• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶劑熱后處理對石墨相氮化碳光化學(xué)固氮產(chǎn)氨性能的影響

    2017-05-10 17:42:42白金陳鑫奚兆毅王翔李強(qiáng)胡紹爭
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:王翔固氮氮化

    白金 陳鑫 奚兆毅 王翔 李強(qiáng) 胡紹爭

    (遼寧石油化工大學(xué)化學(xué)化工與環(huán)境學(xué)部,遼寧撫順113001)

    溶劑熱后處理對石墨相氮化碳光化學(xué)固氮產(chǎn)氨性能的影響

    白金 陳鑫 奚兆毅 王翔 李強(qiáng) 胡紹爭*

    (遼寧石油化工大學(xué)化學(xué)化工與環(huán)境學(xué)部,遼寧撫順113001)

    采用離子液體[Bm im]Br為溶劑,溶劑熱后處理法制備了具有大比表面積和氮空穴的石墨相氮化碳催化劑。采用X射線衍射(XRD)光譜、掃描電鏡(SEM)、氮?dú)馕健⒆贤?可見(UV-Vis)光譜、X射線光電子能譜(XPS)、熒光光譜(PL)、電子順磁共振譜(EPR)、程序升溫脫附(TPD)等分析手段對制備的催化劑進(jìn)行了表征。結(jié)果表明經(jīng)過溶劑熱后處理的催化劑形貌由無規(guī)則的層狀結(jié)構(gòu)變?yōu)槌叽鐬?0-40 nm的納米顆粒,導(dǎo)致比表面積從8.6m2·g-1增加到37.9m2·g-1。從N2-TPD、熒光光譜及密度泛函理論(DFT)模擬計(jì)算的結(jié)果得出,氮空穴不僅能捕獲光生電子促進(jìn)電子空穴的有效分離,還能吸附并活化反應(yīng)物氮?dú)夥肿?。溶劑熱處理后,增加的比表面積導(dǎo)致更多的氮空穴作為反應(yīng)活性位暴露在催化劑表面,是固氮活性顯著提高。本文還探討了可能的反應(yīng)機(jī)理。

    石墨相氮化碳;離子液體;[Bm im]Br;光催化固氮

    1 Introduc tion

    Nitrogen is a necessary element of human,animal and plant grow th.Although constituting~78%of the atmosphere,nitrogen, inmolecular form,isunusable tomostorganisms because of its strong nonpolar N≡N covalent triple bond.Thus,artificial nitrogen fixation is carried out through the Haber-Bosch process,in which hydrogen gas reactswith nitrogen gas to yield ammonia in the presence of catalysts under high pressure and temperature. Both theenergy consumption and raw material costs arehigh for this process.Therefore,artificialnitrogen fixation underm ilder conditionshasbeen a chem ical issueof greatsignificance,since the reduction in the inputenergy during the fixation processand no useof hydrogen from anaturalgasmay be preferred from the viewpoints of costand environmental preservation.This significance has directed many chemists tofind chem ical1,2,electrochem ical3,4and photochem ical routes5,6tofix nitrogen undermild conditions.

    Nitrogen photofixation technology is considered to be a prom isingmethod to replace the traditional Haber-Bosch process. In 1977,Schrauzer etal.7first reported thatN2can be reduced to NH3over Fe doped TiO2under UV light.Since then,many Tibasedmetaloxidesand composite catalystwere reported8-12.Ranjit etal.8investigated thenitrogen photofixation activity of precious metalsmodified TiO2,and found thatRumodified TiO2exhibited thebestphotofixation performance.A linear relationship observed between the concentration of NH4+and the strength ofmetal-H bond.Rusina etal.9investigated the N2photofixation performance using Fe2Ti2O7as catalyst and ethanolas the hole-trapping agent. Hoshino et al.10,11prepared conducting polymer/TiO2hybrid material for nitrogen photofixation under white light.The main product is NH4ClO4.Zhao et al.12prepared Fe-doped TiO2nanoparticles with highly exposed(101)facets by two-step hydrothermalmethod.They found the quantum yields of nitrogen photofixation depend on the partial pressure of nitrogen in the reaction.However,because of the poor visible light absorption caused by thewideband gap energy,thenitrogen fixation ability of the Ti-basedmetal oxides and composite catalyst isstill low under visible light.Moreover,asmost photoexcited electrons tend to recombinewith their twinborn holes,rather than to be captured by the adsorbed N2,the interfacial charge transfer efficiency of these semiconductor photocatalysts is far from satisfactory13-15. Besides that,compared w ith the photocatalytic H2evolution and CO2reduction,photocatalytic N2fixation ismore challenging because the N2fixation is seriously hampered by thehigh-energy N2intermediates in the reduced or protonated form(N2-or N2H)16. These disadvantages lim it the developmentand practicaluse of photocatalytic N2fixation.Designing new photocatalysts is not only important but also a challenge in the promotion of the developmentof photocatalytic N2fixation.

    Recently,graphitic carbon nitride(g-C3N4)has been w idely applied in a variety of fields,including photocatalysis17,18,fuel cells19,20,organic synthesis21,and gas storage22,23.The versatile application of g-C3N4is largely due to itsunique physicochemical properties,such asmoderate band gap energy,energy-storage capacity,special optical propertiesand gas-adsorption capacity. Ionic liquids(ILs),regarded asdesigner solvents,havebeen extensively investigated in recentyears.They show great prom ise in organic synthesis,catalysis,separation and polymerization24-26. Their favorable properties,such as thermal stability,negligible vapor pressure,high ionic conductivity andw ideelectrochemical w indow,make them attractive as reactionmedia and solvents.The combination of ionic liquidswith nanotechnology has led tomajor advances inmaterials science.Nanorods,nanospheres,nanotubes, and mesostructures of semiconductor materials have been synthesized using ILs assolvent,electrolyteand template27-30.More recently,ILshavealso been used forsynthesizing carbon nitridebased semiconductormaterials.Xu etal.31prepared graphite-like C3N4hybridizedα-Fe2O3(g-C3N4/α-Fe2O3)hollow microspheres. It is found that ionic liquid 1-butyl-3-methylimidazolium tetrachlorideferrate(III)[Bm im]FeCl4is supposed to have the triple rolesof reactant,dispersingmedia and template at the same time. Di etal.32prepared g-C3N4/BiOBr visible-light-driven photocatalystusing ionic liquid[C16m im]Br assolvent,reactant,template and dispersing agent at the same time.X iao et al.33reported an econom ical and facile hydrothermal approach to synthesize fluorescent carbon nitride dots(CNDs)derived from ionic liquids. The results suggest that the obtained CNDs are highly water soluble and exhibit a strong fluorescence.Li etal.34synthesized novelsphere-likeg-C3N4/BiOIcomposite photocatalystsby aonepot EG-assisted solvothermal process in the presence of reactable ionic liquid 1-butyl-3-methylimidazolium iodine([Bmim]I).The g-C3N4/BiOIcomposite displayed enhanced photocatalytic activity for degradation of Rhodamine B(RhB),methylblue(MB),methyl orange(MO),bisphenolA(BPA),and chlorophenol(4-CP).

    Dong35and Li36etal.reported that the introduction of nitrogen vacancy into g-C3N4can chemisorb and activate N2molecules thus significantly improving thenitrogen photofixation ability.Hong etal.37found this nitrogen-deficientgraphitic carbon nitride(g-C3N4-x)can be prepared via hydrothermal treatment using ammonium thiosulfate asan oxidant.However,in their investigation, themore concentration of ammonium thiosulfate cannot introduce more nitrogen vacanciesas active sites37.In thiswork,based on the preparation method of Hong,we introduced ionic liquid [Bmim]Br into the solvothermalsystem.The resultsshow that the introduction of[Bmim]Br can producemorenitrogen vacancies in the g-C3N4lattice.Besides that,themorphology of the asprepared g-C3N4isalso changed,leading to themarkedly increased surface area.This increased surface area of as-prepared g-C3N4causes thatmore nitrogen vacancies,as the active sites,are exposed on the surface,leading to themarkedly promoted nitrogen photofixation ability.

    2 Experim en tal

    2.1 Preparation and characterization

    All the chemicals used in thisexperimentwere reagentgrade and w ithout further treatment.[Bm im]Br is purchased fromJCNANO Tech Co.,Ltd.The pureg-C3N4wasprepared using urea as the precursor.10 g of ureawas calcined at550°C for 4 h w ith a ramp rate of 2°C·min-1.The productwasdenoted asG-CN.1 g of G-CN wasdispersed into 80mL ionic liquid[Bmim]Brunder vigorous stirring at50°C.10mL of ammonium thiosulfate solution(10 g·L-1)wasadded into above suspension under vigorous stirring.The formed suspension was transferred to a 100 m L Teflon-lined autoclave andmaintained at150°C for 20 h.The productwas washed w ith deionized water,dried at 80°C and denoted asATI-CN.For comparison,I-CNwasprepared following the same procedurementioned above in theabsenceof ammonium thiosulfate solution.When deionizedwaterwasused to replace the [Bmim]Br following the same procedureas synthesisof ATI-CN, the obtained productwas denoted as ATH-CN.H-CN w as prepared following the same procedureassynthesisof ATH-CN but in the absence of ammonium thiosulfate solution.

    The XRD patterns of the prepared sampleswere recorded on a Rigaku D/max-2400 instrument(Shimadzu,Japan)using Cu-Kαradiation(λ=0.154 nm).The scan rate,step size,voltage and currentwere0.05(°)·min-1,0.01°,40 kV and 30mA,respectively. UV-Vis spectroscopywas carried outon a V-550model UV-Vis spectrophotometer(JASCO Japan)using BaSO4as the reflectance sample.Fourier transform infrared(FT-IR)spectrawere obtained on a FT-IR spectrometer(Nicolet20DXB,USA).Themorphologies of prepared catalystw ere observed by using a scanning electron m icroscope(SEM,JSM 5600LV,JEOL Ltd.,Japan). Nitrogen adsorptionwasmeasured at-196°C on aMicromeritics 2010 analyser(USA).All the sampleswere degassed at 393 K prior to themeasurement.The BET surface area(SBET)was calculated based on the adsorption isotherm.Electron paramagnetic resonance(EPR)spectrum wasmonitored using a digital X-band spectrometer(EMX-220,Bruker,USA)equipped w ith a Bruker ER 4121VT temperature controllerwithin the temperature range 113-273K.Inductively coupled plasma-massspectrometry(ICPMS)wasperformed on a Perkin-ElmerOptima3300DV apparatus (USA).The XPSmeasurementswere performed on a 250 XPS system w ith A l Kαradiation as the excitation source(Thermo Escalab,USA).The binding energies were calibrated by referencing the C 1s peak(284.6 eV)to reduce the sam ple charge effect.Temperature programmed desorption(TPD)studieswere performed using a CHEMBET-3000(Quantachrome,USA)instrument in the temperature range from 313 to 1073 K.The photoluminescence(PL)spectra were measured at room temperaturewith a fluorospectrophotometer(JASCO FP-6300,Japan) using a Xe lamp as theexcitation source.

    Isotopic labeling experiments are carried out as follows.Labeled15N2gas was purchased from Sigma-A ldrich Chemical Company.In the experimentalprocess,Arwasused to eliminate air and the possible adsorbed ammonia in the reaction system. Then,15N2was passed through the reactionmixture for 30m in. After that,the reactorwas sealed.Other experiment conditions were the sameas those for14N2photofixation.Indophenolmethod was used to exam ine the produced15NH4+,ow ing to the low mass of15NH4+for liquid chromatograph-mass spectrometer(LC-MS) studies.The sample for LC-MSanalysiswas prepared as follows. 0.5m L of the reaction reacted with 0.1mL of 1%phenolic solution in 95%ethanol.Then,0.375mL of 1%NaClO solution and 0.5m L of 0.5%sodium nitroprusside solution w ere added into abovesolution.MSstudieswere carried on an Ultimate3000-TSQ (LCMS-ESI).

    The DFT simulations were performed using the program package Dmol3.The substrate ismodelled by one layerof g-C3N4separated by a vacuum layer of 1.2 nm.A ll the atoms in the layer and the N2moleculeareallowed to relax.The Brillouin zonesof the supercellswere sampled by theGamma points.Based on the structures of g-C3N4,the g-C3N4surface with nitrogen atom vacancywasmodelled to study the N2adsorption properties.

    2.2 Photocatalytic reaction

    The nitrogen photofixation propertywas evaluated according to previous literature12.The nitrogen photofixation experiments were performed in a double-walled quartz reactor in air.For these experiments,0.2 g of photocatalystwasadded to a500mL 0.789 g·L-1ethanolasa hole scavenger12.The suspension was dispersed using an ultrasonicator for10min.During the photoreaction under visible light irradiation,the suspension was exposed to a250W high-pressure sodium lampwithmainemission in the rangeof 400 to 800 nm,and N2was bubbled at100mL·m in-1through the solution.The UV lightportion of the sodium lamp was filtered by a0.5mol·L-1NaNO2solution.All runswereconducted atambient pressureand 30°C.Atgiven time intervals,5m Laliquotsof the suspensionwere collected and immediately centrifuged to separate the liquid samples from the solid catalyst.The concentration of ammonia wasmeasured using the Nessler′s reagentspectrophotometrymethod(JB7478-87)with a UV-2450 spectrophotometer (Shimadzu,Japan)12,36.

    3 Resu lts and discussion

    The nitrogen photofixation performance over the as-prepared catalysts under visible light is shown in Fig.1(a).The control experiment results indicate thatno NH4+isgenerated in the absence of irradiation,N2or photocatalyst,indicating that nitrogen photofixation occurs via a photocatalytic process.G-CN shows theof 0.38mg·L-1·h-1·g-1.I-CN showsof 0.61mg·L-1·h-1·g-1,slighthigher than thatof GCN.W hen ammonium thiosulfate is added during the preparation process,theforATH-CN sharply promotes to6.4mg·L-1· h-1·g-1.TheorATI-CN further increases to10.4mg·L-1· h-1·g-1,with the turn overnumber(numberof productmolecules per catalystmolecule)of 0.96×10-2.This hints that the introduction of ionic liquid[Bm im]Br is beneficial to the nitrogen photofixation performanceof catalysts.The Fig.1(a)insert shows the photocatalytic stabilitiesof ATI-CN.No obvious decrease in nitrogen photofixation ability is observed after 20 h,hinting its good stability.

    The N2photofixation ability of ANI-CN under15N isotope-labeled N2(purity>98%)was carried out tofurther investigate thenitrogen sourceof generatedreactswith phenolic and hypochlorite toform15N labeled indophenol,which wasanalyzed by LC-MS.A strong15N labeled indophenolanion mass spectroscopy signal presentsat199m/z in LC-MSstudies (Fig.1(b)).It isnoted that this signal intensity isobviously higher than the14N:15N naturalabundance ratio.This confirms thatN2is the nitrogen source of generated NH4+in this N2photofixation process.The change in the pH value of the ANI-CN suspension during thenitrogen photofixation process isanalyzed.Prior to the nitrogen photofixation process,the pH value of the suspension wasmeasured to be 6.2.However,Fig.1(c)shows that this pH value increases to 8.5 after24 h becauseof the consumption of H+during the nitrogen photofixation process,as shown in the following equations:

    Fig.1production ability over as-prepared catalysts(a),m assspectra of the indophenol prepared from different atm osphere(b), pH value changeof ATI-CN suspension during thenitrogen photofixation process(c),com parison ofproduction rateof ATI-CN and Ti-based catalysts(d),H2production rateof G-CN and ATI-CN(e)and EPR spectra ofG-CN,ATH-CN and ATI-CN(f)

    In order to compare thenitrogen photofixation abilitywith Tibased catalysts,the Fe-TiO2,Fe2Ti2O7and Ru-TiO2were prepared according to the previouswork8,9,12.The nitrogen photofixation abilitiesof prepared catalysts are shown in Fig.1(d).Obviously, Ru-TiO2showshighernitrogen photofixation ability than Fe-TiO2and Fe2Ti2O7,butmuch lower than ANI-CN.H2production is a possible com petitive reaction.Thus the photocatalytic H2production experiment is performed according to previouswork38. The result shown in Fig.1(e)indicates that the H2production abilitiesof as-prepared catalystsare very low(less than 1μmol· h-1).This isprobably due to theabsenceof a proper co-catalyst. EPR can provide direct information on monitoring various behaviors of native defects,such as oxygen and nitrogen vacancies39,40.Asshown in Fig.1(f),G-CN shows no peaks,suggestingthatno localized unpaired electronspresent in theG-CN.However, for ATH-CN and ATI-CN,a resonance signal at g=2.0031 is observed,which confirms the presenceof nitrogen vacancies.The stronger resonance signal for ATI-CN hints the higher nitrogen vacanciesconcentration compared w ith ATH-CN.

    Fig.2 XRD patternsof as-prepared catalysts

    The XRD patternsof as-prepared catalystsare shown in Fig.2. G-CN and I-CN show the typical characteristic peaksof g-C3N4located at13.1°and 27.5°.The peak at13.1°corresponds to the in-plane structuralpackingmotif of the tri-s-triazineunitsand is indexed as the(100)peak.The distance iscalculated to be d=0.67 nm.The peak at27.5°corresponds to the interlayer stacking of the aromatic segments,with a distanceof 0.326 nm,and is indexed as the(002)peak.It isnoted that,comparedw ith G-CN and I-CN, a0.2°shift to higher2θvalue isobserved forATH-CN and ATICN.This is probably due to the formation of some crystal lattice defects in g-C3N4when ammonium thiosulfatewasadded as an oxidant.The C/N ratios forboth G-CN and I-CN are0.73 obtained by elementalanalysis,close to the theoretical values.For ATHCN,the C/Nmolar ratio is 0.77.This value further increases to 0.82 forATI-CN.Combinew ith the XRD results,it is deduced that the crystal lattice defects in g-C3N4should be the nitrogen vacancies.Thehigher C/Nmolar ratioforATI-CN causes thehigher nitrogen vacancies concentration compared w ith ATH-CN,hinting that the introduction of[Bmim]Br into the solvothermalsystem is helpful for the formation of nitrogen vacancies in the g-C3N4lattice.The C/Nmolar ratiofor H-CN isalso 0.73,sameasG-CN, indicating H2O assolventcannot form the vacancy densities.

    UV-Vis spectrum is used to investigate the light absorption property of as-prepared catalysts(Fig.3).g-C3N4shows typical semiconductor absorption,originating from charge transfer responseof g-C3N4from the valence band(VB)populated by N 2p orbital to the conduction band(CB)formed by C 2p orbital17.The obvious red shifts of absorption band are observed for ATH-CN and ATI-CN,indicating their band gap energies are decreased. Thishints that the presence of nitrogen vacancies could affect the electronic structure of g-C3N4,thus changes itsoptical property41. The band gap,estimated from themethod of Oregan42,decreases from 2.74 eV for G-CN and I-CN to 2.63 eV for ATH-CN and ATICN.

    Fig.3 UV-Visspectra ofas-prepared catalysts

    The FT-IR resultof[Bm im]Br,G-CN and ATI-CN are shown in Fig.4.ForG-CN,a series of peaks in the range from 1200 to 1600 cm-1are attributed to the typical stretchingmodes of CN heterocycles,while the sharp peak located at810 cm-1isassigned to thebending vibration of heptazine rings,which indicating the synthesized g-C3N4is composed of heptazine units.The broad absorption band around 3200 cm-1isoriginated from the stretching vibration of N―H bond,associated w ith uncondensed am inogroups43.ForATI-CN,all the characteristic vibrational peaksof g-C3N4areobserved,suggesting that the structure of g-C3N4isnot changed after post-treatment.No peak for[Bm im]Br isobserved in ATI-CN,indicating that[Bm im]Br is only used as solvent but notanchored on the surfaceof ATI-CN.

    Themorphologiesof the representative sampleswereexamined by SEM analysis(Fig.5).The results in Fig.5(a)indicate thatGCN is composed of a largenumber of irregular particles.These particlesexhibita layered structure similar to thatof thegraphite analogue.In Fig.5(b),after hydrothermal treatment,the morphology changes from layered structure to bulk crystal.This morphological change is consistentw ith previouswork44.When [Bmim]Brwas introduced into the solvothermalsystem(Fig.5(c, d)),the morphology of I-CN and ATI-CN changes to the nanoparticleswith theuniform sizedistributionaround 30-40 nm. Thissmaller particle sizemay lead to the larger specific surface area.

    Fig.4 FT-IR spectra of[Bm im]Br,G-CN and ATI-CN

    To characterize the specific surfaceareaof as-prepared g-C3N4catalysts,thenitrogen adsorption and desorption isothermsweremeasured(Fig.6).The isotherm of ATI-CN isof classical type IV, suggesting the presence ofmesopores.The BET specific surface areas(SBET)of G-CN is 8.6m2·g-1,higher than thatof ATH-CN (7.2m2·g-1).ATI-CN and I-CN show much higher SBETthan that of G-CN,36.7 and 37.9m2·g-1.This is due to the decreased catalystparticle sizes,which is shown in SEM images.The large SBETcan not only providemore reactive sites but promote adsorption,desorption and diffusionof reactantsand products,which is favorable to the photocatalytic performance.The pore size distribution of ATI-CN is presented in Fig.6 insert.The pore distribution centered around 40-80 nm is observed in the BJH pore-size distribution curve,which should be formed by theaccumulation of secondary particles.

    Fig.5 SEM imagesof G-CN(a),ATH-CN(b),I-CN(c)and ATI-CN(d)

    XPSwas used to characterize the surface chem ical compositionsof theas-prepared g-C3N4-based catalysts.In Fig.7(a),two components located at284.6 and 287.8 eV for both catalysts.The sharp peak around 284.6 eV is attributed to the pure graphitic species in the CNmatrix.The peak with binding energy of 287.8 eV indicates the presenceof sp2C atomsbonded to aliphatic amine (―NH2or―NH―)in the aromatic rings45.In Fig.7(b)(N 1s region),the two contributionsof G-CN located at398.5 and 400.0 eV are assigned to the sp2-hybridized aromatic nitrogen atoms bonded to carbon atoms(C―N=C)and nitrogen atoms bonded to three carbonatoms(N―C3)in thearomatic rings46.ForATI-CN, no obvious difference in peak position isobserved.However,the peak area ratio of(N―C3)/(C―N=C)decreases from 0.327 for G-CN to 0.272 for ATI-CN,clearly indicating that nitrogen vacanciesare primarily located at the tertiary nitrogen lattice sites.

    In order tofurther investigate the band structure of as-prepared catalysts,the VB XPspectrawereemployed(Fig.7(c)).The VB potentialsof G-CN,I-CN,ATH-CN and ATI-CN are calculated to be+1.71,+1.69,+1.67 and+1.73 eV,respectively.Combined with theUV-Vis results,theopticalCB potentialsof G-CN,I-CN,ATHCN and ATI-CN locate at-0.92,-0.94,-1.07 and-1.01 eV, respectively.This result indicates that the formation of nitrogenvacancies influences the band structureof as-prepared catalysts. It is reported that the standard redox potential for N2/NH3is-0.09 V(vs NHE)10.Themorenegative reduction potential causes the larger CB driving force.This CB driving force determ ines the m igration rate of photogenerated holesand electrons,causing the higher N2photofixation ability47.

    Fig.6 N2adsorption-desorption isotherm and poresize distribution of ATI-CN

    Fig.7 XPS spectra of G-CN and ATI-CN in the region ofC 1s(a), N 1s(b)and VBXPSof as-prepared catalysts(c)

    Fig.8 shows the PL spectra of as-prepared catalysts under N2atmosphere.In general,ata lower PL intensity,the separation rate of the photogenerated electron-hole pairs ishigher.A broad PL band around 470 nm isobserved for all the catalysts.This isassigned to theband-band PL phenomenonwhich the lightenergy isequal to theband gap of g-C3N4.I-CN shows theslight lower PL intensity than G-CN.This is probably due to the decreased grain size of I-CN,causing a shortermigration distancewhich is beneficial to charge transfer from the bulk to the surface of the g-C3N4materialand leads toahigher separation rate.In the caseof ATHCN and ATI-CN,the PL intensities obviously decreased compared w ith G-CN and I-CN.This is due to the fact that the nitrogen vacancies formed by introducing ammonium thiosulfate could trap the photogenerated electrons,causing the increased separation rate.

    Chemisorption is considered to be the essential step in heterogeneous catalysis because the chem ical adsorption sites are generally the reaction centers to activate reactantmolecules.N2-TPD was carried out to investigate the N2adsorption situation on the surface of G-CN,ATH-CN and ATI-CN(Fig.9).Obviously, two adsorbed N2species in ATH-CN and ATI-CN are observed. One peak at110-130°C isassigned to physicaladsorption.The otherpeak at320-360°C isattributed to the strong chemisorption species of N2molecule.In the case of G-CN,only physicaladsorbed N2species is observed.This result indicates thatnitrogen vacancies could actas chem ical adsorption sites to activate N2molecule for nitrogen photofixation.This is consistent with previous results35.It isnoted that,compared with ATH-CN,more N2species chem isorbson ATI-CN surface.This is due to themore nitrogen vacancies on ATH-CN which providesmore chemical adsorption sites.

    Fig.8 PL spectra ofas-prepared catalysts

    Fig.9 N2-TPD of G-CN,ATH-CN and ATI-CN

    Fig.10 RhB degradation abilitiesover as-prepared catalysts under visible light

    RhB degradation abilities over as-prepared catalysts under visible lightare shown in Fig.10.The reaction rate constant(k) wasobtained by assum ing that the reaction follow ed first-order kinetics(Fig.10 insert).The results indicate that the catalystwith higher surfacearea displayshigher RhB degradation rate.The rate constant forATI-CN is0.014min-1,which is3.3-fold greater than thatof G-CN.However,the NH4+generation rate forATI-CN increases 27.4-fold compared w ith G-CN,w hich ismuch higher than the increase of RhB degradation rate.It is deduced that the enhanced nitrogen photofixation ability is not only due to the increased SBETbutalso due to the formation ofnitrogen vacancies.

    According to the XPS results,it is deduced that the nitrogen vacanciesare located at the three-coordinated nitrogen,as shown in Fig.11.Tofurther confirm thatN2isactivated by nitrogen vacancies,density functional theory(DFT)simulationswere employed to investigate the interaction between N2molecule and the g-C3N4with nitrogen vacancies(Fig.11).The calculation results show that theadsorption energy is-166.2 kJ·mol-1,confirm ing the chemisorption occurs.When the N2molecule adsorbs on the nitrogen vacancies,anσbond between the N2molecule and thenearestC atom is formed,causing the N≡N bond prolonged from 0.1107 to 0.1242 nm.This result confirms that the nitrogen vacancies can activate N2molecule.

    Fig.11 OptimalN2adsorptionmodelson nitrogen vacancies

    Fig.12 Possiblenitrogen photofixation processover g-C3N4w ith nitrogen vacancies

    In summary,the possiblenitrogen photofixation process over g-C3N4with nitrogen vacancies isshown in Fig.12.Firstof all,N2species chem isorbs on the nitrogen vacancies.Under visible light irradiation,photogenerated electron-hole pairsare formed(step 1). The photogenerated electrons are trapped by the nitrogen vacanciesand immediately transferred to theadsorbed N2molecule (step 2).Because thebonding orbitalsof N2moleculeareoccupied by four electrons,this photogenerated-electron has to occupy the anti-bonding orbitals,leading to thenitrogen activation(step 3). Theactivated N2molecule reactsw ith H+in water toform NH3, and then it finally forms

    4 Conc lusions

    By introducing ionic liquid[Bmim]Br as solvent into the solvothermal post-treatment,graphitic carbon nitride w ith larger surface area andmore nitrogen vacancies is synthesized in this work.Thesenitrogen vacanciesnotonly trap the photogenerated electrons to promote the separation rate,butserveasactive sites to adsorb and activate N2molecules.The adsorption energy is-166.2 kJ·mol-1when N2molecule interacts w ith nitrogen vacancy sites.The N≡N bond isprolonged from 0.1107 to 0.1242 nm,confirm ing thatnitrogen vacancy can activate N2molecule. Thisincreased surfaceareaof as-prepared g-C3N4causes thatmore nitrogen vacancies,as theactive sites,areexposed on the surface, leading to themarkedly promoted nitrogen photofixation ability. Under visible light,thegeneration rate of ANI-CN reaches 10.4mgwhich is27-fold higher than thatofG-CN.

    (1)Vol′pin,M.E.;Shur,V.B.;Berkovich,E.G.Inorg.Chim.Acta 1998,280,264.doi:10.1016/S0020-1693(98)00206-0

    (3)Tamelen,E.E.;Akermark,B.J.Am.Chem.Soc.1968,90,4492. doi:10.1021/ja01018a074

    (4)Dickson,C.R.;Nozik,A.J.J.Am.Chem.Soc.1978,100,8007. doi:10.1021/ja00493a039

    (5)Hu,S.Z.;Li,Y.M.;Li,F.Y.;Fan,Z.P.;Ma,H.F.;Li,W.; Kang,X.X.ACS.Sus.Chem.Eng.2016,4,2269.doi:10.1021/ acssuschemeng.5b01742

    (6)Ranjit,K.T.;Viswanathan,B.Indian J.Chem.Sect.A 1996,35, 443.

    (7)Schrauzer,G.N.;Guth,T.D.J.Am.Chem.Soc.1977,99,7189. doi:10.1021/ja00464a015

    (8)Ranjit,K.T.;Varadarajan,T.K.;Viswanathan,B.J.Photochem. Photobiol.A:Chem.1996,96,181.doi:10.1016/1010-6030(95) 04290-3

    (9)Rusina,O.;Linnik,O.;Eremenko,A.;Kisch,H.Chem.Eur.J. 2003,9,561.doi:10.1002/chem.200390059

    (10)Hoshino,K.Chem.Eur.J.2001,7,2727.doi:10.1002/1521-3765(20010702)7:13<2727::AID-CHEM 2727>3.0.CO;2-4

    (11)Hoshino,K.;Inui,M.;Kitamura,T.;Kokado,H.Angew.Chem. Int.Ed.2000,39,2509.doi:10.1002/1521-3773(20000717)39: 14<2509::AID-ANIE2509>3.0.CO;2-I

    (12)Zhao,W.R.;Zhang,J.;Zhu,X.;Zhang,M.;Tang,J.;Tan,M.; Wang,Y.Appl.Catal.B:Environ.2014,144,468.doi:10.1016/j. apcatb.2013.07.047

    (13)Liang,Y.T.;Vijayan,B.K.;Gray,K.A.;Hersam,M.C.Nano Lett.2011,11,2865.doi:10.1021/nl2012906

    (14)Walter,M.G.;Warren,E.L.;M cKone,J.R.;Boettcher,S.W.; M i,Q.;Santori,E.A.;Lew is,N.S.Chem.Rev.2010,110,6446. doi:10.1021/cr1002326

    (15)Britto,P.J.;Santhanam,K.S.V.;Rubio,A.;Alonso,J.A.; A jayan,P.M.Adv.Mater.1999,11,154.doi:10.1002/(SICI) 1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B

    (16)Zhu,D.;Zhang,L.;Ruther,R.E.;Ruther,R.J.Nat.Mater. 2013,12,836.doi:10.1038/nmat3696

    (17)Wang,X.C.;Maeda,K.;Thomas,A.;Takanabe,K.;Xin,G.; Carlsson,J.M.;Domen,K.;Antonietti,M.Nat.Mater.2009,8, 76.doi:10.1038/nmat2317

    (18)Zhao,Z.W.;Sun,Y.J.;Dong,F.Nanoscale 2015,7,15. doi:10.1039/c4nr03008g

    (19)Zheng,Y.;Liu,J.;Liang,J.;Jaroniec,M.;Qiao,S.Energy Environ.Sci.2012,5,6717.doi:10.1039/c2ee03479d

    (20)Zheng,Y.;Jiao,Y.;Chen,J.;Liu,J.;Liang,J.;Du,A.;Zhang, W.;Zhu,Z.;Jaroniec,M.;Sm ith,S.C.;Lu,G.;Qiao,S.J.Am. Chem.Soc.2011,133,20116.doi:10.1021/ja209206c

    (21)Xu,J.;Wu,H.T.;Wang,X.;Xue,B.;Li,Y.X.;Cao,Y.Phys.Chem.Chem.Phys.2013,15,4510.doi:10.1039/c3cp44402c

    (22)Li,Q.;Yang,J.;Feng,D.;W u,Z.;Wu,Q.;Park,S.S.;Ha,C.S.; Zhao,D.Nano Res.2010,3,632.doi:10.1007/s12274-010-0023-7

    (23)Park,S.S.;Chu,S.W.;Xue,C.;Zhao,D.;Ha,C.S.Mater.J. Chem.2011,21,10801.doi:10.1039/c1jm10849b

    (24)Welton,T.Chem.Rev.1999,99,2071.doi:10.1021/cr980032t

    (25)Keim,W.Angew.Chem.Int.Ed.2000,39,3772.doi:10.1002/ 1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

    (26)Kubisa,P.Prog.Polym.Sci.2004,29,3.doi:10.1016/j. progpolymsci.2003.10.002

    (27)Paramasivam,I.;Macak,J.M.;Selvam,T.;Schmuki,P. Electrochim.Acta 2008,54,643.doi:10.1016/j. electacta.2008.07.031

    (28)Yoo,K.S.;Lee,T.G.;Kim,J.MicroporousMesoporousMat. 2005,84,211.doi:10.1016/j.m icromeso.2005.05.029

    (29)Ding,K.L.;Miao,Z.J.;Liu,Z.M.;Zhang,Z.F.;Han,B.X.; An,G.M.;M iao,S.D.;Xie,Y.J.Am.Chem.Soc.2007,129, 6362.doi:10.1021/ja070809c

    (30)Liu,Y.;Li,J.;Wang,M.J.;Li,Z.Y.;Liu,H.T.;He,P.;Yang,X. R.;Li,J.H.Cryst.Growth Des.2005,5,1643.doi:10.1021/ cg050017z

    (31)Xu,L.;Xia,J.X.;Xu,H.;Yin,S.;Wang,K.;Huang,L.Y.; Wang,L.G.;Li,H.M.J.PowerSources2014,245,866. doi:10.1016/j.jpow sour.2013.07.014

    (32)Di,J.;Xia,J.X.;Yin,S.;Xu,H.;Xu,L.;He,M.Q.;Li,H.M.; Xu,L.;Jiang,Y.P.RSCAdv.2013,3,19624.doi:10.1039/ c3ra42269k

    (33)Xiao,D.L.;Li,S.Q.;Liu,S.B.;He,H.;Lu,J.R.New J.Chem. 2016,40,320.doi:10.1039/c5nj01717c

    (34)Di,J.;Xia,J.X.;Yin,S.;Xu,H.;Xu,L.;Xu,Y.G.;He,M.Q.; Li,H.M.J.Mater.Chem.A.2014,2,5340.doi:10.1039/ c3ta14617k

    (35)Dong,G.H.;Ho,W.K.;Wang,C.Y.J.Mater.Chem.A 2015,3, 23435.doi:10.1039/c5ta06540b

    (36)Li,H.;Shang,J.;Ai,Z.H.;Zhang,L.Z.J.Am.Chem.Soc. 2015,137,6393.doi:10.1021/jacs.5b03105

    (37)Hong,Z.H.;Shen,B.;Chen,Y.L.;Lin,B.Z.;Gao,B.F. J.Mater.Chem.A 2013,1,11754.doi:10.1039/c3ta12332d

    (38)Hu,S.Z.;Li,F.Y.;Fan,Z.P.;Gui,J.Z.J.Power Sources 2014, 250,30.doi:10.1016/j.jpowsour.2013.10.132

    (39)Yang,R.C.;Lu,X.J.;Huang,X.;Chen,Z.M.;Zhang,X.;Xu, M.D.;Song,Q.W.;Zhu,L.T.Appl.Catal.B:Environ.2015, 170-171,225.doi:10.1016/j.apcatb.2015.01.046

    (40)Wang,Z.H.;M a,W.H.;Chen,C.C.;Ji,H.W.;Zhao,J.C. Chem.Eng.J.2011,170,353.doi:10.1016/j.cej.2010.12.002

    (41)Wang,X.C.;Chen,X.F.;Thomas,A.;Fu,X.Z.;Antonietti,M. Adv.Mater.2009,21,1609.doi:10.1002/adma.200802627

    (42)Oregan,B.;Gratzel,M.Nature1991,353,737.doi:10.1038/ 353737ao

    (43)Yan,S.C.;Li,Z.S.;Zou,Z.G.Langmuir2009,25,10397. doi:10.1021/la900923z

    (44)Hu,S.Z.;Ma,L.;Xie,Y.;Li,F.Y.;Fan,Z.P.;Wang,F.;Wang, Q.;Wang,Y.J.;Kang,X.X.;Wu,G.Dalton Trans.2015,44, 20889.doi:10.1039/c5dt04035c

    (45)Lei,W.;Portehault,D.;Dimova,R.;Antoniettit,M.J.Am. Chem.Soc.2011,133,7121.doi:10.1021/ja200838c

    (46)Zhang,Y.W.;Liu,J.H.;Wu,G.;Chen,W.Nanoscale 2012,4, 5300.doi:10.1039/c2nr30948c

    (47)Hu,S.Z.;Ma,L.;Li,F.Y.;Fan,Z.P.;Wang,Q.;Bai,J.;Kang, X.X.;Wu,G.RSCAdv.2015,5,90750.doi:10.1039/ c5ra15611d

    Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4Catalyst

    BAIJin CHEN Xin XIZhao-Yi WANG Xiang LIQiang HU Shao-Zheng*
    (College ofChemistry,Chemical Engineering,and Environmental Engineering,Liaoning Shihua University, Fushun 113001,Liaoning Province,P.R.China)

    In this work,g raphitic ca rbon nitride(g-C3N4)w ith la rge surface area and many nitrogen vacancies was synthesized by introducing ionic liquid[Bm im]Bras a solvent into the so lvotherma lpost-treatment.X-ray diffraction(XRD),N2adsorption,scanning electronm icroscopy(SEM),UV-Vis spectroscopy,X-ray photoelectron spectroscopy(XPS),electron paramagnetic resonance(EPR),tem perature-programmed desorption ofN2(N2-TPD),and photo lum inescence(PL)spectroscopy were used to characterize the p repared catalysts.The m orpho logy of the as-prepa red g-C3N4was m arked ly changed from an o rde rless laye red structure to nanoparticleswith a uniform size distribution ofaround 30-40 nm a fter the introduction of[Bm im]Br,leading an increase in surface area from 8.6 to 37.9m2·g-1.N2-TPD,photolum inescence spectra,and density functional theory(DFT)simulations indicated that the nitrogen vacancies notonly trapped the photogenerated e lectrons to enhance their separation rate,butalso served as active sites for the adsorption and activation ofN2molecules. The inc reased surface a rea of the as-prepared g-C3N4meant thatm ore nitrogen vacancies w ere exposed on the surface,leading to amarkedly promoted nitrogen photofixation ability.The possib le reactionmechanism is p roposed.

    Graphitic carbon nitride;Ionic liquid;[Bm im]Br;Nitrogen photofixation

    O643

    eigh,G.J.Science1998,279,506.

    10.1126/ science.279.5350.506

    doi:10.3866/PKU.WHXB201611102

    www.whxb.pku.edu.cn

    Received:September 23,2016;Revised:November 10,2016;Published online:November 10,2016.

    *Corresponding author.Email:hushaozhenglnpu@163.com;Tel:+86-13470570415.

    Theprojectwas supported by theNationalNatural Science Foundation of China(41571464),Education Departmentof Liaoning Province,China (L2014145),and Natural Science Foundation of Liaoning Province,China(201602467).

    國家自然科學(xué)基金(41571464),遼寧省教育廳項(xiàng)目(L2014145)及遼寧省自然科學(xué)基金(201602467)資助?Editorialofficeof Acta Physico-Chim ica Sinica

    猜你喜歡
    王翔固氮氮化
    土壤中的天然化肥廠
    氮化鋁粉末制備與應(yīng)用研究進(jìn)展
    廖莎、王翔藝作品
    XD超級氮化催滲劑的運(yùn)用
    以氮化鎵/氮化鋁鎵超晶格結(jié)構(gòu)優(yōu)化氮化銦鎵LED
    電子制作(2018年12期)2018-08-01 00:47:48
    40CrH鋼氣體軟氮化-后氧化復(fù)合處理的組織性能
    上海金屬(2016年2期)2016-11-23 05:34:32
    杉木與固氮樹種混交對土壤有機(jī)質(zhì)及氮含量的影響
    土壤中的天然化肥廠
    ——固氮微生物
    王翔國畫作品選
    文藝論壇(2014年14期)2014-11-08 01:22:14
    王翔三維作品設(shè)計(jì)
    蜜臀久久99精品久久宅男| 亚洲自偷自拍三级| 亚洲三级黄色毛片| 国产片特级美女逼逼视频| 国内揄拍国产精品人妻在线| 国产精品99久久久久久久久| 久久草成人影院| 色哟哟·www| 久久人人精品亚洲av| 欧美成人精品欧美一级黄| 欧美成人a在线观看| 国产欧美日韩精品亚洲av| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 精品午夜福利视频在线观看一区| 欧美区成人在线视频| 免费在线观看影片大全网站| 欧美xxxx黑人xx丫x性爽| 婷婷精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 天美传媒精品一区二区| www日本黄色视频网| 久久久a久久爽久久v久久| 老熟妇仑乱视频hdxx| 成人二区视频| 亚洲av.av天堂| 国产大屁股一区二区在线视频| 网址你懂的国产日韩在线| 性色avwww在线观看| 亚洲成人中文字幕在线播放| 久久草成人影院| 我要搜黄色片| 午夜福利在线观看免费完整高清在 | 晚上一个人看的免费电影| 1000部很黄的大片| 最近的中文字幕免费完整| 99热网站在线观看| 精品少妇黑人巨大在线播放 | 精品久久久久久久久亚洲| 国产色婷婷99| 亚洲精品国产成人久久av| 国产精品1区2区在线观看.| 亚洲国产精品国产精品| 一区二区三区免费毛片| 日韩人妻高清精品专区| 男女那种视频在线观看| 天美传媒精品一区二区| ponron亚洲| 老女人水多毛片| 免费搜索国产男女视频| 搡老岳熟女国产| 亚洲图色成人| 床上黄色一级片| 99久久中文字幕三级久久日本| 久久精品国产自在天天线| 伦理电影大哥的女人| 午夜免费男女啪啪视频观看 | 极品教师在线视频| 99热6这里只有精品| 国产亚洲欧美98| 最近中文字幕高清免费大全6| 天堂动漫精品| 日本免费a在线| 一级毛片我不卡| 国产精华一区二区三区| 日日干狠狠操夜夜爽| 亚洲性夜色夜夜综合| 丰满乱子伦码专区| 99riav亚洲国产免费| 啦啦啦啦在线视频资源| 尤物成人国产欧美一区二区三区| 成年免费大片在线观看| 老司机午夜福利在线观看视频| 欧美3d第一页| 成人亚洲欧美一区二区av| 美女高潮的动态| 国产精品久久电影中文字幕| 中文在线观看免费www的网站| 欧美最黄视频在线播放免费| 黄色欧美视频在线观看| 91狼人影院| 国产色爽女视频免费观看| 国产精品久久久久久久久免| 日本一本二区三区精品| 久久精品国产亚洲av涩爱 | 国产亚洲欧美98| 亚洲av不卡在线观看| 99久久成人亚洲精品观看| 色尼玛亚洲综合影院| 国产激情偷乱视频一区二区| 欧美高清成人免费视频www| 看片在线看免费视频| 久久久精品大字幕| 波多野结衣巨乳人妻| 亚洲经典国产精华液单| 99久久久亚洲精品蜜臀av| 成年女人看的毛片在线观看| 中文亚洲av片在线观看爽| 蜜桃久久精品国产亚洲av| 久久中文看片网| 在线观看av片永久免费下载| 国产伦精品一区二区三区四那| 一级毛片久久久久久久久女| 一区二区三区四区激情视频 | 欧美xxxx黑人xx丫x性爽| 国产人妻一区二区三区在| 国产美女午夜福利| 欧美另类亚洲清纯唯美| 国产伦精品一区二区三区四那| 天天一区二区日本电影三级| 亚洲一区二区三区色噜噜| 婷婷精品国产亚洲av在线| 免费观看在线日韩| 大型黄色视频在线免费观看| 熟女电影av网| 国产乱人视频| 免费电影在线观看免费观看| 国产精品三级大全| 成年女人永久免费观看视频| 校园人妻丝袜中文字幕| 亚洲va在线va天堂va国产| 韩国av在线不卡| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区免费欧美| 老女人水多毛片| 日韩欧美国产在线观看| 亚洲性久久影院| 1000部很黄的大片| 看非洲黑人一级黄片| 亚洲国产欧美人成| 免费高清视频大片| 18禁在线播放成人免费| 亚洲五月天丁香| 亚洲最大成人手机在线| 欧美xxxx黑人xx丫x性爽| 亚洲av成人av| 久久婷婷人人爽人人干人人爱| 欧美又色又爽又黄视频| 2021天堂中文幕一二区在线观| 日本-黄色视频高清免费观看| 成人永久免费在线观看视频| 精品少妇黑人巨大在线播放 | 久久久久久久久久黄片| 搞女人的毛片| av在线亚洲专区| 国产欧美日韩精品一区二区| 久久人妻av系列| 99久久成人亚洲精品观看| 色尼玛亚洲综合影院| 亚洲精品456在线播放app| 久久久久九九精品影院| 国产亚洲精品久久久com| 亚洲欧美中文字幕日韩二区| 毛片一级片免费看久久久久| 一级毛片电影观看 | 一级毛片电影观看 | 最近2019中文字幕mv第一页| 一本一本综合久久| 久久久久性生活片| 久久久国产成人精品二区| 99热这里只有精品一区| 久久久精品欧美日韩精品| 免费在线观看影片大全网站| 在线观看免费视频日本深夜| 午夜福利在线观看免费完整高清在 | 精品一区二区三区视频在线| 久久精品影院6| 97碰自拍视频| 大香蕉久久网| 国产精品亚洲美女久久久| 成年版毛片免费区| 国产亚洲精品久久久久久毛片| 亚洲中文日韩欧美视频| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频 | 老司机福利观看| 国产av一区在线观看免费| 久久久a久久爽久久v久久| 亚洲国产精品久久男人天堂| 国产在线精品亚洲第一网站| 欧美3d第一页| 中文在线观看免费www的网站| 99热精品在线国产| 欧洲精品卡2卡3卡4卡5卡区| 成年免费大片在线观看| 成人性生交大片免费视频hd| 国产单亲对白刺激| 亚洲欧美精品综合久久99| 亚洲人成网站在线播| 啦啦啦观看免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲自拍偷在线| av在线天堂中文字幕| 免费在线观看成人毛片| 亚洲中文日韩欧美视频| 不卡视频在线观看欧美| 国产极品精品免费视频能看的| 国产视频一区二区在线看| 婷婷色综合大香蕉| 色哟哟·www| 久久久色成人| 色尼玛亚洲综合影院| 日韩在线高清观看一区二区三区| 亚洲美女黄片视频| 免费人成视频x8x8入口观看| 又爽又黄a免费视频| 精品不卡国产一区二区三区| 日本与韩国留学比较| 日韩强制内射视频| 亚洲最大成人手机在线| 久久精品国产亚洲av天美| 国产精品1区2区在线观看.| 久久中文看片网| 成人无遮挡网站| 久久草成人影院| 国产成人一区二区在线| 亚洲激情五月婷婷啪啪| 国国产精品蜜臀av免费| 97超级碰碰碰精品色视频在线观看| 在线国产一区二区在线| 嫩草影视91久久| 久久综合国产亚洲精品| 成人亚洲精品av一区二区| 午夜免费男女啪啪视频观看 | 午夜老司机福利剧场| 欧美xxxx黑人xx丫x性爽| 亚洲久久久久久中文字幕| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 国产精品女同一区二区软件| 久久久久国内视频| 黄色欧美视频在线观看| 99久久久亚洲精品蜜臀av| 国产成人福利小说| 国产日本99.免费观看| 一个人看视频在线观看www免费| 欧美日本亚洲视频在线播放| 91在线精品国自产拍蜜月| 欧美成人精品欧美一级黄| 国产精品亚洲美女久久久| 日韩欧美 国产精品| 日韩中字成人| 亚洲精品国产av成人精品 | 国产精品久久久久久精品电影| 国内精品宾馆在线| 日日摸夜夜添夜夜添小说| 欧美日韩一区二区视频在线观看视频在线 | 国产视频内射| 尾随美女入室| 久久亚洲精品不卡| 久久久久国内视频| 在线播放国产精品三级| 日韩欧美在线乱码| 国产精品福利在线免费观看| 欧美zozozo另类| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 色吧在线观看| 国产精华一区二区三区| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 色综合站精品国产| 一个人观看的视频www高清免费观看| 国产高清三级在线| 男人舔奶头视频| av视频在线观看入口| 午夜精品国产一区二区电影 | 欧美成人精品欧美一级黄| 老女人水多毛片| 寂寞人妻少妇视频99o| 草草在线视频免费看| 男人和女人高潮做爰伦理| 小蜜桃在线观看免费完整版高清| 国产一区二区三区av在线 | 最近手机中文字幕大全| 精品久久久噜噜| 波多野结衣高清无吗| av卡一久久| 亚洲精品乱码久久久v下载方式| 亚洲电影在线观看av| or卡值多少钱| 国产精品伦人一区二区| 黄色一级大片看看| 精品国产三级普通话版| 免费搜索国产男女视频| 两个人视频免费观看高清| 黄色欧美视频在线观看| 人人妻人人澡欧美一区二区| 一区二区三区免费毛片| 国产欧美日韩精品一区二区| 国产 一区精品| 日韩高清综合在线| 天堂影院成人在线观看| 黄色日韩在线| 最好的美女福利视频网| 99九九线精品视频在线观看视频| 极品教师在线视频| 插逼视频在线观看| 国产亚洲91精品色在线| 麻豆成人午夜福利视频| 成人精品一区二区免费| 日本-黄色视频高清免费观看| 久久精品国产自在天天线| 天天躁日日操中文字幕| 老司机午夜福利在线观看视频| 国产精品一区二区三区四区免费观看 | 欧美性猛交黑人性爽| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看 | 欧美三级亚洲精品| or卡值多少钱| 人妻久久中文字幕网| 在线观看免费视频日本深夜| 亚洲精品色激情综合| 国产真实乱freesex| 亚洲丝袜综合中文字幕| 人妻夜夜爽99麻豆av| 九色成人免费人妻av| 久久久国产成人精品二区| 全区人妻精品视频| 国产一区二区在线av高清观看| 国产精品伦人一区二区| 亚洲av二区三区四区| 午夜福利18| 国产国拍精品亚洲av在线观看| 亚洲精品456在线播放app| 欧美三级亚洲精品| 狂野欧美激情性xxxx在线观看| 老司机福利观看| 日本黄大片高清| 欧美性猛交╳xxx乱大交人| 亚洲av电影不卡..在线观看| 成人特级黄色片久久久久久久| 综合色av麻豆| 免费看日本二区| 啦啦啦韩国在线观看视频| 国产女主播在线喷水免费视频网站 | 搡老岳熟女国产| 性色avwww在线观看| 成人综合一区亚洲| 成人毛片a级毛片在线播放| 观看美女的网站| 亚洲av电影不卡..在线观看| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 亚洲三级黄色毛片| 日韩av不卡免费在线播放| av在线天堂中文字幕| 国产色婷婷99| 不卡一级毛片| 黑人高潮一二区| 精品免费久久久久久久清纯| 欧美中文日本在线观看视频| 不卡视频在线观看欧美| 久久热精品热| 精品乱码久久久久久99久播| 久久久久久久午夜电影| 美女xxoo啪啪120秒动态图| 国产亚洲91精品色在线| 国产亚洲91精品色在线| 亚洲内射少妇av| АⅤ资源中文在线天堂| 有码 亚洲区| 麻豆国产97在线/欧美| 免费av毛片视频| 国产成年人精品一区二区| 亚洲内射少妇av| 嫩草影院精品99| 最近中文字幕高清免费大全6| 亚洲国产精品成人综合色| 夜夜爽天天搞| 久久久久九九精品影院| 少妇熟女欧美另类| 在线国产一区二区在线| 男女啪啪激烈高潮av片| 亚洲av成人av| 国产淫片久久久久久久久| 亚洲三级黄色毛片| 1000部很黄的大片| 欧美精品国产亚洲| 99在线视频只有这里精品首页| 国产成人福利小说| 成人午夜高清在线视频| 欧美极品一区二区三区四区| 一个人看视频在线观看www免费| 午夜福利18| 搡老妇女老女人老熟妇| 成人鲁丝片一二三区免费| 欧美激情国产日韩精品一区| 日日啪夜夜撸| 精品午夜福利视频在线观看一区| 麻豆一二三区av精品| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 一进一出抽搐动态| av专区在线播放| 成人毛片a级毛片在线播放| 麻豆国产97在线/欧美| 国产黄色视频一区二区在线观看 | 99久久中文字幕三级久久日本| 亚洲精品影视一区二区三区av| 欧美另类亚洲清纯唯美| 色综合色国产| 日韩制服骚丝袜av| 久久久久国内视频| 久久人妻av系列| 麻豆久久精品国产亚洲av| 国产一区二区在线av高清观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品综合一区在线观看| 又粗又爽又猛毛片免费看| 亚洲性夜色夜夜综合| 免费看日本二区| 伦理电影大哥的女人| 成人国产麻豆网| 午夜免费激情av| 久久久精品大字幕| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 久久综合国产亚洲精品| 亚洲精品国产av成人精品 | 两性午夜刺激爽爽歪歪视频在线观看| 三级男女做爰猛烈吃奶摸视频| 老熟妇仑乱视频hdxx| 亚洲成人精品中文字幕电影| 精品一区二区免费观看| 丰满乱子伦码专区| 亚洲aⅴ乱码一区二区在线播放| 国产欧美日韩一区二区精品| 夜夜夜夜夜久久久久| 欧美国产日韩亚洲一区| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区免费观看 | 少妇熟女aⅴ在线视频| 欧美最新免费一区二区三区| 男人舔奶头视频| 91麻豆精品激情在线观看国产| 激情 狠狠 欧美| 国产片特级美女逼逼视频| 亚洲av成人精品一区久久| 国产精品不卡视频一区二区| 国产老妇女一区| 一a级毛片在线观看| 亚洲欧美清纯卡通| 成人欧美大片| 亚洲真实伦在线观看| 欧美zozozo另类| 最近最新中文字幕大全电影3| 午夜福利高清视频| 我要看日韩黄色一级片| 91精品国产九色| 熟女电影av网| 久久久精品94久久精品| 又爽又黄无遮挡网站| 亚洲成人av在线免费| 五月玫瑰六月丁香| 日本撒尿小便嘘嘘汇集6| 婷婷亚洲欧美| 十八禁网站免费在线| 99热全是精品| 看十八女毛片水多多多| 国产精品人妻久久久影院| 免费一级毛片在线播放高清视频| 两个人的视频大全免费| 久久综合国产亚洲精品| 国内久久婷婷六月综合欲色啪| 国产免费一级a男人的天堂| 欧美一区二区亚洲| 日韩欧美国产在线观看| 大型黄色视频在线免费观看| 日韩成人av中文字幕在线观看 | 久久人人精品亚洲av| 欧美xxxx黑人xx丫x性爽| 国产伦精品一区二区三区四那| 婷婷色综合大香蕉| 久久久色成人| 欧美人与善性xxx| www.色视频.com| 中文字幕精品亚洲无线码一区| 久久久久国产网址| 亚洲av美国av| 夜夜夜夜夜久久久久| 国内精品美女久久久久久| av在线天堂中文字幕| 国产在线精品亚洲第一网站| www.色视频.com| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品久久久久久毛片| 三级国产精品欧美在线观看| 欧美成人一区二区免费高清观看| 白带黄色成豆腐渣| 色综合站精品国产| 特大巨黑吊av在线直播| 中文在线观看免费www的网站| 亚洲av中文av极速乱| 亚洲国产精品成人综合色| 国产精品野战在线观看| 一a级毛片在线观看| 国产人妻一区二区三区在| 国内精品一区二区在线观看| 国产成人福利小说| 亚洲不卡免费看| 99国产极品粉嫩在线观看| 欧美成人一区二区免费高清观看| 97超碰精品成人国产| 国产高清视频在线播放一区| 69人妻影院| 国产精品久久久久久久久免| 色5月婷婷丁香| 国产精品无大码| 综合色丁香网| 91精品国产九色| 日韩,欧美,国产一区二区三区 | 亚洲一区二区三区色噜噜| 国产成年人精品一区二区| 日本欧美国产在线视频| 精品久久久久久久久久久久久| 精品福利观看| av免费在线看不卡| 精品欧美国产一区二区三| 国内精品久久久久精免费| 亚洲一区二区三区色噜噜| 九色成人免费人妻av| 99热6这里只有精品| 尾随美女入室| 五月伊人婷婷丁香| 色播亚洲综合网| 亚洲国产精品国产精品| 国产精品久久久久久久电影| 免费看美女性在线毛片视频| 可以在线观看毛片的网站| 日日撸夜夜添| 色av中文字幕| 日本与韩国留学比较| 亚洲成人久久爱视频| 亚洲人成网站在线播放欧美日韩| 日本a在线网址| a级一级毛片免费在线观看| 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式| 久久人人精品亚洲av| 国产美女午夜福利| 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 日日摸夜夜添夜夜添av毛片| 国产成年人精品一区二区| 精品久久久久久成人av| 亚洲自拍偷在线| 秋霞在线观看毛片| av在线蜜桃| 日韩高清综合在线| 成人精品一区二区免费| 国产男人的电影天堂91| 在线播放国产精品三级| 久久精品久久久久久噜噜老黄 | 国产三级中文精品| 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜 | 欧美日韩一区二区视频在线观看视频在线 | а√天堂www在线а√下载| 欧美高清成人免费视频www| 国产男人的电影天堂91| 国产 一区 欧美 日韩| 九九久久精品国产亚洲av麻豆| 女的被弄到高潮叫床怎么办| 国产 一区精品| 久久久国产成人精品二区| av中文乱码字幕在线| 精品人妻熟女av久视频| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 免费观看在线日韩| 校园人妻丝袜中文字幕| 色5月婷婷丁香| 听说在线观看完整版免费高清| 国产av麻豆久久久久久久| 国产精品,欧美在线| 久久久久久久久久久丰满| 草草在线视频免费看| 高清毛片免费看| 黄片wwwwww| 美女高潮的动态| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 我的老师免费观看完整版| 禁无遮挡网站| 九九在线视频观看精品| 一区二区三区免费毛片| 一级黄色大片毛片| 午夜老司机福利剧场| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 九九在线视频观看精品| 国产成人影院久久av| 国产熟女欧美一区二区| 国产精华一区二区三区| 国产极品精品免费视频能看的| 久久九九热精品免费| 国内精品美女久久久久久| 精品一区二区三区视频在线| 99久久久亚洲精品蜜臀av| 日韩 亚洲 欧美在线| 欧美又色又爽又黄视频| a级毛色黄片| 国产精品无大码| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩av片在线观看| 色av中文字幕| 久久99热这里只有精品18| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级国产av玫瑰| 久久久久久久亚洲中文字幕| 99热网站在线观看| 尤物成人国产欧美一区二区三区| 高清日韩中文字幕在线|