• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    2017-05-10 17:42:42郭瑞張嘉霖趙宋燾余小江鐘舒孫碩李震宇陳偉
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:酞菁新加坡國立大學(xué)全氟

    郭瑞 張嘉霖, 趙宋燾 余小江 鐘舒 孫碩 李震宇 陳偉,,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    基于全氟酞菁銅和碗烯雙分子體系在銀和石墨表面自組裝行為的低溫掃描隧道顯微鏡研究

    郭瑞1張嘉霖1,2趙宋燾3余小江4鐘舒1孫碩2李震宇3陳偉1,2,5,6,*

    (1新加坡國立大學(xué)化學(xué)系,新加坡117543;2新加坡國立大學(xué)物理系,新加坡117542;3中國科學(xué)技術(shù)大學(xué),合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室,中國科學(xué)院量子信息與量子科技前沿卓越創(chuàng)新中心,合肥23026;4新加坡國立大學(xué),新加坡同步加速器光源中心,新加坡117603;5新加坡國立大學(xué),先進(jìn)二維材料石墨烯研究中心,新加坡117546;6新加坡國立大學(xué)蘇州研究院,江蘇蘇州215123)

    由于其獨(dú)特的分子構(gòu)型和電子結(jié)構(gòu),碗烯被認(rèn)為是組成有機(jī)分子電子器件的一種重要的結(jié)構(gòu)單元。在不同金屬表面上單一組分的碗烯或其衍生物進(jìn)行自組裝的行為,及其所形成自組裝薄膜的電子結(jié)構(gòu)已經(jīng)被廣泛研究。這里我們利用低溫掃描隧道顯微鏡(LT-STM),對全氟酞菁銅和碗烯兩種組分在高定向熱解石墨和銀(111)兩種不同襯底上的自組裝結(jié)構(gòu)進(jìn)行了報(bào)道。在石墨襯底上,全氟酞菁銅和碗烯分子間形成的氫鍵成為雙分子網(wǎng)絡(luò)結(jié)構(gòu)能夠形成的關(guān)鍵;同時(shí),由于這種分子間氫鍵的存在,碗烯分子大多采取“開口朝下”的空間構(gòu)型,以保證分子間氫鍵最大限度的形成。但在銀襯底上觀察到的碗烯分子則隨機(jī)采取“開口向上”或“開口向下”兩種構(gòu)型,并沒有一種優(yōu)勢構(gòu)型的存在。我們認(rèn)為此時(shí)銀(111)襯底和有機(jī)分子間強(qiáng)烈的相互作用限制了碗烯兩種構(gòu)型之間的翻轉(zhuǎn),使得碗烯分子一旦被吸附就只能保持其原本的構(gòu)型,從而導(dǎo)致了在結(jié)果上兩種構(gòu)型的隨機(jī)分布。

    分子自組裝;雙分子網(wǎng)絡(luò)結(jié)構(gòu);碗烯;低溫掃描隧道顯微鏡;分子間氫鍵

    1 Introduc tion

    Corannulene(COR)is a bow l-shaped molecule and can be regarded asa fragmentof fullerene,asshown in Fig.1a.Since its first successful synthesis in 19661,COR has attracted intensive attention due to several intriguing properties.W ith fivefold symmetry,COR provides a unique opportunity to study the symmetrymismatching betweenadsorbateand substrate,given the incom patibility betw een the fivefold rotational symmetry of moleculeand translationalorder of theunderneath crystal lattice2. The combination of non-planar shapeand aromaticitymakes COR an interesting system w ith unique geometry and electronic properties2c.Specificπ-πinteractionsbetween curved and planar structures give rise tofascinating photoelectric properties3. Buckybow ls also serve as ideal hosts toform the host-guest complexes in supramolecular chem istry4.COR has alw ays been regarded as a fragment of C60molecule for its symmetry and conformation.Butconsidering itshigh solubility inmost common solvents2c,COR can be a better choice than fullerenes as a prom ising candidate for acceptormaterials in organic optoelectronic devices2c.Itshould bementioned thatKuvychko etal.5have recently reported a COR derivative(w ith electron w ithdraw ing groups)that has a higher electron affinity and thus can be a strongerelectron acceptor than thewell-studied C60.

    Two-dimensional(2D)self-assembly of functional organic molecules into ordered arrays represents one of themost promising strategies tofabricate functionalmolecular nanostructures overmacroscopicareas6.Modification ofmetalsurfaceswith COR and its derivativeshasbeen studied for symmetrym ismatch between substrate and adsorbate2a,7,multi-component packing4,8, templated assembly8a,9,interface dipole formation10,aswell as2D phase transitions6c,11.The assembly behaviors of the single-componentmoleculeswith fivefold symmetry on surfaceareof fundamental interest12.The structureof self-assembled CORmonolayer on Cu(111)and Cu(110)has been reported.On Cu(111), each CORmolecule adsorbson either fcc orhcp threefold hollow sitewith itsbow lopening pointing up11b.Oneof the fivehexagonal ringsorients parallel to the surface planeand thereforea tiltbetween molecular bow l w ith respect to the surface exists.A temperature-controlled reversible phase transitionwasalso observed in this system.It isexplained that low tem perature constrains the vibration of COR molecules,thus leads to amore effective intermolecular attraction,and finally results in the transition to the phasewith higher packing density11b.On Cu(110),asimilarquasihexagonal lattice with slightly tilted COR moleculeswas observed2a.In addition tomonolayer,a bilayer bow l-in-bow l stacking structure of COR wasalso reported on Cu(111)at low temperature13.Each second-layermolecule locatesdirectly aboveone firstlayermolecule,leading to the formation ofabow l-in-bow ldimer.

    In contrast to the intensive studies on single component selfassembly of COR and its derivatives,investigation on multicomponentmolecular assembled system consisting of COR is rarely reported.Multicomponent 2D assemblies providemore functionality and tunability for themolecular nanostructures14. Calmettes etal.8areported binarymolecular networks comprising 2,3,9,10,16,17,23,24-octachlorozinc phthalocyanine(ZnPcCl8)and the COR derivative of 1,3,5,7,9-penta-tertbutylcorannulene (PTBC).In this case,themetastable phaseof ZnPcCl8can beused asa flexible template to realize the controllable insertion of PTBC molecule.By selecting different phases formed by ZnPcCl8,the final bimolecular 2D structure,w hich resembles the original packing of template,canbe regulated.Xiao etal.4reported aCORC60buckybow l-buckyballhost-guestcomplexesby depositing C60onto the ordered monolayer of COR on Cu(110).The concave structure of COR is optimal to realize a“face-to-face”contact w ith the convex surface of C60and their com plementary electron environmentsare favorable for binding.Via thermalactivation,a strongly bound COR-C60host-guest system is formed.Delicate balance betw een various intermolecular and interfacial interactions plays essential role in tailoring these supramolecular structures6b,8a,14a,15.

    Herein we report the formation of self-assembled binarymolecular networks of COR and copper hexadecafluorophthalocyanine(F16CuPc)on the highly oriented pyrolytic graphite(HOPG) and Ag(111).Thegeometrical arrangementsof the binary system on differentsubstrateswere systematically investigated by lowtemperature scanning tunneling m icroscopy/spectroscopy(LT-STM/STS).

    2 Experim en talm ethods

    TheAg(111)and HOPG single crystalsubstratesare purchased from MaTeck Material-Technologie&Kristalle GmbH.The F16CuPc molecules are tw ice sublimed and purchased from CREAPHYS.Both sample preparation and investigation were performed in an ultrahigh vacuum system at a base pressure around 10-10mbar(1mbar=101Pa).TheAg(111)surfacewas prepared via repeated cycles of sputtering by Ar+and then annealing to 750K.Freshly cleaved HOPGwas thoroughly degassed in UHV at800 K overnight.COR and F16CuPc were thermally evaporated from separate Knudsen cells at 380 and 670 K,respectively,onto the substrate(keptatroom temperature).

    In-situ STM investigation was carried out in a custom-designed Om icron LT-STM w ith an electrochem ically etched tungsten tip scanning at77K.All STM imageswere obtained under constant currentmodewith biasvoltagesapplied to the tip.To collect the differential conductance d I/d V(local density of states),a lock-in techniquewasadopted togetherwith amodulation voltageof 50 m V and a frequency of 625 Hz.When ram ping the voltage,the feedback loopwasopened16.

    3 Resu lts and discussion

    F16CuPc,asshown in Fig.1bwas firstdeposited onto HOPG toform a self-assembledmonolayer.STM image(Fig.1c)clearly revealsa typical close packing structurewhere F16CuPcmolecules lie flat on substrate with theirmolecular planes parallel to the substrate,arising from the interfacialπ-πinteraction17.A unitcell w ith a=1.66 nm,b=3.5 nm,θ1=108°isoutlined in Fig.1c and schematic packingmodelof oneunitcell is shown in Fig.1d.Two differentmolecular orientations exist in F16CuPcmonolayer on HOPG,which hasbeen concretely analyzed in previous report17. In oneunit cell,theorientation of four F16CuPcmoleculeson the corner is deviated from thatof two F16CuPcmolecules centered at the b edge.Then COR molecules were evaporated onto the F16CuPc covered HOPG.Co-assembly of F16CuPc and COR,as shown in Fig.1eand 1f,formsa long range-ordered structurewith an intermixing ratio of 1:2.A unitcellwith c=2.87 nm,d=2.17 nm,θ2=114°is highlighted in Fig.1f and the schematic packing modelof one unit cell is shown in Fig.1g.It isnoteworthy that in the supramolecular structure,only one orientation of F16CuPc molecule isobserved and each F16CuPcmolecule issurrounded by 6CORmolecules.

    Fig.1 M olecu lar structures for(a)COR and(b)F16CuPc;(c)STM imageof F16CuPcmonolayer deposited on HOPG;(d)schematic packing structure for F16CuPcm oleculeon HOPG;(e,f)STM images of long range-ordered binarym olecular networks form ed by F16CuPc and CORw ith amolecular ratio of 1:2 on HOPG;(g)schematic packingmodel for the F16CuPc-COR binary structureon HOPGIn figure c:Theunitcell ishighlightedwith a=1.66 nm,b=3.5 nm,θ1=108°.Vtip=1.654V,20 nm×20 nm.In figurese,f:TheCORmoleculesadopting thebow lup and bow ldown configurationsare indicated by thearrows.Theunitcellishighlighted in the imagewith c=2.87 nm,d=2.17 nm,θ2=114°.Vtip=1.496V,20nm×20 nm;Vtip=1.496V,10 nm×10 nm

    Herewe observe two kinds of dotsaround F16CuPc,including the dots thatarebrighterand the dots thatare slightly darker.We propose both kinds of dots are CORmoleculesbutw ith different configurations:bow lopening pointing up and pointing down.STS measurements(Fig.2b)confirm this assumption and reveals the highest occupied molecular orbital(HOMO)-the lowest unoccupiedmolecular orbital(LUMO)gap of around 3.10 eV,which agreesw ith the theoretically calculated HOMO-LUMO gap of CORmolecule18.The simulated topographic STM imagesof COR,based on semiempiricalextended H?ckel calculation,have been used to determine the configuration of adsorbed COR by Parschau etal.2a.For bow lup configuration,both the HOMO and LUMO topographic simulated images show a density m inimum at the centerof themolecule togetherwith a distinct fivefold doughnut shape.On the contrary,for bow l down configuration,both the HOMO and LUMO topographic simulated imagesshow a density maximum at the centerof themolecule and theoutline of COR molecule is rather vague2a.Hence by com paring the simulated STM imagewith our high resolution STM results in Fig.2a,we assign these brighter dots to COR with bow lopening down and darkerdots to CORwith bow lopening up.

    Fig.2(a)High resolution STM image of the F16CuPc-COR binarymolecu lar networkson HOPG; (b)d I/d V spectra recorded on the bow l-up and bow l-down COR molecules

    It is noticed that in the F16CuPc-COR binary molecular networks on HOPG,COR molecules that adopt bow l-down configuration hold majority.We propose that this configuration preferencemay arise from the formation ofmultiple intermolecular hydrogen bonding.As F16CuPcmolecules lie flat on the plane, peripheral hydrogen atoms of CORmolecule w ith bow l-down configuration can stand closer to the neighboring F16CuPc,which facilitates the formation of multiple intermolecular hydrogen bonding between neighboring F16CuPc and COR.In thisway,the binary supramolecular structure iseffectively stabilized and bow ldown configuration of COR thus isenergetically favorable.

    Wealsogrew the same F16CuPc-COR binary system on Ag(111) to compare the co-assembly structureson differentsubstrates.Ag (111)has shownmuch strongermolecule-substrate interactions for variousorganic adsorbates19,compared w ith HOPG.Hencewe were able to grow amonolayer of COR onto Ag(111).A large scaleand thecorresponding closeup STM imagesof COR on Ag (111)are shown in Fig.3(a,b)with aunitcelloutlined(e=1.02 nm,f=1.17 nm,θ3=73°).Each CORmolecule isshared by four unit cells(Fig.3c).Likew ise,w e observe brighter and slightly darker dots in the STM image of COR monolayer.Careful inspection of high-resolution STM(Fig.3d)confirms the co-existenceof CORmoleculeswith differentconfigurations.Herein the brighter dot obviously has an intensity minimum in the center. Hence by using the aforementioned comparison of high-resolution STM imageswith simulated results,these brighter dots should be assigned to CORmoleculeswith bow ls opening up and the darker and vague dots should be COR moleculesw ith bow ls opening down.

    Fig.3(a)Large scale STM imageofCORmonolayer deposited on Ag(111);(b)closeup STM image of COR on Ag(111); (c)proposed schem atic packingm odel for COR on Ag(111);(d)high resolution STM im ageof COR on Ag(111)w ith the bow l-up and bow l-down configurations indicated by red arrowsIn figurea:Vtip=1.0V;60 nm×60 nm.In figureb:Theunitcellishighlighted by the red rhombusw ith e=1.02 nm,f=1.17 nm,θ3=73°; Vtip=1.0V,10 nm×10 nm.In figured:Vtip=-1.5V;6nm×6 nm

    Tofurther confirm our assignment,a comparison of the brighter dotson HOPG and Ag(111)underhigh-resolution STM is shown in Fig.4.It isobvious thatin Fig.4a,the CORmoleculewithbow lup configuration possesses a hollow center w ith a rough pentagonal doughnutshape,which is consistentwith features of thesimulated bow l-up COR.While in Fig.4b,the COR molecule accounted asbow l-dow n configuration ismore protruding in the center and themolecule shape is obscure,which also resembles simulated bow l-down topography.We noted that on Ag(111) substrate,the configuration preference of COR disappears:both bow l-up and bow l-down COR exist in almostequalamount.In otherwords,the adoption of bow l-up or bow l-down configuration is random.We suggest that the strong COR-Ag(111)interfacial interaction constrains themovementand bow l inversion of COR molecules.Onceadsorbed on Ag(111),CORmolecule could only retain its initial configuration and therefore both configurations have equal chance to appear.

    Fig.4 Com parison of the brighter dotsunder high-resolution STM(a)CORmoleculew ith bow l-up configurationon Ag(111); (b)CORmoleculewith bow l-down configuration on HOPG

    Fig.5(a)High resolution STM imageof F16CuPc-COR binary m olecular networks on Ag(111)w ith am olecular ratio of 1:4; (b)schem atic pack ingm odel for the F16CuPc-COR b inary structureon Ag(111)In figurea:Theunitcellishighlighted by the red rhombusw ith g=h=2.73 nm,θ4=100°.Vtip=1.26V,10 nm×10 nm

    Co-assemblymonolayerof F16CuPc and COR on Ag(111)was also prepared by furtherevaporating F16CuPcmolecules onto the COR covered substrate.STM image reveals the long range-ordered binarymolecularnetworksw ith amolecular ratio of 1:4. The unit cell isoutlined in Fig.5aw ith features including g=h= 2.73 nm andθ4=100°.Corresponding schematic packingmodel for the binary structure is shown in Fig.5b.All the F16CuPc molecules lie in the same orientation and each F16CuPcmolecule issurrounded by 8CORmolecules.

    4 Conc lusions

    In summary,we have investigated the binary supramolecular structureof F16CuPc-CORmonolayerassembled on HOPGand Ag (111)substrates.The formation of multiple intermolecular hydrogen bonding between F16CuPc and COR could result in a preferred bow l-dow n configuration for COR molecules on the weakly interacting HOPG.In contrast,this configuration preference disappears on Ag(111)substrate where the adoption of bow l-up orbow l-down configuration is random,resulting from the strongmolecule-substrate interactions.Ourwork would further reinforce themodification of surfacew ith binarymolecular networks consisting ofCOR and itsderivatives.

    (1)Barth,W.E.;Law ton,R.G.J.Am.Chem.Soc.1966,88(2), 380.doi:10.1021/ja00954a049

    (2)(a)Parschau,M.;Fasel,R.;Ernst,K.H.;Gr?ning,O.; B randenberger,L.;Schillinger,R.;Greber,T.;Seitsonen,A.P.; Wu,Y.T.;Siegel,J.S.Angew.Chem.-Int.Edit.2007,46(43), 8258.doi:10.1002/anie.200700610

    (b)Shechtman,D.;Blech,I.;Gratias,D.;Cahn,J.W.Phys.Rev. Lett.1984,53(20),1951.doi:10.1103/PhysRevLett.53.1951

    (c)Bauert,E.FundamentalAspectsof the Self-assembly Behaviorand Electronic Propertiesof Corannulenes.Ph.D. Dissertation,University of Zurich,Zurich,2011.

    (3)Li,J.;Liu,Y.;Qian,Y.;Li,L.;Xie,L.;Shang,J.;Yu,T.;Yi,M.; Huang,W.Phys.Chem.Chem.Phys.2013,15(30),12694. doi:10.1039/C3CP51095F

    (4)Xiao,W.;Passerone,D.;Ruffieux,P.;A?t-M ansour,K.; G r?ning,O.;Tosatti,E.;Siegel,J.S.;Fasel,R.J.Am.Chem. Soc.2008,130(14),4767.doi:10.1021/ja077816l

    (5)Kuvychko,I.V.;Dubceac,C.;Deng,S.H.;Wang,X.B.; G ranovsky,A.A.;Popov,A.A.;Petrukhina,M.A.;Strauss,S. H.;Boltalina,O.V.Angew.Chem.-Int.Edit.2013,52(29), 7505.doi:10.1002/anie.201300796

    (6)(a)Baris,B.;Jeannoutot,J.;Luzet,V.;Palmino,F.;Rochefort, A.;Cherioux,F.ACSNano 2012,6(8),6905.doi:10.1021/ nn301827e

    (b)Mali,K.S.;De Feyter,S.Phil.Trans.R.Soc.A 2013,371 (2000),20120304.doi:10.1098/rsta.2012.0304

    (c)Zoppi,L.;Bauert,T.;Siegel,J.S.;Baldridge,K.K.;Ernst, K.H.Phys.Chem.Chem.Phys.2012,14(38),13365. doi:10.1039/C2CP41732D

    (7)Guillermet,O.;Niem i,E.;Nagarajan,S.;Bouju,X.;Martrou, D.;Gourdon,A.;Gauthier,S.Angew.Chem.-Int.Edit.2009,48 (11),1970.doi:10.1002/anie.200805689

    (8)(a)Calmettes,B.;Nagarajan,S.;Gourdon,A.;Abel,M.;Porte, L.;Coratger,R.Angew.Chem.-Int.Edit.2008,47(37),6994. doi:10.1002/anie.200802628

    (b)Yokoi,H.;Hiraoka,Y.;Hiroto,S.;Sakamaki,D.;Seki,S.; Shinokubo,H.Nat.Commun.2015,6.doi:10.1038/

    ncomms9215

    (9)Balandina,T.;Tahara,K.;Sandig,N.;Blunt,M.O.;Adisoejoso, J.;Lei,S.;Zerbetto,F.;Tobe,Y.;De Feyter,S.ACSNano 2012, 6(9),8381.doi:10.1021/nn303144r

    (10)Bauert,T.;Zoppi,L.;Koller,G.;Garcia,A.;Baldridge,K.K.; Ernst,K.H.J.Phys.Chem.Lett.2011,2(21),2805. doi:10.1021/jz2012484

    (11)(a)M erz,L.;Bauert,T.;Parschau,M.;Koller,G.;Siegel,J.S.; Ernst,K.H.Chem.Commun.2009,(39),5871.doi:10.1039/ B911056A (b)M erz,L.;Parschau,M.;Zoppi,L.;Baldridge,K.K.;Siegel, J.S.;Ernst,K.H.Angew.Chem.-Int.Edit.2009,48(11),1966. doi:10.1002/anie.200804563

    (12)(a)Bauert,T.;Merz,L.;Bandera,D.;Parschau,M.;Siegel,J.S.; Ernst,K.H.J.Am.Chem.Soc.2009,131(10),3460. doi:10.1021/ja8101083. (b)Merz,L.;Parschau,M.;Siegel,J.S.;Ernst,K.H.Chimia 2009,63(4),214.doi:10.2533/chim ia.2009.214

    (13)Bauert,T.;Baldridge,K.K.;Siegel,J.S.;Ernst,K.H.Chem. Commun.2011,47(28),7995.doi:10.1039/C1CC12540K.

    (14)(a)De Oteyza,D.G.MulticomponentAssembly Strategies for Supramolecular Systems.In SupramolecularMaterialsforOpto-Electronics;Nobert Korch;Royal Society of Chem istry: Cambridge,2014;pp 53-97.doi:10.1039/9781782626947-00053 (b)Huang,Y.L.;Chen,W.;Li,H.;Ma,J.;Pflaum,J.;Wee,A.T. S.Small2010,6(1),70.doi:10.1002/sm ll.200901291

    (15)Zhong,J.Q.;Qin,X.;Zhang,J.L.;Kera,S.;Ueno,N.;Wee,A. T.S.;Yang,J.;Chen,W.ACSNano 2014,8(2),1699. doi:10.1021/nn406050e

    (16)Zhang,J.;Wang,Z.;Niu,T.;Li,Z.;Chen,W.Appl.Phys.Lett. 2014,104(11),113506.doi:10.1063/1.4869115

    (17)Huang,Y.L.;Chen,W.;Chen,S.;Wee,A.T.S.Appl.Phys.A 2009,95(1),107.doi:10.1007/s00339-008-5000-6

    (18)dos Santos,R.B.;Rivelino,R.;de M ota,F.B.;Gueorguiev,G. K.J.Phys.Chem.A 2012,116(36),9080.doi:10.1021/ jp3049636

    (19)(a)Lackinger,M.;Griessl,S.;Heckl,W.M.;Hietschold,M. J.Phys.Chem.B 2002,106(17),4482.doi:10.1021/jp014275s (b)Lackinger,M.;Hietschold,M.Surf.Sci.2002,520(1), L619.doi:10.1016/S0039-6028(02)02269-0

    LT-STM Investigation of the Self-Assem bled F16CuPc-Co rannu lene Binary System on Ag(111)and Graphite Surfaces

    GUO Rui1ZHANG Jialin1,2ZHAO Songtao3YU Xiaojiang4ZHONG Shu1SUN Shuo2LIZhenyu3CHENWei1,2,5,6,*
    (1DepartmentofChemistry,NationalUniversity ofSingapore,3Science Drive 3,117543,Singapore;2DepartmentofPhysics,NationalUniversity ofSingapore,2Science Drive 3,117542,Singapore;3HefeiNational Laboratory for PhysicalSciencesat the Microscale,CASCentre for Excellence and Synergetic Innovation Center of Quantum Information and Quantum Physics,University ofScience and Technology ofChina,Hefei230026,P.R.China;
    4Singapore Synchrotron LightSource,National University ofSingapore,5 Research Link,117603,Singapore;
    5Centerfor Advanced 2DMaterialsand Graphene Research Center,NationalUniversity ofSingapore,3 Science Drive 3,117546,
    Singapore;6NationalUniversity ofSingapore(Suzhou)Research Institute,Suzhou 215123,Jiangsu Province,P.R.China)

    Mo lecularassembly;Binarymolecularnetworks;Corannulene;Low-temperature scanning tunne lingm icroscopy;Intermo lecularhyd rogen bonding

    O647

    10.3866/PKU.WHXB201612051

    www.whxb.pku.edu.cn

    Received:September 29,2016;Revised:December 2,2016;Published online:December 5,2016.

    *Corresponding author.Email:phycw@nus.edu.sg;Tel:+65-65161879.

    Theprojectwas supported by theNational Key Basic Research Program of China(973)(2015CB856505),SingaporeMOE(R143-000-652-112),

    Singapore NRF-CRPgrantof“Doped Contacts and Heterostructures for Solution-Processable Plastic Electronics”(R143-001-608-281),Jiangsu

    Province GovernmentResearch Platform Grant,China,and NUSRISeed Fund.

    國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2015CB856505),新加坡教育部(MOE,Tier II,R143-000-652-112),新加坡國家研發(fā)基金會(NRF,R143-001-608-281),江蘇省平臺建設(shè)項(xiàng)目和新加坡國立大學(xué)蘇州研究院資助?Editorialoffice of Acta Physico-Chim ica Sinica

    Abstract:Corannulene(COR)is considered a prom isingmolecularbuilding block fororganic electronics owing to its intriguing geome trical and e lec tronic p roperties.Intensive research e fforts have been devoted to understanding the assemb ly behavior and e lectronic structure of COR and its derivatives on variousmeta l surfaces via low-temperature scanning tunne lingm icroscopy(LT-STM).Here we report the formation ofbinary mo lecular networks of copperhexadeca fluorophtha locyanine(F16CuPc)-COR self-assembled on the highly oriented pyrolytic graphite(HOPG)and Ag(111)substrates.Intermo lecularhydrogen bonding between F16CuPc and COR facilitates the formation ofbina rymolecular networks on HOPG and further induces a pre ference for bow l-down configured CORmolecules.This observed configuration preference disappears on Ag(111)substrate, where CORmolecules lie on the substrate with theirbow lopenings pointing up and down random ly.We propose tha tstrong interfacia l interactions betw een them olecule and Ag(111)su rface constrain the bow l inve rsion of the CORmo lecule,which thus retains its initialconfiguration upon adsorption.

    猜你喜歡
    酞菁新加坡國立大學(xué)全氟
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    新加坡國立大學(xué)推出新型止血敷料
    新加坡國立大學(xué)助力重慶企業(yè)研發(fā)區(qū)塊鏈技術(shù)
    追光花園
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    新加坡國立大學(xué)卓越辦學(xué)經(jīng)驗(yàn)及啟示
    大學(xué)(2016年4期)2016-04-09 06:39:22
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    纖維素纖維負(fù)載鈷酞菁對活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    国产极品精品免费视频能看的| 999久久久精品免费观看国产| 婷婷色综合大香蕉| 欧美日韩乱码在线| 亚洲欧美激情综合另类| 国产精品野战在线观看| 日韩,欧美,国产一区二区三区 | 99国产精品一区二区蜜桃av| 女的被弄到高潮叫床怎么办 | 女人十人毛片免费观看3o分钟| 国产精品美女特级片免费视频播放器| 欧美一级a爱片免费观看看| 国产黄片美女视频| 国产精品久久久久久精品电影| 日本爱情动作片www.在线观看 | 国产伦在线观看视频一区| 91午夜精品亚洲一区二区三区 | 伦精品一区二区三区| 日韩人妻高清精品专区| 美女黄网站色视频| 日韩亚洲欧美综合| 黄色欧美视频在线观看| 999久久久精品免费观看国产| 国产精品一及| 亚洲av免费高清在线观看| 人妻久久中文字幕网| 国产免费男女视频| 精品人妻视频免费看| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 国产精品电影一区二区三区| 欧美+亚洲+日韩+国产| 99在线人妻在线中文字幕| 男插女下体视频免费在线播放| 欧美国产日韩亚洲一区| 亚洲中文字幕日韩| 精品乱码久久久久久99久播| 嫁个100分男人电影在线观看| 国产av一区在线观看免费| 免费无遮挡裸体视频| 国产一区二区在线观看日韩| 久久久久国内视频| 午夜精品一区二区三区免费看| 熟女电影av网| 国产亚洲91精品色在线| 一进一出抽搐动态| 亚洲性久久影院| 国产精品福利在线免费观看| 91在线精品国自产拍蜜月| 一级av片app| 欧美+日韩+精品| 午夜免费成人在线视频| 亚洲七黄色美女视频| 如何舔出高潮| 一个人看的www免费观看视频| 少妇丰满av| av视频在线观看入口| 免费看日本二区| 一个人看视频在线观看www免费| 欧美日本亚洲视频在线播放| 国产精品精品国产色婷婷| 亚洲欧美激情综合另类| 黄色一级大片看看| 91麻豆精品激情在线观看国产| 一区二区三区免费毛片| 最近最新中文字幕大全电影3| av福利片在线观看| 美女高潮喷水抽搐中文字幕| 亚洲人与动物交配视频| 精品久久久久久久人妻蜜臀av| 日韩一本色道免费dvd| 琪琪午夜伦伦电影理论片6080| 18禁黄网站禁片午夜丰满| 真人做人爱边吃奶动态| 日韩欧美精品v在线| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看| 欧美区成人在线视频| 国产精品,欧美在线| 久久久久九九精品影院| 国产伦精品一区二区三区四那| 精品人妻偷拍中文字幕| 少妇裸体淫交视频免费看高清| 老司机午夜福利在线观看视频| 欧美+日韩+精品| 美女免费视频网站| 日本一二三区视频观看| 真人做人爱边吃奶动态| 黄片wwwwww| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 人妻夜夜爽99麻豆av| 色哟哟·www| 狂野欧美白嫩少妇大欣赏| 久久久久久久久中文| 午夜影院日韩av| 午夜亚洲福利在线播放| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 在线观看美女被高潮喷水网站| 成人二区视频| 一区二区三区激情视频| 91久久精品国产一区二区三区| xxxwww97欧美| 色综合色国产| 亚洲av免费在线观看| 简卡轻食公司| 久久久久国产精品人妻aⅴ院| 亚洲精品成人久久久久久| 久久6这里有精品| 免费黄网站久久成人精品| av福利片在线观看| 久久久久久久午夜电影| 欧美极品一区二区三区四区| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 婷婷丁香在线五月| 欧美精品啪啪一区二区三区| 亚洲自偷自拍三级| 亚洲av免费高清在线观看| 亚洲av中文字字幕乱码综合| 3wmmmm亚洲av在线观看| 给我免费播放毛片高清在线观看| 91在线观看av| 丰满的人妻完整版| 日韩 亚洲 欧美在线| 色综合婷婷激情| 日本与韩国留学比较| 亚洲七黄色美女视频| 99久久成人亚洲精品观看| 亚洲中文字幕一区二区三区有码在线看| 国产黄a三级三级三级人| 51国产日韩欧美| 久久久久久久久中文| 日本色播在线视频| 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 3wmmmm亚洲av在线观看| 国产真实乱freesex| 天堂av国产一区二区熟女人妻| av在线观看视频网站免费| 欧美zozozo另类| 很黄的视频免费| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 免费看av在线观看网站| 亚洲电影在线观看av| 色哟哟·www| 国产单亲对白刺激| 国产午夜福利久久久久久| 女生性感内裤真人,穿戴方法视频| 国产日本99.免费观看| 免费看光身美女| 国产免费av片在线观看野外av| 麻豆国产av国片精品| av在线亚洲专区| 午夜a级毛片| 在现免费观看毛片| 久久久久久久久久成人| www.色视频.com| 人妻少妇偷人精品九色| 亚洲国产精品合色在线| 国产亚洲91精品色在线| 亚洲久久久久久中文字幕| 国产一区二区三区视频了| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 色哟哟哟哟哟哟| av在线天堂中文字幕| 欧美高清性xxxxhd video| 免费观看在线日韩| 欧美激情在线99| 日本一本二区三区精品| 一级a爱片免费观看的视频| 久久午夜福利片| 啦啦啦韩国在线观看视频| 亚洲欧美日韩无卡精品| 简卡轻食公司| 欧美日韩综合久久久久久 | 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼| 国产黄色小视频在线观看| 精品人妻一区二区三区麻豆 | 一区福利在线观看| 国产麻豆成人av免费视频| 天天一区二区日本电影三级| 国产一区二区在线av高清观看| 成人二区视频| 国产乱人视频| 性色avwww在线观看| 日韩一区二区视频免费看| 成人三级黄色视频| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 波多野结衣高清作品| 国产视频内射| 国产亚洲精品久久久久久毛片| 琪琪午夜伦伦电影理论片6080| 精品99又大又爽又粗少妇毛片 | 干丝袜人妻中文字幕| 全区人妻精品视频| а√天堂www在线а√下载| 国产成人a区在线观看| 日韩欧美精品v在线| 免费观看的影片在线观看| 18+在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 国产成年人精品一区二区| 桃色一区二区三区在线观看| av在线蜜桃| 女人十人毛片免费观看3o分钟| 联通29元200g的流量卡| 九九久久精品国产亚洲av麻豆| 欧美xxxx性猛交bbbb| 亚洲av五月六月丁香网| 国内毛片毛片毛片毛片毛片| 99精品在免费线老司机午夜| 99热网站在线观看| 久久99热6这里只有精品| 九九在线视频观看精品| 狠狠狠狠99中文字幕| 人妻丰满熟妇av一区二区三区| 精品人妻视频免费看| 国内精品宾馆在线| 成人国产综合亚洲| 久久久精品欧美日韩精品| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 免费观看的影片在线观看| 特级一级黄色大片| 国产亚洲91精品色在线| 精品人妻一区二区三区麻豆 | 日韩欧美一区二区三区在线观看| 99久国产av精品| av在线蜜桃| 免费搜索国产男女视频| 国产亚洲精品av在线| 国产精品一及| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 中亚洲国语对白在线视频| 国产在线男女| 国产国拍精品亚洲av在线观看| 欧美高清性xxxxhd video| 国产精品久久久久久亚洲av鲁大| 亚洲国产色片| 熟女电影av网| 成人午夜高清在线视频| 中国美白少妇内射xxxbb| 国产成年人精品一区二区| 老司机福利观看| 大型黄色视频在线免费观看| 国内精品宾馆在线| 国产精品亚洲一级av第二区| 91久久精品国产一区二区成人| 国产激情偷乱视频一区二区| 88av欧美| 国产aⅴ精品一区二区三区波| 午夜影院日韩av| 99在线视频只有这里精品首页| h日本视频在线播放| 日韩强制内射视频| 免费人成在线观看视频色| 九九久久精品国产亚洲av麻豆| 桃色一区二区三区在线观看| 亚洲av中文av极速乱 | 日韩欧美国产一区二区入口| 毛片女人毛片| 小说图片视频综合网站| 69av精品久久久久久| 日韩在线高清观看一区二区三区 | 亚洲精品乱码久久久v下载方式| 欧美+亚洲+日韩+国产| 国产精华一区二区三区| 日本成人三级电影网站| 制服丝袜大香蕉在线| 免费在线观看日本一区| 亚州av有码| 欧美日韩精品成人综合77777| 日韩 亚洲 欧美在线| 亚洲成人免费电影在线观看| 欧美黑人巨大hd| 中国美白少妇内射xxxbb| 少妇的逼好多水| 国内久久婷婷六月综合欲色啪| 色在线成人网| 桃色一区二区三区在线观看| 午夜福利在线在线| 三级毛片av免费| 亚洲成人免费电影在线观看| 97热精品久久久久久| 免费看光身美女| 久久久精品欧美日韩精品| 免费观看精品视频网站| 五月玫瑰六月丁香| 99热这里只有是精品50| 高清日韩中文字幕在线| 国内久久婷婷六月综合欲色啪| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类 | 麻豆成人午夜福利视频| 熟女电影av网| 国模一区二区三区四区视频| 亚洲专区国产一区二区| 一个人观看的视频www高清免费观看| 欧美日本视频| 国产精品精品国产色婷婷| av专区在线播放| 美女高潮喷水抽搐中文字幕| 亚洲av成人精品一区久久| 精品国产三级普通话版| 国产v大片淫在线免费观看| av天堂在线播放| 国产精品一区www在线观看 | 亚洲欧美精品综合久久99| 日韩精品青青久久久久久| 亚洲av免费高清在线观看| 日本成人三级电影网站| 日韩欧美精品免费久久| 欧美区成人在线视频| 国产精品久久久久久av不卡| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区免费观看 | 两个人视频免费观看高清| 18+在线观看网站| 女生性感内裤真人,穿戴方法视频| 亚洲在线观看片| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 日本三级黄在线观看| 18禁黄网站禁片免费观看直播| 国产日本99.免费观看| 成人国产一区最新在线观看| 很黄的视频免费| 男女啪啪激烈高潮av片| 狂野欧美白嫩少妇大欣赏| 国产精品综合久久久久久久免费| 国产美女午夜福利| 嫩草影视91久久| 国产精品一区www在线观看 | 91麻豆av在线| 五月伊人婷婷丁香| 亚洲男人的天堂狠狠| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 国产不卡一卡二| 国产精品久久久久久久久免| 精华霜和精华液先用哪个| 美女高潮的动态| 亚洲精品一区av在线观看| 乱系列少妇在线播放| 免费在线观看影片大全网站| 日韩 亚洲 欧美在线| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产 | 亚洲欧美精品综合久久99| 美女大奶头视频| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| 成年女人毛片免费观看观看9| 亚洲成人精品中文字幕电影| 日本黄色片子视频| 少妇人妻一区二区三区视频| 中文字幕免费在线视频6| 少妇丰满av| 精品日产1卡2卡| 搡老岳熟女国产| 特大巨黑吊av在线直播| 一a级毛片在线观看| 成熟少妇高潮喷水视频| 国产主播在线观看一区二区| 久久精品国产鲁丝片午夜精品 | 看片在线看免费视频| 长腿黑丝高跟| 赤兔流量卡办理| 欧美性猛交黑人性爽| 国产在线男女| 综合色av麻豆| 伦精品一区二区三区| 欧美日韩乱码在线| 伦理电影大哥的女人| 欧美成人a在线观看| 亚洲专区国产一区二区| 毛片女人毛片| 日韩人妻高清精品专区| 两人在一起打扑克的视频| 色在线成人网| 91精品国产九色| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产三级国产av玫瑰| 国产精品一区二区免费欧美| 国产国拍精品亚洲av在线观看| 国产av麻豆久久久久久久| 亚洲av日韩精品久久久久久密| 色综合婷婷激情| 欧美性感艳星| 欧美不卡视频在线免费观看| 俺也久久电影网| 欧美日韩黄片免| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| 久久人人精品亚洲av| 女人被狂操c到高潮| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆 | 黄色视频,在线免费观看| 欧美+日韩+精品| а√天堂www在线а√下载| 欧美不卡视频在线免费观看| 午夜免费激情av| 久久精品91蜜桃| 午夜精品久久久久久毛片777| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 久久99热这里只有精品18| 老女人水多毛片| 欧美黑人欧美精品刺激| 中文字幕av在线有码专区| 最近视频中文字幕2019在线8| 久久久久久久久久成人| 天天躁日日操中文字幕| av.在线天堂| 最近在线观看免费完整版| 国产三级中文精品| 国产精品久久久久久久久免| 99热网站在线观看| 欧美潮喷喷水| 黄色视频,在线免费观看| 国产精品乱码一区二三区的特点| videossex国产| 成人特级黄色片久久久久久久| 亚洲国产色片| 国产午夜精品久久久久久一区二区三区 | 俺也久久电影网| 人妻夜夜爽99麻豆av| 中文字幕精品亚洲无线码一区| 神马国产精品三级电影在线观看| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 窝窝影院91人妻| 亚洲性夜色夜夜综合| 又黄又爽又免费观看的视频| 春色校园在线视频观看| 久久热精品热| 99久国产av精品| 色综合亚洲欧美另类图片| 午夜精品一区二区三区免费看| 成年女人永久免费观看视频| 成人永久免费在线观看视频| 亚洲黑人精品在线| 精品一区二区三区视频在线观看免费| 无人区码免费观看不卡| 黄片wwwwww| 国产大屁股一区二区在线视频| 国产精品一区二区三区四区久久| 韩国av一区二区三区四区| 欧美在线一区亚洲| 亚洲国产高清在线一区二区三| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩无卡精品| 天堂影院成人在线观看| 亚洲精品粉嫩美女一区| 国产精品亚洲美女久久久| 性插视频无遮挡在线免费观看| 久久精品91蜜桃| 午夜激情欧美在线| 最新中文字幕久久久久| 人妻丰满熟妇av一区二区三区| 中文字幕熟女人妻在线| 国产毛片a区久久久久| 禁无遮挡网站| 免费看a级黄色片| 欧美日韩亚洲国产一区二区在线观看| 天堂动漫精品| 伦精品一区二区三区| 91av网一区二区| 亚洲国产精品久久男人天堂| 亚洲内射少妇av| 伦精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产高清视频在线播放一区| 99久国产av精品| 美女黄网站色视频| 国产精品不卡视频一区二区| 夜夜爽天天搞| 国产高潮美女av| 免费看日本二区| 免费电影在线观看免费观看| 看黄色毛片网站| 日韩av在线大香蕉| 国产高潮美女av| 蜜桃亚洲精品一区二区三区| 国产精品免费一区二区三区在线| 亚洲中文日韩欧美视频| 久久亚洲真实| 大型黄色视频在线免费观看| 精品久久久久久成人av| 床上黄色一级片| 欧美激情国产日韩精品一区| videossex国产| 日韩人妻高清精品专区| 国产精品久久电影中文字幕| 国产一区二区激情短视频| 看免费成人av毛片| 精品一区二区三区视频在线| av国产免费在线观看| 99热这里只有是精品50| 日本免费a在线| 欧美区成人在线视频| 少妇人妻精品综合一区二区 | av福利片在线观看| 久99久视频精品免费| www日本黄色视频网| 日本一本二区三区精品| 欧美日韩乱码在线| 999久久久精品免费观看国产| 美女高潮的动态| 国产精品免费一区二区三区在线| av在线亚洲专区| 午夜免费激情av| 自拍偷自拍亚洲精品老妇| 日韩欧美国产在线观看| 听说在线观看完整版免费高清| 国产精品98久久久久久宅男小说| 国产美女午夜福利| 男女做爰动态图高潮gif福利片| a级一级毛片免费在线观看| 91久久精品国产一区二区成人| 91久久精品电影网| 亚洲久久久久久中文字幕| 女生性感内裤真人,穿戴方法视频| 欧美激情久久久久久爽电影| 最近在线观看免费完整版| 婷婷色综合大香蕉| 窝窝影院91人妻| 啪啪无遮挡十八禁网站| 日韩一本色道免费dvd| 日本三级黄在线观看| 久久久久久大精品| 欧美日韩综合久久久久久 | 91久久精品电影网| 欧美高清性xxxxhd video| 亚洲av日韩精品久久久久久密| 国产精品1区2区在线观看.| 在线免费观看不下载黄p国产 | 午夜视频国产福利| 日本 欧美在线| 国产精品久久久久久亚洲av鲁大| 99久久成人亚洲精品观看| 听说在线观看完整版免费高清| 亚洲中文字幕日韩| 免费看日本二区| 久久人人爽人人爽人人片va| 日韩精品中文字幕看吧| 国产成人aa在线观看| 国产伦精品一区二区三区视频9| 色综合婷婷激情| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| 嫩草影院新地址| 日韩欧美 国产精品| 亚洲不卡免费看| 亚洲狠狠婷婷综合久久图片| av.在线天堂| 婷婷丁香在线五月| 久久久久久国产a免费观看| 变态另类成人亚洲欧美熟女| 成年免费大片在线观看| 欧美精品国产亚洲| 国产黄片美女视频| 日本撒尿小便嘘嘘汇集6| 在线免费观看的www视频| 欧美绝顶高潮抽搐喷水| 好男人在线观看高清免费视频| 男女下面进入的视频免费午夜| 中文字幕av在线有码专区| 俺也久久电影网| 搡老岳熟女国产| 免费一级毛片在线播放高清视频| 欧美成人a在线观看| 人人妻人人澡欧美一区二区| 欧美一级a爱片免费观看看| 免费人成视频x8x8入口观看| 久久久午夜欧美精品| av在线老鸭窝| 丝袜美腿在线中文| 99国产极品粉嫩在线观看| 男女那种视频在线观看| 久久6这里有精品| 日日啪夜夜撸| 亚洲精品乱码久久久v下载方式| 亚洲性夜色夜夜综合| 色哟哟哟哟哟哟| 日本在线视频免费播放| 国内毛片毛片毛片毛片毛片| 成人av一区二区三区在线看| 久久精品国产鲁丝片午夜精品 | 亚洲成人免费电影在线观看| 欧美成人免费av一区二区三区| 男女边吃奶边做爰视频| 久久香蕉精品热| 女的被弄到高潮叫床怎么办 | 亚洲精品一卡2卡三卡4卡5卡| 三级毛片av免费| 亚洲自偷自拍三级| 亚洲经典国产精华液单| 干丝袜人妻中文字幕|