張建宇, 范立云, 袁航
(1.中國船舶重工集團(tuán)公司第七一三研究所 第六研究室,河南 鄭州 450052; 2.哈爾濱工程大學(xué) 動(dòng)力與能源工程學(xué)院,黑龍江 哈爾濱 150001)
?
電控單體泵高速電磁閥多目標(biāo)優(yōu)化分析
張建宇1, 范立云2, 袁航1
(1.中國船舶重工集團(tuán)公司第七一三研究所 第六研究室,河南 鄭州 450052; 2.哈爾濱工程大學(xué) 動(dòng)力與能源工程學(xué)院,黑龍江 哈爾濱 150001)
針對(duì)高速電磁閥的延遲響應(yīng)會(huì)引起噴油定時(shí)失準(zhǔn)以及循環(huán)噴油量的精度變差,進(jìn)而導(dǎo)致柴油機(jī)排放超標(biāo)及油耗增加等問題,本文開展了電磁閥結(jié)構(gòu)多目標(biāo)優(yōu)化與分析,最終可以達(dá)到電磁閥延遲響應(yīng)最小化的目的。本文應(yīng)用AMESim軟件建立電控單體泵仿真模型,經(jīng)過實(shí)驗(yàn)驗(yàn)證了模型準(zhǔn)確性。通過實(shí)驗(yàn)設(shè)計(jì)的方法對(duì)影響電磁閥響應(yīng)延遲的關(guān)鍵參數(shù)進(jìn)行預(yù)測(cè)。得出關(guān)鍵影響參數(shù):銜鐵殘余氣隙、彈簧預(yù)緊力、錐閥半錐角、閥桿直徑及錐閥直徑。應(yīng)用多目標(biāo)多學(xué)科優(yōu)化平臺(tái)modeFRONTIER,采用NSGA-Ⅱ遺傳算法,以電控單體泵高速電磁閥開啟、關(guān)閉響應(yīng)延遲時(shí)間作為目標(biāo)建立多目標(biāo)優(yōu)化模型。優(yōu)化結(jié)果顯示:關(guān)閉延遲時(shí)間減小了6%,開啟延遲時(shí)間減小了17.7%,噴油壓力峰值增大0.62 MPa,有利于進(jìn)一步提高循環(huán)噴油量控制的精確程度。
電控單體泵;高速電磁閥;多目標(biāo)優(yōu)化;AMESim;響應(yīng)延遲;modeFRONTIER;柴油機(jī);排放;噴油量
電控單體泵是一種能夠滿足當(dāng)前柴油機(jī)排放法規(guī)和經(jīng)濟(jì)性要求的新型燃油噴射系統(tǒng),可實(shí)現(xiàn)較高的噴油壓力及良好的燃料霧化[1]。高速電磁閥(簡(jiǎn)稱電磁閥)是電控單體泵的核心組件之一,它的響應(yīng)速度決定了噴油壓力的建立與噴射后油壓卸載速度等特性,從而會(huì)影響到噴油系統(tǒng)的噴油定時(shí)、循環(huán)噴油量等關(guān)鍵特性[2]。電磁閥較大的響應(yīng)延遲會(huì)引起噴油定時(shí)失準(zhǔn)和循環(huán)噴油量的精度變差,從而導(dǎo)致柴油機(jī)排放超標(biāo)及油耗增大。為進(jìn)一步提高噴油控制的精確性,需要對(duì)影響電磁閥響應(yīng)的關(guān)鍵特性參數(shù)進(jìn)行優(yōu)化設(shè)計(jì),以減小電磁閥的響應(yīng)延遲時(shí)間。
目前,國內(nèi)在電磁閥的鐵芯材質(zhì)、驅(qū)動(dòng)電路設(shè)計(jì)等方面進(jìn)行了較多的實(shí)驗(yàn)研究和優(yōu)化設(shè)計(jì)。張奇等對(duì)電控柴油機(jī)的電磁閥驅(qū)動(dòng)電路進(jìn)行了分析,通過有限元軟件Ansys對(duì)電磁閥進(jìn)行有限元建模,模擬了電磁閥關(guān)閉動(dòng)態(tài)響應(yīng)過程,并對(duì)驅(qū)動(dòng)電路進(jìn)行優(yōu)化設(shè)計(jì),降低了電磁閥閉合響應(yīng)時(shí)間[3]。張廷羽等通過Ansys分析電磁閥的電磁部分,利用AMESim建立了電磁閥整體仿真模型,對(duì)影響電磁閥的各個(gè)因素進(jìn)行了計(jì)算和分析,并提出了適合電磁閥鐵心材質(zhì)、線圈等優(yōu)化設(shè)計(jì)的方案[4]。李鐵栓等采用模擬退火算法,結(jié)合電磁閥Ansys有限元仿真模型,通過多目標(biāo)優(yōu)化平臺(tái)modeFrontier對(duì)高壓共軌電磁閥的開啟、關(guān)閉延遲時(shí)間進(jìn)行優(yōu)化設(shè)計(jì),降低了電磁閥的開啟和關(guān)閉延遲時(shí)間[5]。
以上所述對(duì)電磁閥的優(yōu)化設(shè)計(jì)皆把電磁閥作為獨(dú)立系統(tǒng)進(jìn)行優(yōu)化設(shè)計(jì),本文把電磁閥作為電控單體泵系統(tǒng)中的一部分進(jìn)行電磁閥延遲響應(yīng)時(shí)間優(yōu)化,并分析優(yōu)化后對(duì)電控單體泵系統(tǒng)噴射特性的影響。本文在AMESim環(huán)境下建立電控單體泵仿真模型,并結(jié)合試驗(yàn)數(shù)據(jù)對(duì)模型的準(zhǔn)確性進(jìn)行驗(yàn)證。應(yīng)用實(shí)驗(yàn)設(shè)計(jì)方法,對(duì)電控單體泵電磁閥部分各特性參與電磁閥響應(yīng)延遲時(shí)間的相關(guān)性進(jìn)行深入分析,得到電磁閥響應(yīng)的關(guān)鍵影響參數(shù)。進(jìn)而利用多目標(biāo)優(yōu)化平臺(tái)modeFRONTIER與AMESim進(jìn)行聯(lián)合仿真,對(duì)電磁閥響應(yīng)時(shí)間的關(guān)鍵影響參數(shù)進(jìn)行優(yōu)化,以獲得電磁閥與電信號(hào)的開啟和關(guān)閉延遲最小響應(yīng)時(shí)間。
1.1 電磁閥工作原理
電控單體泵及電磁閥的結(jié)構(gòu)如圖1所示,主要包括電磁閥控制部分和柱塞加壓部分:柱塞加壓部分包括柱塞、柱塞套和柱塞彈簧;電磁閥控制部分主要包括電磁鐵、銜鐵、控制閥桿、銜鐵復(fù)位彈簧、出油堵頭等零部件。通電后,電磁鐵吸合銜鐵,拉動(dòng)控制閥桿,關(guān)閉密封錐面,切斷燃油回路,從而在泵腔內(nèi)建立起燃油噴射所需的高壓;斷電后,復(fù)位彈簧迫使銜鐵推動(dòng)控制閥桿復(fù)位,開啟密封錐面,卸載高壓燃油,停止燃油噴射。該方式實(shí)現(xiàn)了對(duì)燃油噴射過程的數(shù)字控制,改變了傳統(tǒng)噴油泵復(fù)雜的機(jī)械控制方式,通過調(diào)節(jié)控制閥桿的閉合時(shí)間和閉合時(shí)刻,可實(shí)現(xiàn)對(duì)循環(huán)噴油量和噴油定時(shí)的靈活控制。
(a)電控單體泵結(jié)構(gòu)
(b)電磁閥結(jié)構(gòu)圖1 電控單體泵、電磁閥結(jié)結(jié)構(gòu)圖Fig.1 Structure of EUP and solenoid valve
1.2 電磁閥響應(yīng)延遲特性
在電磁閥關(guān)閉和開啟階段,由于電流作用時(shí)間、磁滯現(xiàn)象、閥桿動(dòng)作延遲、閥桿運(yùn)動(dòng)過程等因素導(dǎo)致銜鐵相對(duì)于控制電流(信號(hào))存在滯后所產(chǎn)生的延遲時(shí)間。在電磁閥開啟階段由于較高壓力的燃油迅速泄壓,在燃油流經(jīng)處會(huì)產(chǎn)生局部壓降現(xiàn)象,使得燃油會(huì)對(duì)錐閥產(chǎn)生與開啟方向相反的液動(dòng)力,從而導(dǎo)致開啟延遲時(shí)間增加。
根據(jù)銜鐵受電磁力作用過程,可以將電磁閥的運(yùn)動(dòng)過程分為3個(gè)階段(如圖2所示):
1) 關(guān)閉延遲階段A:線圈通電起始時(shí)間到銜鐵完全吸合時(shí)間即電磁閥到達(dá)最大升程時(shí)間。
2) 關(guān)閉階段C。銜鐵被吸合后,與電磁鐵間隙較小,電磁力一直大于彈簧力,電磁閥保持完全關(guān)閉狀態(tài)。
3) 開啟延遲階段B。電磁閥斷電時(shí)間到銜鐵復(fù)位即電磁閥完全打開時(shí)間。
圖2 電磁閥響應(yīng)延遲特性Fig.2 Response delay characteristic of solenoid valve
電控單體泵系統(tǒng)是集電場(chǎng)、磁場(chǎng)、機(jī)械運(yùn)動(dòng)和流場(chǎng)于一體的復(fù)雜系統(tǒng),各物理場(chǎng)通過各自的控制方程及相互作用變量耦合在一起,每個(gè)場(chǎng)的參數(shù)都會(huì)直接或間接的影響最終的噴射特性。單純的實(shí)驗(yàn)研究難以實(shí)現(xiàn)對(duì)系統(tǒng)噴射特性的深入分析,需采用數(shù)值仿真的方法,以揭示影響噴射特性的本質(zhì)規(guī)律。因此,本文在AMESim環(huán)境中建立了數(shù)值模型,如圖3所示。
為驗(yàn)證模型的準(zhǔn)確性,圖4中(a)是凸輪轉(zhuǎn)速為900 r/min,循環(huán)噴油量為150 mm3時(shí),在相同控制電流下,噴油規(guī)律的實(shí)驗(yàn)和仿真結(jié)果對(duì)比曲線。
(a)電控單體泵仿真模型
(b)電磁閥仿真模型圖3 電控單體泵及電磁閥仿真模型Fig.3 Simulation model of EUP and solenoid valve
圖4(b)是在不同凸輪轉(zhuǎn)速下,滿足實(shí)驗(yàn)和仿真相同循環(huán)噴油量(某種機(jī)型外特性下循環(huán)噴油量)的前提下,泵端壓力和嘴端壓力的實(shí)驗(yàn)和仿真結(jié)果??梢姺抡婺P湍軌驕?zhǔn)確的預(yù)測(cè)泵端壓力、嘴端壓力和噴油規(guī)律,由圖中可知系統(tǒng)在噴油過程中的燃油噴射持續(xù)期和噴油提前角是一致的,噴油時(shí)序也是一致的,而且在任何轉(zhuǎn)速下泵端壓力和嘴端壓力都能得到很好的預(yù)測(cè),最大偏差為7%,因此該模型能夠準(zhǔn)確預(yù)測(cè)系統(tǒng)的噴射特性參數(shù)[6]。
圖4 實(shí)驗(yàn)與仿真計(jì)算對(duì)比Fig.4 Comparison between experiment and simulation
電磁閥部分的特性參數(shù)會(huì)影響電磁閥的響應(yīng)延遲特性,為篩選關(guān)鍵因素,在保持控制策略及電磁閥固有物性參數(shù)如升程、質(zhì)量和材質(zhì)不變的前提下,選取了如表1所示的影響參數(shù)對(duì)電磁閥響應(yīng)延遲經(jīng)行了相關(guān)性預(yù)測(cè)分析,其中表1中參數(shù)基準(zhǔn)值是實(shí)際測(cè)量值,取值范圍是在不影響電控單體泵及電磁閥等各部分正常工作所允許的波動(dòng)范圍。
表1 電磁閥特性參數(shù)及取值范圍
Table 1 Characteristic parameters and range of electromagnetic valve
參數(shù)基準(zhǔn)值取值范圍彈簧預(yù)緊力/N7050~90阻尼/(N·(m·s-1)-1)500~120錐閥半錐角/(°)6856~80銜鐵殘余氣隙/mm0.120.08~0.15閥桿直徑/mm5.55~6錐閥直徑/mm7.67.5~8.2閥桿孔徑/mm76.3~7.3電磁閥容積腔/mm30.410.3~0.5彈簧剛度/(N·m-1)100008000~12000
相關(guān)性分析是考察兩個(gè)變量之間線性關(guān)系的一種分析方法,即,當(dāng)一個(gè)變量發(fā)生變化時(shí),另一變量隨之如何變化,此時(shí)需要通過計(jì)算相關(guān)系數(shù)來做深入的定量考察。相關(guān)性分析需要從兩方面來考察兩變量間的線性關(guān)系,一是相關(guān)的強(qiáng)度,二是相關(guān)的方向。
設(shè)兩變量有如下兩組觀測(cè)值:X:x1,x2,…,xn;Y:y1,y2,…,yn,則
(1)
式中:r即為變量X與Y的相關(guān)系數(shù),r的取值范圍為-1≤r≤1。相關(guān)系數(shù)的絕對(duì)值大小(即|r|)表示兩變量直間的線性相關(guān)強(qiáng)度,相關(guān)系數(shù)r的正負(fù)表示相關(guān)的方向,r為正數(shù),表示兩變量間為正相關(guān);r為負(fù)數(shù),表示兩變量間為負(fù)相關(guān)。
典型工況(凸輪轉(zhuǎn)速為900 r/min,噴油脈寬為8°CaA凸輪軸轉(zhuǎn)角)下,應(yīng)用試驗(yàn)設(shè)計(jì)的思想,在MODDE環(huán)境下采取面中央合成設(shè)計(jì)(central composite face, CCF)的響應(yīng)面(response surface modeling, RSM)方法,將各影響因素作為自變量,將電磁閥響應(yīng)延遲時(shí)間作為響應(yīng)變量,對(duì)各特性參數(shù)與電磁閥開啟和關(guān)閉延遲時(shí)間的相關(guān)性進(jìn)行了分析。
如圖5所示,特性參數(shù)對(duì)電磁閥關(guān)閉延遲時(shí)間都是正相關(guān)的,說明關(guān)閉延遲時(shí)間隨特性參數(shù)增大而增加;彈簧預(yù)緊力、殘余氣隙為、阻尼、錐閥直徑相關(guān)系數(shù)分別為0.55、0.50、0.42、0.33,表明這些參數(shù)會(huì)對(duì)關(guān)閉延遲時(shí)間影響較大。而對(duì)于開啟延遲時(shí)間,阻尼、閥桿直徑、彈簧剛度、電磁閥容積腔是正相關(guān)的,說明開啟延遲時(shí)間隨這些特性參數(shù)增大而增加;其余是負(fù)相關(guān),說明開啟延遲時(shí)間隨這些特性參數(shù)增大而減小。其中彈簧預(yù)緊力、錐閥半錐角、阻尼、閥桿直徑相關(guān)系數(shù)分別為-0.67、-0.5、0.38、0.33,表明該些參數(shù)會(huì)對(duì)開啟延遲時(shí)間影響較大;電磁閥容積腔、彈簧剛度與關(guān)閉延遲時(shí)間的相關(guān)系數(shù)分別為0.039、0.036,對(duì)開啟延遲時(shí)間相關(guān)系數(shù)分別為0.018、0.014,表明它們對(duì)電磁閥響應(yīng)影響微弱。其中阻尼是由于燃油的粘滯性、流動(dòng)性及機(jī)械偶件之間相互摩擦所導(dǎo)致,即使對(duì)電磁閥響應(yīng)延遲影響較大,但在優(yōu)化設(shè)計(jì)中無法將其設(shè)計(jì)到最小。綜上所述,本文選取優(yōu)化的關(guān)鍵特性參數(shù):銜鐵殘余氣隙、彈簧預(yù)緊力、錐閥半錐角、閥桿直徑及錐閥直徑。
注:D1為閥桿孔徑,D2為錐閥直徑,D3為閥桿直徑,d為阻尼,Y為柱塞彈簧預(yù)緊力,J為錐閥半錐角,R為銜鐵殘余氣隙,S為柱塞彈簧剛度,V為電磁閥容積腔圖5 各因素與電磁閥延遲響應(yīng)相關(guān)性Fig.5 Correlation between the factors and the delay response
4.1 NSGA-II遺傳算法
NSGA-II[5,7-11]是一種精英策略非支配排序遺傳算法,在NSGA的基礎(chǔ)上加上了精英策略、密度值估計(jì)策略和快速非支配排序策略。其優(yōu)點(diǎn)是:計(jì)算復(fù)雜性從O(mN3)降至O(Mn2),其中,m表示目標(biāo)函數(shù)的數(shù)目、N表示種群中個(gè)體的數(shù)目;具有最優(yōu)保留機(jī)制并且不需要確定一個(gè)共享參數(shù);提高了算法的收斂性。NSGA-II算法得到的非劣解分布均勻,收斂性好,已經(jīng)成為進(jìn)化多目標(biāo)優(yōu)化領(lǐng)域的基準(zhǔn)算法之一。
NSGA-II算法流程如圖6[12]所示。
圖6 NSGA-II算法流程圖Fig.6 Flow chart of NSGA-II algorithm
4.2 多目標(biāo)優(yōu)化數(shù)學(xué)模型
本文優(yōu)化目標(biāo)為開啟延遲時(shí)間fopen(x)和關(guān)閉延遲時(shí)間fclose(x)兩個(gè)函數(shù)值最小時(shí)對(duì)應(yīng)的x值,優(yōu)化的關(guān)鍵特性參數(shù):錐閥直徑D1、閥桿直徑D2、彈簧預(yù)緊力Y、錐閥半錐角J、銜鐵殘余氣隙R,則電磁閥響應(yīng)延遲的優(yōu)化目標(biāo)函數(shù)用數(shù)學(xué)描述為
Minimizefopen(x)
Minimizefclose(x)
根據(jù)設(shè)計(jì)中對(duì)各參數(shù)的選取范圍,確定了各關(guān)鍵特性參數(shù)的約束條件:7.5≤D1≤8.2;5≤D2≤6;50≤Y≤90;56≤J≤80;0.08≤R≤0.15,fi(x)為第i(i=1,2,…,n)個(gè)目標(biāo)函數(shù),其中x為關(guān)鍵特性參數(shù),x=(D1,D2,Y,J,R)T。
最終優(yōu)化目標(biāo)的解:取得出解集中離原點(diǎn)距離最近的點(diǎn)為最優(yōu)集,即
(2)
式中:x0=(D10,D20,Y0,J0,R0)T為多目標(biāo)優(yōu)化結(jié)果。
4.3 多目標(biāo)優(yōu)化模型
圖7所示為多目標(biāo)優(yōu)化平臺(tái)modeFRONTIER與AMESim聯(lián)合仿真模型,首先實(shí)驗(yàn)設(shè)計(jì)隨機(jī)產(chǎn)生輸入變量的相互組合,即賦予遺傳算法初始值,經(jīng)過AMESim計(jì)算得出輸出變量的值,優(yōu)化算法再根據(jù)目標(biāo)函數(shù)的要求進(jìn)行選擇優(yōu)化參數(shù)的變異和交換等操作,從而達(dá)到優(yōu)化目的。本研究共有5個(gè)輸入變量,電控單體泵在典型工況下進(jìn)行仿真,將開啟、關(guān)閉延遲時(shí)間作為輸出變量,并將開啟、關(guān)閉延遲時(shí)間最小作為最終優(yōu)化目標(biāo)。
4.4 多目標(biāo)優(yōu)化結(jié)果分析
圖8(a)所示為電磁閥響應(yīng)延遲時(shí)間多目標(biāo)優(yōu)化解集,從中選取符合電磁閥開啟、關(guān)閉延遲時(shí)間都最小的Pareto最優(yōu)解集前沿,如圖8(b)所示,在Pareto前沿上選取滿足優(yōu)化目標(biāo)的點(diǎn),點(diǎn)A為優(yōu)化前電磁閥響應(yīng)延遲時(shí)間點(diǎn),點(diǎn)C為關(guān)閉延遲最小點(diǎn),點(diǎn)D為開啟延遲最小點(diǎn),但這兩個(gè)點(diǎn)的參數(shù)配置均只能實(shí)現(xiàn)對(duì)單個(gè)目標(biāo)的優(yōu)化,為了同時(shí)實(shí)現(xiàn)對(duì)電磁閥開啟和關(guān)閉延遲時(shí)間優(yōu)化的目標(biāo),應(yīng)用式(2)計(jì)算出d最小值的x0點(diǎn),即點(diǎn)B作為最終優(yōu)化結(jié)果點(diǎn)。
圖7 電控單體泵多目標(biāo)優(yōu)化模型Fig.7 Multi-objective optimization model of EUP
從優(yōu)化結(jié)果中可看出,表2給出了優(yōu)化前后設(shè)計(jì)參數(shù)對(duì)比值,表3所示為優(yōu)化前后電磁閥關(guān)閉延遲時(shí)間和開啟延遲時(shí)間。優(yōu)化后,關(guān)閉延遲時(shí)間減小了6%,開啟延遲時(shí)間減小了17.7%,循環(huán)噴油量減小了1.50 mm3,噴油壓力峰值增加
0.63 MPa。說明經(jīng)過電磁閥延遲響應(yīng)多目標(biāo)優(yōu)化,隨著電磁閥響應(yīng)的加快,噴油壓力有所增加,對(duì)循環(huán)噴油量的控制也更加精確,可進(jìn)一步改善電控單體泵的噴射特性。
圖9給出了電磁閥優(yōu)化前后電磁閥升程的對(duì)比,從圖8(b)中可以看出,優(yōu)化后的電磁閥開啟時(shí)間提前了0.621°CaA凸輪軸轉(zhuǎn)角即0.115 ms,電磁閥關(guān)閉時(shí)間早于優(yōu)化前0.162°CaA凸輪軸轉(zhuǎn)角即0.03 ms,響應(yīng)速度快于優(yōu)化前。
表2 優(yōu)化前后參數(shù)對(duì)比
Table 2 Comparison of parameters before and after optimization
參數(shù)優(yōu)化前優(yōu)化后錐閥直徑/mm7.608.20閥桿直徑/mm5.505.55銜鐵殘余氣隙/mm0.120.08錐閥半錐角/(°)68.0080.00彈簧預(yù)緊力/N70.0088.00
表3 優(yōu)化前后結(jié)果對(duì)比
Table 3 Comparison of results before and after optimization
參數(shù)關(guān)閉延遲時(shí)間/ms開啟延遲時(shí)間/ms循環(huán)噴油量/mm3噴油壓力峰值/MPa優(yōu)化前0.4990.650104.43113.50優(yōu)化后0.4690.535102.93114.13優(yōu)化率/%617.7——
圖8 多目標(biāo)優(yōu)化結(jié)果Fig.8 Multi-objective optimization results
優(yōu)化前后電控單體泵的噴油壓力及噴油速率對(duì)比如圖10和圖11所示,由于優(yōu)化后,電磁閥關(guān)閉延遲時(shí)間減小,關(guān)閉時(shí)間提前,從而導(dǎo)致噴油時(shí)刻提前,優(yōu)化后的噴油壓力及噴油速率在同一凸輪轉(zhuǎn)角時(shí)高于優(yōu)化前。當(dāng)噴油壓力和噴油速率到達(dá)最大值后,由于電磁閥開啟延遲時(shí)間減小,開啟時(shí)間提前,燃油泄壓速度加快,從而噴油壓力和噴油速率迅速降低,更有利于循環(huán)噴油量的精確控制。
圖9 優(yōu)化前后電磁閥升程對(duì)比Fig.9 Comparison of solenoid valve lift before and after optimization
圖10 優(yōu)化前后噴油壓力對(duì)比Fig.10 Comparison of injection pressure before and after optimization
圖11 優(yōu)化前后噴油速率對(duì)比Fig.11 Comparison of fuel injection rate before and after optimization
1)應(yīng)用實(shí)驗(yàn)設(shè)計(jì)方法,通過對(duì)電磁閥延遲響應(yīng)因素的相關(guān)性分析,得出電磁閥延遲響應(yīng)關(guān)鍵因素:銜鐵殘余氣隙、彈簧預(yù)緊力、錐閥半錐角、錐閥直徑、閥桿直徑及其阻尼。
2)采用多目標(biāo)優(yōu)化算法NSGA-II對(duì)電控單體泵電磁閥響應(yīng)特性進(jìn)行了優(yōu)化,優(yōu)化結(jié)果表明:關(guān)閉延遲時(shí)間減小了6%,關(guān)閉時(shí)間提前,噴油壓力及噴油速率在同一凸輪轉(zhuǎn)角時(shí)高于優(yōu)化前。
3)經(jīng)過優(yōu)化后,開啟延遲時(shí)間減小了17.7%。開啟時(shí)間提前,燃油泄壓速度加快,噴油壓力和噴油速率迅速降低,更有利于循環(huán)噴油量的精確控制。
[1]MULEMANE A, HAN Joongsub, LU Paihsiu, et al. Modeling dynamic behavior of diesel fuel injection systems[C]//SAE Paper, 2004-01-0536, 2004.
[2]FAN L Y, MA X Z, TIAN B Q, et al. Quantitative analysis on cycle fuel injection quantity fluctuation of diesel engine electronic in-line pump system[C]//SAE Paper, 2010-01-0875, 2010.
[3]張奇,張科勛,李建秋,等. 電控柴油機(jī)電磁閥驅(qū)動(dòng)電路優(yōu)化設(shè)計(jì)[J]. 內(nèi)燃機(jī)工程, 2005, 26(2): 1-4.
ZHANG Qi, ZHANG Kexun, LI Jianqiu, et al. Optimization design of solenoid drive circuit for electronically controlled diesel engine [J]. Chinese internal combustion engine engineering, 2005, 26(2): 1-4.
[4]張廷羽,張國賢. 高速開關(guān)電磁閥的性能分析及優(yōu)化研究[J]. 機(jī)床與液壓, 2006 (9): 139-142.
ZHANG Tingyu, ZHANG Guoxian. Performance analysis and optimization of high speed solenoid valve [J]. Machine tool & hydraulics, 2006 (9): 139-142.
[5]范立云, 田丙奇, 馬修真,等. 電控單體泵噴射特性關(guān)鍵影響因素研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2011, (09): 20-26.
FAN Liyun, TIAN Bingqi, MA Xiuzhen, et al. Key influence factors investigation on the electronic unit pump injection characteristics[J]. Transactions of the Chinese society of agricultural machinery, 2011(9): 20-26.
[6]DEB K, PBATAP A, AGARWAL S. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[7]JIANG Wenying, LIN Yan, CHEN Ming, et al. An ant colony optimization-genetic algorithm approach for ship pipe route design[J]. International shipbuilding progress, 2014 (3/4).
[8]GIAGKIOZIS I, FLEMING P J. Methods for multi-objective optimization: an analysis[J]. Information sciences, 2015.
[9]SUI Haiteng, NIU Wentie, NIU Yaxiao, et al. Pipe-assembly approach for ships using modified NSGA-Ⅱ algorithm[J]. Computer aided drafting, design and manufacturing, 2016(2): 34-42.
[10]LIU H, GU F. A improved NSGA-II algorithm based on sub-regional search[C]//Evolutionary computation 2011, “CEC”11. New Orleans, USA, 2011.
[11]DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//Parallel problem solving from nature. Berlin, Germany: Springer-Verlag, 2000: 849-858.
[12]杜海峰.基于DE和NSGA-II的進(jìn)化多目標(biāo)優(yōu)化算法及應(yīng)用[D]. 西安:西安電子科技大學(xué), 2012.
DU Haifeng. Evolutionary multi-objective optimization algorithm and its application based on DE and NSGA-II[D]. Xi′an: Xidian University, 2012.
[13]DHANALAKSHMI S, KANNAN S, MAHADEVAN K, et al. Application of modified NSGA-II algorithm to combined economic and emission dispatch problem[J]. International journal of electrical power and energy systems, 2011, 33(4): 992-1002.
[14]LI An′da, HE Zhen, ZHANG Yang. Bi-objective variable selection for key quality characteristics selection based on a modified NSGA-II and the ideal point method[J]. Computers in industry, 2016, 82: 95-103.
[15]NAJMEH A, SEYED M M, RAJA A R G, et al. Application of the NSGA-II algorithm to a multi-period inventory-redundancy allocation problem in a series-parallel system[J]. Reliability engineering and system safety, 2016,160: 1-10.
[16]VO-DUY T, DUONG-GIA D, HO-HUU V, et al. Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm[J]. Composite structures, 2017,168: 498-509.
[17]LIANG Xiaozhen, YAN Guangrong, CHU Hongzen. A research on optimization of cutting parameters based on NSGA-II[J]. Advanced materials research, 2014, 936: 1687-1693.
[18]LI Hongtao, NIU Wentie, FU Shengli, et al. Multiobjective optimization of steering mechanism for rotary steering system using modified NSGA-II and fuzzy set theory[J]. Mathematical problems in engineering, 2015(1): 1-13.
Multi-objective optimization analysis of a high speed solenoid valve for an electronic unit pump
ZHANG Jianyu1,F(xiàn)AN Liyun2,YUAN Hang1
(1.The Sixth Department, 713 Research Institute of China Shipbuilding Industry Corporation, Zhengzhou 450052, China; 2.Department of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)
Delayed response in high-speed solenoid valves will cause fuel injection timing misalignment and lower accuracy of cyclic fuel injection quantity. This problem results in an increase in fuel consumption and diesel engine exhaust emissions. This paper demonstrates, through multi-objective analysis and optimization of the electromagnetic valve structure, that minimizing the response delay of the valve is achievable. This paper establishes a simulation model of the electronic unit pump using AMESim software. It is proved by the experiment model accuracy. The key parameters influencing the solenoid valve response delay are predicted by the method of experimental design. The key parameters are residual air gap, spring preload, half angle of the poppet valve, the diameter of the valve rod, and the diameter of the poppet valve. Used the modeFRONTIER multi-objective multidisciplinary optimization application platform and the NSGA-Ⅱ genetic algorithm, the opening and closing response delay time as a target of multi-objective optimization, the model of electronic unit pump high-speed solenoid valve is set up. The optimized results indicate the delay time of closing the solenoid valve is reduced by 6%, the delay time of opening the solenoid valve is reduced by 17.7%, and the injection pressure peak is increased by 0.62 MPa, which improve the accuracy of the cyclic fuel injection quantity.
electronic unit pump; high-speed solenoid valve; multi-objective optimization; AMESim; response delay; modeFRONTIER; diesel engine; emission; fuel injection quantity
2016-04-26.
日期:2017-03-17.
張建宇(1987-), 男, 助理工程師; 范立云(1981-),男,教授,博士生導(dǎo)師.
張建宇, E-mail:zhjyu321@126.com.
10.11990/jheu.201604065
TK423
A
1006-7043(2017)04-0561-08
張建宇,范立云,袁航.電控單體泵高速電磁閥多目標(biāo)優(yōu)化分析[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2017, 38(4): 561-568.
ZHANG Jianyu,F(xiàn)AN Liyun,YUAN Hang.Multi-objective optimization analysis of a high speed solenoid valve for an electronic unit pump[J].Journal of Harbin Engineering University, 2017, 38(4): 561-568.
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/23.1390.u.20170317.0858.012.html