• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and characterization of 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenyl phenyl grafted polysiloxane as stationary phase for gas chromatography

    2017-04-10 10:09:18WANGHuanHANXueHEXinxinWANGBingWUBo
    色譜 2017年4期
    關(guān)鍵詞:毛細(xì)管柱聚硅氧烷二苯基

    WANG Huan, HAN Xue, HE Xinxin, WANG Bing, WU Bo

    (School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China)

    Article

    Synthesis and characterization of 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenyl phenyl grafted polysiloxane as stationary phase for gas chromatography

    WANG Huan, HAN Xue, HE Xinxin, WANG Bing, WU Bo*

    (SchoolofChemistryandChemicalEngineering,ShandongUniversity,Jinan250100,China)

    A new high-temperature stationary phase called 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenyl phenyl grafted polysiloxane (DPFP) was synthesized and statically coated on fused-silica capillary columns. The chromatogram of the polyethylene pyrolysis products showed that the DPFP column still owned good separation ability until 360 ℃. The column efficiency of the DPFP was 3 324 plates/m (retention factor (k)=4.24, naphthalene, 0.25 mm i. d.). McReynolds constants revealed that the polarity of the stationary phase was moderate. Abraham system constants indicated that DPFP possessed strong dipole-induced dipole interactions and H-bond acceptance with analytes. Analysis of Grob test mixtures showed good selectivity of DPFP and inner-surface inertness of the column. Furthermore, the aromatic isomers, substituted benzenes, polycyclic aromatic hydrocarbons, and fatty acid esters could be well separated on the column, thereby indicating that DPFP had great potential for application.

    polysiloxanes; gas chromatography (GC); stationary phases; thermal stability; selectivity

    In the past a few decades, capillary gas chromatography (GC) has been widely used in petroleum chemical industry, pesticide analysis and environment monitoring fields [1-4]; different kinds of polysiloxane stationary phases have been synthesized to cater to the demands in GC [5-6]. Peaden et al. [7] synthesized a series of functionalized polysiloxanes containing polarizable biphenyl, naphthyl, and phenoxy phenyl side groups for GC separations. Relying on the “softer” dipole-induced dipole interactions with the analytes, these stationary phases were good candidates for a number of isomer separation. However, the molecular weight of the functionalized polysiloxanes was not high enough, which led to poor thermal-stability below 280 ℃. Takayama et al. [8] synthesized a high-temperature siloxane polymer stationary phase that contained silarylene grafted to the main chain. This phase decomposed at 380 ℃, which indicated that silarylene-containing moieties began to be eliminated and that the stationary phase became highly cross-linked and solidified. Mayer et al. [9] synthesized 75% diphenyl and 25% dimethyl polysiloxane (SOP-75), which was coated on a fused silica capillary for high-temperature GC. Accordingly, the phase offered particular selectivity and high inertness up to 400 ℃. However, the high content of rigid diphenyl weakened its coating efficiency and column efficiency.

    According to the aforementioned researches, the high content of aromatic rings introduced into the backbone or side chain of polysiloxanes is extremely important to the thermal stability and selectivity of the polysiloxanes stationary phases; however, their presence may lead to structure stiffness. To avoid this problem, the present study has synthesized a series of multiphenyl rings instead of single benzene rings as side groups. Zhao et al. [10] reported diphenyl-phenyl polysiloxanes as a GC stationary phase. A wide operating temperature range (30-330 ℃) and unique selectivity were obtained by the introduction of the diphenyl-phenyl group. Then a 3,4-di(trifluoromethyl phenyl)-2,5-diphenyl phenyl grafted polysiloxane was also synthesized to strengthen the polarity and selectivity of the stationary phase, thus leading to better separation performance for polar compounds and aromatic isomers [11].

    A higher number of conjugate aromatic rings leads to a higher average molecular polarizability of side groups. The average molecular polarizability of 2,3-di(3-phenoxy-4-fluoro phenyl)-1,4-diphenyl phenyl with seven aromatic rings was 6.53×10-2nm3(calculated according to Ref. [12]). This value was much higher than those of benzene (1.04×10-2nm3), biphenyl (2.00×10-2nm3), diphenyl-phenyl (2.97×10-2nm3), and 2,3-di(trifluoromethyl phenyl)-1,4-diphenyl phenyl (5.10×10-2nm3). When 2,3-di(3-phenoxy-4-fluoro phenyl)-1,4-diphenyl phenyl is used as a side chain grafted onto the backbone of polysiloxanes, the increased polarizability will strengthen the dipole-induced dipole interactions between the grafted polysiloxanes and polar compounds. The side chain will also strengthen its dispersive interaction with nonpolar compounds.

    In this study, a novel 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenyl phenyl grafed polysiloxane (DPFP) stationary phase was synthesized. Then the phase was coated on the inner of the fused-silica capillary column. The column was evaluated for its thermal stability, column efficiency, polarity, selectivity, and repeatability. After that, disubstituted benzene isomers, polycyclic aromatic mixtures, polycyclic aromatic hydrocarbons (PAHs), fatty acid esters (FAEs), and fatty alcohols were used to test the DPFP column separation capability.

    1 Experimental

    1.1 Apparatus and reagents

    The apparatus used for the column evaluation was a GC-2014C (Shimadzu Scientific Instruments Inc, Kyoto, Japan) equipped with a split/splitless injector and a flame ionization detector. The carrier gas was nitrogen (N2, 99.999%). The column efficiency was evaluated by measuring the number of plates per meter for naphthalene at 120 ℃.1H nuclear magnetic resonance (NMR) spectra in CDCl3were recorded on a DPX 300 spectrometer (Bruker Analytische Messtechnik, Karlsruhe, Germany). FT-IR was evaluated on an FTIR-8400S (Shimadzu Scientific Instruments Inc, Kyoto, Japan). Thermal stability was evaluated on an LCT-2 themogravimetric analysis (TGA) system (Beijing Optical Instrument Factory, Beijing, China).

    All the chemicals or reagents used in this study, except 3-phenyoxyl-4-fluoro-benzaldehyde, were of analytical grade, and they were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). 3-Phenyoxyl-4-fluoro-benzaldehyde was industrial grade; it was purchased from Shanghai Lanrun Chemical Co., Ltd. (Shanghai, China). Octamethylcyclotetra-siloxane and 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotet-rasiloxane were purchased from Dow Corning Corporation (Michigan, USA). Grob test mixtures were prepared according to the procedure mentioned in Ref. [13]. Polyethylene pyrolysis samples were prepared according to Ref. [14]. Fused silica capillary tubes (0.25 mm i.d.) were produced in our laboratory from fiber-level (SiO2, 99.999%) raw tubes by using a self-made drawing machine. The commercial DB-17 capillary column (30 m×0.25 mm i. d., film thickness 0.50 μm) was purchased from Agilent Technologies (Palo Alto, USA).

    1.2 Polymer synthesis

    DPFP was prepared via the Diels-Alder reaction, as shown in Fig. 1.

    Fig. 1 Synthesis routes of DPFPMe: CH3; Vi: CH=CH2.

    1.2.1 Synthesis of 1,2-di(3-phenoxy-4-fluoro phenyl)-2-hydroxyethan-one

    3-Phenyoxy-4-fluoro-benzaldehyde of 17.3 g (80 mmol) and thiamine hydrochloride (VB1) of 2.0 g (6.5 mmol) were dissolved in 25.0 mL of KOH ethanol solution (1.0 mol/L) under a nitrogen atmosphere. The reaction was run at 60 ℃ for 2 h and filtered after cooling. The crude product was recrystallized using ethanol. Light yellow crystal product (13.0 g) was obtained, and the yield was about 75% (melting point (m. p.): 132.1-133.4 ℃).

    1.2.2 Synthesis of 3,3′-diphenoxy-4,4′-difluorobenzil

    1,2-Di(3-phenoxy-4-fluoro phenyl)-2-hydroxy-ethanone at 9.9 g (23 mmol), anhydrous cupric sulfate at 0.8 g (4 mmol), and ammonium nitrate at 2.0 g (25 mmol) were dissolved in 35.0 mL of 80% (v/v) acetic acid. The reaction was refluxed at 140 ℃ for 90 min and filtered after cooling. The crude product was recrystallized using ethanol. Yellow crystal product (7.8 g) was obtained, and the yield was about 79% (m. p.: 165.4-166.7 ℃).

    1.2.3 Synthesis of 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenylcyclo-pentadienone

    3,3′-Diphenoxy-4,4′-difluorobenzil of 7.0 g (16 mmol) and 1,3-diphenylacetone of 3.7 g (18 mmol) were dissolved in 30.0 mL of ethanol under a nitrogen atmosphere. KOH ethanol solution (3 mol/L) at 2.5 mL was added into the solution. The mixture was stirred at boiling temperature for 45 min and filtered after cooling. The crude product was recrystallized using ethanol/toluene (1∶1, v/v). Bright black crystals (8.2 g) were obtained, and the yield was about 85% (m.p.: 228.5-229.3 ℃). The structure was analyzed by means of1H NMR (300 MHz, CDCl3): 6.49-6.53 (d, 3H, Ar-H), 6.67-6.71 (d, 2H, Ar-H), 7.01-7.10 (m, 3H, Ar-H), 7.13-7.28 (m, 5H, Ar-H).

    1.2.4 Synthesis of DPFP

    Methyl vinyl polysiloxanes with a 15% vinyl side chain was obtained according to Ref. [15]. Methyl vinyl polysiloxane (3.38 g, containing 6.6 mmol vinyl side chain) and 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenylcyclopentadienone (6.0 g, 9.9 mmol) were dissolved in 50.0 mL of diphenyl ether and heated at 240 ℃ for 48 h under a nitrogen atmosphere. The solution was opaque black purple, and numerous bubbles were formed. The reaction was terminated until the solution turned to transparent burgundy and without bubbles. After cooling, the solution was divided into two layers, and the upper diphenyl ether layer was removed to obtain the polymer. For purification, the product was dissolved in 10.0 mL of toluene and precipitated with 25.0 mL of methanol. This step was repeated thrice. Finally, the solvent was evaporated by vacuum distillation to obtain a clear, pale yellowish highly-viscous gum. The yield of gum (4.7 g) obtained was about 65.8%. The structure of the DPFP was analyzed by FT-IR and1H NMR, FT-IR (KBr): 3 064.3 cm-1[γ(Ar-H)]; 2 962.3, 1 511.4 cm-1[γ(C-H)]; 1 589.4, 1 410.5 cm-1[γ(CH=CH2)]; 1 490.2 cm-1[γ(C-F)]; 1 261.0, 802.4 cm-1[γ(Si-CH3)]; 1 213.8 cm-1[γ(C-O-C)]; 1 106.2, 1 022.3 cm-1[γ(O-Si-O)]; 700.5 cm-1[(δ(Ar-H)].1H NMR (CDCl3, 300 MHz,δ): 6.48-6.52 (m, 12H, Ar-H), 6.85-6.94 (m, 8H, Ar-H), 7.01-7.06 (m, 12H, Ar-H), 7.20-7.25 (m, 20H, Ar-H), 7.54 (s, 2H, Ar-H). Peaks at 5.99 and 0.069 were respectively attributed to vinyl and C-H on Si atoms in the skeleton of polysiloxane. The results of gel permeation chromatography showed the number of average molecular weight (Mn) was 1.20×105with the average molecular weight ratio (Mw/Mn) of 1.51.

    1.3 Capillary column preparation

    The fused silica capillary column (30 m×0.25 mm i. d.) was treated according to Ref. [16]. Before coating, the capillary tube was rinsed with 5.0 mL of dichloromethane. Then it was purged with nitrogen at 260 ℃ for 1 h. The fused silica capillary column was statically coated with a solution of DPFP (0.02 g) in 2.5 mL dichloromethane (containing 5.0% (wdicumylperoxide/wDPFP) dicumylperoxide as a free radical initiator). After the coating procedure, the column was conditioned from 50 to 160 ℃ (maintained for 2 h) at 1 ℃/min and then to 370 ℃ at 1 ℃/min (maintained for 24 h) under a nitrogen flow. The film thickness of the capillary column used in this work was calculated to be 0.50 μm [17]. The 10 m-long DPFP column was prepared by using a similar method.

    2 Results and Discussion

    2.1 Polymer characterization by NMR spectroscopy

    Based on1H NMR data, the DPFP contained about 12.5% 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenyl phenyl groups and was estimated from the ratio of integral atδ6.43-7.54 (attributed to Ar-H) to that at aboutδ0.069×10-6(0.069 ppm) (attributed to Si-CH3) [18]. The contents of the remaining vinyl groups were determined to be 2.4%, which divided the integral atδ5.99 ppm (attributed to CH=CH2) with that at aboutδ0.069 ppm (attributed to Si-CH3).

    2.2 Thermal stability of DPFP

    To evaluate the thermal stability of the DPFP polymer, TGA was conducted. As shown in Fig. 2, the DPFP began to decompose slightly at 390 ℃. After reaching 420 ℃, the DPFP began to show more drastic weight loss.

    Fig. 2 TGA curve of DPFP polymer The weight of sample was 10 mg and the operating temperature range was from 25 to 700 ℃ at a rate of 10 ℃/min under helium atmosphere.

    Fig. 3 GC separation of the polyethylene pyrolysis products on the DPFP column Conditions: N2 linear velocity, 14 cm/s; 100 ℃ (maintained for 2 min) increased to 370 ℃ at 15 ℃/min (maintained for 7 min); injection split ratio, 30∶1; both injector and detector temperatures, 400 ℃. Peaks: hydrocarbons, from C13 to C60.

    To provide further evidence of the temperature resistance of the DPFP column, the polyethylene pyrolysis products were separated on the DPFP column (10 m×0.25 mm i. d.). As shown in Fig. 3, the polyethylene pyrolysis products were baseline separated. All compounds were well separated with almost symmetrical peak shapes within 27 min. The DPFP column was still effective for separating pyrolysis products when aged at 370 ℃ for 24 h.

    2.3 Column efficiency and selectivity of DPFP

    The efficiency of the column was evaluated by measuring the number of plates per meter at 120 ℃ for naphthalene at a linear velocity of 10 cm/s. The column efficiency of the DPFP column was 3 324 plates/m (k=4.24, naphthalene, 0.25 mm i. d.), and the coating efficiency of the DPFP column was 68.7% [19]. Degree of cross-linking was 81.2%, and this was calculated from the capacity factor after rinsing with 5.0 mL of dichloromethane divided by that of the column tested previously [10].

    The chromatogram of Grob test mixtures is shown in Fig. 4. The Grob test is well-recognized for comprehensive evaluation of separation performance of a column. The figure showed that all compounds were well-separated, indicating that this new stationary phase had good film-forming capability. The elution order of Grob test mixtures on the DPFP column was similar to that on OV-17 (50% diphenyl-50% dimethyl polysiloxane) [20] except for am, which was eluted after E11. Notably, A was eluted after P, this result revealed that the new stationary phase retained alkaline analytes more strongly than acidic ones. The tailing factor of peak ol on the DPFP column was 1.19, thereby indicating that hydrogen bonding adsorption could be formed on the fused-silica capillary in the DPFP column.

    Fig. 4 Chromatogram of Grob test mixture on DPFP column Conditions: N2 linear velocity, 12 cm/s; 40 to 160 ℃ at 3 ℃/min; injection split ratio, 30∶1; both injector and detector temperatures, 200 ℃. Peaks: 1. hexane; 2. trichloromethane; D. 2,3-butanediol; C10. decane; C11. undecane; ol. 1-octanol; al. nonanal; S. 2-ethylhexanoic acid; P. 2,6-dimethylphenol; A. 2,6-dimethylaniline; E10. methyl decanoate; E11. methyl undecanoate; am. dicyclohexylamine; E12. methyldodecanoate.

    2.4 McReynolds constants and Abraham system constants

    Rohrschneider-McReynolds constants were commonly used to characterize the polarity of a GC stationary phase. Each probe molecule interacted with the stationary phase in a particular way:X′, dispersive interactions;Y′, proton donor and acceptor capabilities;Z′, dipolar interactions and weak proton acceptor;U′, dipolar interactions;S′, strong proton acceptor capabilities. Table 1 lists the Rohrschneider-McReynolds constants of DPFP, DB-17, FPP (3,4-bis(4-fluorophenyl)-2,5-diphenyl polysiloxane) and TFPP (3,4-bis(3,4,5-trifluoro phenyl)-2,5-diphenyl polysiloxane) at 120 ℃ [21,22]. The CP-index(which was calculated from the sum of the first 5 Rohrschneider-McReynolds constants divided by the sum of the Rohrschneider-McReynolds constants of OV-275 multiplied by 100) of DPFP was 19.4, thereby indicating that the polarity of DPFP was moderate. The polarity of DPFP was higher than that of FPP and TFPP, but lower than DB-17. Given that the values ofU′,Z′, andS′ were relatively high, the major interactions between analytes and the DPFP stationary phase were dipolar interactions and H-bond acceptor interactions.

    The Abraham solvation parameter model can offer a straightforward approach to evaluate the individual inter-molecular interactions between probe compounds and GC stationary phases [23,24]. Table 2 lists the Abraham system constants of DPFP, DB-17 and TFPP at 80, 100, and 120 ℃ [22,25]. The statistical data in Table 2 prove that the DPFP stationary phase promotes acidic non-hydrogen bonding (b=0). Compared with DB-17, DPFP exhibited similare,s, andlvalues but much higheravalue, thereby suggesting its stronger H-bond basicity interactions with analytes. Moreover, the much highere,svalues were obtained on DPFP than TFPP, which may mainly result from the increased polarizability of 3,4-di(3-phenoxy-4-fluoro phenyl)-2,5-diphenyl phenyl group. Thus DPFP is expected to have better separation performance for polar and have easily polarizable compounds than DB-17 and TFPP columns.

    Table 1 Rohrschneider-McReynolds constants of DPFP, DB-17, FPP and TFPP stationary phases

    Table 2 Abraham system constants of the DPFP, DB-17 and TFPP stationary phases

    cis a system constant without any meaning;e,s,a,b,l,n, andR2stand forπ-π/n-πinteractions, dipole/polarizable interactions, H-bond basicity, H-bond acidity, dispersive interactions, number of solutes used in multiple linear regression, and coefficient of determination, respectively.

    Table 3 Separation of aromatic isomers on the DPFP capillary column

    α: relative retention.d: 2,4- difluorobenzaldehyde,e: 2,5- difluorobenzaldehyde,f: 3,5-difluorobenzaldehyde.

    2.5 Applications

    The retention factors and relative retention values of the disubstituted benzene isomers on DPFP columns are shown in Table 3. All positional isomers were eluted according to their boiling points. The tested weak polar isomers, such as xylenes, achieved better separation on the DPFP column than on OV-1701 (7% cyanopropyl-7% phenyl polysiloxane) and SOP-50-Octyl (50%n-octylmethyl-50% diphenyl polysiloxane) [18,26]. Moreover, the tested strong polar isomers, such as nitroaniline, were separated more efficiently than the weak polar isomers, which may be a result of the sensitive dipole-induced dipole interactions between DPFP and polar solutes.

    Fig. 5 Chromatograms of substituted benzenes on DPFP column Conditions: N2 linear velocity, 10 cm/s; 70 ℃ (maintained for 5 min) increased to 250 ℃ at 5 ℃/min; injection split ratio, 30∶1; both injector and detector temperatures, 300 ℃. Peaks: 1. benzene; 2. toluene; 3. ethylbenzene; 4. chlorobenzene; 5. m-xylene; 6. p-methylchlorobenzene; 7. m-dichlorobenzene; 8. 1,2,4-trimethylbenzene; 9. nitrobenzene; 10. butylbenzene; 11. o-methylnitrobenzene; 12. o-ethylnitrobenzene; 13. p-dibromobenzene; 14. p-methylnitrobenzene; 15. p-nitrochlorobenzene; 16. p-nitrobromobenzene; 17. biphenyl; 18. diphenylmethane; 19. 1-methyl-2,4-dinitrobenzene; 20. 1-chloro-2,4-dinitrobenzene.

    The separations of the substituted benzene mixtures on DPFP and DB-17 are illustrated in Fig. 5. It could be seen that all tested substituted benzene mixtures were well separated with narrow and symmetrical peaks on DPFP, while it could not be done on DB-17. This result is related to the multiphenyl-phenyl group grafted on the side chain of polysiloxane with bulky mobileπ-bonding electrons. The fluorine introduced to the polycyclic phenyl group will strengthen the polarity and selectivity of the stationary phase and provide a more abundant function mechanism. The unique structure of the new stationary phase was able to strengthen both the dipole-induced dipole interaction with polar solutes as well as the dispersive interaction with nonpolar solutes.

    Meanwhile, Fig. 6 shows the chromatogram of PAHs on the DPFP column in which baseline separation could be achieved. Even though the boiling points of the substances were nearly the same, they could also be completely separated, as seen in peak 10 (o-dihydroacenaphthylene, boiling point (b. p.): 279.0 ℃) and peak 11 (2-ethoxynaphthalene, b. p.: 282.0 ℃). This phenomenon may be a result of the large aromaticπ-conjugate structure of the DPFP, which made the DPFP column had good behavior in the separation of PAHs. Given that most of the PAHs were environmental contaminants, the DPFP column has significant potential applications in environmental analyses.

    Fig. 6 Chromatogram of PAHs on DPFP column Conditions: N2 linear velocity, 10 cm/s; 100 ℃ (maintained for 5 min) increased to 320 ℃ at 6 ℃/min; injection split ratio, 30∶1; both injector and detector temperatures, 350 ℃. Peaks: 1. benzene; 2. decahydronaphthalene; 3. tetralin; 4. naphthalene; 5. 1-benzothiophene; 6. 1-methylnaphthalene; 7. biphenyl; 8. diphenylmethane; 9. 8-hydroxyquinoline; 10. o-dihydroacenaphthylene; 11. 2-ethoxynaphthalene; 12. p-naphthoquinone; 13. dibenzylether; 14. 4-hydroxybiphenyl; 15. 1-nitronaphthalene; 16. phenanthrene; 17. benzil; 18. phenanthrenequinone; 19. triphenylmethane; 20. fluoranthene; 21. pyrene; 22. 1-hydroxyanthraquinone; 23. tetraphenylmethane; 24. 1,8-dihydroxyanthraquinone.

    Fig. 7 Chromatograms of FAEs on the DPFP column and DB-17 column Conditions: N2 linear velocity, 10 cm/s; 35 ℃ (maintained for 5 min) increased to 160 ℃ at 5 ℃/min, then at 10 ℃/min to 280 ℃; injection split ratio, 30∶1; both injector and detector temperatures, 300 ℃. Peaks: 1. methanol; 2. ethylformate; 3. methylacetate; 4. ethylacetate; 5. 2-methylmethacrylate; 6. n-butylformate; 7. methyl 3,3-dimethacrylate; 8. n-butylacetate; 9. iso-butylacetate; 10. ethyl butyrate; 11. ethyl acetate; 12. iso-amylacetate; 13. n-ethylvalerate; 14. n-butylbutyrate; 15. ethylcaproate; 16. ethylcyanoacetate; 17. carbitolacetate; 18. benzylacetate; 19. methyldecanoate; 20. methyl 10-undecenate; 21. methyldodecanoate; 22. ethylundecylenate.

    Fig. 8 Chromatograms of fatty alcohols on the DPFP column and DB-17 column Conditions: N2 linear velocity, 10 cm/s; 35 ℃ (maintained for 8 min) increased to 100 ℃ at 3 ℃/min, then at 5 ℃/min to 300 ℃; injection split ratio, 20∶1; both injector and detector temperatures, 350 ℃. Peaks: 1. methanol; 2. ethylalcohol; 3. iso-propanol; 4. t-butylalcohol; 5. allylalcohol; 6. trichloromethane; 7. n-propanol; 8. 1-methylpropanol; 9. iso-butylalcohol; 10. 2-methyl-2-butanol; 11. 2-methyl-1-propanol; 12. n-butylalcohol; 13. iso-amylalcohol; 14. 3-methyl-1-butanol; 15. n-pentanol; 16. 2-methyl-1-pentanol; 17. n-hexanol; 18. 4-hydroxy-4-methyl-2-pentanone; 19. 3-methyl-2-buten-1-ol; 20. n-heptanol; 21. 2-ethylhexanol; 22. 2-octanol; 23. n-octanol; 24. menthol; 25. n-nonanol; 26. 2-(2-ethoxyethoxy)-ethanol; 27. n-decanol; 28. n-undecanol; 29. laurylalcohol; 30. n-dodecanethiol; 31. myristylalcohol; 32. n-pentadecanol; 33. n-hexadecanol; 34. heptadecanol; 35. stearylalcohol; 36. oleoylalcohol; 37. n-icosanol.

    To further evaluate the separation ability of DPFP, FAEs and fatty alcohols were separated on the DPFP and the commercial DB-17 under same conditions. Results of the comparison are shown in Figs. 7 and 8.

    Fig. 7 shows the separation results of FAEs. All compounds were well-separated, with sharp and symmetric peak shapes on the DPFP column except peak 14 (n-butyl butyrate, b. p.: 166.5 ℃) and peak 15 (ethyl caproate, b. p.: 167.0 ℃). Furthermore, the results show a much better resolution for the analytes than the commercial DB-17 column that failed to resolve some peak pairs of the analytes, i. e., peak 17 (benzylacetate, b. p.: 206.0 ℃) and peak 18 (carbitolacetate, b. p.: 218.0 ℃). In addition, the elution orders of peak 17 and peak 18 on the DB-17 column were in opposition to those on the DPFP column. Moreover, the DPFP column exhibited different retention behaviors from the commercial column; the weak polar analytes exhibited shorter retentions on DB-17. Overall, the results indicated that this new stationary phase has the advantage over commercial columns because of the separation of the weak polar substances.

    Additionally, Fig. 8 shows the chromatogram of fatty alcohols. That baseline separation of most components was achieved indicates the high separation efficiency of the DPFP column. The peaks of alcohols were slightly tailed, which could be attributed to the hydrogen bond basicity of the DPFP stationary phase. Compared with the column DPFP, several peaks could not be separated well on DB-17, i. e., peak 7 (n-propanol, b. p.: 97.2 ℃) and peak 8 (1-methylpropanol, b. p.: 98.0 ℃), peak 16 (2-methyl-1-pentanol, b. p.: 148.0 ℃) and peak 17 (n-hexanol, b. p.: 155.8 ℃), which indicates that the DPFP column has a higher selectivity. In addition, the elution time of the fatty alcohols on DB-17 was shorter than that on DPFP. This result might be related to the unique structure of the new stationary phase, which could increase dipole-induced dipole interaction and H-bonding interactions with the alcohols. Furthermore, the DB-17 column began to show a slight baseline drift at 300 ℃, whereas the DPFP column showed a smooth baseline under the same condition. The above results suggest that the new DPFP stationary phase has a superior separation performance to the commercial one.

    2.6 Column repeatability

    Table 4 shows the repeatability of retention times of the analytes after the column was conditioned up to the indicated temperatures for 6 h. As shown, the retention times of almost all the analytes remained almost unchanged with the relative standard deviation (RSDs) not more than 2.51%. Moreover, with RSDs of retention time not more than 4.58% for column-to-column, the DPFP columns were well repeatable and reproducible.

    Table 4 Separation repeatability of DPFP column

    3 Conclusions

    In this study, DPFP was synthesized and coated on the inside wall of the fused-silica capillary columns. It exhibited good coating ability, high thermal stability, and good separation repeatability. McReynolds constants indicated that the polarity of the stationary phase was moderate. Moreover, the solvation parameter evaluation showed that the DPFP stationary phase exhibited strong dipole-induced dipole interactions and H-bond acceptor. However, it had slightly weak dispersive interactions with solutes. The excellent selectivity of the DPFP column can be used to separate substituted benzenes, PAHs, FAEs, and fatty alcohols. This extensive applicability suggests that the DPFP stationary phase has a good application potential in GC.

    [1] Liu Y R, Jiang J J, Liu Z L, et al. Chinese Journal of Chromatography, 2016, 34(2): 215

    [2] Liu X Q, Tong L, Meng W T, et al. Chinese Journal of Chromatography, 2015, 33(8): 869

    [3] Peng S N, Wang Q Q, Fang L L, et al. Chinese Journal of Chromatography, 2014, 32(1): 69

    [4] Yan L F, Lü Y, Shao L, et al. Chinese Journal of Chromatography, 2014, 32(12): 1295

    [5] Chen G, Zhao X J, Xing J, et al. Chinese Journal of Chromatography, 2014, 32(10): 1117

    [6] Curat A, Tisse S, Andrieu A, et al. Chromatographia, 2014, 77 (23): 1671

    [7] Peaden P A, Wright B W, Lee M L, et al. Chromatographia, 1982, 15: 335

    [8] Takayama Y, Takeichi T, Kawai S, et al. J Chromatogr A, 1990, 514: 259

    [9] Mayer B X, Z?llner P, Lorbeer E, et al. J Sep Sci, 2002, 25: 60

    [10] Zhao P C, Teng S, Yu M, et al. Anal Methods, 2015, 7: 1333

    [11] Zhao P C, Liu L, Yu M, et al. Anal Methods, 2014, 6: 6278

    [12] Miller K J, Savchik J A. J Am Chem Soc, 1979, 101: 7206

    [13] Grob J K, Grob G, Grob K. J Chromatogr A, 1978, 156: 1

    [14] Zhao P C, Niu Y Y, Liu L, et al. RSC Adv, 2015, 5: 22399

    [15] Feng S Y. Silicone Polymers and Their Applications. Beijing: Chemical Industry Press, 2004: 79

    [16] Mayer B X, K?hilig H, Rauter W, et al. J Chromatogr A, 2003, 993: 59

    [17] Anderson J L, Armstrong D W. Anal Chem, 2005, 77: 6453

    [18] Mayer B X, K?hlig H, Rauter W, et al. Analyst, 2003, 128: 1238

    [19] Giddings J C. Anal Chem, 1964, 36: 741

    [20] Grob K, Grob G. J Chromatogr A, 1981, 207: 291

    [21] McReynolds W O. J Chromatogr Sci, 1970, 8: 685

    [22] Han X, He X X, Wang H, et al. J Chromatogr A, 2016, 1449: 118

    [23] Abraham M H, Whiting G S, Doherty R M, et al. J Chromatogr A, 1990, 518: 329

    [24] Wang Y Z, Qi M L, Fu R N. RSC Adv, 2015, 5: 76007

    [25] Poole C F, Poole S K. J Chromatogr A, 2008, 1184: 254

    [26] Sun X J, Zhu Y L, Xing J, et al. J Chromatogr A, 2011, 1218: 833

    3,4-二(3-苯氧基-4-氟苯基)-2,5-二苯基苯基接枝聚硅氧烷氣相色譜固定相的合成與表征

    王 歡, 韓 雪, 賀新新, 王 冰, 吳 波*

    (山東大學(xué)化學(xué)與化工學(xué)院, 山東 濟南 250100)

    合成了一種耐高溫的3,4-二(3-苯氧基-4-氟苯基)-2,5-二苯基苯基接枝聚硅氧烷(DPFP)固定相,使用靜態(tài)涂漬法將其涂漬到毛細(xì)管柱內(nèi)壁上,制成氣相色譜柱。分離裂解乙烯的色譜圖顯示DPFP固定相在360 ℃時仍具有良好的分離能力。DPFP固定相的柱效為3 324塊/米(保留因子(k)4.24,萘,0.25 mm i. d.)。麥克雷諾常數(shù)計算結(jié)果顯示DPFP固定相屬中等極性。溶劑化參數(shù)模型結(jié)果顯示DPFP固定相與溶質(zhì)之間的主要作用力為偶極-誘導(dǎo)偶極作用力、氫鍵堿性作用力。Grob試劑分離結(jié)果顯示DPFP色譜柱具有良好的選擇性與惰性。另外,芳香族同分異構(gòu)體、苯取代物、多環(huán)芳烴、脂肪酸酯及脂肪醇都得到了良好的分離,表明DPFP固定相在應(yīng)用方面有巨大的潛力。

    聚硅氧烷;氣相色譜;固定相;耐溫性;選擇性

    10.3724/SP.J.1123.2016.07026

    Foundation item: National Natural Science Foundation of China (No. 21275090); Technology Development Plan of Shandong Province (No. 2014GGX107010).

    O658 Document code: A Article IC:1000-8713(2017)04-0388-10

    * Received date: 2016-07-21

    * Corresponding author. Tel: (0531)88369277, E-mail: wubo@sdu.edu.cn.

    猜你喜歡
    毛細(xì)管柱聚硅氧烷二苯基
    二苯基二甲氧基硅烷中多氯聯(lián)苯的脫除研究
    山東化工(2019年7期)2019-04-27 07:39:28
    丁二酮肟重量法測定雙二苯基膦二茂鐵二氯化鈀中鈀的含量的研究
    用毛細(xì)管色譜柱代替填充柱測定空氣中硫化物
    環(huán)境監(jiān)測色譜分析中色譜柱的選擇研究
    綠色科技(2017年16期)2017-09-22 20:11:13
    二苯基甲烷二異氰酸酯擴鏈改性聚碳酸亞丙酯
    中國塑料(2017年2期)2017-05-17 06:13:27
    硝基苯及雜質(zhì)含量測定方法的建立
    細(xì)乳液法制備聚硅氧烷-Ag納米復(fù)合微球及其抗菌性
    聚硅氧烷微球擴鏈改性聚乳酸熔體流動行為的研究
    中國塑料(2015年7期)2015-10-14 01:02:36
    大環(huán)聚硅氧烷的研究進展
    四苯基卟啉鈀(Ⅱ)/9,10-二苯基蒽弱光上轉(zhuǎn)換體系的介質(zhì)效應(yīng)
    啦啦啦韩国在线观看视频| 午夜福利在线观看吧| 男插女下体视频免费在线播放| 一本一本综合久久| 国产单亲对白刺激| 少妇的逼水好多| 国产黄片美女视频| 日韩av在线免费看完整版不卡| 午夜a级毛片| 久久久精品94久久精品| 美女内射精品一级片tv| 插阴视频在线观看视频| 中文字幕免费在线视频6| 国产极品精品免费视频能看的| 男人舔奶头视频| 天天躁夜夜躁狠狠久久av| 国产真实伦视频高清在线观看| 七月丁香在线播放| 国产黄片视频在线免费观看| 久久久久性生活片| 日韩视频在线欧美| 欧美变态另类bdsm刘玥| 国产黄片美女视频| av免费观看日本| 黑人高潮一二区| 久久99热这里只频精品6学生 | 男女边吃奶边做爰视频| 中文资源天堂在线| 免费黄网站久久成人精品| 高清毛片免费看| 中国美白少妇内射xxxbb| 看免费成人av毛片| 可以在线观看毛片的网站| 国产爱豆传媒在线观看| 3wmmmm亚洲av在线观看| 搡女人真爽免费视频火全软件| 精品不卡国产一区二区三区| 在线天堂最新版资源| 中文字幕免费在线视频6| 一卡2卡三卡四卡精品乱码亚洲| 久久精品久久久久久久性| 成人午夜高清在线视频| 欧美bdsm另类| 少妇人妻一区二区三区视频| www.色视频.com| 最近最新中文字幕免费大全7| 精品久久久久久久久av| 淫秽高清视频在线观看| 亚洲自偷自拍三级| 我要看日韩黄色一级片| 亚洲av成人av| 亚洲av成人av| 久久综合国产亚洲精品| 国产亚洲午夜精品一区二区久久 | 免费看美女性在线毛片视频| 少妇裸体淫交视频免费看高清| 国产精品爽爽va在线观看网站| 精品久久久久久久久av| 国产成年人精品一区二区| 国国产精品蜜臀av免费| 国产成人精品婷婷| 99在线人妻在线中文字幕| or卡值多少钱| 欧美成人一区二区免费高清观看| 亚洲欧美中文字幕日韩二区| 热99re8久久精品国产| 亚洲国产成人一精品久久久| 直男gayav资源| 国产精品野战在线观看| 久久久久国产网址| 少妇熟女aⅴ在线视频| 国产探花极品一区二区| 熟女电影av网| 日本wwww免费看| 国产亚洲最大av| 男插女下体视频免费在线播放| 成人亚洲精品av一区二区| 国产精品麻豆人妻色哟哟久久 | 国产高清三级在线| 搞女人的毛片| av在线蜜桃| 久久久久久伊人网av| 免费大片18禁| 少妇熟女欧美另类| 亚洲在线观看片| 女人久久www免费人成看片 | 欧美成人a在线观看| 秋霞在线观看毛片| 午夜视频国产福利| 男人舔奶头视频| АⅤ资源中文在线天堂| 亚洲五月天丁香| 国产在视频线精品| 99久久人妻综合| 久久久久久久久久成人| 国产 一区精品| 有码 亚洲区| 最近手机中文字幕大全| 中文字幕人妻熟人妻熟丝袜美| 亚洲最大成人中文| 亚洲精品亚洲一区二区| 久久久久久国产a免费观看| 一级毛片我不卡| 中文字幕免费在线视频6| 国产伦一二天堂av在线观看| 只有这里有精品99| 听说在线观看完整版免费高清| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 一个人看的www免费观看视频| av在线观看视频网站免费| 爱豆传媒免费全集在线观看| videossex国产| 老司机福利观看| 18+在线观看网站| 国产一级毛片七仙女欲春2| 精品久久久久久电影网 | 亚洲丝袜综合中文字幕| 国产精品一区二区性色av| 国产私拍福利视频在线观看| 亚洲精品国产av成人精品| 国产精品永久免费网站| 国产精品国产高清国产av| 村上凉子中文字幕在线| av在线天堂中文字幕| 最近2019中文字幕mv第一页| 久久久欧美国产精品| 麻豆久久精品国产亚洲av| 日韩欧美三级三区| 国产精华一区二区三区| 亚洲在线自拍视频| 日本免费在线观看一区| 亚洲精品乱久久久久久| 久久久久网色| 看黄色毛片网站| 成人毛片60女人毛片免费| 国产私拍福利视频在线观看| videossex国产| 免费黄网站久久成人精品| 九草在线视频观看| 精品久久久久久电影网 | 99久久人妻综合| 欧美激情久久久久久爽电影| 欧美bdsm另类| 97热精品久久久久久| 日本三级黄在线观看| 免费av不卡在线播放| 亚洲精品日韩av片在线观看| 成人漫画全彩无遮挡| 精品人妻熟女av久视频| 国产91av在线免费观看| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| 综合色丁香网| 亚洲成人久久爱视频| 久久精品熟女亚洲av麻豆精品 | 久久99热6这里只有精品| 亚洲人成网站在线观看播放| 日本免费一区二区三区高清不卡| 床上黄色一级片| 久久久色成人| 免费人成在线观看视频色| av.在线天堂| 99久久精品热视频| 亚洲最大成人手机在线| 天堂网av新在线| 亚洲中文字幕一区二区三区有码在线看| 国产私拍福利视频在线观看| 国产单亲对白刺激| 国产精品一区二区性色av| 美女xxoo啪啪120秒动态图| 欧美成人午夜免费资源| 亚洲精品乱码久久久久久按摩| 久久99热这里只频精品6学生 | 免费看a级黄色片| 亚洲aⅴ乱码一区二区在线播放| 一级爰片在线观看| 2021天堂中文幕一二区在线观| a级毛片免费高清观看在线播放| 久久久精品欧美日韩精品| 成人三级黄色视频| 国产成人福利小说| 国产片特级美女逼逼视频| 午夜久久久久精精品| 日本黄色视频三级网站网址| 在线免费观看的www视频| 亚洲aⅴ乱码一区二区在线播放| 人妻少妇偷人精品九色| 男女那种视频在线观看| 国语自产精品视频在线第100页| 国产 一区精品| 日韩成人av中文字幕在线观看| 麻豆乱淫一区二区| 免费av观看视频| 日本免费一区二区三区高清不卡| 一边亲一边摸免费视频| 亚洲国产精品成人久久小说| 国产日韩欧美在线精品| 国产老妇女一区| 亚洲在线自拍视频| 在线播放无遮挡| 亚洲精品久久久久久婷婷小说 | 美女内射精品一级片tv| 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 国产成人精品婷婷| 久久精品国产鲁丝片午夜精品| 日韩av在线免费看完整版不卡| 六月丁香七月| 亚洲成av人片在线播放无| 久久久成人免费电影| 亚洲欧美一区二区三区国产| 欧美三级亚洲精品| 在线观看美女被高潮喷水网站| 又爽又黄a免费视频| 国产极品天堂在线| 在现免费观看毛片| 三级经典国产精品| 青青草视频在线视频观看| 国产高清三级在线| 久久婷婷人人爽人人干人人爱| 久久精品夜色国产| 永久网站在线| 亚洲精品影视一区二区三区av| 青春草视频在线免费观看| 26uuu在线亚洲综合色| 简卡轻食公司| 国产免费男女视频| 国产亚洲午夜精品一区二区久久 | 又爽又黄无遮挡网站| 久久精品91蜜桃| 综合色丁香网| 日韩在线高清观看一区二区三区| 亚洲国产欧洲综合997久久,| 国产乱人偷精品视频| 亚洲精品aⅴ在线观看| 国产一区二区亚洲精品在线观看| av女优亚洲男人天堂| 秋霞伦理黄片| 日韩一本色道免费dvd| 亚洲av电影在线观看一区二区三区 | 国产v大片淫在线免费观看| 九草在线视频观看| 国产成人免费观看mmmm| 好男人视频免费观看在线| 成人二区视频| 中文资源天堂在线| 欧美日韩精品成人综合77777| 毛片女人毛片| 一个人看的www免费观看视频| 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高清国产精品国产三级 | 国产精品女同一区二区软件| 赤兔流量卡办理| 免费av毛片视频| 女人被狂操c到高潮| 日韩欧美 国产精品| 少妇猛男粗大的猛烈进出视频 | 一级毛片aaaaaa免费看小| 国产伦精品一区二区三区视频9| 免费黄色在线免费观看| 国产免费福利视频在线观看| 午夜老司机福利剧场| 国产伦在线观看视频一区| 亚洲自偷自拍三级| 欧美成人午夜免费资源| 欧美bdsm另类| 晚上一个人看的免费电影| 日韩人妻高清精品专区| 精品久久久久久久末码| 女人久久www免费人成看片 | 高清午夜精品一区二区三区| 免费搜索国产男女视频| 麻豆成人av视频| 中文精品一卡2卡3卡4更新| 91精品国产九色| ponron亚洲| 午夜免费激情av| 天天一区二区日本电影三级| 国产高清国产精品国产三级 | 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 亚洲精品,欧美精品| 日韩亚洲欧美综合| 国产精品久久久久久久电影| 六月丁香七月| 黄色日韩在线| 性插视频无遮挡在线免费观看| 欧美人与善性xxx| 国产一区二区亚洲精品在线观看| 免费人成在线观看视频色| 日日撸夜夜添| 在线播放国产精品三级| 亚洲欧美成人综合另类久久久 | 免费电影在线观看免费观看| 久久精品国产鲁丝片午夜精品| 哪个播放器可以免费观看大片| 最近2019中文字幕mv第一页| 在线观看av片永久免费下载| 水蜜桃什么品种好| 久久热精品热| 日韩 亚洲 欧美在线| 欧美三级亚洲精品| 亚洲四区av| 黄色日韩在线| 国模一区二区三区四区视频| 在线观看66精品国产| 女人十人毛片免费观看3o分钟| 亚洲国产日韩欧美精品在线观看| 九九热线精品视视频播放| 十八禁国产超污无遮挡网站| 高清日韩中文字幕在线| 乱码一卡2卡4卡精品| 在线观看一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲自拍偷在线| 久久久久性生活片| 国产av在哪里看| 久99久视频精品免费| av天堂中文字幕网| 麻豆国产97在线/欧美| 国产精品蜜桃在线观看| 国产熟女欧美一区二区| 九九热线精品视视频播放| 成人二区视频| 精品国产露脸久久av麻豆 | 亚洲欧美成人综合另类久久久 | 爱豆传媒免费全集在线观看| 精品人妻熟女av久视频| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 99热6这里只有精品| 夫妻性生交免费视频一级片| a级毛片免费高清观看在线播放| 成年av动漫网址| 国产免费一级a男人的天堂| 日本免费a在线| 夜夜爽夜夜爽视频| 村上凉子中文字幕在线| 秋霞在线观看毛片| 亚洲精品,欧美精品| 国产中年淑女户外野战色| 久久热精品热| 99热全是精品| 村上凉子中文字幕在线| 如何舔出高潮| 国内揄拍国产精品人妻在线| 亚洲不卡免费看| 国产不卡一卡二| 91精品国产九色| 亚洲国产精品sss在线观看| 久久精品久久久久久久性| 日本五十路高清| 免费黄色在线免费观看| 2021天堂中文幕一二区在线观| 久久精品国产亚洲网站| 久久99精品国语久久久| 久久久国产成人精品二区| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 国产精品av视频在线免费观看| 亚洲精品456在线播放app| 汤姆久久久久久久影院中文字幕 | 最近视频中文字幕2019在线8| 国产v大片淫在线免费观看| 成人毛片60女人毛片免费| av视频在线观看入口| 美女被艹到高潮喷水动态| 最新中文字幕久久久久| 亚洲国产色片| 国产白丝娇喘喷水9色精品| 国产高清国产精品国产三级 | 午夜福利在线观看免费完整高清在| 偷拍熟女少妇极品色| 老师上课跳d突然被开到最大视频| 蜜臀久久99精品久久宅男| 亚洲综合精品二区| 麻豆成人av视频| 五月玫瑰六月丁香| 午夜福利成人在线免费观看| 91午夜精品亚洲一区二区三区| 日本欧美国产在线视频| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 天堂中文最新版在线下载 | 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲av片在线观看秒播厂 | 国产亚洲最大av| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 日本熟妇午夜| 亚洲精品影视一区二区三区av| 黄色日韩在线| 亚洲va在线va天堂va国产| 亚洲电影在线观看av| 亚洲欧美日韩高清专用| 亚洲精品日韩在线中文字幕| 男人狂女人下面高潮的视频| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 97在线视频观看| 午夜视频国产福利| 一级毛片久久久久久久久女| 99久久九九国产精品国产免费| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 国产在视频线精品| 22中文网久久字幕| 久久久国产成人精品二区| eeuss影院久久| 亚洲人成网站在线播| 免费av毛片视频| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 91狼人影院| 狠狠狠狠99中文字幕| 九草在线视频观看| 国产黄色小视频在线观看| 久久久久久久久中文| 国产高清视频在线观看网站| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 少妇熟女欧美另类| 日韩精品青青久久久久久| 国产片特级美女逼逼视频| 亚洲经典国产精华液单| 观看美女的网站| 伦精品一区二区三区| or卡值多少钱| 啦啦啦韩国在线观看视频| 爱豆传媒免费全集在线观看| 免费黄网站久久成人精品| www日本黄色视频网| 国产精品一二三区在线看| 欧美一区二区精品小视频在线| 男女视频在线观看网站免费| 久久久久免费精品人妻一区二区| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 国产av在哪里看| 热99re8久久精品国产| 三级国产精品欧美在线观看| 亚洲国产最新在线播放| 国产精品国产高清国产av| 天美传媒精品一区二区| 91精品一卡2卡3卡4卡| 亚洲欧洲日产国产| 国产免费又黄又爽又色| 99久久精品热视频| 欧美另类亚洲清纯唯美| 精华霜和精华液先用哪个| 成人毛片a级毛片在线播放| 三级经典国产精品| 九九热线精品视视频播放| 天堂网av新在线| av免费在线看不卡| 亚洲久久久久久中文字幕| 国产 一区精品| 麻豆乱淫一区二区| 麻豆久久精品国产亚洲av| 一级毛片我不卡| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 国产亚洲精品av在线| 亚洲国产欧美人成| 成人一区二区视频在线观看| 黑人高潮一二区| 中文在线观看免费www的网站| 九九久久精品国产亚洲av麻豆| 女的被弄到高潮叫床怎么办| 自拍偷自拍亚洲精品老妇| 国产麻豆成人av免费视频| 91久久精品电影网| 大香蕉97超碰在线| 插逼视频在线观看| 亚洲四区av| 日本五十路高清| 九九爱精品视频在线观看| 亚洲一级一片aⅴ在线观看| 麻豆一二三区av精品| 久久99热这里只频精品6学生 | 久久久亚洲精品成人影院| 免费电影在线观看免费观看| 国产黄a三级三级三级人| 久久久色成人| 69av精品久久久久久| 内地一区二区视频在线| 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 插阴视频在线观看视频| 国语自产精品视频在线第100页| 国产视频首页在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品综合久久久久久久免费| 午夜亚洲福利在线播放| 亚洲国产精品国产精品| 全区人妻精品视频| 国产免费视频播放在线视频 | 中文在线观看免费www的网站| 边亲边吃奶的免费视频| 久久午夜福利片| 少妇熟女aⅴ在线视频| 深爱激情五月婷婷| 欧美潮喷喷水| 美女大奶头视频| 亚洲欧美中文字幕日韩二区| 国产在线男女| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 欧美日韩综合久久久久久| 校园人妻丝袜中文字幕| 国产在线男女| 亚洲av成人av| 在线播放国产精品三级| 国产三级在线视频| 国内精品宾馆在线| 99久久九九国产精品国产免费| 变态另类丝袜制服| 99久久成人亚洲精品观看| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 成人亚洲欧美一区二区av| or卡值多少钱| 国产精品电影一区二区三区| 日本wwww免费看| 成人鲁丝片一二三区免费| av在线蜜桃| 午夜免费激情av| 在线观看66精品国产| 一区二区三区免费毛片| 少妇熟女aⅴ在线视频| 欧美一区二区亚洲| 黄色欧美视频在线观看| 亚洲综合色惰| 国产综合懂色| 婷婷色综合大香蕉| 在线免费观看不下载黄p国产| 亚洲中文字幕一区二区三区有码在线看| 欧美成人a在线观看| 亚洲无线观看免费| 亚洲自偷自拍三级| 色尼玛亚洲综合影院| 亚洲欧美精品专区久久| 国语对白做爰xxxⅹ性视频网站| 少妇高潮的动态图| 嫩草影院新地址| 亚洲人成网站在线观看播放| 免费av毛片视频| 秋霞在线观看毛片| 国产老妇女一区| 一级毛片久久久久久久久女| 联通29元200g的流量卡| 久久精品夜夜夜夜夜久久蜜豆| 午夜激情欧美在线| 国产熟女欧美一区二区| 免费搜索国产男女视频| 亚洲性久久影院| 亚洲国产欧洲综合997久久,| 极品教师在线视频| 天天躁夜夜躁狠狠久久av| 成人无遮挡网站| 国产精品99久久久久久久久| 免费大片18禁| 国产午夜精品论理片| 偷拍熟女少妇极品色| 精品久久久久久久人妻蜜臀av| 日日撸夜夜添| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| 大香蕉97超碰在线| 色综合色国产| 欧美性猛交╳xxx乱大交人| 国产成人a区在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 又爽又黄a免费视频| 亚洲欧美成人综合另类久久久 | 国产免费一级a男人的天堂| 午夜福利在线观看吧| 日韩,欧美,国产一区二区三区 | 一级毛片aaaaaa免费看小| 我的女老师完整版在线观看| 亚洲天堂国产精品一区在线| 国产欧美另类精品又又久久亚洲欧美| 国产一级毛片在线| 久久久久精品久久久久真实原创| 国产单亲对白刺激| 黄片无遮挡物在线观看| 国产精品伦人一区二区| 黄片无遮挡物在线观看| 啦啦啦啦在线视频资源| 亚洲精品成人久久久久久| 欧美极品一区二区三区四区| 亚洲欧洲国产日韩| 99热这里只有精品一区| 久久久久久伊人网av| 国产久久久一区二区三区| 欧美日韩在线观看h| 桃色一区二区三区在线观看| 亚洲真实伦在线观看| 国产精品久久久久久久久免| 亚洲精品日韩av片在线观看| 欧美成人精品欧美一级黄| 蜜臀久久99精品久久宅男| 99热6这里只有精品| 亚洲真实伦在线观看| 欧美成人免费av一区二区三区| av国产免费在线观看| 日韩一区二区三区影片| 免费观看在线日韩| 国产亚洲av嫩草精品影院| 国产精品99久久久久久久久| 国产国拍精品亚洲av在线观看| 亚洲一区高清亚洲精品|