• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶劑熱后處理對石墨相氮化碳光化學(xué)固氮產(chǎn)氨性能的影響

    2017-05-10 17:42:42白金陳鑫奚兆毅王翔李強(qiáng)胡紹爭
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:王翔固氮氮化

    白金 陳鑫 奚兆毅 王翔 李強(qiáng) 胡紹爭

    (遼寧石油化工大學(xué)化學(xué)化工與環(huán)境學(xué)部,遼寧撫順113001)

    溶劑熱后處理對石墨相氮化碳光化學(xué)固氮產(chǎn)氨性能的影響

    白金 陳鑫 奚兆毅 王翔 李強(qiáng) 胡紹爭*

    (遼寧石油化工大學(xué)化學(xué)化工與環(huán)境學(xué)部,遼寧撫順113001)

    采用離子液體[Bm im]Br為溶劑,溶劑熱后處理法制備了具有大比表面積和氮空穴的石墨相氮化碳催化劑。采用X射線衍射(XRD)光譜、掃描電鏡(SEM)、氮?dú)馕健⒆贤?可見(UV-Vis)光譜、X射線光電子能譜(XPS)、熒光光譜(PL)、電子順磁共振譜(EPR)、程序升溫脫附(TPD)等分析手段對制備的催化劑進(jìn)行了表征。結(jié)果表明經(jīng)過溶劑熱后處理的催化劑形貌由無規(guī)則的層狀結(jié)構(gòu)變?yōu)槌叽鐬?0-40 nm的納米顆粒,導(dǎo)致比表面積從8.6m2·g-1增加到37.9m2·g-1。從N2-TPD、熒光光譜及密度泛函理論(DFT)模擬計(jì)算的結(jié)果得出,氮空穴不僅能捕獲光生電子促進(jìn)電子空穴的有效分離,還能吸附并活化反應(yīng)物氮?dú)夥肿?。溶劑熱處理后,增加的比表面積導(dǎo)致更多的氮空穴作為反應(yīng)活性位暴露在催化劑表面,是固氮活性顯著提高。本文還探討了可能的反應(yīng)機(jī)理。

    石墨相氮化碳;離子液體;[Bm im]Br;光催化固氮

    1 Introduc tion

    Nitrogen is a necessary element of human,animal and plant grow th.Although constituting~78%of the atmosphere,nitrogen, inmolecular form,isunusable tomostorganisms because of its strong nonpolar N≡N covalent triple bond.Thus,artificial nitrogen fixation is carried out through the Haber-Bosch process,in which hydrogen gas reactswith nitrogen gas to yield ammonia in the presence of catalysts under high pressure and temperature. Both theenergy consumption and raw material costs arehigh for this process.Therefore,artificialnitrogen fixation underm ilder conditionshasbeen a chem ical issueof greatsignificance,since the reduction in the inputenergy during the fixation processand no useof hydrogen from anaturalgasmay be preferred from the viewpoints of costand environmental preservation.This significance has directed many chemists tofind chem ical1,2,electrochem ical3,4and photochem ical routes5,6tofix nitrogen undermild conditions.

    Nitrogen photofixation technology is considered to be a prom isingmethod to replace the traditional Haber-Bosch process. In 1977,Schrauzer etal.7first reported thatN2can be reduced to NH3over Fe doped TiO2under UV light.Since then,many Tibasedmetaloxidesand composite catalystwere reported8-12.Ranjit etal.8investigated thenitrogen photofixation activity of precious metalsmodified TiO2,and found thatRumodified TiO2exhibited thebestphotofixation performance.A linear relationship observed between the concentration of NH4+and the strength ofmetal-H bond.Rusina etal.9investigated the N2photofixation performance using Fe2Ti2O7as catalyst and ethanolas the hole-trapping agent. Hoshino et al.10,11prepared conducting polymer/TiO2hybrid material for nitrogen photofixation under white light.The main product is NH4ClO4.Zhao et al.12prepared Fe-doped TiO2nanoparticles with highly exposed(101)facets by two-step hydrothermalmethod.They found the quantum yields of nitrogen photofixation depend on the partial pressure of nitrogen in the reaction.However,because of the poor visible light absorption caused by thewideband gap energy,thenitrogen fixation ability of the Ti-basedmetal oxides and composite catalyst isstill low under visible light.Moreover,asmost photoexcited electrons tend to recombinewith their twinborn holes,rather than to be captured by the adsorbed N2,the interfacial charge transfer efficiency of these semiconductor photocatalysts is far from satisfactory13-15. Besides that,compared w ith the photocatalytic H2evolution and CO2reduction,photocatalytic N2fixation ismore challenging because the N2fixation is seriously hampered by thehigh-energy N2intermediates in the reduced or protonated form(N2-or N2H)16. These disadvantages lim it the developmentand practicaluse of photocatalytic N2fixation.Designing new photocatalysts is not only important but also a challenge in the promotion of the developmentof photocatalytic N2fixation.

    Recently,graphitic carbon nitride(g-C3N4)has been w idely applied in a variety of fields,including photocatalysis17,18,fuel cells19,20,organic synthesis21,and gas storage22,23.The versatile application of g-C3N4is largely due to itsunique physicochemical properties,such asmoderate band gap energy,energy-storage capacity,special optical propertiesand gas-adsorption capacity. Ionic liquids(ILs),regarded asdesigner solvents,havebeen extensively investigated in recentyears.They show great prom ise in organic synthesis,catalysis,separation and polymerization24-26. Their favorable properties,such as thermal stability,negligible vapor pressure,high ionic conductivity andw ideelectrochemical w indow,make them attractive as reactionmedia and solvents.The combination of ionic liquidswith nanotechnology has led tomajor advances inmaterials science.Nanorods,nanospheres,nanotubes, and mesostructures of semiconductor materials have been synthesized using ILs assolvent,electrolyteand template27-30.More recently,ILshavealso been used forsynthesizing carbon nitridebased semiconductormaterials.Xu etal.31prepared graphite-like C3N4hybridizedα-Fe2O3(g-C3N4/α-Fe2O3)hollow microspheres. It is found that ionic liquid 1-butyl-3-methylimidazolium tetrachlorideferrate(III)[Bm im]FeCl4is supposed to have the triple rolesof reactant,dispersingmedia and template at the same time. Di etal.32prepared g-C3N4/BiOBr visible-light-driven photocatalystusing ionic liquid[C16m im]Br assolvent,reactant,template and dispersing agent at the same time.X iao et al.33reported an econom ical and facile hydrothermal approach to synthesize fluorescent carbon nitride dots(CNDs)derived from ionic liquids. The results suggest that the obtained CNDs are highly water soluble and exhibit a strong fluorescence.Li etal.34synthesized novelsphere-likeg-C3N4/BiOIcomposite photocatalystsby aonepot EG-assisted solvothermal process in the presence of reactable ionic liquid 1-butyl-3-methylimidazolium iodine([Bmim]I).The g-C3N4/BiOIcomposite displayed enhanced photocatalytic activity for degradation of Rhodamine B(RhB),methylblue(MB),methyl orange(MO),bisphenolA(BPA),and chlorophenol(4-CP).

    Dong35and Li36etal.reported that the introduction of nitrogen vacancy into g-C3N4can chemisorb and activate N2molecules thus significantly improving thenitrogen photofixation ability.Hong etal.37found this nitrogen-deficientgraphitic carbon nitride(g-C3N4-x)can be prepared via hydrothermal treatment using ammonium thiosulfate asan oxidant.However,in their investigation, themore concentration of ammonium thiosulfate cannot introduce more nitrogen vacanciesas active sites37.In thiswork,based on the preparation method of Hong,we introduced ionic liquid [Bmim]Br into the solvothermalsystem.The resultsshow that the introduction of[Bmim]Br can producemorenitrogen vacancies in the g-C3N4lattice.Besides that,themorphology of the asprepared g-C3N4isalso changed,leading to themarkedly increased surface area.This increased surface area of as-prepared g-C3N4causes thatmore nitrogen vacancies,as the active sites,are exposed on the surface,leading to themarkedly promoted nitrogen photofixation ability.

    2 Experim en tal

    2.1 Preparation and characterization

    All the chemicals used in thisexperimentwere reagentgrade and w ithout further treatment.[Bm im]Br is purchased fromJCNANO Tech Co.,Ltd.The pureg-C3N4wasprepared using urea as the precursor.10 g of ureawas calcined at550°C for 4 h w ith a ramp rate of 2°C·min-1.The productwasdenoted asG-CN.1 g of G-CN wasdispersed into 80mL ionic liquid[Bmim]Brunder vigorous stirring at50°C.10mL of ammonium thiosulfate solution(10 g·L-1)wasadded into above suspension under vigorous stirring.The formed suspension was transferred to a 100 m L Teflon-lined autoclave andmaintained at150°C for 20 h.The productwas washed w ith deionized water,dried at 80°C and denoted asATI-CN.For comparison,I-CNwasprepared following the same procedurementioned above in theabsenceof ammonium thiosulfate solution.When deionizedwaterwasused to replace the [Bmim]Br following the same procedureas synthesisof ATI-CN, the obtained productwas denoted as ATH-CN.H-CN w as prepared following the same procedureassynthesisof ATH-CN but in the absence of ammonium thiosulfate solution.

    The XRD patterns of the prepared sampleswere recorded on a Rigaku D/max-2400 instrument(Shimadzu,Japan)using Cu-Kαradiation(λ=0.154 nm).The scan rate,step size,voltage and currentwere0.05(°)·min-1,0.01°,40 kV and 30mA,respectively. UV-Vis spectroscopywas carried outon a V-550model UV-Vis spectrophotometer(JASCO Japan)using BaSO4as the reflectance sample.Fourier transform infrared(FT-IR)spectrawere obtained on a FT-IR spectrometer(Nicolet20DXB,USA).Themorphologies of prepared catalystw ere observed by using a scanning electron m icroscope(SEM,JSM 5600LV,JEOL Ltd.,Japan). Nitrogen adsorptionwasmeasured at-196°C on aMicromeritics 2010 analyser(USA).All the sampleswere degassed at 393 K prior to themeasurement.The BET surface area(SBET)was calculated based on the adsorption isotherm.Electron paramagnetic resonance(EPR)spectrum wasmonitored using a digital X-band spectrometer(EMX-220,Bruker,USA)equipped w ith a Bruker ER 4121VT temperature controllerwithin the temperature range 113-273K.Inductively coupled plasma-massspectrometry(ICPMS)wasperformed on a Perkin-ElmerOptima3300DV apparatus (USA).The XPSmeasurementswere performed on a 250 XPS system w ith A l Kαradiation as the excitation source(Thermo Escalab,USA).The binding energies were calibrated by referencing the C 1s peak(284.6 eV)to reduce the sam ple charge effect.Temperature programmed desorption(TPD)studieswere performed using a CHEMBET-3000(Quantachrome,USA)instrument in the temperature range from 313 to 1073 K.The photoluminescence(PL)spectra were measured at room temperaturewith a fluorospectrophotometer(JASCO FP-6300,Japan) using a Xe lamp as theexcitation source.

    Isotopic labeling experiments are carried out as follows.Labeled15N2gas was purchased from Sigma-A ldrich Chemical Company.In the experimentalprocess,Arwasused to eliminate air and the possible adsorbed ammonia in the reaction system. Then,15N2was passed through the reactionmixture for 30m in. After that,the reactorwas sealed.Other experiment conditions were the sameas those for14N2photofixation.Indophenolmethod was used to exam ine the produced15NH4+,ow ing to the low mass of15NH4+for liquid chromatograph-mass spectrometer(LC-MS) studies.The sample for LC-MSanalysiswas prepared as follows. 0.5m L of the reaction reacted with 0.1mL of 1%phenolic solution in 95%ethanol.Then,0.375mL of 1%NaClO solution and 0.5m L of 0.5%sodium nitroprusside solution w ere added into abovesolution.MSstudieswere carried on an Ultimate3000-TSQ (LCMS-ESI).

    The DFT simulations were performed using the program package Dmol3.The substrate ismodelled by one layerof g-C3N4separated by a vacuum layer of 1.2 nm.A ll the atoms in the layer and the N2moleculeareallowed to relax.The Brillouin zonesof the supercellswere sampled by theGamma points.Based on the structures of g-C3N4,the g-C3N4surface with nitrogen atom vacancywasmodelled to study the N2adsorption properties.

    2.2 Photocatalytic reaction

    The nitrogen photofixation propertywas evaluated according to previous literature12.The nitrogen photofixation experiments were performed in a double-walled quartz reactor in air.For these experiments,0.2 g of photocatalystwasadded to a500mL 0.789 g·L-1ethanolasa hole scavenger12.The suspension was dispersed using an ultrasonicator for10min.During the photoreaction under visible light irradiation,the suspension was exposed to a250W high-pressure sodium lampwithmainemission in the rangeof 400 to 800 nm,and N2was bubbled at100mL·m in-1through the solution.The UV lightportion of the sodium lamp was filtered by a0.5mol·L-1NaNO2solution.All runswereconducted atambient pressureand 30°C.Atgiven time intervals,5m Laliquotsof the suspensionwere collected and immediately centrifuged to separate the liquid samples from the solid catalyst.The concentration of ammonia wasmeasured using the Nessler′s reagentspectrophotometrymethod(JB7478-87)with a UV-2450 spectrophotometer (Shimadzu,Japan)12,36.

    3 Resu lts and discussion

    The nitrogen photofixation performance over the as-prepared catalysts under visible light is shown in Fig.1(a).The control experiment results indicate thatno NH4+isgenerated in the absence of irradiation,N2or photocatalyst,indicating that nitrogen photofixation occurs via a photocatalytic process.G-CN shows theof 0.38mg·L-1·h-1·g-1.I-CN showsof 0.61mg·L-1·h-1·g-1,slighthigher than thatof GCN.W hen ammonium thiosulfate is added during the preparation process,theforATH-CN sharply promotes to6.4mg·L-1· h-1·g-1.TheorATI-CN further increases to10.4mg·L-1· h-1·g-1,with the turn overnumber(numberof productmolecules per catalystmolecule)of 0.96×10-2.This hints that the introduction of ionic liquid[Bm im]Br is beneficial to the nitrogen photofixation performanceof catalysts.The Fig.1(a)insert shows the photocatalytic stabilitiesof ATI-CN.No obvious decrease in nitrogen photofixation ability is observed after 20 h,hinting its good stability.

    The N2photofixation ability of ANI-CN under15N isotope-labeled N2(purity>98%)was carried out tofurther investigate thenitrogen sourceof generatedreactswith phenolic and hypochlorite toform15N labeled indophenol,which wasanalyzed by LC-MS.A strong15N labeled indophenolanion mass spectroscopy signal presentsat199m/z in LC-MSstudies (Fig.1(b)).It isnoted that this signal intensity isobviously higher than the14N:15N naturalabundance ratio.This confirms thatN2is the nitrogen source of generated NH4+in this N2photofixation process.The change in the pH value of the ANI-CN suspension during thenitrogen photofixation process isanalyzed.Prior to the nitrogen photofixation process,the pH value of the suspension wasmeasured to be 6.2.However,Fig.1(c)shows that this pH value increases to 8.5 after24 h becauseof the consumption of H+during the nitrogen photofixation process,as shown in the following equations:

    Fig.1production ability over as-prepared catalysts(a),m assspectra of the indophenol prepared from different atm osphere(b), pH value changeof ATI-CN suspension during thenitrogen photofixation process(c),com parison ofproduction rateof ATI-CN and Ti-based catalysts(d),H2production rateof G-CN and ATI-CN(e)and EPR spectra ofG-CN,ATH-CN and ATI-CN(f)

    In order to compare thenitrogen photofixation abilitywith Tibased catalysts,the Fe-TiO2,Fe2Ti2O7and Ru-TiO2were prepared according to the previouswork8,9,12.The nitrogen photofixation abilitiesof prepared catalysts are shown in Fig.1(d).Obviously, Ru-TiO2showshighernitrogen photofixation ability than Fe-TiO2and Fe2Ti2O7,butmuch lower than ANI-CN.H2production is a possible com petitive reaction.Thus the photocatalytic H2production experiment is performed according to previouswork38. The result shown in Fig.1(e)indicates that the H2production abilitiesof as-prepared catalystsare very low(less than 1μmol· h-1).This isprobably due to theabsenceof a proper co-catalyst. EPR can provide direct information on monitoring various behaviors of native defects,such as oxygen and nitrogen vacancies39,40.Asshown in Fig.1(f),G-CN shows no peaks,suggestingthatno localized unpaired electronspresent in theG-CN.However, for ATH-CN and ATI-CN,a resonance signal at g=2.0031 is observed,which confirms the presenceof nitrogen vacancies.The stronger resonance signal for ATI-CN hints the higher nitrogen vacanciesconcentration compared w ith ATH-CN.

    Fig.2 XRD patternsof as-prepared catalysts

    The XRD patternsof as-prepared catalystsare shown in Fig.2. G-CN and I-CN show the typical characteristic peaksof g-C3N4located at13.1°and 27.5°.The peak at13.1°corresponds to the in-plane structuralpackingmotif of the tri-s-triazineunitsand is indexed as the(100)peak.The distance iscalculated to be d=0.67 nm.The peak at27.5°corresponds to the interlayer stacking of the aromatic segments,with a distanceof 0.326 nm,and is indexed as the(002)peak.It isnoted that,comparedw ith G-CN and I-CN, a0.2°shift to higher2θvalue isobserved forATH-CN and ATICN.This is probably due to the formation of some crystal lattice defects in g-C3N4when ammonium thiosulfatewasadded as an oxidant.The C/N ratios forboth G-CN and I-CN are0.73 obtained by elementalanalysis,close to the theoretical values.For ATHCN,the C/Nmolar ratio is 0.77.This value further increases to 0.82 forATI-CN.Combinew ith the XRD results,it is deduced that the crystal lattice defects in g-C3N4should be the nitrogen vacancies.Thehigher C/Nmolar ratioforATI-CN causes thehigher nitrogen vacancies concentration compared w ith ATH-CN,hinting that the introduction of[Bmim]Br into the solvothermalsystem is helpful for the formation of nitrogen vacancies in the g-C3N4lattice.The C/Nmolar ratiofor H-CN isalso 0.73,sameasG-CN, indicating H2O assolventcannot form the vacancy densities.

    UV-Vis spectrum is used to investigate the light absorption property of as-prepared catalysts(Fig.3).g-C3N4shows typical semiconductor absorption,originating from charge transfer responseof g-C3N4from the valence band(VB)populated by N 2p orbital to the conduction band(CB)formed by C 2p orbital17.The obvious red shifts of absorption band are observed for ATH-CN and ATI-CN,indicating their band gap energies are decreased. Thishints that the presence of nitrogen vacancies could affect the electronic structure of g-C3N4,thus changes itsoptical property41. The band gap,estimated from themethod of Oregan42,decreases from 2.74 eV for G-CN and I-CN to 2.63 eV for ATH-CN and ATICN.

    Fig.3 UV-Visspectra ofas-prepared catalysts

    The FT-IR resultof[Bm im]Br,G-CN and ATI-CN are shown in Fig.4.ForG-CN,a series of peaks in the range from 1200 to 1600 cm-1are attributed to the typical stretchingmodes of CN heterocycles,while the sharp peak located at810 cm-1isassigned to thebending vibration of heptazine rings,which indicating the synthesized g-C3N4is composed of heptazine units.The broad absorption band around 3200 cm-1isoriginated from the stretching vibration of N―H bond,associated w ith uncondensed am inogroups43.ForATI-CN,all the characteristic vibrational peaksof g-C3N4areobserved,suggesting that the structure of g-C3N4isnot changed after post-treatment.No peak for[Bm im]Br isobserved in ATI-CN,indicating that[Bm im]Br is only used as solvent but notanchored on the surfaceof ATI-CN.

    Themorphologiesof the representative sampleswereexamined by SEM analysis(Fig.5).The results in Fig.5(a)indicate thatGCN is composed of a largenumber of irregular particles.These particlesexhibita layered structure similar to thatof thegraphite analogue.In Fig.5(b),after hydrothermal treatment,the morphology changes from layered structure to bulk crystal.This morphological change is consistentw ith previouswork44.When [Bmim]Brwas introduced into the solvothermalsystem(Fig.5(c, d)),the morphology of I-CN and ATI-CN changes to the nanoparticleswith theuniform sizedistributionaround 30-40 nm. Thissmaller particle sizemay lead to the larger specific surface area.

    Fig.4 FT-IR spectra of[Bm im]Br,G-CN and ATI-CN

    To characterize the specific surfaceareaof as-prepared g-C3N4catalysts,thenitrogen adsorption and desorption isothermsweremeasured(Fig.6).The isotherm of ATI-CN isof classical type IV, suggesting the presence ofmesopores.The BET specific surface areas(SBET)of G-CN is 8.6m2·g-1,higher than thatof ATH-CN (7.2m2·g-1).ATI-CN and I-CN show much higher SBETthan that of G-CN,36.7 and 37.9m2·g-1.This is due to the decreased catalystparticle sizes,which is shown in SEM images.The large SBETcan not only providemore reactive sites but promote adsorption,desorption and diffusionof reactantsand products,which is favorable to the photocatalytic performance.The pore size distribution of ATI-CN is presented in Fig.6 insert.The pore distribution centered around 40-80 nm is observed in the BJH pore-size distribution curve,which should be formed by theaccumulation of secondary particles.

    Fig.5 SEM imagesof G-CN(a),ATH-CN(b),I-CN(c)and ATI-CN(d)

    XPSwas used to characterize the surface chem ical compositionsof theas-prepared g-C3N4-based catalysts.In Fig.7(a),two components located at284.6 and 287.8 eV for both catalysts.The sharp peak around 284.6 eV is attributed to the pure graphitic species in the CNmatrix.The peak with binding energy of 287.8 eV indicates the presenceof sp2C atomsbonded to aliphatic amine (―NH2or―NH―)in the aromatic rings45.In Fig.7(b)(N 1s region),the two contributionsof G-CN located at398.5 and 400.0 eV are assigned to the sp2-hybridized aromatic nitrogen atoms bonded to carbon atoms(C―N=C)and nitrogen atoms bonded to three carbonatoms(N―C3)in thearomatic rings46.ForATI-CN, no obvious difference in peak position isobserved.However,the peak area ratio of(N―C3)/(C―N=C)decreases from 0.327 for G-CN to 0.272 for ATI-CN,clearly indicating that nitrogen vacanciesare primarily located at the tertiary nitrogen lattice sites.

    In order tofurther investigate the band structure of as-prepared catalysts,the VB XPspectrawereemployed(Fig.7(c)).The VB potentialsof G-CN,I-CN,ATH-CN and ATI-CN are calculated to be+1.71,+1.69,+1.67 and+1.73 eV,respectively.Combined with theUV-Vis results,theopticalCB potentialsof G-CN,I-CN,ATHCN and ATI-CN locate at-0.92,-0.94,-1.07 and-1.01 eV, respectively.This result indicates that the formation of nitrogenvacancies influences the band structureof as-prepared catalysts. It is reported that the standard redox potential for N2/NH3is-0.09 V(vs NHE)10.Themorenegative reduction potential causes the larger CB driving force.This CB driving force determ ines the m igration rate of photogenerated holesand electrons,causing the higher N2photofixation ability47.

    Fig.6 N2adsorption-desorption isotherm and poresize distribution of ATI-CN

    Fig.7 XPS spectra of G-CN and ATI-CN in the region ofC 1s(a), N 1s(b)and VBXPSof as-prepared catalysts(c)

    Fig.8 shows the PL spectra of as-prepared catalysts under N2atmosphere.In general,ata lower PL intensity,the separation rate of the photogenerated electron-hole pairs ishigher.A broad PL band around 470 nm isobserved for all the catalysts.This isassigned to theband-band PL phenomenonwhich the lightenergy isequal to theband gap of g-C3N4.I-CN shows theslight lower PL intensity than G-CN.This is probably due to the decreased grain size of I-CN,causing a shortermigration distancewhich is beneficial to charge transfer from the bulk to the surface of the g-C3N4materialand leads toahigher separation rate.In the caseof ATHCN and ATI-CN,the PL intensities obviously decreased compared w ith G-CN and I-CN.This is due to the fact that the nitrogen vacancies formed by introducing ammonium thiosulfate could trap the photogenerated electrons,causing the increased separation rate.

    Chemisorption is considered to be the essential step in heterogeneous catalysis because the chem ical adsorption sites are generally the reaction centers to activate reactantmolecules.N2-TPD was carried out to investigate the N2adsorption situation on the surface of G-CN,ATH-CN and ATI-CN(Fig.9).Obviously, two adsorbed N2species in ATH-CN and ATI-CN are observed. One peak at110-130°C isassigned to physicaladsorption.The otherpeak at320-360°C isattributed to the strong chemisorption species of N2molecule.In the case of G-CN,only physicaladsorbed N2species is observed.This result indicates thatnitrogen vacancies could actas chem ical adsorption sites to activate N2molecule for nitrogen photofixation.This is consistent with previous results35.It isnoted that,compared with ATH-CN,more N2species chem isorbson ATI-CN surface.This is due to themore nitrogen vacancies on ATH-CN which providesmore chemical adsorption sites.

    Fig.8 PL spectra ofas-prepared catalysts

    Fig.9 N2-TPD of G-CN,ATH-CN and ATI-CN

    Fig.10 RhB degradation abilitiesover as-prepared catalysts under visible light

    RhB degradation abilities over as-prepared catalysts under visible lightare shown in Fig.10.The reaction rate constant(k) wasobtained by assum ing that the reaction follow ed first-order kinetics(Fig.10 insert).The results indicate that the catalystwith higher surfacearea displayshigher RhB degradation rate.The rate constant forATI-CN is0.014min-1,which is3.3-fold greater than thatof G-CN.However,the NH4+generation rate forATI-CN increases 27.4-fold compared w ith G-CN,w hich ismuch higher than the increase of RhB degradation rate.It is deduced that the enhanced nitrogen photofixation ability is not only due to the increased SBETbutalso due to the formation ofnitrogen vacancies.

    According to the XPS results,it is deduced that the nitrogen vacanciesare located at the three-coordinated nitrogen,as shown in Fig.11.Tofurther confirm thatN2isactivated by nitrogen vacancies,density functional theory(DFT)simulationswere employed to investigate the interaction between N2molecule and the g-C3N4with nitrogen vacancies(Fig.11).The calculation results show that theadsorption energy is-166.2 kJ·mol-1,confirm ing the chemisorption occurs.When the N2molecule adsorbs on the nitrogen vacancies,anσbond between the N2molecule and thenearestC atom is formed,causing the N≡N bond prolonged from 0.1107 to 0.1242 nm.This result confirms that the nitrogen vacancies can activate N2molecule.

    Fig.11 OptimalN2adsorptionmodelson nitrogen vacancies

    Fig.12 Possiblenitrogen photofixation processover g-C3N4w ith nitrogen vacancies

    In summary,the possiblenitrogen photofixation process over g-C3N4with nitrogen vacancies isshown in Fig.12.Firstof all,N2species chem isorbs on the nitrogen vacancies.Under visible light irradiation,photogenerated electron-hole pairsare formed(step 1). The photogenerated electrons are trapped by the nitrogen vacanciesand immediately transferred to theadsorbed N2molecule (step 2).Because thebonding orbitalsof N2moleculeareoccupied by four electrons,this photogenerated-electron has to occupy the anti-bonding orbitals,leading to thenitrogen activation(step 3). Theactivated N2molecule reactsw ith H+in water toform NH3, and then it finally forms

    4 Conc lusions

    By introducing ionic liquid[Bmim]Br as solvent into the solvothermal post-treatment,graphitic carbon nitride w ith larger surface area andmore nitrogen vacancies is synthesized in this work.Thesenitrogen vacanciesnotonly trap the photogenerated electrons to promote the separation rate,butserveasactive sites to adsorb and activate N2molecules.The adsorption energy is-166.2 kJ·mol-1when N2molecule interacts w ith nitrogen vacancy sites.The N≡N bond isprolonged from 0.1107 to 0.1242 nm,confirm ing thatnitrogen vacancy can activate N2molecule. Thisincreased surfaceareaof as-prepared g-C3N4causes thatmore nitrogen vacancies,as theactive sites,areexposed on the surface, leading to themarkedly promoted nitrogen photofixation ability. Under visible light,thegeneration rate of ANI-CN reaches 10.4mgwhich is27-fold higher than thatofG-CN.

    (1)Vol′pin,M.E.;Shur,V.B.;Berkovich,E.G.Inorg.Chim.Acta 1998,280,264.doi:10.1016/S0020-1693(98)00206-0

    (3)Tamelen,E.E.;Akermark,B.J.Am.Chem.Soc.1968,90,4492. doi:10.1021/ja01018a074

    (4)Dickson,C.R.;Nozik,A.J.J.Am.Chem.Soc.1978,100,8007. doi:10.1021/ja00493a039

    (5)Hu,S.Z.;Li,Y.M.;Li,F.Y.;Fan,Z.P.;Ma,H.F.;Li,W.; Kang,X.X.ACS.Sus.Chem.Eng.2016,4,2269.doi:10.1021/ acssuschemeng.5b01742

    (6)Ranjit,K.T.;Viswanathan,B.Indian J.Chem.Sect.A 1996,35, 443.

    (7)Schrauzer,G.N.;Guth,T.D.J.Am.Chem.Soc.1977,99,7189. doi:10.1021/ja00464a015

    (8)Ranjit,K.T.;Varadarajan,T.K.;Viswanathan,B.J.Photochem. Photobiol.A:Chem.1996,96,181.doi:10.1016/1010-6030(95) 04290-3

    (9)Rusina,O.;Linnik,O.;Eremenko,A.;Kisch,H.Chem.Eur.J. 2003,9,561.doi:10.1002/chem.200390059

    (10)Hoshino,K.Chem.Eur.J.2001,7,2727.doi:10.1002/1521-3765(20010702)7:13<2727::AID-CHEM 2727>3.0.CO;2-4

    (11)Hoshino,K.;Inui,M.;Kitamura,T.;Kokado,H.Angew.Chem. Int.Ed.2000,39,2509.doi:10.1002/1521-3773(20000717)39: 14<2509::AID-ANIE2509>3.0.CO;2-I

    (12)Zhao,W.R.;Zhang,J.;Zhu,X.;Zhang,M.;Tang,J.;Tan,M.; Wang,Y.Appl.Catal.B:Environ.2014,144,468.doi:10.1016/j. apcatb.2013.07.047

    (13)Liang,Y.T.;Vijayan,B.K.;Gray,K.A.;Hersam,M.C.Nano Lett.2011,11,2865.doi:10.1021/nl2012906

    (14)Walter,M.G.;Warren,E.L.;M cKone,J.R.;Boettcher,S.W.; M i,Q.;Santori,E.A.;Lew is,N.S.Chem.Rev.2010,110,6446. doi:10.1021/cr1002326

    (15)Britto,P.J.;Santhanam,K.S.V.;Rubio,A.;Alonso,J.A.; A jayan,P.M.Adv.Mater.1999,11,154.doi:10.1002/(SICI) 1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B

    (16)Zhu,D.;Zhang,L.;Ruther,R.E.;Ruther,R.J.Nat.Mater. 2013,12,836.doi:10.1038/nmat3696

    (17)Wang,X.C.;Maeda,K.;Thomas,A.;Takanabe,K.;Xin,G.; Carlsson,J.M.;Domen,K.;Antonietti,M.Nat.Mater.2009,8, 76.doi:10.1038/nmat2317

    (18)Zhao,Z.W.;Sun,Y.J.;Dong,F.Nanoscale 2015,7,15. doi:10.1039/c4nr03008g

    (19)Zheng,Y.;Liu,J.;Liang,J.;Jaroniec,M.;Qiao,S.Energy Environ.Sci.2012,5,6717.doi:10.1039/c2ee03479d

    (20)Zheng,Y.;Jiao,Y.;Chen,J.;Liu,J.;Liang,J.;Du,A.;Zhang, W.;Zhu,Z.;Jaroniec,M.;Sm ith,S.C.;Lu,G.;Qiao,S.J.Am. Chem.Soc.2011,133,20116.doi:10.1021/ja209206c

    (21)Xu,J.;Wu,H.T.;Wang,X.;Xue,B.;Li,Y.X.;Cao,Y.Phys.Chem.Chem.Phys.2013,15,4510.doi:10.1039/c3cp44402c

    (22)Li,Q.;Yang,J.;Feng,D.;W u,Z.;Wu,Q.;Park,S.S.;Ha,C.S.; Zhao,D.Nano Res.2010,3,632.doi:10.1007/s12274-010-0023-7

    (23)Park,S.S.;Chu,S.W.;Xue,C.;Zhao,D.;Ha,C.S.Mater.J. Chem.2011,21,10801.doi:10.1039/c1jm10849b

    (24)Welton,T.Chem.Rev.1999,99,2071.doi:10.1021/cr980032t

    (25)Keim,W.Angew.Chem.Int.Ed.2000,39,3772.doi:10.1002/ 1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

    (26)Kubisa,P.Prog.Polym.Sci.2004,29,3.doi:10.1016/j. progpolymsci.2003.10.002

    (27)Paramasivam,I.;Macak,J.M.;Selvam,T.;Schmuki,P. Electrochim.Acta 2008,54,643.doi:10.1016/j. electacta.2008.07.031

    (28)Yoo,K.S.;Lee,T.G.;Kim,J.MicroporousMesoporousMat. 2005,84,211.doi:10.1016/j.m icromeso.2005.05.029

    (29)Ding,K.L.;Miao,Z.J.;Liu,Z.M.;Zhang,Z.F.;Han,B.X.; An,G.M.;M iao,S.D.;Xie,Y.J.Am.Chem.Soc.2007,129, 6362.doi:10.1021/ja070809c

    (30)Liu,Y.;Li,J.;Wang,M.J.;Li,Z.Y.;Liu,H.T.;He,P.;Yang,X. R.;Li,J.H.Cryst.Growth Des.2005,5,1643.doi:10.1021/ cg050017z

    (31)Xu,L.;Xia,J.X.;Xu,H.;Yin,S.;Wang,K.;Huang,L.Y.; Wang,L.G.;Li,H.M.J.PowerSources2014,245,866. doi:10.1016/j.jpow sour.2013.07.014

    (32)Di,J.;Xia,J.X.;Yin,S.;Xu,H.;Xu,L.;He,M.Q.;Li,H.M.; Xu,L.;Jiang,Y.P.RSCAdv.2013,3,19624.doi:10.1039/ c3ra42269k

    (33)Xiao,D.L.;Li,S.Q.;Liu,S.B.;He,H.;Lu,J.R.New J.Chem. 2016,40,320.doi:10.1039/c5nj01717c

    (34)Di,J.;Xia,J.X.;Yin,S.;Xu,H.;Xu,L.;Xu,Y.G.;He,M.Q.; Li,H.M.J.Mater.Chem.A.2014,2,5340.doi:10.1039/ c3ta14617k

    (35)Dong,G.H.;Ho,W.K.;Wang,C.Y.J.Mater.Chem.A 2015,3, 23435.doi:10.1039/c5ta06540b

    (36)Li,H.;Shang,J.;Ai,Z.H.;Zhang,L.Z.J.Am.Chem.Soc. 2015,137,6393.doi:10.1021/jacs.5b03105

    (37)Hong,Z.H.;Shen,B.;Chen,Y.L.;Lin,B.Z.;Gao,B.F. J.Mater.Chem.A 2013,1,11754.doi:10.1039/c3ta12332d

    (38)Hu,S.Z.;Li,F.Y.;Fan,Z.P.;Gui,J.Z.J.Power Sources 2014, 250,30.doi:10.1016/j.jpowsour.2013.10.132

    (39)Yang,R.C.;Lu,X.J.;Huang,X.;Chen,Z.M.;Zhang,X.;Xu, M.D.;Song,Q.W.;Zhu,L.T.Appl.Catal.B:Environ.2015, 170-171,225.doi:10.1016/j.apcatb.2015.01.046

    (40)Wang,Z.H.;M a,W.H.;Chen,C.C.;Ji,H.W.;Zhao,J.C. Chem.Eng.J.2011,170,353.doi:10.1016/j.cej.2010.12.002

    (41)Wang,X.C.;Chen,X.F.;Thomas,A.;Fu,X.Z.;Antonietti,M. Adv.Mater.2009,21,1609.doi:10.1002/adma.200802627

    (42)Oregan,B.;Gratzel,M.Nature1991,353,737.doi:10.1038/ 353737ao

    (43)Yan,S.C.;Li,Z.S.;Zou,Z.G.Langmuir2009,25,10397. doi:10.1021/la900923z

    (44)Hu,S.Z.;Ma,L.;Xie,Y.;Li,F.Y.;Fan,Z.P.;Wang,F.;Wang, Q.;Wang,Y.J.;Kang,X.X.;Wu,G.Dalton Trans.2015,44, 20889.doi:10.1039/c5dt04035c

    (45)Lei,W.;Portehault,D.;Dimova,R.;Antoniettit,M.J.Am. Chem.Soc.2011,133,7121.doi:10.1021/ja200838c

    (46)Zhang,Y.W.;Liu,J.H.;Wu,G.;Chen,W.Nanoscale 2012,4, 5300.doi:10.1039/c2nr30948c

    (47)Hu,S.Z.;Ma,L.;Li,F.Y.;Fan,Z.P.;Wang,Q.;Bai,J.;Kang, X.X.;Wu,G.RSCAdv.2015,5,90750.doi:10.1039/ c5ra15611d

    Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4Catalyst

    BAIJin CHEN Xin XIZhao-Yi WANG Xiang LIQiang HU Shao-Zheng*
    (College ofChemistry,Chemical Engineering,and Environmental Engineering,Liaoning Shihua University, Fushun 113001,Liaoning Province,P.R.China)

    In this work,g raphitic ca rbon nitride(g-C3N4)w ith la rge surface area and many nitrogen vacancies was synthesized by introducing ionic liquid[Bm im]Bras a solvent into the so lvotherma lpost-treatment.X-ray diffraction(XRD),N2adsorption,scanning electronm icroscopy(SEM),UV-Vis spectroscopy,X-ray photoelectron spectroscopy(XPS),electron paramagnetic resonance(EPR),tem perature-programmed desorption ofN2(N2-TPD),and photo lum inescence(PL)spectroscopy were used to characterize the p repared catalysts.The m orpho logy of the as-prepa red g-C3N4was m arked ly changed from an o rde rless laye red structure to nanoparticleswith a uniform size distribution ofaround 30-40 nm a fter the introduction of[Bm im]Br,leading an increase in surface area from 8.6 to 37.9m2·g-1.N2-TPD,photolum inescence spectra,and density functional theory(DFT)simulations indicated that the nitrogen vacancies notonly trapped the photogenerated e lectrons to enhance their separation rate,butalso served as active sites for the adsorption and activation ofN2molecules. The inc reased surface a rea of the as-prepared g-C3N4meant thatm ore nitrogen vacancies w ere exposed on the surface,leading to amarkedly promoted nitrogen photofixation ability.The possib le reactionmechanism is p roposed.

    Graphitic carbon nitride;Ionic liquid;[Bm im]Br;Nitrogen photofixation

    O643

    eigh,G.J.Science1998,279,506.

    10.1126/ science.279.5350.506

    doi:10.3866/PKU.WHXB201611102

    www.whxb.pku.edu.cn

    Received:September 23,2016;Revised:November 10,2016;Published online:November 10,2016.

    *Corresponding author.Email:hushaozhenglnpu@163.com;Tel:+86-13470570415.

    Theprojectwas supported by theNationalNatural Science Foundation of China(41571464),Education Departmentof Liaoning Province,China (L2014145),and Natural Science Foundation of Liaoning Province,China(201602467).

    國家自然科學(xué)基金(41571464),遼寧省教育廳項(xiàng)目(L2014145)及遼寧省自然科學(xué)基金(201602467)資助?Editorialofficeof Acta Physico-Chim ica Sinica

    猜你喜歡
    王翔固氮氮化
    土壤中的天然化肥廠
    氮化鋁粉末制備與應(yīng)用研究進(jìn)展
    廖莎、王翔藝作品
    XD超級氮化催滲劑的運(yùn)用
    以氮化鎵/氮化鋁鎵超晶格結(jié)構(gòu)優(yōu)化氮化銦鎵LED
    電子制作(2018年12期)2018-08-01 00:47:48
    40CrH鋼氣體軟氮化-后氧化復(fù)合處理的組織性能
    上海金屬(2016年2期)2016-11-23 05:34:32
    杉木與固氮樹種混交對土壤有機(jī)質(zhì)及氮含量的影響
    土壤中的天然化肥廠
    ——固氮微生物
    王翔國畫作品選
    文藝論壇(2014年14期)2014-11-08 01:22:14
    王翔三維作品設(shè)計(jì)
    亚洲av免费高清在线观看| 国产白丝娇喘喷水9色精品| 99久国产av精品| 日韩强制内射视频| av在线观看视频网站免费| 久久鲁丝午夜福利片| 成人综合一区亚洲| av在线老鸭窝| 色尼玛亚洲综合影院| av卡一久久| 日本猛色少妇xxxxx猛交久久| 日本午夜av视频| 国内少妇人妻偷人精品xxx网站| 亚洲成人av在线免费| 国产探花在线观看一区二区| av国产久精品久网站免费入址| 亚洲av免费在线观看| 久久99精品国语久久久| 黄色一级大片看看| 黄色欧美视频在线观看| 老司机福利观看| 国产片特级美女逼逼视频| 免费看美女性在线毛片视频| 色吧在线观看| 久久精品91蜜桃| 成人综合一区亚洲| 亚洲久久久久久中文字幕| 日韩一区二区三区影片| 精品久久久久久久末码| 免费大片18禁| 色哟哟·www| 九九热线精品视视频播放| 国产一区二区在线观看日韩| 亚洲精品,欧美精品| 免费观看a级毛片全部| 在线免费观看的www视频| 五月伊人婷婷丁香| 大话2 男鬼变身卡| 麻豆一二三区av精品| 99热这里只有精品一区| 亚洲国产色片| 最后的刺客免费高清国语| 日本av手机在线免费观看| 美女cb高潮喷水在线观看| 大香蕉97超碰在线| 日韩强制内射视频| 国产精品国产三级专区第一集| 久久久亚洲精品成人影院| 伊人久久精品亚洲午夜| 麻豆成人av视频| 麻豆一二三区av精品| 亚洲成av人片在线播放无| 欧美区成人在线视频| 亚洲精品成人久久久久久| 99在线人妻在线中文字幕| 狂野欧美激情性xxxx在线观看| 国产精品一及| 久久国产乱子免费精品| 自拍偷自拍亚洲精品老妇| 精品熟女少妇av免费看| 插逼视频在线观看| 国产av码专区亚洲av| 中文字幕av在线有码专区| 一个人看视频在线观看www免费| 亚洲经典国产精华液单| 三级经典国产精品| 国产免费又黄又爽又色| 日韩一区二区视频免费看| 蜜桃久久精品国产亚洲av| 麻豆精品久久久久久蜜桃| 18禁动态无遮挡网站| 国产成人精品一,二区| 97超碰精品成人国产| 麻豆成人av视频| 啦啦啦观看免费观看视频高清| 国产单亲对白刺激| 嘟嘟电影网在线观看| 久久精品夜色国产| 美女cb高潮喷水在线观看| 99在线视频只有这里精品首页| 久久精品国产亚洲网站| 一级av片app| 插阴视频在线观看视频| 久久久久久大精品| 久久精品综合一区二区三区| 亚洲av成人av| 久久久久久伊人网av| 我的女老师完整版在线观看| 国产黄片视频在线免费观看| 久久久国产成人免费| 午夜激情福利司机影院| 亚洲高清免费不卡视频| 国产高清有码在线观看视频| 少妇猛男粗大的猛烈进出视频 | 国产中年淑女户外野战色| 精品一区二区三区视频在线| 麻豆乱淫一区二区| 国产中年淑女户外野战色| 国产淫片久久久久久久久| 午夜免费激情av| 男人和女人高潮做爰伦理| 岛国在线免费视频观看| 免费大片18禁| 69人妻影院| 一区二区三区免费毛片| a级一级毛片免费在线观看| 中文天堂在线官网| 久久久成人免费电影| 色吧在线观看| 日韩av在线免费看完整版不卡| 日韩欧美 国产精品| 在线播放国产精品三级| 国产 一区 欧美 日韩| 99久久精品一区二区三区| 老司机影院毛片| 亚洲国产高清在线一区二区三| av天堂中文字幕网| 欧美区成人在线视频| 国产三级中文精品| 国产午夜精品久久久久久一区二区三区| 精华霜和精华液先用哪个| 久久精品国产自在天天线| 少妇丰满av| 国产视频首页在线观看| 久久6这里有精品| 国产老妇伦熟女老妇高清| 亚洲国产精品成人综合色| 欧美激情在线99| 国产免费一区二区三区四区乱码| 精品国产国语对白av| 一级毛片我不卡| 婷婷色av中文字幕| 午夜福利视频在线观看免费| 免费大片黄手机在线观看| 亚洲av国产av综合av卡| 国产欧美日韩综合在线一区二区| 边亲边吃奶的免费视频| 1024视频免费在线观看| 桃花免费在线播放| 久久久久视频综合| 黑人欧美特级aaaaaa片| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 亚洲第一av免费看| 日韩成人伦理影院| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩综合久久久久久| 99视频精品全部免费 在线| 免费观看av网站的网址| 2022亚洲国产成人精品| 亚洲精品自拍成人| 国产一区二区在线观看日韩| 波多野结衣一区麻豆| 色视频在线一区二区三区| 亚洲国产精品国产精品| 国产精品 国内视频| 狂野欧美激情性xxxx在线观看| av女优亚洲男人天堂| 女人被躁到高潮嗷嗷叫费观| 久久久久久人妻| 国产色爽女视频免费观看| 亚洲丝袜综合中文字幕| 97超碰精品成人国产| 另类亚洲欧美激情| 国产av国产精品国产| 亚洲av免费高清在线观看| 国产精品久久久久久精品古装| 国产xxxxx性猛交| 另类精品久久| 另类精品久久| 国产一区有黄有色的免费视频| 国产伦理片在线播放av一区| 国产精品国产三级专区第一集| 看十八女毛片水多多多| 美女脱内裤让男人舔精品视频| 大香蕉久久成人网| 国产一区二区在线观看日韩| 久久精品国产自在天天线| 桃花免费在线播放| 国产精品国产三级专区第一集| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 少妇熟女欧美另类| 女的被弄到高潮叫床怎么办| 中文字幕免费在线视频6| 亚洲国产看品久久| 亚洲成色77777| 纵有疾风起免费观看全集完整版| 大香蕉久久成人网| 日本色播在线视频| xxxhd国产人妻xxx| 又黄又爽又刺激的免费视频.| 久久99一区二区三区| 一本—道久久a久久精品蜜桃钙片| 看免费av毛片| 午夜激情av网站| 国产亚洲精品久久久com| 国内精品宾馆在线| 9热在线视频观看99| 一二三四在线观看免费中文在 | 欧美日韩视频高清一区二区三区二| 免费大片18禁| 成年人午夜在线观看视频| 热re99久久精品国产66热6| 国产欧美日韩一区二区三区在线| 超碰97精品在线观看| 亚洲国产成人一精品久久久| 国产深夜福利视频在线观看| h视频一区二区三区| 伦精品一区二区三区| 精品人妻偷拍中文字幕| 日本vs欧美在线观看视频| 多毛熟女@视频| 美女福利国产在线| 一级黄片播放器| 精品久久蜜臀av无| xxx大片免费视频| 久久精品国产综合久久久 | 国产成人精品一,二区| 久久久久国产网址| 亚洲一码二码三码区别大吗| 日本vs欧美在线观看视频| 黑人高潮一二区| 久久人人爽av亚洲精品天堂| 日本欧美国产在线视频| 天堂俺去俺来也www色官网| 男女午夜视频在线观看 | 精品午夜福利在线看| 91在线精品国自产拍蜜月| 9热在线视频观看99| 自线自在国产av| 久久久久久久久久人人人人人人| 两性夫妻黄色片 | 亚洲国产精品一区三区| 又黄又粗又硬又大视频| 久久99热6这里只有精品| 韩国高清视频一区二区三区| 久久久国产欧美日韩av| 日韩在线高清观看一区二区三区| 国产精品成人在线| 国产一区二区在线观看av| 久久久精品94久久精品| 少妇猛男粗大的猛烈进出视频| 久久精品久久久久久久性| 免费少妇av软件| 日韩在线高清观看一区二区三区| 精品酒店卫生间| 久久久久久久亚洲中文字幕| 久久av网站| av在线观看视频网站免费| 青青草视频在线视频观看| 热re99久久国产66热| 久久久精品区二区三区| 夜夜爽夜夜爽视频| 大陆偷拍与自拍| 最黄视频免费看| 亚洲成av片中文字幕在线观看 | 黄网站色视频无遮挡免费观看| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 黑人欧美特级aaaaaa片| 久久久精品区二区三区| 免费人成在线观看视频色| 国产亚洲av片在线观看秒播厂| 日韩制服丝袜自拍偷拍| 成人免费观看视频高清| 亚洲综合色惰| 午夜福利影视在线免费观看| 午夜精品国产一区二区电影| 久久亚洲国产成人精品v| 国产永久视频网站| 国产日韩一区二区三区精品不卡| 欧美 日韩 精品 国产| 亚洲av电影在线进入| 99热网站在线观看| 欧美日韩国产mv在线观看视频| 久热久热在线精品观看| 亚洲三级黄色毛片| 三级国产精品片| 国产xxxxx性猛交| 狠狠婷婷综合久久久久久88av| 日韩不卡一区二区三区视频在线| 18禁在线无遮挡免费观看视频| 精品人妻一区二区三区麻豆| 久久女婷五月综合色啪小说| 亚洲精品自拍成人| 久久人人爽人人爽人人片va| 久久韩国三级中文字幕| 亚洲欧美一区二区三区国产| 少妇精品久久久久久久| 看十八女毛片水多多多| 婷婷色综合大香蕉| 国产成人免费无遮挡视频| 久久精品久久久久久久性| 久久久久久久久久久免费av| 久久99精品国语久久久| 国产精品女同一区二区软件| 少妇 在线观看| 免费少妇av软件| 夫妻性生交免费视频一级片| 亚洲国产av新网站| 国产免费一区二区三区四区乱码| videos熟女内射| 人体艺术视频欧美日本| 女人精品久久久久毛片| 欧美日韩av久久| 国产欧美亚洲国产| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩卡通动漫| 国产日韩欧美视频二区| 另类亚洲欧美激情| 最新的欧美精品一区二区| 国产综合精华液| 少妇熟女欧美另类| 少妇被粗大的猛进出69影院 | 日韩中字成人| 久久青草综合色| 如何舔出高潮| 熟女电影av网| 各种免费的搞黄视频| 高清欧美精品videossex| 久久精品国产a三级三级三级| 亚洲国产日韩一区二区| av免费在线看不卡| 亚洲成人手机| 国产爽快片一区二区三区| 日本黄色日本黄色录像| 国产精品秋霞免费鲁丝片| 成年人午夜在线观看视频| 亚洲欧美成人精品一区二区| 日韩制服丝袜自拍偷拍| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 下体分泌物呈黄色| 久久精品熟女亚洲av麻豆精品| 寂寞人妻少妇视频99o| 一级片'在线观看视频| 在线观看www视频免费| 亚洲成色77777| 激情五月婷婷亚洲| 乱人伦中国视频| 国产成人精品无人区| 国国产精品蜜臀av免费| 亚洲欧美一区二区三区国产| 久久av网站| 波多野结衣一区麻豆| 国产在视频线精品| 在线观看人妻少妇| 免费女性裸体啪啪无遮挡网站| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 成人午夜精彩视频在线观看| 日韩精品有码人妻一区| 日韩欧美精品免费久久| 亚洲欧美色中文字幕在线| 肉色欧美久久久久久久蜜桃| 搡女人真爽免费视频火全软件| 18禁在线无遮挡免费观看视频| 在线观看人妻少妇| 99视频精品全部免费 在线| 99热网站在线观看| 亚洲四区av| 国产精品人妻久久久久久| av片东京热男人的天堂| 内地一区二区视频在线| 日日撸夜夜添| 国产xxxxx性猛交| 在线观看三级黄色| 日韩欧美一区视频在线观看| 精品一区在线观看国产| 高清视频免费观看一区二区| 色哟哟·www| 乱码一卡2卡4卡精品| 国产精品成人在线| 一区二区三区乱码不卡18| 久久毛片免费看一区二区三区| 国产黄频视频在线观看| 欧美另类一区| 婷婷成人精品国产| 国产男女超爽视频在线观看| 中文精品一卡2卡3卡4更新| 日韩精品有码人妻一区| 91精品国产国语对白视频| 国产亚洲精品第一综合不卡 | 亚洲精品国产av成人精品| 大香蕉久久网| 久久精品国产综合久久久 | 久久 成人 亚洲| h视频一区二区三区| 少妇被粗大猛烈的视频| 国产精品久久久久久av不卡| 在线观看免费视频网站a站| 亚洲一码二码三码区别大吗| 国产片内射在线| 国产欧美日韩一区二区三区在线| 中文字幕制服av| 在线天堂最新版资源| 久久影院123| 人妻一区二区av| 精品少妇久久久久久888优播| 成年人免费黄色播放视频| 亚洲,一卡二卡三卡| 性高湖久久久久久久久免费观看| 99九九在线精品视频| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 国产白丝娇喘喷水9色精品| av天堂久久9| 亚洲精品成人av观看孕妇| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久电影网| 午夜免费鲁丝| 久热久热在线精品观看| 亚洲人成77777在线视频| 国产精品免费大片| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| 少妇的逼好多水| 亚洲av综合色区一区| 日本-黄色视频高清免费观看| 91精品伊人久久大香线蕉| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 国产又色又爽无遮挡免| 日本wwww免费看| 亚洲欧美日韩另类电影网站| 久久亚洲国产成人精品v| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 国产一区二区激情短视频 | 女的被弄到高潮叫床怎么办| 亚洲国产精品一区二区三区在线| av国产精品久久久久影院| 成人免费观看视频高清| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 侵犯人妻中文字幕一二三四区| 欧美日韩成人在线一区二区| 少妇 在线观看| 亚洲av欧美aⅴ国产| 丰满乱子伦码专区| 另类精品久久| 午夜福利在线观看免费完整高清在| 一边亲一边摸免费视频| 久久久久久久大尺度免费视频| 久久狼人影院| 成人国产麻豆网| 久久久a久久爽久久v久久| 午夜久久久在线观看| 午夜福利,免费看| 观看美女的网站| 中国美白少妇内射xxxbb| 久久久精品94久久精品| 又黄又爽又刺激的免费视频.| 成人国产麻豆网| 国产69精品久久久久777片| 天堂中文最新版在线下载| 久久97久久精品| 免费看不卡的av| 最近最新中文字幕免费大全7| 亚洲av综合色区一区| 满18在线观看网站| 大片免费播放器 马上看| 欧美激情国产日韩精品一区| 自拍欧美九色日韩亚洲蝌蚪91| 99久久人妻综合| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲欧美一区二区三区黑人 | 菩萨蛮人人尽说江南好唐韦庄| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 亚洲av.av天堂| 久久久久久人人人人人| 午夜福利网站1000一区二区三区| 99久久综合免费| 国产伦理片在线播放av一区| 国产精品免费大片| 高清在线视频一区二区三区| 香蕉国产在线看| 久久精品国产a三级三级三级| 国产国语露脸激情在线看| 久久久久久人人人人人| 国产精品成人在线| www日本在线高清视频| 女人久久www免费人成看片| 免费高清在线观看日韩| 亚洲精品国产色婷婷电影| 日韩电影二区| 一区二区av电影网| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 欧美人与性动交α欧美软件 | 9色porny在线观看| 性高湖久久久久久久久免费观看| 成年人午夜在线观看视频| 日本av免费视频播放| 天天躁夜夜躁狠狠躁躁| 久久久久精品久久久久真实原创| 亚洲国产成人一精品久久久| 在线观看免费日韩欧美大片| 日韩 亚洲 欧美在线| 亚洲av日韩在线播放| 嫩草影院入口| 亚洲精品美女久久久久99蜜臀 | av又黄又爽大尺度在线免费看| 九九爱精品视频在线观看| 香蕉国产在线看| 建设人人有责人人尽责人人享有的| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 永久网站在线| 我要看黄色一级片免费的| 亚洲人成77777在线视频| 免费大片18禁| 亚洲丝袜综合中文字幕| 成人国产av品久久久| 老司机亚洲免费影院| 性高湖久久久久久久久免费观看| 观看美女的网站| 人妻一区二区av| 观看美女的网站| 国产成人精品在线电影| 狂野欧美激情性bbbbbb| 日本wwww免费看| 另类亚洲欧美激情| 午夜91福利影院| 国产精品国产三级专区第一集| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| 欧美97在线视频| 国国产精品蜜臀av免费| 两个人免费观看高清视频| 成人国语在线视频| 丝瓜视频免费看黄片| 精品国产乱码久久久久久小说| 久久精品久久久久久久性| 一级,二级,三级黄色视频| 少妇 在线观看| 午夜福利网站1000一区二区三区| 午夜91福利影院| 国产有黄有色有爽视频| 久久 成人 亚洲| 国产在线免费精品| 毛片一级片免费看久久久久| 日韩av不卡免费在线播放| 久久精品国产a三级三级三级| 91久久精品国产一区二区三区| 亚洲成国产人片在线观看| 人妻一区二区av| 一本久久精品| 边亲边吃奶的免费视频| 亚洲五月色婷婷综合| 免费高清在线观看视频在线观看| 国产乱来视频区| 亚洲精品视频女| 国产精品99久久99久久久不卡 | 精品卡一卡二卡四卡免费| 在线天堂中文资源库| 久久人人爽av亚洲精品天堂| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 晚上一个人看的免费电影| 精品国产一区二区久久| 欧美精品高潮呻吟av久久| 精品久久国产蜜桃| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 熟女av电影| 在线观看国产h片| 色5月婷婷丁香| 视频中文字幕在线观看| 岛国毛片在线播放| 综合色丁香网| 不卡视频在线观看欧美| 高清不卡的av网站| 在线天堂中文资源库| 丝袜美足系列| 你懂的网址亚洲精品在线观看| www日本在线高清视频| 91午夜精品亚洲一区二区三区| 久久99热6这里只有精品| 26uuu在线亚洲综合色| 性色av一级| 午夜日本视频在线| 国产亚洲一区二区精品| 国产黄频视频在线观看| 亚洲国产欧美日韩在线播放| 搡女人真爽免费视频火全软件| 男女午夜视频在线观看 | 性色avwww在线观看| 色网站视频免费| 在线 av 中文字幕| 1024视频免费在线观看| 国产精品久久久久久精品古装| 成人国产麻豆网| 亚洲精品一二三| 欧美国产精品va在线观看不卡| 国产精品成人在线| 韩国精品一区二区三区 | 国产精品麻豆人妻色哟哟久久| 2018国产大陆天天弄谢| 国产精品人妻久久久久久| 青春草亚洲视频在线观看| 色5月婷婷丁香| 亚洲色图综合在线观看| 人体艺术视频欧美日本| 亚洲四区av| 日韩人妻精品一区2区三区| 青春草国产在线视频| 国产国语露脸激情在线看| 男女午夜视频在线观看 | 国产成人精品一,二区| 看免费av毛片| 欧美xxⅹ黑人|