• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOME RESULTS OF WEAKLY f-STATIONARY MAPS WITH POTENTIAL

    2017-04-12 14:31:39HANYingboFENGShuxiang
    數(shù)學(xué)雜志 2017年2期
    關(guān)鍵詞:勢(shì)函數(shù)信息科學(xué)張量

    HAN Ying-bo,FENG Shu-xiang

    (College of Mathematics and Information Science,Xinyang Normal University,Xinyang 464000,China)

    SOME RESULTS OF WEAKLY f-STATIONARY MAPS WITH POTENTIAL

    HAN Ying-bo,FENG Shu-xiang

    (College of Mathematics and Information Science,Xinyang Normal University,Xinyang 464000,China)

    In this paper,we investigate a generalized functional Φf,Hrelated to the pullback metric.By using the stress-energy tensor,we obtain some Liouville type theorems for weakly fstationary maps with potential under some conditions on H.

    weakly f-stationary map with potential;stress-energy tensor;Liouville type theorems

    1 Introduction

    Let u:(Mm,g) → (Nn,h)be a smooth map between Riemannian manifolds(Mm,g) and(Nn,h).Recently,Kawai and Nakauchi[1]introduced a functionalrelated to the pullback metric u?h as follows:

    (see[2–5]),where u?h is the symmetric 2-tensor defined by

    for any vector fields X,Y on M and||u?h||is given by

    with respect to a local orthonormal frame(e1,···,em)on(M,g).The map u is stationary for Φ if it is a critical point of Φ(u)with respect to any compact supported variation of u. Asserda[6]introduced the following functionalΦFbywhere F:[0,∞) → [0,∞)is a C2function such that F(0)=0 and F′(t) > 0 on[0,∞).The map u is F-stationary for Φ ifit is a criticalpoint of Φ(u)with respect to any compact supported variation of u.Following[6],Han and Feng in[5]introduced the following functional Φfby

    where f:(M,g) → (0,+∞)is a smooth function.They derived the first variation formula of Φfand introduced the f-stress energy tensor SΦfassociated to Φf.Then,by using the f-stress energy tensor,they obtained the monotonicity formula and vanishing theorems for stationary map for the functional Φf(u)under some conditions on f.

    The theory of harmonic maps was developed by many researchers so far,and a lot of results were obtained(see[7,8]).Lichnerowicz in[9](also see[7])introduced the fharmonic maps,generalizing harmonic maps.Since then,there were many results for fharmonic maps such as[10–14].Ara[15]introduced the notion of F-harmonic map,which is a special f-harmonic map and also is a generalization of harmonic maps,p-harmonic maps or exponentially harmonic maps.Since then,there were many results for F-harmonic maps such as[16–19].

    On the other hand,Fardon and Ratto in[20]introduced generalized harmonic maps of a certain kind,harmonic maps with potential,which had its own mathematical and physical background,for example,the static Landu-Lifschitz equation.They discovered some properties quite different from those ofordinary harmonic maps due to the presence of the potential.After this,there were many results for harmonic map with potential such as [21,22],p-harmonic map with potential such as[23],F-harmonic map with potential such as[24],f-harmonic map with potential such as[25]and F-stationary maps with potential such as[4].

    In this paper,we generalize and unify the concept of critical point of the functionalΦ. For this,we define the functional Φf,Hby

    where H is a smooth function on Nn.If H=0,then we have Φf,H= Φf.If H=0 and f=1,then we have Φf,H= Φ.Let

    be a variation of u,i.e.,ut= Ψ(t,.)with u0=u,where Ψ :(?∈,∈) × M → N is a smooth map.Let Γ0(u?1T N)be a subset of Γ(u?1T N)consisting of all elements with compact supports contained in the interior of M.For each ψ ∈ Γ0(u?1T N),there exists a variation ut(x)=expu(x)(tψ)(for t small enough)of u,which has the variational field ψ.Such a variation is said to have a compact support.Let

    Defi nition 1.1A smooth map u is called f-stationary map with potential H for the functional Φf,H(u),if

    for V ∈ Γ0(u?1T N).

    It is known that du(X) ∈ Γ(u?1T N)for any vector field X of M.If X has a compact support which is contained in the interior of M,then du(X) ∈ Γ0(u?1T N).

    Defi nition 1.2A smooth map u is called weakly f-stationary map with potential H for the functional Φf,H(u)if Ddu(X)Φf,H(u)=0 for all X ∈ Γ0(T M).

    Remark 1.1From Definition 1.1 and Definition 1.2,we know that f-stationary maps with potential H must be weakly f-stationary maps with potential H,that is,the weakly f-stationary maps with potential H are the generalization of the f-stationary maps with potential H.

    In this paper,we investigate weakly f-stationary maps with potential H.By using the stress-energy tensor,we obtain some Liouville type theorems for weakly f-stationary maps with potentialunder some conditions on H.

    2 Preliminaries

    Let ▽ andN▽ always denote the Levi-Civita connections of M and N respectively.Let ~▽ be the induced connection on u?1T N defined by~▽XW=N▽du(X)W,where X ∈ Γ(T M) and W ∈ Γ(u?1T N).We choose a local orthonormal frame field{ei}on M.We define the tension field τΦf,H(u)of u by

    where σu= ∑jh(du(.),du(ej))du(ej),which was defined in[1].

    Under the notation above we have the following:

    Lemma 2.1[5](The first variation formula)Let u:M → N be a C2map.Then

    where V=ddtut|t=0.

    Let u:M → N be a weakly f-stationary map with potential H and X ∈ Γ0(T M). Then from Lemma 2.1 and the definition of weakly f-stationary maps with potential H,we have

    Recall that for a 2-tensor field T ∈ Γ (T?M ? T?M),its divergence div T ∈ Γ (T?M)is defined by

    where X is any smooth vector field on M.For two 2-tensors T1,T2∈ Γ(T?M ? T?M),their inner product is defined as follows:

    where{ei}is an orthonormal basis with respect to g.For a vector field X ∈ Γ(T M),we denote by θXits dual one form,i.e., θX(Y)=g(X,Y),where Y ∈ Γ(T M).The covariant derivative of θXgives a 2-tensor field ▽?duì)萖:

    If X= ▽? is the gradient field ofsome C2function ? on M,then θX=d? and ▽?duì)萖=Hess?.

    Lemma 2.2(see[26,27])Let T be a symmetric(0,2)-type tensor fi eld and let X be a vector field,then

    where LXis the Lie derivative ofthe metric g in the direction of X.Indeed,let{e1,···,em} be a local orthonormalframe field on M.Then

    Let D be any bounded domain of M with C1boundary.By using the Stokes’theorem, we immediately have the following integralformula

    where ν is the unit outward normalvector field along ?D.

    From equation(2.8),we have

    Lemma 2.3If X is a smooth vector field with a compact support contained in the interior of M,then Z

    which is called the f-stress-energy tensor.

    Han and Feng in[5]introduced a symmetric 2-tensor SΦfto the functionalΦf(u)by

    Lemma 2.4[5]Let u:(M,g) → (N,h)be a smooth map,then for all x ∈ M and for each vector X ∈ TxM,

    where

    By using equations(2.3),(2.9)and(2.11),we know that if u:M → N is a weakly f-stationary map with potential H,then we have

    for any X ∈ Γ0(T M).

    On the other hand,we may introduce the stress-energy tensor with potential SΦf,Hby the following

    Then

    By using equations(2.3),(2.9)and(2.14),we know that if u:M → N is a weakly fstationary map with potential H,then we have

    for any X ∈ Γ0(T M).

    3 Liouville Type Theorems

    Let(M,g0)be a complete Riemannian manifold with a pole x0.Denote by r(x)the g0-distance function relative to the pole x0,that is r(x)=distg0(x,x0).Set

    It is known that??ris always an eigenvector of Hessg0(r2)associated to eigenvalue 2.Denote by λmax(resp. λmin)the maximum(resp.minimal)eigenvalues of Hessg0(r2)? 2dr ? dr at each point of M ?{x0}.Let(Nn,h)be a Riemannian manifold,and H be a smooth function on N.

    From now on,we suppose that u:(Mm,g) → (N,h)is an f-stationary map with potential H,where

    Clearly the vector field ν = ??1?is an outer normal vector field along ?B(r) ? (M,g).

    ?rThe following conditions that we willassume for ? are as follows:

    (?2)There is a constant C0> 0 such that

    RemarkIf?(r)=r14,conditions(?1)and(?2)turn into the following

    Now we set

    Theorem 3.1Let u:(M,?2g0) → (N,h)be a weakly f-stationary map with potential H where 0 < ? ∈ C∞(M).If ? satisfies(?1)(?2),H ≤ 0(or Hu(M)≤ 0),C0? μ > 0 and

    then u is constant.

    ProofWe takewhere ▽0denotes the covariant derivative determined by g0and φ(r)is a nonnegative function determined later.By a direct computation,we have

    Let{ei}mi=1be an orthonormalbasis with respect to g0and em=??r.We may assume that Hessg0(r2)becomes a diagonal matrix with respect to{ei}mi=1.Then{e~i= ??1ei}is an orthonormalbasis with respect to g. Now we compute

    From(3.2),(2.14),(3.3),(?1)and(?2),we have

    From(3.4),we have

    For any fixed R > 0,we take a smooth function φ(r)which takes value 1 on B(R2),0 outside B(R)and 0 ≤ φ(r) ≤ 1 on T(R)=B(R) ? B(R2).And φ(r)also satisfies the condition |φ′(r)|≤Cr1on M,where C1is a positive constant.

    From(2.15)and(3.5),we have

    From(3.6)and(3.7),we have we have

    So we know that u is a constant.

    RemarkLetbe a complete Riemannian manifold with a pole x0.Assume that the radial curvature Krof M satisfi es the following conditions:withand.From the equation(3.1)and Lemma 4.4 in[5], we have.Letsmooth function on

    Theorem 3.2Let u:be a weakly f-stationary map with potential H whereIf? satisfiesand,then u is constant.

    ProofBy using the similar method in the proof in Theorem 3.1,we can obtain the following

    From?H

    ?r?u≥ 0 and(3.8),we have

    For any fixed R > 0,we take a smooth function φ(r)which takes value 1 on B(R2),0 outside B(R)and 0 ≤ φ(r) ≤ 1 on T(R)=B(R) ? B(R2).And φ(r)also satisfi es the condition: |φ′(r)|≤Cr1on M,where C1is a positive constant.

    From(2.12)and(3.9),we have

    From(3.10)and(3.11),we have

    So we know that u is a constant.

    Theorem 3.3Suppose u:(M,?2g0) → (N,h)is a smooth map which satisfi es the following

    for any X ∈ Γ(T M).If ? satisfies(?1)(?2),H ≤ 0(or Hu(M)≤ 0),C0? μ > 0 and Φf,H(u) of u is slowly divergent,then u is constant.

    ProofFrom the inequality(3.5)for φ(r)=1,we have

    On the other hand,taking D=B(r)and T=SΦf,Hin(2.8),we have

    Now suppose that u is a nonconstant map,so there exists a constant R1> 0 such that for R ≥ R1,

    where C3is a positive constant. From(3.13),we have

    so we know that there exists a positive constant R2> R1such that for R ≥ R2,we have

    From(3.14)(3.15)and(3.18),we have for R > R2,

    From(3.19)and|▽r|= ??1,we have

    This contradicts(3.12),therefore u is a constant.

    Theorem 3.4Suppose u:(M,?2g0) → (N,h)is a smooth map which satisfies the following

    for any X ∈ Γ(T M).If ? satisfies(?1)(?2),?H

    ?r?u≥ 0 C0? μ > 0 and Φf(u)of u is slowly divergent(see(3.12)),then u is constant.

    ProofFrom inequality(3.9)for φ(r)=1,we have

    On the other hand,taking D=B(r)and T=SΦfin(2.8),we have

    Now suppose that u is a nonconstant map,so there exists a constant R3> 0 such that for R ≥ R3,

    where C4is a positive constant.

    From(3.21),we have

    so we know that there exists a positive constant R4> R3such that for R ≥ R4,we have

    From(3.22),(3.23)and(3.26),we have for R > R4,

    From(3.27)and|▽r|= ??1,we have

    This contradicts(3.12),therefore u is a constant.

    [1]Kawai S,Nakauchi N.Some result for stationary maps of a functional related to pullback metrics[J]. Nonl.Anal.,2011,74:2284–2295.

    [2]Nakauchi N.A variationalproblem related to conformalmaps[J].Osaka J.Math.,2011,48:719–741.

    [3]Nakauchi N,Takenaka Y.A variational problem for pullback metrics[J].Ricerche Math.,2011,60: 219–235.

    [4]Han Y B,Feng S X.Monotonicity formulas and the stability of F-stationary maps with potential[J]. Huston J.Math.,2014,40:681–713.

    [5]Han Y B,Feng S X.Liouville type theorems of f-stationary maps of a functional related to pullback metrics[J].J.Math.,to appear.

    [6]Asserda S.Liouville-type results for stationary maps of a class of functional related to pullback metrics[J].Nonl.Anal.,2012,75:3480–3492.

    [7]Eells J,Lemaire L.A report on harmonic maps[J].Bull.Lond.Math.Soc.1978,10:1–68.

    [8]Eells J,Lemaire L.Another report on harmonic maps[J].Bull.Lond.Math.Soc.1978,20:385–524.

    [9]Lichnerowicz A.Apllications harmoniques et vari′et′es k¨ahleriennes[J].Symposia Math.III,London: Academic Press,1970:341–402.

    [10]Course N.f-harmonic maps[D].UK:Thesis,University of Warwick,Voventry,CV4 7Al,2004.

    [11]Dong Y X,Ou YL.Monotonicity forumlas and Liouville theorems for f-harmonic maps[J].Preprint.

    [12]Lu W J.f-harmonic maps between douby twisted product manifolds[J].Appl.Math.-A J.Chinese Universities,2013,28:240–252.

    [13]Ouakkas S,Nasri R and Djaa M.On the f-hamronic and f-biharmonic maps[J].JP J.Geom.Topol., 2010,10:11–27.

    [14]Ou Y L.On f-harmonic morphisms between Riemannian manifolds[J].Chinese Annals of Math.Ser B,2014,35:225–236.

    [15]Ara M.Geometry of F-harmonic maps[J].Kodai Math.J.,1999,22:243-263.

    [16]Kassi M.A Liouville theorems for F-harmonic maps with fi nite F-energy[J].Electonic J.Diff.Equ., 2006,15:1–9.

    [17]Dong YX,Wei S S.On vanishing theorems for vector bundle valued p-forms and their applications[J]. Comm.Math.Phys.,2011,304:329–368.

    [18]Dong Y X,Lin HZ and Yang G L.Liouville theorems for F-harmonic maps and their applications[J]. arXiv:1111.1882v1[math.DG]8 Nov 2011.

    [19]Li L S,Zhou Z R.Monotonicity of F-stationary maps[J].J.Math.,2012,32:17–24.

    [20]Fardoun A.Ratto A.Harmonic maps with potential[J].Calc.Var.,1997,5:183–197.

    [21]Chen Q.Stability and constant boundary-value problems of harmonic maps with potential[J].J. Aust.Math.Soc.Ser.A,2000,68:145–154.

    [22]Lin H Z,Yang G L,Ren Y B and Chong T.Monotonicity formulae and Liouville theorems of harmonic maps with potential[J].J.Geom.Phy.,2012,62:1939–1948.

    [23]Zhou Z R.Stability and Quantum phenomenen and Liouville theorems of p-harmonic maps with potential[J].Kodai math.J.,2003,26:101–118.

    [24]Luo Y.F-harmonic maps with potential[D].Shanghai:Fudan University,2013.

    [25]Feng S X,Han Y B.Liouville type theorems of f-harmonic maps with potential[J].Res.Math., 2014,66:43–64.

    [26]Baird P.Stess-energy tensors and the Linchnerowicz Laplacian[J].J.Geo.Phys.2006,58:1329–1342.

    [27]Dong Y X.Monotonicity formulae and holomorphicity of harmonic maps between K¨ahler manifolds[J].Proc.London Math.Soc.,2013,107:1221–1260.

    具有勢(shì)函數(shù)的弱f-穩(wěn)態(tài)映射的若干結(jié)果

    韓英波,馮書(shū)香
    (信陽(yáng)師范學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,河南 信陽(yáng) 464000)

    本文研究了與拉回度量有 關(guān)廣義泛函Φf,H. 利用應(yīng)力能 量張量的方法, 得到具有勢(shì)函數(shù)的弱f-穩(wěn)態(tài)映射的一些劉維爾型定理.

    具有勢(shì)函數(shù)的弱f-穩(wěn)態(tài)映射;應(yīng)力能量張量;劉維爾型定理

    :58E20;53C21

    O186.15

    tion:58E20;53C21

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0301-14

    0255-7797(2017)02-0301-14

    ?Received date:2014-11-16 Accepted date:2015-03-19

    Foundation item:Supported by National Natural Science Foundation of China(11201400; 10971029);Basic and Frontier Technology Reseach Project of Henan Province(142300410433);Project for youth teacher of Xinyang Normal University(2014-QN-061).

    Biography:Han Yingbo(1978–),male,born at Heze,Shandong,PH.D.,associate professor,major in diff erential geometry.

    猜你喜歡
    勢(shì)函數(shù)信息科學(xué)張量
    航天器姿態(tài)受限的協(xié)同勢(shì)函數(shù)族設(shè)計(jì)方法
    數(shù)學(xué)理論與應(yīng)用(2022年1期)2022-04-15 09:03:32
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    偶數(shù)階張量core逆的性質(zhì)和應(yīng)用
    金屬鎢級(jí)聯(lián)碰撞中勢(shì)函數(shù)的影響
    四元數(shù)張量方程A*NX=B 的通解
    三元重要不等式的推廣及應(yīng)用
    基于Metaball的Ck連續(xù)過(guò)渡曲線的構(gòu)造
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
    擴(kuò)散張量成像MRI 在CO中毒后遲發(fā)腦病中的應(yīng)用
    黄色怎么调成土黄色| 99国产极品粉嫩在线观看| 香蕉国产在线看| 国产av一区二区精品久久| 久久精品aⅴ一区二区三区四区| 国产欧美日韩精品亚洲av| 国产一区二区三区综合在线观看| 岛国毛片在线播放| 久久久久精品人妻al黑| 在线天堂中文资源库| 国产精品二区激情视频| 91麻豆精品激情在线观看国产 | 欧美在线黄色| a级片在线免费高清观看视频| 一边摸一边抽搐一进一出视频| 成人影院久久| 中文字幕av电影在线播放| 欧美日韩精品网址| 婷婷成人精品国产| 久久国产乱子伦精品免费另类| 一区二区日韩欧美中文字幕| 99热只有精品国产| 91成年电影在线观看| 天堂中文最新版在线下载| 久久精品成人免费网站| 99精品久久久久人妻精品| 多毛熟女@视频| 一级毛片女人18水好多| 丁香六月欧美| 亚洲色图av天堂| 王馨瑶露胸无遮挡在线观看| 超碰成人久久| 色婷婷久久久亚洲欧美| 悠悠久久av| 亚洲男人天堂网一区| 电影成人av| 高清av免费在线| 无限看片的www在线观看| 精品亚洲成a人片在线观看| 美女高潮到喷水免费观看| 国产精品久久视频播放| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产一级毛片高清牌| 日韩 欧美 亚洲 中文字幕| 国产精品久久久人人做人人爽| 久久天堂一区二区三区四区| 成年人免费黄色播放视频| 亚洲九九香蕉| 国产成人精品无人区| 亚洲熟女精品中文字幕| 91麻豆av在线| 亚洲专区字幕在线| 午夜福利乱码中文字幕| 1024视频免费在线观看| 黄色怎么调成土黄色| 久久香蕉精品热| 亚洲视频免费观看视频| 一区二区三区精品91| 亚洲avbb在线观看| 韩国av一区二区三区四区| av线在线观看网站| 亚洲九九香蕉| svipshipincom国产片| 老熟妇乱子伦视频在线观看| a级片在线免费高清观看视频| 嫁个100分男人电影在线观看| 国产高清国产精品国产三级| 亚洲精品成人av观看孕妇| 久久中文看片网| 啪啪无遮挡十八禁网站| 欧美黄色淫秽网站| 亚洲国产精品合色在线| 日韩精品免费视频一区二区三区| 久久久久久久久久久久大奶| 大片电影免费在线观看免费| 国产视频一区二区在线看| 在线永久观看黄色视频| 桃红色精品国产亚洲av| 国产激情欧美一区二区| 纯流量卡能插随身wifi吗| 91精品三级在线观看| а√天堂www在线а√下载 | 久久人妻av系列| 欧美不卡视频在线免费观看 | 一本大道久久a久久精品| 亚洲国产欧美日韩在线播放| 18禁国产床啪视频网站| 亚洲欧美一区二区三区黑人| 久久中文字幕人妻熟女| 久久性视频一级片| 久久影院123| av不卡在线播放| 老熟女久久久| 在线免费观看的www视频| 夜夜爽天天搞| 成人国语在线视频| 成人18禁在线播放| av一本久久久久| 久久国产亚洲av麻豆专区| 免费在线观看视频国产中文字幕亚洲| 欧美成人午夜精品| 国产日韩欧美亚洲二区| 国产精品二区激情视频| 一级片免费观看大全| 大香蕉久久成人网| 亚洲av日韩精品久久久久久密| 一区二区三区精品91| 校园春色视频在线观看| 我的亚洲天堂| 一本综合久久免费| 国产成人欧美| 一级a爱片免费观看的视频| 99热只有精品国产| 国内毛片毛片毛片毛片毛片| 亚洲人成电影免费在线| 黄片播放在线免费| www日本在线高清视频| 人人妻,人人澡人人爽秒播| a级片在线免费高清观看视频| 久久中文字幕人妻熟女| 男人操女人黄网站| 欧美另类亚洲清纯唯美| 王馨瑶露胸无遮挡在线观看| 建设人人有责人人尽责人人享有的| 日本五十路高清| www.999成人在线观看| 欧美亚洲 丝袜 人妻 在线| 人人澡人人妻人| 三上悠亚av全集在线观看| 国产精品九九99| 波多野结衣一区麻豆| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久免费视频了| 亚洲欧美一区二区三区久久| 丝袜在线中文字幕| 亚洲精品久久成人aⅴ小说| 成在线人永久免费视频| 91国产中文字幕| 婷婷丁香在线五月| 亚洲成人手机| 丰满饥渴人妻一区二区三| 欧美在线黄色| 久久人妻福利社区极品人妻图片| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美久久黑人一区二区| 精品久久久精品久久久| 不卡一级毛片| 老汉色av国产亚洲站长工具| 亚洲avbb在线观看| 欧美+亚洲+日韩+国产| 免费观看a级毛片全部| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡| 夜夜爽天天搞| 欧洲精品卡2卡3卡4卡5卡区| 18禁裸乳无遮挡动漫免费视频| 香蕉丝袜av| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区免费欧美| 757午夜福利合集在线观看| 精品国产亚洲在线| 国产亚洲精品第一综合不卡| 午夜免费观看网址| 丝袜美腿诱惑在线| 日韩有码中文字幕| 婷婷丁香在线五月| 久久99一区二区三区| 欧美日韩一级在线毛片| 欧美大码av| 亚洲欧美精品综合一区二区三区| 欧美在线黄色| 国产伦人伦偷精品视频| 99香蕉大伊视频| 日本撒尿小便嘘嘘汇集6| 黄色毛片三级朝国网站| 国产在线一区二区三区精| 国产精品九九99| 欧美日韩亚洲综合一区二区三区_| 一a级毛片在线观看| 亚洲精品一二三| 极品教师在线免费播放| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 精品午夜福利视频在线观看一区| av天堂久久9| 国产亚洲一区二区精品| 国产野战对白在线观看| 欧美黑人欧美精品刺激| 操出白浆在线播放| 久久国产精品人妻蜜桃| 97人妻天天添夜夜摸| 三上悠亚av全集在线观看| 村上凉子中文字幕在线| 日本黄色日本黄色录像| 一区在线观看完整版| 国产成人av教育| 亚洲精品av麻豆狂野| 国产一区二区三区视频了| 免费在线观看完整版高清| 欧美日韩福利视频一区二区| 99精品在免费线老司机午夜| 三上悠亚av全集在线观看| 高清欧美精品videossex| 十八禁高潮呻吟视频| 成在线人永久免费视频| 久久ye,这里只有精品| 妹子高潮喷水视频| 黄色女人牲交| 成人黄色视频免费在线看| 国产精品永久免费网站| 777久久人妻少妇嫩草av网站| 国产蜜桃级精品一区二区三区 | 老司机午夜十八禁免费视频| 国产成人免费无遮挡视频| 亚洲少妇的诱惑av| 一个人免费在线观看的高清视频| 欧美亚洲 丝袜 人妻 在线| 久久人人爽av亚洲精品天堂| 亚洲欧美激情在线| 国产欧美日韩一区二区三| 99精国产麻豆久久婷婷| 亚洲成国产人片在线观看| 久久精品亚洲精品国产色婷小说| 女人高潮潮喷娇喘18禁视频| 久久久水蜜桃国产精品网| 别揉我奶头~嗯~啊~动态视频| 欧美日韩国产mv在线观看视频| 人人妻,人人澡人人爽秒播| 交换朋友夫妻互换小说| 多毛熟女@视频| 在线观看www视频免费| 捣出白浆h1v1| 别揉我奶头~嗯~啊~动态视频| 啦啦啦在线免费观看视频4| 成人av一区二区三区在线看| 精品免费久久久久久久清纯 | 亚洲精品在线观看二区| 久久久久精品人妻al黑| 国产av精品麻豆| 中文字幕最新亚洲高清| 久久久久国产精品人妻aⅴ院 | 波多野结衣一区麻豆| 一本综合久久免费| 日韩精品免费视频一区二区三区| a级毛片在线看网站| 亚洲精品乱久久久久久| 看片在线看免费视频| 伊人久久大香线蕉亚洲五| 国产不卡一卡二| 精品久久久久久久毛片微露脸| av网站在线播放免费| 精品少妇一区二区三区视频日本电影| 精品电影一区二区在线| 一本一本久久a久久精品综合妖精| 老鸭窝网址在线观看| 国产精品一区二区在线不卡| 大型黄色视频在线免费观看| 日本精品一区二区三区蜜桃| 一区二区三区精品91| 99精品在免费线老司机午夜| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 久久精品成人免费网站| 不卡av一区二区三区| 日本黄色日本黄色录像| 久久久国产成人精品二区 | 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看 | 好男人电影高清在线观看| 精品人妻熟女毛片av久久网站| 精品久久蜜臀av无| 国产av精品麻豆| √禁漫天堂资源中文www| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线免费观看网站| 老司机福利观看| 亚洲五月色婷婷综合| 日本精品一区二区三区蜜桃| 很黄的视频免费| 精品少妇一区二区三区视频日本电影| 岛国毛片在线播放| 国产单亲对白刺激| 久久久久国产精品人妻aⅴ院 | 国产乱人伦免费视频| tube8黄色片| 在线观看一区二区三区激情| 国产91精品成人一区二区三区| 久久亚洲真实| svipshipincom国产片| 国产深夜福利视频在线观看| 中文字幕人妻熟女乱码| 日本黄色视频三级网站网址 | 高清在线国产一区| 欧美日韩亚洲高清精品| 国产伦人伦偷精品视频| 亚洲欧洲精品一区二区精品久久久| 亚洲五月色婷婷综合| 亚洲av成人av| 十分钟在线观看高清视频www| 在线观看免费视频日本深夜| 国产精品二区激情视频| 首页视频小说图片口味搜索| 成人特级黄色片久久久久久久| 黄色视频不卡| 中文字幕色久视频| 少妇 在线观看| 老司机影院毛片| 精品第一国产精品| 国产日韩欧美亚洲二区| 中亚洲国语对白在线视频| 国产片内射在线| 精品人妻1区二区| 最新的欧美精品一区二区| 一级毛片女人18水好多| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| 天天操日日干夜夜撸| 亚洲欧美一区二区三区久久| 国产av精品麻豆| 看黄色毛片网站| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 在线视频色国产色| 欧美日韩乱码在线| 黑丝袜美女国产一区| 亚洲精品国产一区二区精华液| 麻豆乱淫一区二区| 亚洲熟妇熟女久久| 日韩有码中文字幕| 超碰成人久久| 高清视频免费观看一区二区| 国产精品 国内视频| www日本在线高清视频| 91av网站免费观看| 无限看片的www在线观看| 国产精品自产拍在线观看55亚洲 | 在线永久观看黄色视频| 欧美大码av| 他把我摸到了高潮在线观看| 国产精品一区二区在线不卡| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全电影3 | 国产成人一区二区三区免费视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 亚洲av日韩在线播放| 精品久久蜜臀av无| 国产精品久久久久久精品古装| 黄片小视频在线播放| 久久久久久久久久久久大奶| 精品国产国语对白av| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 大型黄色视频在线免费观看| a在线观看视频网站| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀| 法律面前人人平等表现在哪些方面| 嫩草影视91久久| 亚洲七黄色美女视频| 色播在线永久视频| 亚洲精品乱久久久久久| 如日韩欧美国产精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲一区二区三区欧美精品| 男人的好看免费观看在线视频 | 午夜福利欧美成人| 久久国产精品大桥未久av| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 久久久久久久久久久久大奶| 国产成人免费观看mmmm| 淫妇啪啪啪对白视频| 久久精品国产亚洲av香蕉五月 | 女人高潮潮喷娇喘18禁视频| 欧美日韩视频精品一区| 欧美日韩精品网址| 久久久久久久午夜电影 | 午夜日韩欧美国产| 热99久久久久精品小说推荐| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av在线 | 欧美日韩黄片免| 国产欧美亚洲国产| 国产片内射在线| 欧美在线黄色| 99久久精品国产亚洲精品| 丝袜在线中文字幕| 欧美日韩成人在线一区二区| 国产成+人综合+亚洲专区| 日韩欧美三级三区| 色尼玛亚洲综合影院| 精品亚洲成国产av| 中文欧美无线码| 欧美日韩av久久| 日本a在线网址| 成人18禁在线播放| 村上凉子中文字幕在线| 亚洲熟女精品中文字幕| 一边摸一边抽搐一进一出视频| 黄色视频不卡| 久久影院123| 嫩草影视91久久| 丝袜美腿诱惑在线| 国产激情久久老熟女| 十八禁高潮呻吟视频| tocl精华| av不卡在线播放| 久久久水蜜桃国产精品网| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 国产在线精品亚洲第一网站| 国产一区有黄有色的免费视频| 中文欧美无线码| 黄色成人免费大全| 久久中文字幕一级| 亚洲人成电影免费在线| 免费看十八禁软件| 久久精品国产综合久久久| 欧美在线黄色| 丝袜美腿诱惑在线| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 日韩熟女老妇一区二区性免费视频| 黄片播放在线免费| 午夜福利免费观看在线| 王馨瑶露胸无遮挡在线观看| 大型av网站在线播放| 变态另类成人亚洲欧美熟女 | 高清视频免费观看一区二区| 亚洲成人手机| 亚洲一码二码三码区别大吗| 亚洲中文字幕日韩| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 大片电影免费在线观看免费| 亚洲,欧美精品.| 黑人猛操日本美女一级片| 欧美午夜高清在线| 精品一区二区三区av网在线观看| www.999成人在线观看| 啦啦啦视频在线资源免费观看| 成在线人永久免费视频| 精品福利观看| 欧美激情高清一区二区三区| 国产精品免费视频内射| 99香蕉大伊视频| 老熟妇仑乱视频hdxx| 国产成人一区二区三区免费视频网站| 一级a爱视频在线免费观看| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美| 日韩成人在线观看一区二区三区| 两个人免费观看高清视频| 女人被狂操c到高潮| 九色亚洲精品在线播放| 老汉色∧v一级毛片| 国产精品久久视频播放| 老司机深夜福利视频在线观看| 国产91精品成人一区二区三区| 一区二区三区精品91| 高清av免费在线| 女性被躁到高潮视频| 夜夜爽天天搞| 一边摸一边做爽爽视频免费| 国产成人精品无人区| 国产在视频线精品| 欧美激情高清一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费高清a一片| 亚洲熟妇熟女久久| 国产日韩一区二区三区精品不卡| 久久中文看片网| 久久国产精品人妻蜜桃| 热99久久久久精品小说推荐| 成人18禁在线播放| 久热这里只有精品99| 午夜久久久在线观看| 亚洲成人免费av在线播放| 操美女的视频在线观看| av天堂在线播放| 极品人妻少妇av视频| 久久精品国产a三级三级三级| 无人区码免费观看不卡| 18禁观看日本| 国产成人av教育| 自线自在国产av| 午夜老司机福利片| av线在线观看网站| 亚洲欧美激情综合另类| 十八禁高潮呻吟视频| 日本撒尿小便嘘嘘汇集6| 老熟女久久久| 日本撒尿小便嘘嘘汇集6| 99久久人妻综合| 日韩一卡2卡3卡4卡2021年| 十八禁高潮呻吟视频| 免费不卡黄色视频| 午夜免费成人在线视频| 美女 人体艺术 gogo| 成人av一区二区三区在线看| 午夜精品在线福利| 亚洲精品在线美女| 欧美精品一区二区免费开放| 飞空精品影院首页| x7x7x7水蜜桃| 涩涩av久久男人的天堂| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看 | 18禁裸乳无遮挡动漫免费视频| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9 | 亚洲一码二码三码区别大吗| 成年人午夜在线观看视频| 夜夜爽天天搞| 一级黄色大片毛片| 嫁个100分男人电影在线观看| 黄网站色视频无遮挡免费观看| 国产精品成人在线| 妹子高潮喷水视频| 午夜精品久久久久久毛片777| 美女视频免费永久观看网站| 免费在线观看黄色视频的| 老熟女久久久| 女人被狂操c到高潮| 午夜福利欧美成人| 国产精品 欧美亚洲| 国产免费av片在线观看野外av| 伦理电影免费视频| 美女高潮喷水抽搐中文字幕| 看免费av毛片| 90打野战视频偷拍视频| 亚洲一区二区三区不卡视频| 亚洲av日韩在线播放| av免费在线观看网站| 中亚洲国语对白在线视频| 国产亚洲av高清不卡| 制服诱惑二区| 日韩制服丝袜自拍偷拍| 精品无人区乱码1区二区| 午夜福利视频在线观看免费| av网站在线播放免费| 国产免费av片在线观看野外av| 两个人看的免费小视频| 日韩三级视频一区二区三区| 亚洲午夜理论影院| 国产有黄有色有爽视频| 女性被躁到高潮视频| 国产精品久久视频播放| 不卡一级毛片| 女警被强在线播放| 午夜视频精品福利| 男人操女人黄网站| 久久人人97超碰香蕉20202| 女人精品久久久久毛片| 免费看a级黄色片| 老司机福利观看| 热99久久久久精品小说推荐| 人妻丰满熟妇av一区二区三区 | 成人国语在线视频| 国产又色又爽无遮挡免费看| 国产精品一区二区在线不卡| 精品人妻熟女毛片av久久网站| 色综合婷婷激情| 久久人妻熟女aⅴ| 亚洲午夜精品一区,二区,三区| 久久久久国内视频| 少妇粗大呻吟视频| 两人在一起打扑克的视频| 久久国产精品男人的天堂亚洲| 丰满人妻熟妇乱又伦精品不卡| 亚洲久久久国产精品| 亚洲av成人av| 久久青草综合色| 叶爱在线成人免费视频播放| 亚洲午夜精品一区,二区,三区| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| 日本vs欧美在线观看视频| 美女午夜性视频免费| 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 在线观看舔阴道视频| 在线看a的网站| 丰满饥渴人妻一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 国产男靠女视频免费网站| 国产激情久久老熟女| 欧美激情 高清一区二区三区| 免费在线观看日本一区| 久久国产精品大桥未久av| 欧美国产精品va在线观看不卡| 午夜福利免费观看在线| 如日韩欧美国产精品一区二区三区| 美女视频免费永久观看网站| 亚洲欧美激情综合另类| 一a级毛片在线观看| 中文字幕最新亚洲高清| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av高清一级| 一二三四在线观看免费中文在| 国产色视频综合| 韩国精品一区二区三区| 久久久国产成人精品二区 | 亚洲avbb在线观看| av视频免费观看在线观看| 亚洲一区高清亚洲精品| 亚洲情色 制服丝袜| 一边摸一边做爽爽视频免费| 久99久视频精品免费| 天天影视国产精品|