• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOME RESULTS OF WEAKLY f-STATIONARY MAPS WITH POTENTIAL

    2017-04-12 14:31:39HANYingboFENGShuxiang
    數(shù)學(xué)雜志 2017年2期
    關(guān)鍵詞:勢(shì)函數(shù)信息科學(xué)張量

    HAN Ying-bo,FENG Shu-xiang

    (College of Mathematics and Information Science,Xinyang Normal University,Xinyang 464000,China)

    SOME RESULTS OF WEAKLY f-STATIONARY MAPS WITH POTENTIAL

    HAN Ying-bo,FENG Shu-xiang

    (College of Mathematics and Information Science,Xinyang Normal University,Xinyang 464000,China)

    In this paper,we investigate a generalized functional Φf,Hrelated to the pullback metric.By using the stress-energy tensor,we obtain some Liouville type theorems for weakly fstationary maps with potential under some conditions on H.

    weakly f-stationary map with potential;stress-energy tensor;Liouville type theorems

    1 Introduction

    Let u:(Mm,g) → (Nn,h)be a smooth map between Riemannian manifolds(Mm,g) and(Nn,h).Recently,Kawai and Nakauchi[1]introduced a functionalrelated to the pullback metric u?h as follows:

    (see[2–5]),where u?h is the symmetric 2-tensor defined by

    for any vector fields X,Y on M and||u?h||is given by

    with respect to a local orthonormal frame(e1,···,em)on(M,g).The map u is stationary for Φ if it is a critical point of Φ(u)with respect to any compact supported variation of u. Asserda[6]introduced the following functionalΦFbywhere F:[0,∞) → [0,∞)is a C2function such that F(0)=0 and F′(t) > 0 on[0,∞).The map u is F-stationary for Φ ifit is a criticalpoint of Φ(u)with respect to any compact supported variation of u.Following[6],Han and Feng in[5]introduced the following functional Φfby

    where f:(M,g) → (0,+∞)is a smooth function.They derived the first variation formula of Φfand introduced the f-stress energy tensor SΦfassociated to Φf.Then,by using the f-stress energy tensor,they obtained the monotonicity formula and vanishing theorems for stationary map for the functional Φf(u)under some conditions on f.

    The theory of harmonic maps was developed by many researchers so far,and a lot of results were obtained(see[7,8]).Lichnerowicz in[9](also see[7])introduced the fharmonic maps,generalizing harmonic maps.Since then,there were many results for fharmonic maps such as[10–14].Ara[15]introduced the notion of F-harmonic map,which is a special f-harmonic map and also is a generalization of harmonic maps,p-harmonic maps or exponentially harmonic maps.Since then,there were many results for F-harmonic maps such as[16–19].

    On the other hand,Fardon and Ratto in[20]introduced generalized harmonic maps of a certain kind,harmonic maps with potential,which had its own mathematical and physical background,for example,the static Landu-Lifschitz equation.They discovered some properties quite different from those ofordinary harmonic maps due to the presence of the potential.After this,there were many results for harmonic map with potential such as [21,22],p-harmonic map with potential such as[23],F-harmonic map with potential such as[24],f-harmonic map with potential such as[25]and F-stationary maps with potential such as[4].

    In this paper,we generalize and unify the concept of critical point of the functionalΦ. For this,we define the functional Φf,Hby

    where H is a smooth function on Nn.If H=0,then we have Φf,H= Φf.If H=0 and f=1,then we have Φf,H= Φ.Let

    be a variation of u,i.e.,ut= Ψ(t,.)with u0=u,where Ψ :(?∈,∈) × M → N is a smooth map.Let Γ0(u?1T N)be a subset of Γ(u?1T N)consisting of all elements with compact supports contained in the interior of M.For each ψ ∈ Γ0(u?1T N),there exists a variation ut(x)=expu(x)(tψ)(for t small enough)of u,which has the variational field ψ.Such a variation is said to have a compact support.Let

    Defi nition 1.1A smooth map u is called f-stationary map with potential H for the functional Φf,H(u),if

    for V ∈ Γ0(u?1T N).

    It is known that du(X) ∈ Γ(u?1T N)for any vector field X of M.If X has a compact support which is contained in the interior of M,then du(X) ∈ Γ0(u?1T N).

    Defi nition 1.2A smooth map u is called weakly f-stationary map with potential H for the functional Φf,H(u)if Ddu(X)Φf,H(u)=0 for all X ∈ Γ0(T M).

    Remark 1.1From Definition 1.1 and Definition 1.2,we know that f-stationary maps with potential H must be weakly f-stationary maps with potential H,that is,the weakly f-stationary maps with potential H are the generalization of the f-stationary maps with potential H.

    In this paper,we investigate weakly f-stationary maps with potential H.By using the stress-energy tensor,we obtain some Liouville type theorems for weakly f-stationary maps with potentialunder some conditions on H.

    2 Preliminaries

    Let ▽ andN▽ always denote the Levi-Civita connections of M and N respectively.Let ~▽ be the induced connection on u?1T N defined by~▽XW=N▽du(X)W,where X ∈ Γ(T M) and W ∈ Γ(u?1T N).We choose a local orthonormal frame field{ei}on M.We define the tension field τΦf,H(u)of u by

    where σu= ∑jh(du(.),du(ej))du(ej),which was defined in[1].

    Under the notation above we have the following:

    Lemma 2.1[5](The first variation formula)Let u:M → N be a C2map.Then

    where V=ddtut|t=0.

    Let u:M → N be a weakly f-stationary map with potential H and X ∈ Γ0(T M). Then from Lemma 2.1 and the definition of weakly f-stationary maps with potential H,we have

    Recall that for a 2-tensor field T ∈ Γ (T?M ? T?M),its divergence div T ∈ Γ (T?M)is defined by

    where X is any smooth vector field on M.For two 2-tensors T1,T2∈ Γ(T?M ? T?M),their inner product is defined as follows:

    where{ei}is an orthonormal basis with respect to g.For a vector field X ∈ Γ(T M),we denote by θXits dual one form,i.e., θX(Y)=g(X,Y),where Y ∈ Γ(T M).The covariant derivative of θXgives a 2-tensor field ▽?duì)萖:

    If X= ▽? is the gradient field ofsome C2function ? on M,then θX=d? and ▽?duì)萖=Hess?.

    Lemma 2.2(see[26,27])Let T be a symmetric(0,2)-type tensor fi eld and let X be a vector field,then

    where LXis the Lie derivative ofthe metric g in the direction of X.Indeed,let{e1,···,em} be a local orthonormalframe field on M.Then

    Let D be any bounded domain of M with C1boundary.By using the Stokes’theorem, we immediately have the following integralformula

    where ν is the unit outward normalvector field along ?D.

    From equation(2.8),we have

    Lemma 2.3If X is a smooth vector field with a compact support contained in the interior of M,then Z

    which is called the f-stress-energy tensor.

    Han and Feng in[5]introduced a symmetric 2-tensor SΦfto the functionalΦf(u)by

    Lemma 2.4[5]Let u:(M,g) → (N,h)be a smooth map,then for all x ∈ M and for each vector X ∈ TxM,

    where

    By using equations(2.3),(2.9)and(2.11),we know that if u:M → N is a weakly f-stationary map with potential H,then we have

    for any X ∈ Γ0(T M).

    On the other hand,we may introduce the stress-energy tensor with potential SΦf,Hby the following

    Then

    By using equations(2.3),(2.9)and(2.14),we know that if u:M → N is a weakly fstationary map with potential H,then we have

    for any X ∈ Γ0(T M).

    3 Liouville Type Theorems

    Let(M,g0)be a complete Riemannian manifold with a pole x0.Denote by r(x)the g0-distance function relative to the pole x0,that is r(x)=distg0(x,x0).Set

    It is known that??ris always an eigenvector of Hessg0(r2)associated to eigenvalue 2.Denote by λmax(resp. λmin)the maximum(resp.minimal)eigenvalues of Hessg0(r2)? 2dr ? dr at each point of M ?{x0}.Let(Nn,h)be a Riemannian manifold,and H be a smooth function on N.

    From now on,we suppose that u:(Mm,g) → (N,h)is an f-stationary map with potential H,where

    Clearly the vector field ν = ??1?is an outer normal vector field along ?B(r) ? (M,g).

    ?rThe following conditions that we willassume for ? are as follows:

    (?2)There is a constant C0> 0 such that

    RemarkIf?(r)=r14,conditions(?1)and(?2)turn into the following

    Now we set

    Theorem 3.1Let u:(M,?2g0) → (N,h)be a weakly f-stationary map with potential H where 0 < ? ∈ C∞(M).If ? satisfies(?1)(?2),H ≤ 0(or Hu(M)≤ 0),C0? μ > 0 and

    then u is constant.

    ProofWe takewhere ▽0denotes the covariant derivative determined by g0and φ(r)is a nonnegative function determined later.By a direct computation,we have

    Let{ei}mi=1be an orthonormalbasis with respect to g0and em=??r.We may assume that Hessg0(r2)becomes a diagonal matrix with respect to{ei}mi=1.Then{e~i= ??1ei}is an orthonormalbasis with respect to g. Now we compute

    From(3.2),(2.14),(3.3),(?1)and(?2),we have

    From(3.4),we have

    For any fixed R > 0,we take a smooth function φ(r)which takes value 1 on B(R2),0 outside B(R)and 0 ≤ φ(r) ≤ 1 on T(R)=B(R) ? B(R2).And φ(r)also satisfies the condition |φ′(r)|≤Cr1on M,where C1is a positive constant.

    From(2.15)and(3.5),we have

    From(3.6)and(3.7),we have we have

    So we know that u is a constant.

    RemarkLetbe a complete Riemannian manifold with a pole x0.Assume that the radial curvature Krof M satisfi es the following conditions:withand.From the equation(3.1)and Lemma 4.4 in[5], we have.Letsmooth function on

    Theorem 3.2Let u:be a weakly f-stationary map with potential H whereIf? satisfiesand,then u is constant.

    ProofBy using the similar method in the proof in Theorem 3.1,we can obtain the following

    From?H

    ?r?u≥ 0 and(3.8),we have

    For any fixed R > 0,we take a smooth function φ(r)which takes value 1 on B(R2),0 outside B(R)and 0 ≤ φ(r) ≤ 1 on T(R)=B(R) ? B(R2).And φ(r)also satisfi es the condition: |φ′(r)|≤Cr1on M,where C1is a positive constant.

    From(2.12)and(3.9),we have

    From(3.10)and(3.11),we have

    So we know that u is a constant.

    Theorem 3.3Suppose u:(M,?2g0) → (N,h)is a smooth map which satisfi es the following

    for any X ∈ Γ(T M).If ? satisfies(?1)(?2),H ≤ 0(or Hu(M)≤ 0),C0? μ > 0 and Φf,H(u) of u is slowly divergent,then u is constant.

    ProofFrom the inequality(3.5)for φ(r)=1,we have

    On the other hand,taking D=B(r)and T=SΦf,Hin(2.8),we have

    Now suppose that u is a nonconstant map,so there exists a constant R1> 0 such that for R ≥ R1,

    where C3is a positive constant. From(3.13),we have

    so we know that there exists a positive constant R2> R1such that for R ≥ R2,we have

    From(3.14)(3.15)and(3.18),we have for R > R2,

    From(3.19)and|▽r|= ??1,we have

    This contradicts(3.12),therefore u is a constant.

    Theorem 3.4Suppose u:(M,?2g0) → (N,h)is a smooth map which satisfies the following

    for any X ∈ Γ(T M).If ? satisfies(?1)(?2),?H

    ?r?u≥ 0 C0? μ > 0 and Φf(u)of u is slowly divergent(see(3.12)),then u is constant.

    ProofFrom inequality(3.9)for φ(r)=1,we have

    On the other hand,taking D=B(r)and T=SΦfin(2.8),we have

    Now suppose that u is a nonconstant map,so there exists a constant R3> 0 such that for R ≥ R3,

    where C4is a positive constant.

    From(3.21),we have

    so we know that there exists a positive constant R4> R3such that for R ≥ R4,we have

    From(3.22),(3.23)and(3.26),we have for R > R4,

    From(3.27)and|▽r|= ??1,we have

    This contradicts(3.12),therefore u is a constant.

    [1]Kawai S,Nakauchi N.Some result for stationary maps of a functional related to pullback metrics[J]. Nonl.Anal.,2011,74:2284–2295.

    [2]Nakauchi N.A variationalproblem related to conformalmaps[J].Osaka J.Math.,2011,48:719–741.

    [3]Nakauchi N,Takenaka Y.A variational problem for pullback metrics[J].Ricerche Math.,2011,60: 219–235.

    [4]Han Y B,Feng S X.Monotonicity formulas and the stability of F-stationary maps with potential[J]. Huston J.Math.,2014,40:681–713.

    [5]Han Y B,Feng S X.Liouville type theorems of f-stationary maps of a functional related to pullback metrics[J].J.Math.,to appear.

    [6]Asserda S.Liouville-type results for stationary maps of a class of functional related to pullback metrics[J].Nonl.Anal.,2012,75:3480–3492.

    [7]Eells J,Lemaire L.A report on harmonic maps[J].Bull.Lond.Math.Soc.1978,10:1–68.

    [8]Eells J,Lemaire L.Another report on harmonic maps[J].Bull.Lond.Math.Soc.1978,20:385–524.

    [9]Lichnerowicz A.Apllications harmoniques et vari′et′es k¨ahleriennes[J].Symposia Math.III,London: Academic Press,1970:341–402.

    [10]Course N.f-harmonic maps[D].UK:Thesis,University of Warwick,Voventry,CV4 7Al,2004.

    [11]Dong Y X,Ou YL.Monotonicity forumlas and Liouville theorems for f-harmonic maps[J].Preprint.

    [12]Lu W J.f-harmonic maps between douby twisted product manifolds[J].Appl.Math.-A J.Chinese Universities,2013,28:240–252.

    [13]Ouakkas S,Nasri R and Djaa M.On the f-hamronic and f-biharmonic maps[J].JP J.Geom.Topol., 2010,10:11–27.

    [14]Ou Y L.On f-harmonic morphisms between Riemannian manifolds[J].Chinese Annals of Math.Ser B,2014,35:225–236.

    [15]Ara M.Geometry of F-harmonic maps[J].Kodai Math.J.,1999,22:243-263.

    [16]Kassi M.A Liouville theorems for F-harmonic maps with fi nite F-energy[J].Electonic J.Diff.Equ., 2006,15:1–9.

    [17]Dong YX,Wei S S.On vanishing theorems for vector bundle valued p-forms and their applications[J]. Comm.Math.Phys.,2011,304:329–368.

    [18]Dong Y X,Lin HZ and Yang G L.Liouville theorems for F-harmonic maps and their applications[J]. arXiv:1111.1882v1[math.DG]8 Nov 2011.

    [19]Li L S,Zhou Z R.Monotonicity of F-stationary maps[J].J.Math.,2012,32:17–24.

    [20]Fardoun A.Ratto A.Harmonic maps with potential[J].Calc.Var.,1997,5:183–197.

    [21]Chen Q.Stability and constant boundary-value problems of harmonic maps with potential[J].J. Aust.Math.Soc.Ser.A,2000,68:145–154.

    [22]Lin H Z,Yang G L,Ren Y B and Chong T.Monotonicity formulae and Liouville theorems of harmonic maps with potential[J].J.Geom.Phy.,2012,62:1939–1948.

    [23]Zhou Z R.Stability and Quantum phenomenen and Liouville theorems of p-harmonic maps with potential[J].Kodai math.J.,2003,26:101–118.

    [24]Luo Y.F-harmonic maps with potential[D].Shanghai:Fudan University,2013.

    [25]Feng S X,Han Y B.Liouville type theorems of f-harmonic maps with potential[J].Res.Math., 2014,66:43–64.

    [26]Baird P.Stess-energy tensors and the Linchnerowicz Laplacian[J].J.Geo.Phys.2006,58:1329–1342.

    [27]Dong Y X.Monotonicity formulae and holomorphicity of harmonic maps between K¨ahler manifolds[J].Proc.London Math.Soc.,2013,107:1221–1260.

    具有勢(shì)函數(shù)的弱f-穩(wěn)態(tài)映射的若干結(jié)果

    韓英波,馮書(shū)香
    (信陽(yáng)師范學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,河南 信陽(yáng) 464000)

    本文研究了與拉回度量有 關(guān)廣義泛函Φf,H. 利用應(yīng)力能 量張量的方法, 得到具有勢(shì)函數(shù)的弱f-穩(wěn)態(tài)映射的一些劉維爾型定理.

    具有勢(shì)函數(shù)的弱f-穩(wěn)態(tài)映射;應(yīng)力能量張量;劉維爾型定理

    :58E20;53C21

    O186.15

    tion:58E20;53C21

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0301-14

    0255-7797(2017)02-0301-14

    ?Received date:2014-11-16 Accepted date:2015-03-19

    Foundation item:Supported by National Natural Science Foundation of China(11201400; 10971029);Basic and Frontier Technology Reseach Project of Henan Province(142300410433);Project for youth teacher of Xinyang Normal University(2014-QN-061).

    Biography:Han Yingbo(1978–),male,born at Heze,Shandong,PH.D.,associate professor,major in diff erential geometry.

    猜你喜歡
    勢(shì)函數(shù)信息科學(xué)張量
    航天器姿態(tài)受限的協(xié)同勢(shì)函數(shù)族設(shè)計(jì)方法
    數(shù)學(xué)理論與應(yīng)用(2022年1期)2022-04-15 09:03:32
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    偶數(shù)階張量core逆的性質(zhì)和應(yīng)用
    金屬鎢級(jí)聯(lián)碰撞中勢(shì)函數(shù)的影響
    四元數(shù)張量方程A*NX=B 的通解
    三元重要不等式的推廣及應(yīng)用
    基于Metaball的Ck連續(xù)過(guò)渡曲線的構(gòu)造
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
    擴(kuò)散張量成像MRI 在CO中毒后遲發(fā)腦病中的應(yīng)用
    国产日韩欧美亚洲二区| 国产免费现黄频在线看| 亚洲成人国产一区在线观看 | 亚洲国产日韩一区二区| 欧美精品人与动牲交sv欧美| 日本av免费视频播放| 日本vs欧美在线观看视频| 亚洲精品国产色婷婷电影| 欧美久久黑人一区二区| 免费在线观看黄色视频的| 欧美大码av| 2021少妇久久久久久久久久久| 老司机靠b影院| 一区二区日韩欧美中文字幕| 免费观看av网站的网址| 亚洲综合色网址| 一区二区三区四区激情视频| 999精品在线视频| 久久亚洲国产成人精品v| 国产成人精品久久二区二区91| 色视频在线一区二区三区| 日本a在线网址| 免费少妇av软件| 性色av一级| 97精品久久久久久久久久精品| 制服人妻中文乱码| 少妇的丰满在线观看| 久久久国产一区二区| 大片电影免费在线观看免费| 日韩一卡2卡3卡4卡2021年| 啦啦啦在线免费观看视频4| 亚洲av片天天在线观看| 日本猛色少妇xxxxx猛交久久| 色综合欧美亚洲国产小说| 亚洲欧洲日产国产| 色婷婷av一区二区三区视频| 日本午夜av视频| 少妇的丰满在线观看| 啦啦啦在线免费观看视频4| 日韩 亚洲 欧美在线| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区三区在线| 91成人精品电影| 免费看不卡的av| 19禁男女啪啪无遮挡网站| 亚洲一码二码三码区别大吗| 久久免费观看电影| 电影成人av| 1024视频免费在线观看| 国产极品粉嫩免费观看在线| 极品人妻少妇av视频| 亚洲欧洲日产国产| av在线播放精品| 老司机深夜福利视频在线观看 | 一本—道久久a久久精品蜜桃钙片| 一级毛片电影观看| 91九色精品人成在线观看| 国产日韩欧美视频二区| 亚洲国产欧美日韩在线播放| 丝瓜视频免费看黄片| 亚洲少妇的诱惑av| 精品亚洲成a人片在线观看| 亚洲精品久久成人aⅴ小说| 日本黄色日本黄色录像| 51午夜福利影视在线观看| 国产精品国产三级专区第一集| 亚洲伊人久久精品综合| 91老司机精品| 国产成人精品久久二区二区免费| 精品福利观看| 女人高潮潮喷娇喘18禁视频| 国产一卡二卡三卡精品| 99国产综合亚洲精品| 91国产中文字幕| 国产精品亚洲av一区麻豆| xxx大片免费视频| 国产成人啪精品午夜网站| 又粗又硬又长又爽又黄的视频| 18禁黄网站禁片午夜丰满| 大型av网站在线播放| videosex国产| 亚洲一码二码三码区别大吗| 观看av在线不卡| 午夜激情久久久久久久| 青青草视频在线视频观看| 亚洲国产最新在线播放| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美日韩在线播放| 精品一区二区三卡| 亚洲av美国av| 大话2 男鬼变身卡| 国产成人影院久久av| 一级毛片 在线播放| 一级毛片电影观看| 热re99久久国产66热| 国产精品免费视频内射| 午夜激情av网站| av线在线观看网站| 人妻 亚洲 视频| 欧美人与善性xxx| 精品免费久久久久久久清纯 | 男男h啪啪无遮挡| 少妇 在线观看| videos熟女内射| 午夜免费男女啪啪视频观看| 国产精品香港三级国产av潘金莲 | 日本av手机在线免费观看| 校园人妻丝袜中文字幕| 久久人人爽av亚洲精品天堂| 男女国产视频网站| 国产1区2区3区精品| 美女福利国产在线| 日韩免费高清中文字幕av| 好男人视频免费观看在线| 日日爽夜夜爽网站| 国产免费视频播放在线视频| 啦啦啦中文免费视频观看日本| 99久久99久久久精品蜜桃| 免费一级毛片在线播放高清视频 | 国产成人一区二区在线| 男人添女人高潮全过程视频| 国产精品国产av在线观看| 男人添女人高潮全过程视频| 国产精品二区激情视频| 老汉色av国产亚洲站长工具| 国产不卡av网站在线观看| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 秋霞在线观看毛片| 99精国产麻豆久久婷婷| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 夫妻性生交免费视频一级片| 啦啦啦在线观看免费高清www| 国产亚洲av高清不卡| 亚洲视频免费观看视频| av福利片在线| 日本欧美国产在线视频| 18禁国产床啪视频网站| 99热网站在线观看| 亚洲精品成人av观看孕妇| 欧美日本中文国产一区发布| 十分钟在线观看高清视频www| 国产精品久久久久久精品电影小说| 国产一卡二卡三卡精品| 十分钟在线观看高清视频www| a 毛片基地| 蜜桃在线观看..| 精品熟女少妇八av免费久了| 无限看片的www在线观看| 欧美变态另类bdsm刘玥| 视频区图区小说| 亚洲欧美清纯卡通| 一本一本久久a久久精品综合妖精| 国产国语露脸激情在线看| 最近手机中文字幕大全| 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 少妇 在线观看| 黄色一级大片看看| 成人国语在线视频| 妹子高潮喷水视频| 大话2 男鬼变身卡| 国精品久久久久久国模美| 少妇精品久久久久久久| 成人黄色视频免费在线看| 好男人视频免费观看在线| 亚洲国产看品久久| 黄色片一级片一级黄色片| 又黄又粗又硬又大视频| 91精品三级在线观看| 色婷婷av一区二区三区视频| 亚洲五月色婷婷综合| 亚洲国产日韩一区二区| 一本色道久久久久久精品综合| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 国产成人欧美在线观看 | 久久久精品国产亚洲av高清涩受| 久久久久网色| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 性色av一级| 最近中文字幕2019免费版| av一本久久久久| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| 2021少妇久久久久久久久久久| 黄片小视频在线播放| 亚洲欧美成人综合另类久久久| 热99国产精品久久久久久7| 国产成人一区二区在线| 美女扒开内裤让男人捅视频| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 亚洲精品久久午夜乱码| 午夜福利一区二区在线看| bbb黄色大片| 老司机在亚洲福利影院| 最近中文字幕2019免费版| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| 操出白浆在线播放| 国产视频一区二区在线看| 亚洲国产日韩一区二区| 国产高清videossex| 日韩制服丝袜自拍偷拍| 免费人妻精品一区二区三区视频| 精品久久久精品久久久| 国产精品九九99| 精品欧美一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 亚洲av电影在线观看一区二区三区| 婷婷成人精品国产| 久久久久久久久久久久大奶| 99国产精品99久久久久| 亚洲成av片中文字幕在线观看| 首页视频小说图片口味搜索 | 一级毛片 在线播放| 韩国高清视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 人人澡人人妻人| 在线观看人妻少妇| 少妇人妻 视频| 少妇 在线观看| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| 国产精品香港三级国产av潘金莲 | 精品视频人人做人人爽| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的| 亚洲人成77777在线视频| 男女高潮啪啪啪动态图| 极品少妇高潮喷水抽搐| 女警被强在线播放| 婷婷成人精品国产| 汤姆久久久久久久影院中文字幕| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区| 亚洲欧洲日产国产| 国产真人三级小视频在线观看| 亚洲人成电影免费在线| 国产精品免费视频内射| 狠狠婷婷综合久久久久久88av| 亚洲情色 制服丝袜| 搡老岳熟女国产| 亚洲色图 男人天堂 中文字幕| 成年人午夜在线观看视频| www.av在线官网国产| 日本猛色少妇xxxxx猛交久久| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 成年人午夜在线观看视频| 看十八女毛片水多多多| 精品一区二区三区av网在线观看 | 欧美精品亚洲一区二区| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 十八禁高潮呻吟视频| 日韩大码丰满熟妇| 一级a爱视频在线免费观看| 免费高清在线观看日韩| 50天的宝宝边吃奶边哭怎么回事| 精品一品国产午夜福利视频| 国产成人欧美在线观看 | 国产男人的电影天堂91| 极品少妇高潮喷水抽搐| 亚洲国产av新网站| 成人国产一区最新在线观看 | 亚洲少妇的诱惑av| 18禁黄网站禁片午夜丰满| 国产精品一二三区在线看| 成年美女黄网站色视频大全免费| 中文字幕高清在线视频| 啦啦啦 在线观看视频| 国产精品欧美亚洲77777| av在线app专区| 亚洲美女黄色视频免费看| 男人爽女人下面视频在线观看| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| kizo精华| 欧美日韩亚洲国产一区二区在线观看 | 多毛熟女@视频| 女人高潮潮喷娇喘18禁视频| 国产极品粉嫩免费观看在线| 免费在线观看影片大全网站 | 热re99久久国产66热| 高清视频免费观看一区二区| 免费av中文字幕在线| 韩国精品一区二区三区| 久久精品久久久久久噜噜老黄| 激情视频va一区二区三区| 交换朋友夫妻互换小说| 热99国产精品久久久久久7| 免费高清在线观看日韩| 亚洲av片天天在线观看| 久久女婷五月综合色啪小说| 久久 成人 亚洲| 午夜福利,免费看| 多毛熟女@视频| 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 亚洲国产成人一精品久久久| 两性夫妻黄色片| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| a 毛片基地| 亚洲欧美精品自产自拍| 老司机亚洲免费影院| 久久中文字幕一级| 婷婷色综合www| 亚洲中文av在线| 校园人妻丝袜中文字幕| 国产欧美日韩精品亚洲av| 中国国产av一级| 国产主播在线观看一区二区 | 久久av网站| 多毛熟女@视频| 国产真人三级小视频在线观看| 国产成人免费观看mmmm| 免费黄频网站在线观看国产| 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 亚洲欧美成人综合另类久久久| 少妇粗大呻吟视频| 别揉我奶头~嗯~啊~动态视频 | 十八禁网站网址无遮挡| 欧美久久黑人一区二区| 一本一本久久a久久精品综合妖精| 国产高清videossex| 久久亚洲精品不卡| 国产精品三级大全| 亚洲精品久久成人aⅴ小说| 777米奇影视久久| 免费黄频网站在线观看国产| 性少妇av在线| 人人妻,人人澡人人爽秒播 | 欧美成人精品欧美一级黄| 又大又爽又粗| 午夜两性在线视频| 如日韩欧美国产精品一区二区三区| 亚洲成人免费电影在线观看 | 亚洲专区中文字幕在线| 国产欧美日韩综合在线一区二区| 成人国产一区最新在线观看 | 美女中出高潮动态图| 两人在一起打扑克的视频| 亚洲图色成人| 老司机午夜十八禁免费视频| 97在线人人人人妻| 色婷婷av一区二区三区视频| 无遮挡黄片免费观看| 成人国产av品久久久| 日本欧美国产在线视频| 国产成人精品无人区| 国产老妇伦熟女老妇高清| 免费观看人在逋| 精品少妇内射三级| 欧美日韩综合久久久久久| 精品卡一卡二卡四卡免费| 国产一区二区激情短视频 | 成人国产一区最新在线观看 | 欧美黑人精品巨大| 久久久久精品国产欧美久久久 | 欧美人与善性xxx| 黄片播放在线免费| 精品人妻熟女毛片av久久网站| 精品一区二区三区av网在线观看 | 欧美日韩亚洲高清精品| 久久久精品国产亚洲av高清涩受| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 免费少妇av软件| 婷婷丁香在线五月| 精品人妻在线不人妻| 黑人猛操日本美女一级片| 午夜免费观看性视频| √禁漫天堂资源中文www| 国产av一区二区精品久久| 亚洲欧洲日产国产| 尾随美女入室| 日日爽夜夜爽网站| 欧美日韩综合久久久久久| 午夜福利影视在线免费观看| 国产成人精品无人区| 亚洲国产精品成人久久小说| 麻豆av在线久日| 亚洲欧美激情在线| 日本色播在线视频| 亚洲图色成人| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频在线观看免费| 免费久久久久久久精品成人欧美视频| 成人午夜精彩视频在线观看| 国产高清国产精品国产三级| 99国产精品免费福利视频| av国产精品久久久久影院| 女性生殖器流出的白浆| 一本综合久久免费| 欧美在线一区亚洲| 亚洲三区欧美一区| 久9热在线精品视频| 欧美日韩黄片免| 中文字幕人妻熟女乱码| 久久精品国产a三级三级三级| 七月丁香在线播放| 国产日韩欧美在线精品| 欧美中文综合在线视频| 久久天堂一区二区三区四区| 欧美日韩视频高清一区二区三区二| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区久久久樱花| 国语对白做爰xxxⅹ性视频网站| 欧美xxⅹ黑人| 狂野欧美激情性bbbbbb| 亚洲熟女精品中文字幕| 欧美+亚洲+日韩+国产| 精品国产一区二区久久| 亚洲成人免费av在线播放| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 国产亚洲精品久久久久5区| 欧美人与性动交α欧美精品济南到| 天天躁夜夜躁狠狠躁躁| 日韩中文字幕视频在线看片| 久久久精品免费免费高清| 亚洲情色 制服丝袜| 国产精品九九99| 国产成人精品久久二区二区免费| 男女免费视频国产| 黄网站色视频无遮挡免费观看| 制服诱惑二区| 亚洲av在线观看美女高潮| 精品熟女少妇八av免费久了| 亚洲av国产av综合av卡| 婷婷色综合www| 成人亚洲精品一区在线观看| 免费av中文字幕在线| 久久国产精品男人的天堂亚洲| 成人国产av品久久久| 国产一区亚洲一区在线观看| 日韩制服丝袜自拍偷拍| 美女主播在线视频| 久久久精品区二区三区| 中国美女看黄片| 欧美精品啪啪一区二区三区 | a级片在线免费高清观看视频| 狂野欧美激情性xxxx| 新久久久久国产一级毛片| 一区二区av电影网| 免费在线观看影片大全网站 | 精品高清国产在线一区| 欧美激情极品国产一区二区三区| 久久99热这里只频精品6学生| 午夜福利,免费看| 亚洲av电影在线观看一区二区三区| 久热这里只有精品99| 国产精品欧美亚洲77777| 国产精品香港三级国产av潘金莲 | 亚洲第一av免费看| 男人操女人黄网站| 国产精品一区二区免费欧美 | 精品久久久久久久毛片微露脸 | 99热网站在线观看| 久久久久久人人人人人| 高清黄色对白视频在线免费看| netflix在线观看网站| 亚洲中文av在线| 啦啦啦中文免费视频观看日本| 国产亚洲欧美在线一区二区| 亚洲av片天天在线观看| 人妻一区二区av| 夫妻午夜视频| 久久天堂一区二区三区四区| 日韩av免费高清视频| 国产精品香港三级国产av潘金莲 | av天堂在线播放| 99热国产这里只有精品6| 亚洲av综合色区一区| 日韩av在线免费看完整版不卡| 国产日韩欧美视频二区| 1024视频免费在线观看| 美女国产高潮福利片在线看| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 啦啦啦 在线观看视频| 欧美久久黑人一区二区| 亚洲,欧美精品.| xxxhd国产人妻xxx| 国产欧美日韩精品亚洲av| 国产一区二区 视频在线| 亚洲视频免费观看视频| 亚洲精品久久午夜乱码| 久久久久精品人妻al黑| av天堂久久9| 亚洲,欧美精品.| 国产精品一区二区在线不卡| 欧美人与善性xxx| 午夜福利视频精品| 捣出白浆h1v1| 欧美日韩视频高清一区二区三区二| 蜜桃在线观看..| 青春草亚洲视频在线观看| www.999成人在线观看| 久久综合国产亚洲精品| 18禁国产床啪视频网站| 国产人伦9x9x在线观看| 免费看不卡的av| 久久ye,这里只有精品| 国产91精品成人一区二区三区 | 黄色一级大片看看| 各种免费的搞黄视频| 久热这里只有精品99| www.熟女人妻精品国产| 国产不卡av网站在线观看| 男女边吃奶边做爰视频| 日韩欧美一区视频在线观看| 久久久久久久久免费视频了| 捣出白浆h1v1| 亚洲av片天天在线观看| 大陆偷拍与自拍| 高清欧美精品videossex| 电影成人av| 国产精品久久久久久精品电影小说| 在线看a的网站| 国产老妇伦熟女老妇高清| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 国产精品国产三级专区第一集| 一区二区三区激情视频| 91国产中文字幕| 久久久精品区二区三区| 中文欧美无线码| 欧美日韩亚洲高清精品| 十分钟在线观看高清视频www| 美女午夜性视频免费| 中文字幕色久视频| 在线观看人妻少妇| 少妇人妻久久综合中文| 三上悠亚av全集在线观看| 香蕉国产在线看| 黄色 视频免费看| 国产极品粉嫩免费观看在线| 亚洲 国产 在线| 日本一区二区免费在线视频| 午夜精品国产一区二区电影| 日韩制服骚丝袜av| 91成人精品电影| 一本色道久久久久久精品综合| 欧美97在线视频| 日韩av免费高清视频| kizo精华| 脱女人内裤的视频| 老司机影院毛片| 老司机亚洲免费影院| 久久免费观看电影| 精品国产超薄肉色丝袜足j| 中文字幕人妻熟女乱码| 日本五十路高清| 午夜激情久久久久久久| 国产又色又爽无遮挡免| 久久国产精品人妻蜜桃| 女性生殖器流出的白浆| 婷婷色综合www| 久久久久久久久久久久大奶| 天堂俺去俺来也www色官网| 日本av免费视频播放| 国产深夜福利视频在线观看| 啦啦啦在线观看免费高清www| 国产91精品成人一区二区三区 | 后天国语完整版免费观看| 一区二区三区激情视频| 欧美日韩一级在线毛片| 日韩电影二区| 国产免费一区二区三区四区乱码| 日韩av不卡免费在线播放| 涩涩av久久男人的天堂| xxxhd国产人妻xxx| 一级,二级,三级黄色视频| 国产亚洲精品第一综合不卡| 免费在线观看日本一区| 久久久亚洲精品成人影院| 亚洲精品一区蜜桃| 我的亚洲天堂| 电影成人av| 国产亚洲av片在线观看秒播厂| 美国免费a级毛片| 国产精品一国产av| 一区福利在线观看| 大片免费播放器 马上看| 国产黄频视频在线观看| 日韩电影二区| 丰满少妇做爰视频| 欧美人与性动交α欧美精品济南到| 久热这里只有精品99| 最近手机中文字幕大全| 国产熟女午夜一区二区三区| 亚洲人成网站在线观看播放| 我要看黄色一级片免费的| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三 | 国产精品一二三区在线看| av网站在线播放免费| 天天添夜夜摸| 精品少妇一区二区三区视频日本电影| 国产欧美日韩综合在线一区二区| 搡老岳熟女国产|