• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chromatin Remodeling and DNA Repair

    2017-04-10 06:48:52YANGChunying
    生物學(xué)雜志 2017年3期
    關(guān)鍵詞:染色質(zhì)普陀區(qū)基因組

    YANG Chun-ying

    (1. Putuo District people’s Hospital, Shanghai 200060, China; 2. Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA)

    Chromatin Remodeling and DNA Repair

    YANG Chun-ying1,2

    (1. Putuo District people’s Hospital, Shanghai 200060, China; 2. Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA)

    DNA damage can be induced by environmental toxicants and also endogenous sources such as reactive oxygen species or errors during DNA replication and metabolism. If these damage are not repaired, it will cause genome instability thus leading to cancer, aging, immune dysfunction, and neurodegenerative diseases. There are mainly four DNA repair pathways for those DNA damage, including DNA double strand break repair, nucleotide excision repair, base excision repair and mismatch repair. All the repairs must be processed within the context of chromatin. Growing evidence show that nucleosome organization and chromatin structure surrounding the damage sites regulate the DNA repair machinery to access and repair the DNA damage. This article presents most recent highlights of chromatin remodeling in DNA repairs.

    DNA damage; DNA repair; genome instability; chromatin remodeling

    Introduction

    DNA damage accumulates in cells when exposure to environmental toxins, chemicals, ionizing radiation (IR) and ultraviolet (UV) radiation[1-2]. Endogenous reactive oxygen species (ROS) or errors during DNA replication and recombination and metabolism are another source of DNA damage[3]. If those damage are unrepaired or mis-repaired, it will cause genome instability, thus leading to carcinogenesis or age-related diseases. There are four primary well-studied DNA repair pathways, namely, IR and some drugs induced DNA double strand break repair (DSBR), UV radiation induced nucleotide excision repair (NER), ROS induced oxidized base excision repair (BER), and mismatch repair (MMR). As in most biological processes, DNA repair is coordinated via multi-step signaling mechanisms, including nucleosome remodeling, which may be specific to the cell cycle phase and the chromatin state. As the genome is condensed into chromatin, DNA repair must be regulated at the chromatin level. The intrinsic link between chromatin modifications and DNA repair has been well documented in those four repair pathways. Determining how DNA damage DNA is sensed and corrected in chromatin is critical to our understanding of genome stability and its effects on human diseases including cancer.

    Chromatin Remodeling

    Chromatin consists of nucleosome and chromatin fiber. Nucleosomes are composed of a core histone octamer wrapped by 147 base-pair (bp) of DNA. The octamer is made of a (H3-H4)2tetramer associated with two H2A-H2B dimers. H1, as a linker, directs the path of DNA between the nucleosomes thus making up the chromatin fiber. Chromatin structure and nucleosome packing represent a significant barrier to the efficient detection and repair of all kinds of DNA damage. Accumulating evidences demonstrate that chromatin remodeling has a regulatory function in DNA replication, recombination and repair. The "access-repair-restore" model shows the impact of chromatin on DNA repair[4], which provides a molecular framework for chromatin dynamics in response to DNA damage and repair those damage.

    Histone modification is the most well documented mechanism in altering chromatin structure in DNA repair, including phosphorylation, methylation, acetylation, ubiquitination and SUMOylation[5]. Those histone modifications can change chromatin to either open or condense the chromatin structure in a dynamic way. Namely methylation/demethylation, acetylation/deacetylation, ubiquitination/deubiquitination,phosphorylation/dephosphorylation, SUMOylation/deSUMOylation work likely as switchers to open or close chromatin structure for efficient repair. Therefore, large protein complexes are involved in these processes. Elucidating the dynamic interplay of histone post-translational modification and chromatin associated proteins will help understand how DNA damage are repaired in chromatin.

    Chromatin Remodeling during DSB Repair

    DNA double strand breaks are considered to be the most lethal type of DNA damage. Ionizing radiations, genotoxic chemicals, and therapeutic treatment including chemotherapy and radiation therapy can cause DSBs. Failure in repairing DSB can cause genomic instability thus leading to tumorigenesis, aging and neurogenesis. DSBs are repaired mainly via three different repair pathways, namely the high fidelity homologous recombination (HR), error-prone non homologous end joining (NHEJ), and alternative end joining (Alt-EJ). The chromatin factors mediating repair of these lesions have been extensively investigated. In response to DSBs, the MRN complex (MRE11, NBS1 and Rad51) will recruit the ataxia telangiectasia-mutated (ATM) kinase to the DSBs sites, thus activating ATM kinase by auto-phosphorylation on serine 1981[6]. The activated ATM will phosphorylate H2AX on serine 139 which is called γH2AX[7-8], to amplify the damage signal. Then DSB repair machinery are recruited to DSBs sites for efficient repairing. The γH2AX is the most well-documented histone modification in response to DSBs, and is also considered as a DSB marker monitoring if the DSBs get repaired or not.

    In addition to γH2AX, other histone modifications are also required for efficient DSBs repair. H3 K79 methylation and H4 K20 dimethylation (H4K20me2) are recognized by 53BP1 at the DSBs[9-11]. H3 K9 trimethylaiton (H3K9me3) activates TIP60 histone acetyl-transferase (HAT) activity at the damage site[11]. Both Histone H4 and ATM kinase are acetylated by TIP60 and acetylated ATM activates ATM kinase to further stimulate γH2AX formation[12-13]. The H4K16 acetylation mediated by another HAT MOF, recruits repair proteins MDC1, 53BP1 and Brca1 to the DSB sites[14-16]. H2B K120 monoubiquitination is required for recruitment of both HR and NHEJ repair proteins, mightily by regulating chromatin condensation thereby facilitating the repair machinery at DSB sites[17-18]. RNF8 and RNAF168 mediated H2A/H2A.X ubiquitination retains 53BP1 and Brca1 at the break site[19-21]. E3 SUMO ligases PIAS1 and PIAS4 are required for the recruitment of DNA repair proteins to DSBs[22]. SUMOylation is becoming a hot spot in DNA double strand breaks response and repair[23-24]. The SUMOylation sites of histones need to be determined in the future studies.

    Chromatin Remodeling during Nucleotide Excision Repair

    The environmental mutagen UV light induces 6-4 pyrimidone photoproduts (6-4PPs) and cyclobutane pyrimidine dimers (CPDs) which result in an abnormal DNA structure with lesion. NER removes such bulky DNA adducts that distort the double helix of DNA. There are two major NER subpathways which depend on the lesion in transcribed strand or not. One is transcription-coupled repair (TCR) which repairs the damage on the transcribed strands of transcribing genes and involves RNA polymerase II in damage recognition. The other is global genomic repair (GGR) which repairs damage that occurs on all DNA including nontranscribed and repressed regions of the genome, requiring a unique subset of proteins to recognize the DNA damage. The primary difference between TCR and GGR is the damage recognition step. Once the damage is recognized and theses two pathways use the same repair proteins in the following steps in a "cut-and-paste-like" mechanism[25]. The 10-subunit TFIIH complex and XPG are recruited to the lesion. ERCC1/XPF incise the DNA followed by DNA synthesis and strand ligation steps to complete the repair.

    Chromatin structure must be altered during NER pathways because histones H3K9 and H4 K16 were rapidly acetylated after UV radiation, thus recruiting the transcription factor E2F1 which interacts with HAT GCN5[26-28]. H3K56 deacetylation has been promptly triggered by UV irradiation which promotes the recruitment of repair factors including chromatin remodelers to relax the chromatin structure allowing the NER complex to access the damage sites[29-30]. Once the damage gets repaired, two histone chaperones, anti-silencing function 1A (ASF1A) and chromatin assembly factor 1 (CAF-1), facilitate H3K56 acetylation back by recruiting HAT p300[31]. H3K79 methylation is highly increased after UV irradiation only in GGR pathway[32-33]. Histone H2A K119 ubiquitination is induced in response to UV-induced DNA damage and may function as a recognition signal for GGR pathway[34]. Most of the studies about NER and chromatin remodeling are in yeast model. Even functional human homologs can be found and the NER pathways are evolutionally conserved, it would be interesting and helpful to study the histone medications during NER in mammalian cells.

    Chromatin Remodeling during Base Excision Repair

    ROS can induce oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs). Without repair, DNA lesions would cause mutations resulting in cytotoxicity and cell death and also carcinogenesis. The BER pathway, highly conserved from bacteria to the humans, is responsible for repair of oxidized base lesions and SSBs. Defective BER has been linked to cancers, immune dysfunction, neurodegenerative diseases, and ageing. BER is initiated by a DNA glycosylase (DG) that recognize and excise damaged bases, leaving an abasic site. Then a base gap is left after the apyrimidinic/apurinic endonuclease (APE) cleaving the abasic site. Following the insertion of the missing base by DNA polymerase, DNA ligase seals the nick.

    Unlike other three repair pathways, the chromatin remodeling in BER is less studied though the link between chromatin remodeling and BER has been connected. Growing evidence indicate the involvement of chromatin remolding in BER pathway. For example, USP7, a deubiquitinase (DUB) which can remove ubiquitin from histone H2Binvitro[35-36], ensures the repair rate of oxidative bases by enhancing the accessibility of DNA to the chromatin, indicating H2B ubiquitination state regulating BER in an unknown mechanism. Therefore, it′s very interesting area for further study. Another evidence is the thymine DNA glycosylase (TDG) and the HAT p300 form a complex in chromatin which is competent for histone acetylation[37]. More recently, the big subunit of chromatin assembly factor 1, CHAF1A, has been reported that it inhibits the DG activity of NEIL1 by association with NEIL1 only in chromatin fraction[38]. In addition, some research groups performed theinvitrostudies using a nucleosome-containing template and demonstrated that BER enzymes can function properly[32, 39]. However we still don′t know theinvivomechanism. To date, no other histone modifications have been shown in affecting BER. So it would be interesting to determine the chromatin factors and histone modifications involved in BER in the future.

    Chromatin Remodeling during Mismatch Repair (MMR)

    Base mismatches, erroneous insertion, deletion, and mispairs of bases arise during replication or recombination, which are repaired via MMR. MMR is a highly conserved pathway in all species that plays an important role in maintaining genomic stability. Defects in MMR increase the spontaneous mutations result in tumorigenesis[40-42]. In mammalian cells, MMR is initiated by MutSα (MSH2 and MSH6 heterodimer) recognizing a base-base mismatch or MutSβ (MSH2 and MSH3 heterodimer) recognizing a small insertion-deletion mispair[43-44]. Then MutLα (MLH1-PMS2 heterodimer) possessing an ATPase activity is recruited to the DNA damage site and harbor latent endonuclease activity that excise the nicks[45-47].

    MMR also occurs on chromatin. MutSα can disassemble nucleosomes on heteroduplex DNA but it is insufficient to support MMR on chromatin, indicating additional chromatin remodeling factors are required for efficient MMR[48]. CAF-1 has recently been reported to facilitate nick-dependent nucleosome assembly during MMR[47]. CAF-1 interacts with MutSα, PCNA, RPA and other MMR factors. CAF-1 suppresses the MMR activity in response to a DNA methylating agent[49]. Histone modification also regulates MMR. H3K36 trimethylation (H3K36me3) interacts with MSH6 through its Pro-Trp-Trp-Pro (PWWP) domain[50]. H3 acetylation on lysine 115, 122 and 56 has been reported to enhance the remodeling function of MutSα[48]. The nucleosome disassembly activity of MutSα was dramatically increase by histone H3T118 phosphorylationinvitro[51]. Theinvivoinvestigation on H3 phosphorylation needs to be further investigated.

    Conclusion

    In this paper, the histone modification and chromatin structure in all DNA repair pathways have been extensively described. Despite the accumulating evidence indicates the regulatory roles of chromatin remodeling in DNA repairs, how histone modification alter chromatin structure and how chromatin remodelers integrate with these pathways are still unclear. Additionally, despite the emerging picture showing the involvement of chromatin structure in regulation of MMR and BER, more histone modifications remain to be identified. Collectively, elucidating the mechanism of chromatin remodeling in DNA repair would provide new insights into the mechanisms of tumorigenesis and the new molecular targets for cancer treatment.

    Reference

    [1]DOBRZYNSKA M M, RADZIKOWSKA J. Genotoxicity and reproductive toxicity of bisphenol A and X-ray/bisphenol A combination in male mice [J]. Drug Chem Toxicol, 2013, 36(1): 19-26.

    [2]MARTINEZ-PAZ P, MORALES M, MARTINEZ-GUITARTE J L, et al. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay [J]. Mutat Res, 2013, 758(1-2): 41-47.

    [3]SARNIAK A, LIPINSKA J, TYTMAN K, et al. Endogenous mechanisms of reactive oxygen species (ROS) generation [J]. Postepy Hig Med Dosw (Online), 2016, 70(0): 1150-1165.

    [4]POLO S E, ALMOUZNI G. Chromatin dynamics after DNA damage: The legacy of the access-repair-restore model [J]. DNA Repair (Amst), 2015, 36: 114-121.

    [5]MENDEZ-ACUNA L, TOMASO M V D, PALITTI F, et al. Histone post-translational modifications in DNA damage response [J]. Cytogenet Genome Res, 2010, 128(1-3): 28-36.

    [6]BAKKENIST C J, KASTAN M B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J]. Nature, 2003, 421(6922): 499-506.

    [7]BURMA S, CHEN B P, MURPHY M, et al. ATM phosphorylates histone H2AX in response to DNA double-strand breaks [J]. J Biol Chem, 2001, 276(45): 42462-42467.

    [8]ROGAKOU E P, PILCH D R, ORR A H, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 [J]. J Biol Chem, 1998, 273(10): 5858-5868.

    [9]HARTLERODE A J, GUAN Y, RAJENDRAN A, et al. Impact of histone H4 lysine 20 methylation on 53BP1 responses to chromosomal double strand breaks [J]. PLoS One, 2012, 7(11): e49211.

    [10]HSIAO K Y, MIZZEN C A. Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair [J]. J Mol Cell Biol, 2013, 5(3): 157-165.

    [11]WAKEMAN T P, WANG Q, FENG J, et al. Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases [J]. EMBO J, 2012, 31(9): 2169-2181.

    [12]MURR R, LOIZOU J I, YANG Y G, et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks [J]. Nat Cell Biol, 2006, 8(1): 91-99.

    [13]IKURA T, OGRYZKO V V, GRIGORIEV M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis [J]. Cell, 2000, 102(4): 463-473.

    [14]KRISHNAN V, CHOW M Z, WANG Z, et al. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice [J]. Proc Natl Acad Sci U S A, 2011, 108(30): 12325-12330.

    [15]CLARKE T L, SANCHEZ-BAILON M P, CHIANG K, et al. PRMT5-dependent methylation of the TIP60 coactivator RUVBL1 is a key regulator of homologous recombination [J]. Mol Cell, 2017, 65(5): 900-916.

    [16]RENAUD E, BARASCU A, ROSSELLI F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells [J]. Nucleic Acids Res, 2016, 44(2): 648-656.

    [17]HAHN M A, A DICKSON K, JACKSON S, et al. The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination [J]. Hum Mol Genet, 2012, 21(3): 559-568.

    [18]XIE A, ODATE S, CHANDRAMOULY G, et al. H2AX post-translational modifications in the ionizing radiation response and homologous recombination [J]. Cell Cycle, 2010, 9(17): 3602-3610.

    [19]MAILAND N, BEKKER-JENSEN S, FAUSTRUP H, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins [J]. Cell, 2007, 131(5): 887-900.

    [20]KOLAS N K, CHAPMAN J R, NAKADA S, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase [J]. Science, 2007, 318(5856): 1637-1640.

    [21]WANG Z, ZHANG H, LIU J, et al. USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response [J]. Genes Dev, 2016, 30(8): 946-959.

    [22]GALANTY Y, BELOTSERKOVSKAYA R, COATES J, et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks [J]. Nature, 2009, 462(7275): 935-939.

    [23]PAGET S, DUBUISSEZ M, DEHENNAUT V, et al. HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs) [J]. Oncotarget, 2017, 8(2): 2916-2935.

    [24]PFEIFFER A, LUIJSTERBURG M S, ACS K, et al. Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4 [J]. EMBO J, 2017, 36(8):1066-1083.

    [25]DE BOER J, HOEIJMAKERS J H. Nucleotide excision repair and human syndromes [J]. Carcinogenesis, 2000, 21(3): 453-460.

    [26]YU Y, TENG Y, LIU H, et al. UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus [J]. Proc Natl Acad Sci U S A, 2005, 102(24): 8650-8655.

    [27]TENG Y, LIU H, GILL H W, et al.SaccharomycescerevisiaeRad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair [J]. EMBO Rep, 2008, 9(1): 97-102.

    [28]GUO R, CHEN J, MITCHELL D L, et al. GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage [J]. Nucleic Acids Res, 2011, 39(4): 1390-1397.

    [29]RODRIGUEZ Y, HINZ J M, LAUGHERY M F, et al. Site-specific acetylation of histone H3 decreases polymerase beta activity on nucleosome core particles in vitro [J]. J Biol Chem, 2016, 291(21): 11434-11445.

    [30]ZHU Q, BATTU A, RAY A, et al. Damaged DNA-binding protein down-regulates epigenetic mark H3K56Ac through histone deacetylase 1 and 2 [J]. Mutat Res, 2015, 776: 16-23.

    [31]BATTU A, RAY A, WANI A A. ASF1A and ATM regulate H3K56-mediated cell-cycle checkpoint recovery in response to UV irradiation [J]. Nucleic Acids Res, 2011, 39(18): 7931-7945.

    [32]MENONI H, GASPARUTTO D, HAMICHE A, et al. ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes [J]. Mol Cell Biol, 2007, 27(17): 5949-5956.

    [33]VLAMING H, MOLENAAR T M, VAN WELSEM T, et al. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1 [J]. Elife, 2016, 5:e18919.

    [34]KAPETANAKI M G, GUERRERO-SANTORO J, BISI D C, et al. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites [J]. Proc Natl Acad Sci U S A, 2006, 103(8): 2588-2593.

    [35]KHORONENKOVA S V, DIANOVA I I, PARSONS J L, et al. USP7/HAUSP stimulates repair of oxidative DNA lesions [J]. Nucleic Acids Res, 2011, 39(7): 2604-2609.

    [36]LI M, CHEN D, SHILOH A, et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization [J]. Nature, 2002, 416(6881): 648-653.

    [37]TINI M, BENECKE A, UM S J, et al. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription [J]. Mol Cell, 2002, 9(2): 265-277.

    [38]YANG C, SENGUPTA S, HEGDE P M, et al. Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A [J]. Nucleic Acids Res, 2017, 45(2): 739-748.

    [39]NAKANISHI S, PRASAD R, WILSON S H, et al. Different structural states in oligonucleosomes are required for early versus late steps of base excision repair [J]. Nucleic Acids Res, 2007, 35(13): 4313-4321.

    [40]TIRABY J G, FOX M S. Marker discrimination in transformation and mutation of pneumococcus [J]. Proc Natl Acad Sci U S A, 1973, 70(12): 3541-3545.

    [41]KOLODNER R D, MARSISCHKY G T. Eukaryotic DNA mismatch repair [J]. Curr Opin Genet Dev, 1999, 9(1): 89-96.

    [42]MODRICH P, LAHUE R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology [J]. Annu Rev Biochem, 1996, 65: 101-133.

    [43]SCHOFIELD M J, HSIEH P. DNA mismatch repair: molecular mechanisms and biological function [J]. Annu Rev Microbiol, 2003, 57: 579-608.

    [44]LAHUE R S, AU K G, MODRICH P. DNA mismatch correction in a defined system [J]. Science, 1989, 245(4914): 160-164.

    [45]ZHANG Y, YUAN F, PRESNELL S R, et al. Reconstitution of 5'-directed human mismatch repair in a purified system [J]. Cell, 2005, 122(5): 693-705.

    [46]JIRICNY J. MutLalpha: at the cutting edge of mismatch repair [J]. Cell, 2006, 126(2): 239-241.

    [47]RODRIGES BLANKO E, KADYROVA L Y, KADYROV F A. DNA mismatch repair interacts with CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition [J]. J Biol Chem, 2016,291(17):9203-9217.

    [48]JAVAID S, MANOHAR M, PUNJA N, et al. Nucleosome remodeling by hMSH2-hMSH6 [J]. Mol Cell, 2009, 36(6): 1086-1094.

    [49]KADYROVA L Y, DAHAL B K, KADYROV F A. The Major replicative histone chaperone CAF-1 suppresses the activity of the DNA mismatch repair system in the cytotoxic response to a DNA-methylating agent [J]. J Biol Chem, 2016, 291(53): 27298-27312.

    [50]LI F, MAO G, TONG D, et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction withMutSalpha[J]. Cell, 2013, 153(3): 590-600.

    [51]NORTH J A, JAVAID S, FERDINAND M B, et al. Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling [J]. Nucleic Acids Res, 2011, 39(15): 6465-6474.

    2017-04-06;

    2016-04-28

    楊春英,博士,副研究員,研究方向?yàn)楸碛^遺傳與DNA損傷修復(fù)調(diào)控重大疾病和癌癥的發(fā)生發(fā)展,E-mail: yangchy930@gmail.com

    染色質(zhì)重構(gòu)與DNA損傷修復(fù)

    楊春英1,2

    (1. 上海市普陀區(qū)人民醫(yī)院, 上海 200060; 2. 美國(guó)康奈爾大學(xué)衛(wèi)理醫(yī)院 放射腫瘤學(xué)系, 休斯頓 77030)

    外界環(huán)境毒素和細(xì)胞內(nèi)源DNA復(fù)制和代謝過程中的錯(cuò)誤及活性氧都會(huì)造成DNA的損傷。如果這些DNA損傷得不到修復(fù),會(huì)造成基因組不穩(wěn)定,進(jìn)而導(dǎo)致癌癥、衰老、免疫系統(tǒng)失調(diào)和神經(jīng)退行性疾病。目前研究最為詳細(xì)的有4種DNA修復(fù)途徑,即DNA雙鏈斷裂修復(fù)、核苷酸切除修復(fù)、堿基切除修復(fù)和錯(cuò)誤配對(duì)修復(fù)。所有的DNA修復(fù)都發(fā)生在染色質(zhì)上。越來越多的證據(jù)表明核小體組織和染色質(zhì)結(jié)構(gòu)調(diào)控DNA修復(fù)蛋白復(fù)合物進(jìn)入DNA損傷處并進(jìn)行有效的修復(fù)。就染色質(zhì)重構(gòu)在DNA損傷修復(fù)中的調(diào)控機(jī)制的最新研究進(jìn)行綜述。

    DNA損傷;DNA修復(fù);基因組不穩(wěn)定;染色質(zhì)重構(gòu)

    Q523

    A

    2095-1736(2017)03-0069-05

    doi∶10.3969/j.issn.2095-1736.2017.03.069

    猜你喜歡
    染色質(zhì)普陀區(qū)基因組
    染色質(zhì)開放性與動(dòng)物胚胎發(fā)育關(guān)系的研究進(jìn)展
    哺乳動(dòng)物合子基因組激活過程中的染色質(zhì)重塑
    上海市普陀區(qū)朝春中心小學(xué)四(7)小精靈中隊(duì)
    牛參考基因組中發(fā)現(xiàn)被忽視基因
    I CAN DO A JUST DO——上海市普陀區(qū)管弄新村小學(xué)少先隊(duì)活動(dòng)掠影
    I CAN DO I JUST DO——上海市普陀區(qū)管弄新村小學(xué)少先隊(duì)活動(dòng)掠影
    染色質(zhì)可接近性在前列腺癌研究中的作用
    “哺乳動(dòng)物卵母細(xì)胞生發(fā)泡染色質(zhì)構(gòu)型的研究進(jìn)展”一文附圖
    公共租賃住房的基本公共服務(wù)可達(dá)性研究
    ——以上海市普陀區(qū)為例
    上海房地(2018年5期)2018-07-25 09:29:56
    基因組DNA甲基化及組蛋白甲基化
    遺傳(2014年3期)2014-02-28 20:58:49
    夜夜爽夜夜爽视频| 精品久久久精品久久久| 欧美日韩在线观看h| 看十八女毛片水多多多| 十八禁高潮呻吟视频 | 日韩一区二区视频免费看| 亚洲欧美一区二区三区国产| av在线播放精品| 日韩伦理黄色片| 五月开心婷婷网| 99热这里只有精品一区| 我要看日韩黄色一级片| 亚洲美女黄色视频免费看| 亚洲成色77777| 国产欧美日韩精品一区二区| 欧美+日韩+精品| 丁香六月天网| 欧美精品高潮呻吟av久久| 自线自在国产av| 精品卡一卡二卡四卡免费| 免费不卡的大黄色大毛片视频在线观看| av网站免费在线观看视频| 人体艺术视频欧美日本| 人妻 亚洲 视频| 色视频www国产| 亚洲婷婷狠狠爱综合网| 有码 亚洲区| 亚洲av成人精品一二三区| 日产精品乱码卡一卡2卡三| 最近中文字幕2019免费版| 国产av一区二区精品久久| 亚洲av不卡在线观看| 99久久综合免费| 国产男女内射视频| 日韩中字成人| 国产av码专区亚洲av| 在线观看人妻少妇| 国产美女午夜福利| av国产久精品久网站免费入址| 欧美另类一区| 亚洲伊人久久精品综合| 永久免费av网站大全| 国产在线视频一区二区| 国产色婷婷99| 婷婷色av中文字幕| 一本一本综合久久| 国产综合精华液| 日韩三级伦理在线观看| 国产午夜精品久久久久久一区二区三区| 两个人的视频大全免费| 亚洲久久久国产精品| 午夜视频国产福利| 两个人免费观看高清视频 | 精品国产露脸久久av麻豆| 18+在线观看网站| 18禁动态无遮挡网站| 免费看不卡的av| 在线 av 中文字幕| 国产免费一区二区三区四区乱码| 午夜久久久在线观看| 如日韩欧美国产精品一区二区三区 | 一级毛片 在线播放| 日本av免费视频播放| 日本黄大片高清| 免费大片黄手机在线观看| 欧美变态另类bdsm刘玥| 久久久久久久久久久丰满| 色视频www国产| 男人爽女人下面视频在线观看| 国产成人a∨麻豆精品| 久久久精品94久久精品| 极品人妻少妇av视频| 久久国产乱子免费精品| 欧美精品人与动牲交sv欧美| 少妇高潮的动态图| 亚洲第一av免费看| 色视频www国产| 国产老妇伦熟女老妇高清| 亚洲四区av| 99九九在线精品视频 | 免费人成在线观看视频色| av在线app专区| 丝瓜视频免费看黄片| 国产精品国产三级国产专区5o| 高清欧美精品videossex| 欧美日韩国产mv在线观看视频| 91在线精品国自产拍蜜月| 伦理电影免费视频| √禁漫天堂资源中文www| 成人影院久久| 久久久国产一区二区| 成人国产av品久久久| 你懂的网址亚洲精品在线观看| 日韩成人伦理影院| 乱码一卡2卡4卡精品| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 国产伦在线观看视频一区| 赤兔流量卡办理| 免费少妇av软件| 在线亚洲精品国产二区图片欧美 | 91久久精品国产一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲综合色惰| 97超视频在线观看视频| 中国三级夫妇交换| av播播在线观看一区| 亚洲第一区二区三区不卡| 亚洲国产日韩一区二区| 成人午夜精彩视频在线观看| 国产欧美日韩精品一区二区| 一级毛片aaaaaa免费看小| 男女无遮挡免费网站观看| 免费少妇av软件| 亚洲不卡免费看| 国产精品蜜桃在线观看| 啦啦啦啦在线视频资源| 亚洲精品国产av蜜桃| 亚洲av综合色区一区| 女的被弄到高潮叫床怎么办| 亚洲不卡免费看| 青春草视频在线免费观看| 赤兔流量卡办理| 久久亚洲国产成人精品v| 九草在线视频观看| 欧美日本中文国产一区发布| 成人亚洲精品一区在线观看| 久久久久国产网址| 日本黄色日本黄色录像| 国产精品一区二区在线观看99| 成年人免费黄色播放视频 | 国产在线视频一区二区| 大香蕉久久网| 色94色欧美一区二区| 久久女婷五月综合色啪小说| 岛国毛片在线播放| 精品酒店卫生间| 黄色一级大片看看| 寂寞人妻少妇视频99o| 制服丝袜香蕉在线| 男的添女的下面高潮视频| 国产精品一区二区性色av| 精品国产露脸久久av麻豆| 免费观看av网站的网址| 我的老师免费观看完整版| 永久网站在线| 91午夜精品亚洲一区二区三区| 自拍偷自拍亚洲精品老妇| 国产真实伦视频高清在线观看| 午夜日本视频在线| 只有这里有精品99| 蜜臀久久99精品久久宅男| 汤姆久久久久久久影院中文字幕| 亚洲av国产av综合av卡| 久久久久久久久久久久大奶| 22中文网久久字幕| 精品人妻偷拍中文字幕| 日本av免费视频播放| 少妇丰满av| 黑人高潮一二区| 国产男女内射视频| 黑人猛操日本美女一级片| 成人特级av手机在线观看| 久久人人爽av亚洲精品天堂| 国产免费一区二区三区四区乱码| 亚洲欧美清纯卡通| 一本久久精品| 欧美日韩av久久| 中文字幕制服av| 国产av一区二区精品久久| 夫妻性生交免费视频一级片| 国产免费一级a男人的天堂| 国内少妇人妻偷人精品xxx网站| 日本午夜av视频| 男女边吃奶边做爰视频| 在线精品无人区一区二区三| 亚洲无线观看免费| 久久国产精品大桥未久av | 国产欧美另类精品又又久久亚洲欧美| 日韩中文字幕视频在线看片| 黑人猛操日本美女一级片| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩卡通动漫| 日韩免费高清中文字幕av| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 免费看av在线观看网站| 亚洲不卡免费看| 黄色欧美视频在线观看| 国产成人午夜福利电影在线观看| 日本黄色日本黄色录像| 日本免费在线观看一区| 夜夜看夜夜爽夜夜摸| 日韩人妻高清精品专区| 这个男人来自地球电影免费观看 | 色婷婷久久久亚洲欧美| 国产精品99久久99久久久不卡 | 男人舔奶头视频| 免费高清在线观看视频在线观看| 精华霜和精华液先用哪个| 九九久久精品国产亚洲av麻豆| av又黄又爽大尺度在线免费看| 久久久久视频综合| 美女国产视频在线观看| 各种免费的搞黄视频| 亚洲内射少妇av| 一级毛片久久久久久久久女| 亚洲国产最新在线播放| 亚洲成人一二三区av| 赤兔流量卡办理| 亚洲欧美一区二区三区黑人 | 精品国产露脸久久av麻豆| 亚洲一区二区三区欧美精品| 最新中文字幕久久久久| 少妇的逼好多水| 成人漫画全彩无遮挡| 色婷婷久久久亚洲欧美| 韩国高清视频一区二区三区| 亚洲精品乱码久久久v下载方式| 国产色婷婷99| 成年人免费黄色播放视频 | 精品久久久久久久久亚洲| 一级毛片 在线播放| 亚洲av电影在线观看一区二区三区| 能在线免费看毛片的网站| 久久人人爽人人片av| 国产爽快片一区二区三区| 免费人成在线观看视频色| 在线精品无人区一区二区三| 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 亚洲欧美成人综合另类久久久| 国产男人的电影天堂91| 偷拍熟女少妇极品色| 国模一区二区三区四区视频| 插阴视频在线观看视频| 国产乱来视频区| 日韩视频在线欧美| 岛国毛片在线播放| 边亲边吃奶的免费视频| 哪个播放器可以免费观看大片| 精品久久国产蜜桃| 亚洲,一卡二卡三卡| 一本一本综合久久| 妹子高潮喷水视频| 亚洲av成人精品一区久久| 欧美+日韩+精品| 免费观看在线日韩| 国产真实伦视频高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| 男女边吃奶边做爰视频| 久久国内精品自在自线图片| 日韩一区二区三区影片| 国产免费又黄又爽又色| 大香蕉久久网| 日韩av不卡免费在线播放| www.色视频.com| 国产综合精华液| 秋霞在线观看毛片| 晚上一个人看的免费电影| 99热这里只有是精品50| 久久女婷五月综合色啪小说| 亚洲天堂av无毛| 国产亚洲午夜精品一区二区久久| 18禁在线无遮挡免费观看视频| 国产日韩欧美视频二区| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av涩爱| 永久免费av网站大全| 搡女人真爽免费视频火全软件| av天堂久久9| 激情五月婷婷亚洲| 久久综合国产亚洲精品| 日韩强制内射视频| 啦啦啦中文免费视频观看日本| 国产成人午夜福利电影在线观看| 女人久久www免费人成看片| 久久久久久久久久久久大奶| 菩萨蛮人人尽说江南好唐韦庄| 一级二级三级毛片免费看| 丰满少妇做爰视频| a级毛色黄片| 久久精品熟女亚洲av麻豆精品| 一个人看视频在线观看www免费| 天天操日日干夜夜撸| 免费播放大片免费观看视频在线观看| 国产亚洲最大av| 午夜福利影视在线免费观看| 国产精品一二三区在线看| 国产免费又黄又爽又色| 国产高清不卡午夜福利| 一区二区三区精品91| 亚洲自偷自拍三级| 男男h啪啪无遮挡| 久久久久国产精品人妻一区二区| 国产欧美日韩一区二区三区在线 | 人妻系列 视频| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av涩爱| 日韩av不卡免费在线播放| 18禁裸乳无遮挡动漫免费视频| 国精品久久久久久国模美| 最近2019中文字幕mv第一页| 丝袜喷水一区| 伊人久久精品亚洲午夜| 边亲边吃奶的免费视频| 精品国产一区二区久久| 丰满迷人的少妇在线观看| 国产精品久久久久久精品电影小说| 精品99又大又爽又粗少妇毛片| 日韩成人伦理影院| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频| 丝袜脚勾引网站| 亚洲欧美成人精品一区二区| 欧美亚洲 丝袜 人妻 在线| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩电影二区| 九九在线视频观看精品| 国产极品粉嫩免费观看在线 | 边亲边吃奶的免费视频| 黑人高潮一二区| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 女人久久www免费人成看片| 黄片无遮挡物在线观看| 国产亚洲最大av| 国产精品嫩草影院av在线观看| 久久精品熟女亚洲av麻豆精品| 美女大奶头黄色视频| 九色成人免费人妻av| 老司机影院成人| 亚洲第一av免费看| 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 国产精品久久久久成人av| 91成人精品电影| 免费观看在线日韩| 免费不卡的大黄色大毛片视频在线观看| 精品少妇内射三级| 黑人巨大精品欧美一区二区蜜桃 | 日本猛色少妇xxxxx猛交久久| 最近2019中文字幕mv第一页| av专区在线播放| a级毛片在线看网站| 久久ye,这里只有精品| 熟女人妻精品中文字幕| 国产成人午夜福利电影在线观看| 亚洲欧美精品专区久久| 天堂8中文在线网| 久久精品国产亚洲网站| 亚洲人成网站在线观看播放| 人妻夜夜爽99麻豆av| 777米奇影视久久| 简卡轻食公司| 久久婷婷青草| 欧美日韩一区二区视频在线观看视频在线| 99久久精品热视频| 一区二区三区免费毛片| 丁香六月天网| 寂寞人妻少妇视频99o| 国产男女内射视频| 国产成人aa在线观看| 黄色欧美视频在线观看| 美女大奶头黄色视频| 偷拍熟女少妇极品色| 丰满饥渴人妻一区二区三| 熟女av电影| 午夜av观看不卡| 国产精品女同一区二区软件| 51国产日韩欧美| 久久久精品免费免费高清| 在线看a的网站| 又粗又硬又长又爽又黄的视频| 日韩亚洲欧美综合| 久久国产精品男人的天堂亚洲 | 亚洲欧洲精品一区二区精品久久久 | 成人无遮挡网站| 在线观看人妻少妇| 国产免费一级a男人的天堂| 日韩av免费高清视频| 中文乱码字字幕精品一区二区三区| av在线老鸭窝| 一级,二级,三级黄色视频| 久久久精品94久久精品| 久久亚洲国产成人精品v| 男人舔奶头视频| 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 性高湖久久久久久久久免费观看| 欧美少妇被猛烈插入视频| 99热全是精品| 国产在线免费精品| 精品久久久久久电影网| 国产在视频线精品| 国产精品不卡视频一区二区| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品古装| 精品酒店卫生间| 亚州av有码| 国产淫片久久久久久久久| 免费看不卡的av| 免费观看a级毛片全部| 18禁在线无遮挡免费观看视频| 欧美一级a爱片免费观看看| 天天操日日干夜夜撸| 青春草亚洲视频在线观看| 国产精品蜜桃在线观看| 亚洲国产日韩一区二区| 国产伦精品一区二区三区视频9| 国内精品宾馆在线| 国产午夜精品一二区理论片| 日本av免费视频播放| 亚洲成人手机| 极品少妇高潮喷水抽搐| 纵有疾风起免费观看全集完整版| 免费av中文字幕在线| 国产69精品久久久久777片| 国产在线视频一区二区| 亚洲综合色惰| 亚洲四区av| 欧美高清成人免费视频www| 国产熟女午夜一区二区三区 | 啦啦啦在线观看免费高清www| 99热6这里只有精品| 欧美日本中文国产一区发布| www.色视频.com| 国产 精品1| 亚洲国产精品999| 日本wwww免费看| 水蜜桃什么品种好| 国产欧美亚洲国产| 免费不卡的大黄色大毛片视频在线观看| a 毛片基地| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 最后的刺客免费高清国语| 精品一品国产午夜福利视频| av免费观看日本| 国产淫片久久久久久久久| av视频免费观看在线观看| 日产精品乱码卡一卡2卡三| 日韩成人av中文字幕在线观看| 久久久a久久爽久久v久久| 亚洲av中文av极速乱| 精品少妇内射三级| 久久精品熟女亚洲av麻豆精品| 黄色视频在线播放观看不卡| 国产淫语在线视频| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 亚洲成色77777| 国产精品三级大全| 中文字幕免费在线视频6| 亚洲精品视频女| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看| 在线观看美女被高潮喷水网站| tube8黄色片| 亚洲欧美精品专区久久| 人妻人人澡人人爽人人| 中文资源天堂在线| av免费在线看不卡| 麻豆乱淫一区二区| 在线天堂最新版资源| 视频中文字幕在线观看| 观看免费一级毛片| 国产精品福利在线免费观看| 日韩欧美精品免费久久| kizo精华| 一级毛片 在线播放| 色视频www国产| 你懂的网址亚洲精品在线观看| 一级毛片久久久久久久久女| 国产色爽女视频免费观看| 亚洲欧美精品专区久久| 国内精品宾馆在线| 日韩,欧美,国产一区二区三区| 大码成人一级视频| 免费看av在线观看网站| 国产免费福利视频在线观看| 免费观看性生交大片5| 日韩视频在线欧美| 看非洲黑人一级黄片| 水蜜桃什么品种好| av福利片在线观看| 我要看日韩黄色一级片| 久久久a久久爽久久v久久| 亚洲美女黄色视频免费看| 国产精品熟女久久久久浪| 久久鲁丝午夜福利片| 久久久精品94久久精品| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 国产亚洲精品久久久com| 久久鲁丝午夜福利片| 精品久久国产蜜桃| 亚洲图色成人| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 国产成人freesex在线| 精品久久久久久久久av| av线在线观看网站| 日本与韩国留学比较| 热99国产精品久久久久久7| 岛国毛片在线播放| 国产视频首页在线观看| av在线老鸭窝| 少妇丰满av| 人妻系列 视频| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩卡通动漫| 另类亚洲欧美激情| 亚洲精品乱久久久久久| 午夜精品国产一区二区电影| 日产精品乱码卡一卡2卡三| 在现免费观看毛片| 国产精品一区二区在线观看99| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 美女国产视频在线观看| 一级av片app| 日韩av不卡免费在线播放| 99久久精品国产国产毛片| 日韩,欧美,国产一区二区三区| 黑人猛操日本美女一级片| 免费黄频网站在线观看国产| 日韩中字成人| 99热全是精品| 美女大奶头黄色视频| 十分钟在线观看高清视频www | 蜜桃久久精品国产亚洲av| 只有这里有精品99| 国产 精品1| 国产成人精品久久久久久| 久久午夜福利片| 久久精品国产亚洲av涩爱| 久久久精品94久久精品| 国产一区有黄有色的免费视频| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 亚洲精品久久久久久婷婷小说| 老司机亚洲免费影院| 久久久久久久久久人人人人人人| 综合色丁香网| 国产精品不卡视频一区二区| 久久ye,这里只有精品| 免费人成在线观看视频色| 国产一区亚洲一区在线观看| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 天堂俺去俺来也www色官网| 日韩人妻高清精品专区| av不卡在线播放| 国产有黄有色有爽视频| 嫩草影院入口| 日韩熟女老妇一区二区性免费视频| 人人妻人人添人人爽欧美一区卜| 在线播放无遮挡| 欧美少妇被猛烈插入视频| 日韩电影二区| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲高清精品| 日本av免费视频播放| 青春草国产在线视频| 午夜日本视频在线| 国产精品99久久99久久久不卡 | 欧美 亚洲 国产 日韩一| 99精国产麻豆久久婷婷| 午夜福利视频精品| av有码第一页| 日日爽夜夜爽网站| 久久鲁丝午夜福利片| 91在线精品国自产拍蜜月| 不卡视频在线观看欧美| 天堂8中文在线网| 亚洲,欧美,日韩| 天美传媒精品一区二区| 国产伦在线观看视频一区| 亚洲av电影在线观看一区二区三区| 国产精品国产av在线观看| 狂野欧美激情性xxxx在线观看| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| av视频免费观看在线观看| 欧美国产精品一级二级三级 | 成人国产av品久久久| 国产精品麻豆人妻色哟哟久久| 久久久久视频综合| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产av玫瑰| 丁香六月天网| 丰满人妻一区二区三区视频av| av在线老鸭窝| 777米奇影视久久| 中文字幕久久专区| 亚洲av福利一区| 日韩电影二区| 97在线视频观看| 在线播放无遮挡| 色视频在线一区二区三区| 久久精品国产亚洲av涩爱| 免费黄色在线免费观看| 日本与韩国留学比较| 免费看日本二区| 99热国产这里只有精品6| 国产深夜福利视频在线观看| 少妇人妻久久综合中文| 少妇精品久久久久久久| 国产亚洲91精品色在线| 国产伦精品一区二区三区四那| 亚洲欧洲精品一区二区精品久久久 |