謝婉瑩, 安西濤, 酒俊霞, 李 靜, 冷 靜, 陳 力2,*
(1. 長(zhǎng)春工業(yè)大學(xué) 化學(xué)工程學(xué)院, 吉林 長(zhǎng)春 130012; 2. 長(zhǎng)春工業(yè)大學(xué) 材料科學(xué)高等研究院, 吉林 長(zhǎng)春 130012;3. 長(zhǎng)春工業(yè)大學(xué) 化學(xué)與生命科學(xué)學(xué)院, 吉林 長(zhǎng)春 130012; 4. 長(zhǎng)春工業(yè)大學(xué) 基礎(chǔ)科學(xué)學(xué)院, 吉林 長(zhǎng)春 130012)
Gd3+摻雜濃度對(duì)NaErF4∶Yb納米晶上轉(zhuǎn)換熒光性能的影響
謝婉瑩1,2, 安西濤2,3, 酒俊霞2,3, 李 靜4, 冷 靜4, 陳 力2,4*
(1. 長(zhǎng)春工業(yè)大學(xué) 化學(xué)工程學(xué)院, 吉林 長(zhǎng)春 130012; 2. 長(zhǎng)春工業(yè)大學(xué) 材料科學(xué)高等研究院, 吉林 長(zhǎng)春 130012;3. 長(zhǎng)春工業(yè)大學(xué) 化學(xué)與生命科學(xué)學(xué)院, 吉林 長(zhǎng)春 130012; 4. 長(zhǎng)春工業(yè)大學(xué) 基礎(chǔ)科學(xué)學(xué)院, 吉林 長(zhǎng)春 130012)
采用溫和的溶劑熱法制備較強(qiáng)紅光發(fā)射的NaErF4∶Yb,Gd上轉(zhuǎn)換納米晶,控制Gd3+的摻雜濃度實(shí)現(xiàn)了晶相和尺寸可控以及上轉(zhuǎn)換熒光的增強(qiáng)。X射線衍射譜(XRD)、透射電子顯微鏡圖像(TEM)和上轉(zhuǎn)換發(fā)射光譜結(jié)果分析表明,Gd3+摻雜可以有效地促進(jìn)NaErF4納米晶的晶相由立方相向六角相轉(zhuǎn)變,并且減小納米粒子的尺寸。隨著Gd3+摻雜濃度的上升,上轉(zhuǎn)換熒光強(qiáng)度明顯增大。當(dāng)Gd3+摩爾分?jǐn)?shù)為25%時(shí),樣品的上轉(zhuǎn)換熒光強(qiáng)度達(dá)到最大。同時(shí),研究了在980 nm 近紅外激光激發(fā)下,Yb3+與Er3+間有效的能量傳遞以及上轉(zhuǎn)換發(fā)光機(jī)制。
NaErF4; Gd3+共摻雜; 上轉(zhuǎn)換發(fā)光
近年來(lái),稀土摻雜的上轉(zhuǎn)換納米材料因其可以將低能量的光子轉(zhuǎn)換成高能量光子而受到人們的廣泛關(guān)注[1-2]。這一獨(dú)特的發(fā)光性質(zhì),使其在很多領(lǐng)域都擁有潛在的應(yīng)用價(jià)值,如生物傳感[3]、體內(nèi)成像[4]、激光器[5]、顯示器[6]和太陽(yáng)能電池[7]等。根據(jù)基質(zhì)材料的不同,稀土上轉(zhuǎn)換熒光納米材料可分為稀土硫化物、稀土鹵化物、稀土氟化物、稀土氧化物和稀土氟氧化物等系列[8-9]。其中稀土氟化物上轉(zhuǎn)換納米材料因其聲子能量低、具有較高上轉(zhuǎn)換效率、激發(fā)波長(zhǎng)在近紅外區(qū)、生物組織穿透能力強(qiáng)以及物理化學(xué)性質(zhì)穩(wěn)定等特點(diǎn)[10-13],被認(rèn)為是獲得上轉(zhuǎn)換發(fā)光最理想的基質(zhì)材料。
為了滿足生物應(yīng)用的需要,與人們通常選擇的NaYF4基質(zhì)材料相比,NaErF4作為基質(zhì)表現(xiàn)出較強(qiáng)的紅光發(fā)射[14],因其較弱的組織吸收而更有利于生物體內(nèi)成像[15]。Yb3+離子作為高效的敏化劑[16-17],其較大的吸收截面及Yb3+和Er3+之間有效的能量傳遞增強(qiáng)了對(duì)980 nm激光的吸收效率,從而可顯著地改善上轉(zhuǎn)換發(fā)光性能。王海波等通過(guò)改變NaErF4體系中摻雜Yb3+離子的比例,實(shí)現(xiàn)了上轉(zhuǎn)換熒光強(qiáng)度可調(diào)并應(yīng)用于生物體內(nèi)成像[18]。同時(shí),由于Gd3+離子的第一激發(fā)態(tài)能級(jí)6P7/2與基態(tài)能級(jí)8S7/2之間存在較大的能量差,引入Gd3+可以作為一種媒介促進(jìn)氟化物的能量轉(zhuǎn)移,從而大大改善上轉(zhuǎn)換發(fā)光效率[19]。胡榮璇等在NaYF4∶Yb,Er/Tm體系中,通過(guò)改變Gd3+離子的摻雜比例同時(shí)實(shí)現(xiàn)了上轉(zhuǎn)換熒光增強(qiáng)和晶相可控[20]。此外,文獻(xiàn)[21]采用高溫?zé)崃呀夥ㄟx用油酸和十八烯作為表面活性劑合成了六角相的NaYF4∶Yb,Er,Gd上轉(zhuǎn)換納米粒子,并發(fā)現(xiàn)隨著Gd3+離子摻雜比例的增加,納米晶的尺寸逐漸減小。然而對(duì)于具有較強(qiáng)紅光發(fā)射的NaErF4∶Yb納米晶,目前還沒(méi)有關(guān)于Gd3+共摻雜對(duì)該體系上轉(zhuǎn)換發(fā)光的影響和實(shí)現(xiàn)晶相可控的研究報(bào)道。
本文采用溫和的溶劑熱法制備了系列Yb3+,Gd3+共摻雜的NaErF4納米晶。通過(guò)改變Gd3+離子的摻雜比例,合成了不同形貌的納米晶并實(shí)現(xiàn)了紅色上轉(zhuǎn)換熒光增強(qiáng)和晶相可控。
2.1 試劑與儀器
硝酸鉺、硝酸鐿、硝酸釓購(gòu)于Sigma-Aldrich公司;乙醇、氫氧化鈉、油酸、氟化鈉購(gòu)于國(guó)藥集團(tuán)化學(xué)試劑有限公司。所有試劑均為分析純,沒(méi)有進(jìn)一步提純處理,直接用于化學(xué)反應(yīng)。
采用X射線衍射儀(Rigaku D/MaxⅡA)測(cè)試樣品的晶相,其輻射源為Cu靶Kα射線 (λ=0.154 06 nm),掃描速度為10.0(°)/min。采用加速電壓為200 kV的JEM-2000EX型透射電子顯微鏡(TEM)觀察樣品的形貌和尺寸,并拍攝選區(qū)電子衍射圖片。利用日立F-7000熒光光譜儀測(cè)試上轉(zhuǎn)換光致發(fā)光光譜,激發(fā)光源為980 nm半導(dǎo)體激光器。所有測(cè)試均在室溫條件下進(jìn)行。
2.2 樣品制備
采用油酸作為表面活性劑,通過(guò)傳統(tǒng)溶劑熱法制備了摻雜不同濃度Gd3+的NaErF4∶Yb3+上轉(zhuǎn)換納米晶[22]。首先稱取1.2 g氫氧化鈉溶于3 mL去離子水中,充分?jǐn)嚢栊纬沙吻逋该鞯娜芤汉?,加?0 mL無(wú)水乙醇和20 mL油酸,將上述混合溶液攪拌均勻。然后,按一定比例加入0.2 mol/L的Ln(NO3)3(Ln=Er , Yb , Gd ) 水溶液,充分?jǐn)嚢韬缶徛渭? mL NaF (1 mol/L)水溶液,快速攪拌30 min后將混合溶液轉(zhuǎn)移至50 mL反應(yīng)釜中,在140 ℃下反應(yīng)12 h。反應(yīng)完成后,冷卻至室溫,取出溶液離心,用乙醇和去離子水洗滌3次,所得固體放入真空干燥箱60 ℃下烘干12 h后收集產(chǎn)品。本實(shí)驗(yàn)通過(guò)調(diào)控Gd3+摻雜量得到一系列NaEr0.7-xF4∶0.3Yb3+,xGd3+納米晶,其中Gd3+摩爾分?jǐn)?shù)x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3。
3.1 結(jié)構(gòu)與形貌
圖1是NaEr0.7-xF4∶ 0.3Yb3+,xGd3+(x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) 上轉(zhuǎn)換納米晶的X射線衍射圖譜。從圖中可以看出,當(dāng)NaErF4∶Yb3+納米晶中不摻雜Gd3+時(shí),此時(shí)與NaErF4立方相的標(biāo)準(zhǔn)卡片(JCPDS No.77-2041)完全吻合,未見(jiàn)其他雜峰,說(shuō)明合成了純立方相的NaErF4∶Yb3+上轉(zhuǎn)換納米晶。隨著Gd3+摻雜濃度的不斷增加,NaErF4∶Yb3+,Gd3+納米晶的晶相由立方相向六角相逐漸轉(zhuǎn)變,對(duì)比NaErF4六角相的標(biāo)準(zhǔn)卡片(JCPDS No.27-0689),當(dāng)Gd3+的摩爾分?jǐn)?shù)為25%時(shí),六角相的NaErF4∶Yb3+,Gd3+納米晶已占主體部分,且此時(shí)六角相的衍射峰最為明顯。在NaErF4基質(zhì)中,由于Gd3+和Er3+有相同的價(jià)態(tài)和相似的離子半徑, 摻雜離子半徑較大的Gd3+(0.119 3 nm)替代基質(zhì)中離子半徑較小的Er3+(0.114 4 nm),導(dǎo)致體系的晶相由立方相向六角相轉(zhuǎn)變[23-24]。
圖1 NaEr0.7-xF4∶0.3Yb3+,xGd3+(x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) 納米晶的XRD圖譜
Fig.1 XRD patterns of NaEr0.7-xF4∶0.3Yb3+,xGd3+(x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) nanocrystals
圖2所示為摻雜不同摩爾分?jǐn)?shù)Gd3+的NaErF4∶Yb3+納米晶的透射電子顯微鏡(TEM)照片,以及未摻雜Gd3+和Gd3摩爾分?jǐn)?shù)為25%的樣品的選區(qū)電子衍射(SAED)照片。從圖中可以看出,所有樣品均表現(xiàn)出良好的單分散性,隨著Gd3+濃度的不斷增加,納米晶的形貌從圖2(a)中平均尺寸為20 nm的納米立方體逐漸演變?yōu)閳D2(g)中平均直徑為11.5 nm的納米球。這是由于離子半徑較大的Gd3+離子替代了晶格中的Er3+離子,使晶體表面電子電荷密度增加,電荷排斥作用抑制了帶電F-的表面擴(kuò)散,從而導(dǎo)致了納米晶尺寸的逐漸減小[25]。同時(shí)圖2(h)~(i) 的SAED 圖顯示,體系中未摻雜Gd3+時(shí)的NaErF4∶Yb3+納米晶樣品為純立方相,而Gd3+摻雜為25%時(shí)的NaErF4∶Yb3+納米晶主要為六角相,這一晶相演變過(guò)程與之前的XRD結(jié)果相符。
圖2 NaEr0.7-xF4∶0.3Yb3+,xGd3+(x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) 納米晶的TEM圖(a~g),以及x=0(h)、x=0.25(i)時(shí)的SAED 圖樣。圖中所示標(biāo)尺均為100 nm。
Fig.2 (a-g) Typical TEM images of NaEr0.7-xF4∶0.3Yb3+,xGd3+(x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) nanocrystals, and the representative SAED taken fromx=0 (h),x=0.25 (i). Scale bars are 100 nm for all images.
3.2 光譜分析
為了進(jìn)一步研究Gd3+摻雜對(duì)NaErF4∶Yb3+上轉(zhuǎn)換納米晶熒光性能的影響,我們測(cè)試了980 nm近紅外激光激發(fā)下的NaEr0.7-xF4∶0.3Yb3+,xGd3+(x=0, 0.05,0.1,0.15,0.2,0.25,0.3)的上轉(zhuǎn)換熒光發(fā)射光譜,如圖3(a)所示。NaErF4∶Yb3+,Gd3+體系表現(xiàn)為較強(qiáng)的紅光發(fā)射,其發(fā)射光譜表現(xiàn)為3個(gè)發(fā)射峰,分別位于520,540,654 nm,來(lái)源于Er3+的2H11/2→4I15/2、4S3/2→4I15/2以及4F9/2→4I15/2能級(jí)躍遷。從圖3(b)中可以看出,當(dāng)體系中摻入Gd3+后,熒光強(qiáng)度逐漸增大。當(dāng)Gd3+摩爾分?jǐn)?shù)為25%時(shí),上轉(zhuǎn)換熒光強(qiáng)度最大,是未摻雜Gd3+時(shí)的13倍。摻雜濃度再次升高則發(fā)光減弱。上轉(zhuǎn)換熒光的紅綠色熒光強(qiáng)度比如圖3(c)所示。當(dāng)Gd3+的摩爾分?jǐn)?shù)為25%時(shí),紅綠比最大為15.97,六角相NaErF4∶Yb3+,Gd3+納米晶的形成提高了熒光強(qiáng)度和紅綠比,但當(dāng)Gd3+的摩爾分?jǐn)?shù)增加到30%時(shí),熒光強(qiáng)度和紅綠比都急劇下降,這是由于Gd3+的摻雜與晶格之間的相互作用引起濃度猝滅所致[26]。
圖3 (a) 980 nm近紅外激光激發(fā)下,NaEr0.7-xF4∶0.3Yb3+,xGd3+(x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) 納米晶的上轉(zhuǎn)換熒光發(fā)射光譜;(b) 不同摩爾分?jǐn)?shù)Gd3+摻雜下的樣品的紅光、綠光以及整體上轉(zhuǎn)換熒光強(qiáng)度;(c) 不同摩爾分?jǐn)?shù)Gd3+摻雜下的樣品的紅綠光熒光強(qiáng)度比。
Fig.3 (a) UCL spectra of NaEr0.7-xF4∶0.3Yb3+,xGd3+(x= 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) nanocrystals under the excitation of 980 nm diode laser. (b) Integrated intensity of red, green and overall UC emissions as a function of different Gd3+mole fraction. (c) Calculated R/G ratio dependent on Gd3+mole fraction.
圖4 NaErF4∶30%Yb (a)和NaErF4∶30%Yb,25%Gd (b) 納米晶的紅光、綠光能級(jí)對(duì)應(yīng)的激發(fā)功率和熒光強(qiáng)度關(guān)系,以及NaErF4∶Yb,Gd 體系上轉(zhuǎn)換發(fā)光過(guò)程能級(jí)示意圖(c)。
Fig.4 Pump power dependence of the red and green UCL of NaErF4∶30%Yb (a) and NaErF4∶30%Yb,25%Gd (b) nanocrystals, and schematic energy level diagram showing the proposed UCL mechanism of NaErF4∶Yb,Gd system (c).
上轉(zhuǎn)換發(fā)射過(guò)程的能量傳遞機(jī)制如圖4(c)所示,由于摻雜的Gd3+的最低激發(fā)態(tài)能級(jí)遠(yuǎn)遠(yuǎn)高于Yb3+和Er3+的激發(fā)態(tài)能級(jí),因此可以有效地避免Yb3+、Er3+和Gd3+間能量轉(zhuǎn)移造成的激發(fā)能量損失。在上轉(zhuǎn)換發(fā)光過(guò)程中,Yb3+作為敏化劑,首先吸收980 nm的激光激發(fā)能量,使電子由基態(tài)2H7/2能級(jí)激發(fā)到2H5/2能級(jí)。隨后,Yb3+將能
量傳遞給Er3+,使Er3+從基態(tài)4I15/2能級(jí)布居到4I11/2能級(jí)。Er3+的4I11/2能級(jí)上被激發(fā)的電子將經(jīng)歷兩個(gè)過(guò)程:一是經(jīng)過(guò)激發(fā)態(tài)吸收躍遷到4F2/7能級(jí),然后通過(guò)多聲子弛豫過(guò)程,迅速弛豫到2H11/2和4S3/2能級(jí),2H11/2和4S3/2能級(jí)分別躍遷回基態(tài)產(chǎn)生綠光發(fā)射帶(510~534 nm, 534~558 nm);二是經(jīng)過(guò)無(wú)輻射弛豫到4I13/2能級(jí),通過(guò)吸收Yb3+額外的激發(fā)能量躍遷至4F9/2能級(jí),然后輻射躍遷至基態(tài)4I15/2能級(jí)產(chǎn)生紅光發(fā)射(630~690 nm)。Gd3+摻雜取代了NaErF4基質(zhì)中的Er3+,形成了結(jié)晶程度更高的β-NaGdF4納米晶,低聲子能量的β-NaGdF4限制了多聲子弛豫過(guò)程,使得Er3+激發(fā)態(tài)能級(jí)4F9/2的布居和躍遷幾率增加,因而更有利于紅光發(fā)射[29]。
本文采用溫和的溶劑熱法合成了不同濃度Gd3+摻雜的NaErF4∶Yb上轉(zhuǎn)換納米晶,實(shí)現(xiàn)了晶相和尺寸可控,并且上轉(zhuǎn)換熒光顯著增強(qiáng)。當(dāng)Gd3+的摩爾分?jǐn)?shù)為25%時(shí),NaErF4∶Yb上轉(zhuǎn)換納米晶由立方相轉(zhuǎn)變?yōu)榱窍?,熒光?qiáng)度達(dá)到最大,為未摻雜Gd3+時(shí)的13倍。繼續(xù)增加Gd3+的摻雜濃度,上轉(zhuǎn)換熒光發(fā)生猝滅。在980 nm 近紅外激光激發(fā)下,Yb3+與Er3+間存在有效的能量傳遞。NaErF4∶Yb,Gd上轉(zhuǎn)換納米晶在生物成像、熒光標(biāo)記等領(lǐng)域均具有良好的潛在應(yīng)用前景。
[1] SHEN J, ZHAO L, HAN G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy [J].Adv.DrugDeliv.Rev., 2013, 65(5):744-755.
[2] 付作嶺, 董曉睿, 盛天琦, 等. 納米晶體中稀土離子的發(fā)光性質(zhì)及其變化機(jī)理研究 [J]. 中國(guó)光學(xué), 2015, 8(1): 139-146. FU Z L, DONG X R, SHENG T Q,etal.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals [J].Chin.Opt., 2015, 8(1):139-146. (in Chinese)
[3] LIU Y S, TU D T, ZHU H M,etal.. Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection [J].Nanoscale, 2013, 5(4):1369-1384.
[4] CHEN G Y, SHEN J, OHULCHANSKYY T Y,etal.. (α-NaYbF4∶Tm3+)/CaF2core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging [J].ACSNano, 2012, 6(9):8280-8287.
[5] SANDROCK T, SCHEIFE H, HEUMANN E,etal.. High-power continuous-wave upconversion fiber laser at room temperature [J].Opt.Lett., 1997, 22(11):808-810.
[6] WONG H T, TSANG M K, CHAN C F,etal..Invitrocell imaging using multifunctional small sized KGdF4∶Yb3+, Er3+upconverting nanoparticles synthesized by a one-pot solvothermal process [J].Nanoscale, 2013, 5(8):3465-3473.
[7] LI L, YANG Y L, FAN R Q,etal.. Conductive upconversion Er, Yb-FTO nanoparticle coating to replace Pt as a low-cost and high-performance counter electrode for dye-sensitized solar cells [J].ACSAppl.Mater.Interf., 2014, 6(11):8223-8229.
[8] ZHOU H, MOUZON J, FARZANEH A,etal.. Colloidal defect-free silicalite-1 single crystals: preparation, structure characterization, adsorption, and separation properties for alcohol/water mixtures [J].Langmuir, 2015, 31(30):8488-8494.
[9] LI Z Q, ZHANG Y, JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles [J].Adv.Mater., 2008, 20(24):4765-4769.
[10] GAI S, LI C X, YANG P P,etal.. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications [J].Chem.Rev., 2014, 114(4):2343-2389.
[11] LI L, GREEN K, HALLEN H,etal.. Enhancement of single particle rare earth doped NaYF4∶Yb, Er emission with a gold shell [J].Nanotechnology, 2015, 26(2):025101.
[12] CHATTERJEE D K, RUFAIHAH A J, ZHANG Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J].Biomaterials, 2008, 29(7):937-943.
[13] ZOU W Q, VISSER C, MADURO J A,etal.. Broadband dye-sensitized upconversion of near-infrared light [J].Nat.Photon., 2012, 6(8):560-564.
[14] WANG H B, YI Z G, RAO L,etal.. High quality multi-functional NaErF4nanocrystals: structure-controlled synthesis, phase-induced multi-color emissions and tunable magnetic properties [J].J.Mater.Chem. C, 2013, 1(35):5520-5526.
[15] BOYER J C, VETRONE F, CUCCIA L A,etal.. Synthesis of colloidal upconverting NaYF4nanocrystals doped with Er3+, Yb3+and Tm3+, Yb3+viathermal decomposition of lanthanide trifluoroacetate precursors [J].J.Am.Chem.Soc., 2006, 128(23):7444-7445.
[16] WANG F, LIU X G. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4nanoparticles [J].J.Am.Chem.Soc., 2008, 130(17):5642-5643.
[17] NIU N, YANG P P, HE F,etal.. Tunable multicolor and bright white emission of one-dimensional NaLuF4∶Yb3+,Ln3+(Ln=Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures [J].J.Mater.Chem., 2012, 22(21):10889-10899.
[18] WANG H B, LU W, ZENG T M,etal.. Multi-functional NaErF4∶Yb nanorods: enhanced red upconversion emission, in vitro cell,invivoX-ray, and T2-weighted magnetic resonance imaging [J].Nanoscale, 2014, 6(5):2855-2860.
[19] DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications [J].Chem.Soc.Rev., 2015, 44(6):1608-1634.
[20] 胡榮璇, 王慧云, 鄭彤, 等. Gd3+摻雜對(duì)NaYF4∶Yb3+, Tm3+/ Er3+納米材料上轉(zhuǎn)換熒光性能的影響 [J]. 發(fā)光學(xué)報(bào), 2015, 36(1):20-26. HU R X, WANG H Y, ZHENG T,etal.. Influence of Gd3+doping on the upconversion luminescence properties of NaYF4∶Yb3+, Tm3+/Er3+nanoparticles [J].Chin.J.Lumin., 2015, 36(1):20-26. (in Chinese)
[21] NA H, WOO K, LIM K,etal.. Rational morphology control of β-NaYF4∶Yb, Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping [J].Nanoscale, 2013, 5(10):4242-4251.
[22] WANG X, ZHUANG J, PENG Q,etal.. A general strategy for nanocrystal synthesis [J].Nature, 2005, 437(7055):121-124.
[23] TANG J, CHEN L, LI J,etal.. Selectively enhanced red upconversion luminescence and phase/size manipulationviaFe3+doping in NaYF4∶Yb, Er nanocrystals [J].Nanoscale, 2015, 7(35):14752-14759.
[24] WANG F, HAN Y, LIM C S,etal.. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J].Nature, 2010, 463(7284):1061-1065.
[25] WANG F, LIU X G. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4nanoparticles [J].J.Am.Chem.Soc., 2008, 130(17):5642-5643.
[26] RAMASAMY P, CHANDRA P, RHEE S W,etal.. Enhanced upconversion luminescence in NaGdF4∶Yb, Er nanocrystals by Fe3+doping and their application in bioimaging [J].Nanoscale, 2013, 5(18):8711-8717.
[27] SUYVER J F, AEBISCHER A, BINER D,etal.. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion [J].Opt.Mater., 2005, 27(6):1111-1130.
[28] SUYVER J F, GRIMM J, VAN VEEN M K,etal.. Upconversion spectroscopy and properties of NaYF4doped with Er3+, Tm3+and/or Yb3+[J].J.Lumin., 2006, 117(1):1-12.
[29] BANSKI M, PODHORODECKI A, MISIEWICZ J,etal.. Selective excitation of Eu3+in the core of small β-NaGdF4nanocrystals [J].J.Mater.Chem. C, 2013, 1(4):801-807.
謝婉瑩(1991-),女,吉林省吉林市人,碩士研究生,2014年于長(zhǎng)春工業(yè)大學(xué)獲得學(xué)士學(xué)位,主要從事稀土發(fā)光材料的研究。
E-mail: xiewanying1991@163.com
陳力(1974-),男,黑龍江五常人,博士,教授,2007年于中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所獲得博士學(xué)位,主要從事低維摻雜材料光物理及納米光子學(xué)的研究。
E-mail: chenli@ccut.edu.cn
Influence of Gd3+Doping on The Luminescence Properties of Upconverting NaErF4∶Yb Nanocrystals
XIE Wan-ying1,2, AN Xi-tao2,3, JIU Jun-xia2,3, LI Jing4, LENG Jing4, CHEN Li2,4*
(1.SchoolofChemicalEngineering,ChangchunUniversityofTechnology,Changchun130012,China;2.AdvancedInstituteofMaterialsScience,ChangchunUniversityofTechnology,Changchun130012,China;3.SchoolofChemistryandLifeScience,ChangchunUniversityofTechnology,Changchun130012,China;4.SchoolofBasicSciences,ChangchunUniversityofTechnology,Changchun130012,China)
Upconversion NaErF4∶Yb,Gd nanocrystals with bright red emissions were preparedviaa facile solvothermal method. The crystalline phase, size and the relative intensity of upconversion luminescence can be simultaneously manipulated by adjusting Gd3+ions contents. The introduction of Gd3+can effectively promote the cubic to hexagonal phase transformation, size reduction and obviously upconversion luminescence (UCL) intensity improvement of NaErF4∶Yb,Gd nanocrystals. XRD, TEM and UCL spectra results reveal that the sample co-doped with 25% Gd3+ions (mole fraction) of NaErF4∶Yb system exhibits the optimized structural and optical properties. Meanwhile, the mechanism involving upconverting photon excitation and energy transfer between Yb3+ions and Er3+ions were investigated under the excitation of 980 nm diode laser.
NaErF4; Gd3+doping; upconversion luminescence
1000-7032(2017)03-0281-07
2016-09-03;
2016-10-09
國(guó)家自然科學(xué)基金(11474035,11504029); 吉林省教育廳2015科研規(guī)劃; 吉林省科技廳團(tuán)隊(duì)項(xiàng)目(20160519020JH); 吉林省科技廳項(xiàng)目(20140101100JC); 長(zhǎng)春市科技局項(xiàng)目(14KG108)資助 Supported by National Natural Science Foundation of China(11474035,11504029); 2015 Research Plan of Jilin Provincial Education Department; Team Project of Jilin Provincial Science Technology Department(20160519020JH); Project of Jilin Provincial Science and Technology Department(20140101100JC); Project of Changchun Science and Technology Bureau(14KG108)
O482.31
A
10.3788/fgxb20173803.0281
*CorrespondingAuthor,E-mail:chenli@ccut.edu.cn