我的老师免费观看完整版| 久久影院123| 欧美高清性xxxxhd video| 国产精品一区二区性色av| 日本色播在线视频| 亚洲婷婷狠狠爱综合网| 国产在线男女| 精品久久久久久久久亚洲| 青青草视频在线视频观看| 一级二级三级毛片免费看| 噜噜噜噜噜久久久久久91| 欧美性感艳星| 在线观看三级黄色| 51国产日韩欧美| a级一级毛片免费在线观看| 午夜福利网站1000一区二区三区| 丰满人妻一区二区三区视频av| 一本久久精品| 欧美极品一区二区三区四区| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av免费高清在线观看| 精品久久久久久久人妻蜜臀av| 久久99精品国语久久久| 午夜免费鲁丝| 在线免费观看不下载黄p国产| 十八禁网站网址无遮挡 | 成人国产av品久久久| 日本一二三区视频观看| 最近的中文字幕免费完整| 日韩电影二区| 99精国产麻豆久久婷婷| 深夜a级毛片| 又粗又硬又长又爽又黄的视频| 亚洲成人久久爱视频| 亚洲无线观看免费| 久久精品国产自在天天线| 最后的刺客免费高清国语| 99热这里只有是精品50| 国内少妇人妻偷人精品xxx网站| 国产综合精华液| 乱码一卡2卡4卡精品| 男女边摸边吃奶| 久久影院123| 久久精品国产鲁丝片午夜精品| 日本黄大片高清| 日韩av免费高清视频| 成人鲁丝片一二三区免费| 欧美激情久久久久久爽电影| 国产精品国产三级国产av玫瑰| av女优亚洲男人天堂| 麻豆成人av视频| 亚洲美女视频黄频| 成年人午夜在线观看视频| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久99久久久不卡 | 有码 亚洲区| 韩国av在线不卡| 欧美区成人在线视频| 麻豆国产97在线/欧美| 成年av动漫网址| 精品熟女少妇av免费看| 久久久久久国产a免费观看| 18禁动态无遮挡网站| 三级国产精品欧美在线观看| 狂野欧美激情性xxxx在线观看| 欧美极品一区二区三区四区| 成人毛片60女人毛片免费| av免费在线看不卡| 下体分泌物呈黄色| www.av在线官网国产| 一级a做视频免费观看| 婷婷色av中文字幕| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区 | 久久精品久久精品一区二区三区| 亚洲av在线观看美女高潮| 国内少妇人妻偷人精品xxx网站| 91在线精品国自产拍蜜月| 精品久久久久久久人妻蜜臀av| 日本色播在线视频| 亚洲高清免费不卡视频| 成人欧美大片| 亚洲天堂av无毛| 日本一二三区视频观看| 伦精品一区二区三区| 国产成人91sexporn| 性色avwww在线观看| 久久亚洲国产成人精品v| 久久国产乱子免费精品| 国语对白做爰xxxⅹ性视频网站| 人妻 亚洲 视频| 少妇丰满av| 下体分泌物呈黄色| 久久女婷五月综合色啪小说 | av卡一久久| 小蜜桃在线观看免费完整版高清| 成人黄色视频免费在线看| 亚洲国产最新在线播放| 国产伦理片在线播放av一区| 成人国产av品久久久| 亚洲婷婷狠狠爱综合网| 免费黄频网站在线观看国产| 日产精品乱码卡一卡2卡三| 男插女下体视频免费在线播放| 国产伦精品一区二区三区四那| 日韩制服骚丝袜av| 婷婷色av中文字幕| 久久热精品热| 毛片一级片免费看久久久久| 美女被艹到高潮喷水动态| 欧美bdsm另类| 51国产日韩欧美| 日本-黄色视频高清免费观看| 免费观看性生交大片5| 日韩视频在线欧美| 少妇人妻 视频| 午夜爱爱视频在线播放| 亚洲精品一二三| 亚洲精品视频女| 啦啦啦在线观看免费高清www| 女人十人毛片免费观看3o分钟| 51国产日韩欧美| 成年女人在线观看亚洲视频 | 日韩中字成人| 久久精品久久精品一区二区三区| 在线观看一区二区三区激情| 亚洲国产av新网站| 色视频www国产| 人妻夜夜爽99麻豆av| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 欧美少妇被猛烈插入视频| 免费人成在线观看视频色| 2018国产大陆天天弄谢| 国产高清三级在线| 国内揄拍国产精品人妻在线| 麻豆乱淫一区二区| 永久网站在线| 欧美激情在线99| 尾随美女入室| 亚洲内射少妇av| 国产爽快片一区二区三区| 中文欧美无线码| 51国产日韩欧美| 成人毛片60女人毛片免费| 99久久精品国产国产毛片| 看免费成人av毛片| 日韩成人av中文字幕在线观看| 国产成人a区在线观看| 少妇丰满av| 国产欧美日韩一区二区三区在线 | 精品国产露脸久久av麻豆| 六月丁香七月| 亚洲在久久综合| 欧美国产精品一级二级三级 | 亚洲av.av天堂| 成人亚洲精品av一区二区| 深夜a级毛片| 成人鲁丝片一二三区免费| 日产精品乱码卡一卡2卡三| 97精品久久久久久久久久精品| 国产高潮美女av| 在现免费观看毛片| av.在线天堂| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 卡戴珊不雅视频在线播放| 看免费成人av毛片| 18禁在线无遮挡免费观看视频| h日本视频在线播放| 久久午夜福利片| 亚洲成色77777| 欧美xxxx黑人xx丫x性爽| 免费av不卡在线播放| 毛片一级片免费看久久久久| 国产黄片美女视频| 欧美日韩国产mv在线观看视频 | 天堂网av新在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文在线观看免费www的网站| av免费在线看不卡| 国产精品麻豆人妻色哟哟久久| 少妇人妻久久综合中文| 亚洲国产精品国产精品| 久久久久久伊人网av| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲精品国产成人久久av|