吳美玲,楊鑫杰,劉福榮,王昱植,陳丹嬌,吳 赟,朱 鋒,曾玲暉
(浙江大學(xué)城市學(xué)院醫(yī)學(xué)院,浙江杭州 310015)
西羅莫司抗紅藻氨酸誘發(fā)的未成年C57BL/6小鼠癲癇的有效劑量
吳美玲,楊鑫杰,劉福榮,王昱植,陳丹嬌,吳 赟,朱 鋒,曾玲暉
(浙江大學(xué)城市學(xué)院醫(yī)學(xué)院,浙江杭州 310015)
目的探索西羅莫司(Sir)治療未成年小鼠癲癇的安全有效劑量及作用。方法10日齡的C57BL/6小鼠單次ip給予卡莫酸(紅藻氨酸,KA)12.0 mg·kg-1誘導(dǎo)癲癇,于造模后24 h隔天分別ip給予Sir 0.3,1.0和3.0 mg·kg-1直至3 d、7 d、3周、5周和6周,采用Western蛋白印跡法檢測S6蛋白表達(dá)及其磷酸化水平,確定最低有效劑量。觀察Sir最低有效劑量對(duì)學(xué)習(xí)記憶和生長發(fā)育的影響,其中Doublecortin(DCX)免疫熒光染色檢測海馬神經(jīng)元發(fā)育,Morris水迷宮測定小鼠學(xué)習(xí)記憶水平,懸尾、O迷宮和新事物認(rèn)知實(shí)驗(yàn)測定小鼠焦慮抑郁狀態(tài)。結(jié)果Western蛋白印跡結(jié)果顯示,Sir 0.3 mg·kg-1對(duì)正常小鼠和KA致癇小鼠S6蛋白磷酸化無顯著影響,而1.0和3.0 mg·kg-1均可顯著抑制KA致癇小鼠S6蛋白磷酸化(P<0.05)。選取Sir 1.0 mg·kg-1作為最低有效劑量。Sir 1.0 mg·kg-1對(duì)DCX表達(dá)和體質(zhì)量無顯著影響。Morris水迷宮結(jié)果顯示,與正常對(duì)照組相比,模型組小鼠平臺(tái)潛伏期和游泳距離明顯延長(P<0.05),穿越平臺(tái)象限次數(shù)明顯下降(P<0.05),而Sir 1.0 mg·kg-1可顯著逆轉(zhuǎn)KA致癇模型小鼠學(xué)習(xí)記憶功能下降(P<0.05),且與正常對(duì)照組無顯著差異。KA致癇模型小鼠在懸尾實(shí)驗(yàn)中顯示懸尾不動(dòng)時(shí)間明顯上升(P<0.05),O迷宮實(shí)驗(yàn)中移動(dòng)距離、開臂中停留時(shí)間以及新事物認(rèn)知實(shí)驗(yàn)中與新事物的觸碰時(shí)間、觸碰頻率、移動(dòng)距離和速度明顯縮短(P<0.05),而Sir 1.0 mg·kg-1可顯著逆轉(zhuǎn)KA致癇模型小鼠的焦慮抑郁狀態(tài)(P<0.05),且與正常對(duì)照組無顯著差異。結(jié)論Sir 1.0 mg·kg-1對(duì)未成年期癲癇小鼠的mTOR信號(hào)通路異常激活和癲癇后共病形成有抑制作用,且不良反應(yīng)輕微,為理想的給藥劑量。
癲癇;西羅莫司;學(xué)習(xí)認(rèn)知功能;蛋白表達(dá)
癲癇是大腦神經(jīng)元異常放電,導(dǎo)致短暫的大腦功能障礙的一種慢性疾病,也是神經(jīng)系統(tǒng)的常見病和多發(fā)病。據(jù)統(tǒng)計(jì),癲癇總體發(fā)病率為0.08‰,發(fā)達(dá)國家為0.5‰,發(fā)展中國家是發(fā)達(dá)國家的2~3倍[1]。癲癇的反復(fù)發(fā)作影響相應(yīng)的神經(jīng)生物學(xué)、認(rèn)知、心理學(xué)以及社會(huì)學(xué)等方面的功能[2]。嬰幼兒期是癲癇發(fā)作的高峰期,患病率為1.8‰~3.5‰,在產(chǎn)科重癥監(jiān)護(hù)單元的發(fā)生率為1%~2%[3]。導(dǎo)致嬰幼兒期癲癇的病因眾多,主要包括低氧缺血性腦病、急性代謝性疾病、腦血管疾病、神經(jīng)系統(tǒng)感染和先天性發(fā)育異常等[4]。生命早期癲癇發(fā)作可能導(dǎo)致慢性癲癇認(rèn)知障礙和行為變化,如自閉癥[5]。近年來,越來越多的動(dòng)物研究提示,嬰幼兒期頻繁或較長時(shí)間的癲癇發(fā)作可因干擾腦的發(fā)育進(jìn)程引起神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能的異常改變。嬰幼兒時(shí)期大腦及身體各器官均未發(fā)育成熟,所以相對(duì)于成年期癲癇其治療更棘手,療效并不盡如意,且對(duì)嬰幼兒神經(jīng)系統(tǒng)產(chǎn)生抑制作用,造成低血壓、心動(dòng)過緩、窒息和呼吸抑制,以及停藥后引發(fā)撤藥綜合征[6]。因此,探尋新的治療靶點(diǎn)及研發(fā)新型藥物將有利于嬰幼兒期癲癇的治療。
哺乳動(dòng)物西羅莫司靶蛋白〔mammalian target of sirolimus(Rapamycin),mTOR)〕信號(hào)通路是調(diào)控細(xì)胞生長增殖和蛋白質(zhì)合成的重要信號(hào)通路,通過磷酸化作用調(diào)控細(xì)胞內(nèi)mRNA的翻譯,參與膜蛋白轉(zhuǎn)運(yùn)、蛋白質(zhì)降解、蛋白激酶C信號(hào)轉(zhuǎn)導(dǎo)和核糖體合成等[7]。核糖體蛋白S6為mTOR信號(hào)通路的效應(yīng)蛋白,經(jīng)P70S6激酶作用磷酸化,從而調(diào)控蛋白質(zhì)翻譯及細(xì)胞生長[8]。前期研究表明,卡莫酸(紅藻氨酸,kainic acid,KA)誘導(dǎo)的癲癇動(dòng)物模型中,mTOR信號(hào)通路的激活以磷酸化S6蛋白水平顯著增加為特征[9-10]。Sir是mTOR的特異性抑制劑,作為抗腫瘤藥和免疫抑制劑已廣泛應(yīng)用于臨床[11-13]。在神經(jīng)系統(tǒng),mTOR信號(hào)通路調(diào)節(jié)神經(jīng)元發(fā)育和突觸可塑性[14]。我們的前期研究發(fā)現(xiàn),在多種癲癇模型中mTOR通路被異常激活[15-19],給予mTOR抑制劑Sir治療能減少甚至消除自發(fā)性癲癇及相應(yīng)的神經(jīng)損害[20-21]。mTOR異常激活在嬰幼兒缺血缺氧引起的獲得性癲癇中起重要作用,Sir給藥可降低mTOR信號(hào)通路的異常激活[5]。然而,高劑量Sir的長期用藥會(huì)導(dǎo)致生長發(fā)育遲緩和免疫功能降低等不良反應(yīng)。為此,本研究在10日齡出生C57BL/6小鼠采用KA誘導(dǎo)癲癇發(fā)作,探討降低Sir劑量在未成年小鼠中的作用,從而進(jìn)一步為Sir臨床應(yīng)用于嬰幼兒癲癇提供理論依據(jù)。
1.1 試劑和主要儀器
KA購自美國Nanocs公司;Sir購自美國LC實(shí)驗(yàn)中心;S6、p-S6抗體購自美國CST公司;DCX抗體購自美國Santa Cruz生物公司;BCA蛋白濃度測定試劑盒、辣根過氧化物酶標(biāo)記的二抗、吐溫80、PEG400和Triton X-100購自南京碧云天公司;熒光二抗購自美國LI-COR公司;硝酸纖維素膜和ECL化學(xué)發(fā)光試劑盒購自德國Millipore公司;多聚甲醛、無水乙醇、蔗糖購自上海國藥集團(tuán)化學(xué)試劑有限公司;BSA購自上海澤衡生物技術(shù)有限公司。
1.2 動(dòng)物造模和用藥方法
出生后10 d齡的C57BL/6小鼠用于本實(shí)驗(yàn),一共180只,由上海斯萊克實(shí)驗(yàn)動(dòng)物中心提供,實(shí)驗(yàn)動(dòng)物許可證:SCXK 2007-0005。動(dòng)物實(shí)驗(yàn)遵守浙江大學(xué)醫(yī)學(xué)院動(dòng)物實(shí)驗(yàn)管理規(guī)范。動(dòng)物的飼養(yǎng)條件為溫度(24±1)℃,濕度40%~60%,晝/夜各12 h。KA用生理鹽水溶解成5.0 g·L-1后,以12.0 mg·kg-1的劑量單次ip給予誘導(dǎo)C57BL/6小鼠急性癲癇發(fā)作。癲癇的分級(jí)參照1972年Raccine制定的標(biāo)準(zhǔn)[22],急性癇性發(fā)作大于三級(jí)的動(dòng)物用于下一步實(shí)驗(yàn)。癲癇分級(jí)標(biāo)準(zhǔn):一級(jí),靜止不動(dòng)伴隨口/面部運(yùn)動(dòng);二級(jí),點(diǎn)頭及落水狗樣抖動(dòng);三級(jí),前肢痙攣;四級(jí):豎立和(或)全身僵直;五級(jí),豎立并跌倒。Sir用乙醇溶解成30 g·L-1貯存于-20°C,臨用前用含5%吐溫80、5%PEG400和4%乙醇的溶劑新鮮配制。
小鼠隨機(jī)分為正常對(duì)照組、模型組和給藥組,正常對(duì)照組注射生理鹽水,模型組注射KA 12.0 mg·kg-1,給藥組給予KA 12.0 mg·kg-1和Sir,Sir于KA誘發(fā)癲癇后24 h隔天給藥1次直至3 d、7d、3周、5周和6周。在探究不同劑量Sir對(duì)海馬及皮質(zhì)S6蛋白活性影響實(shí)驗(yàn)中,Sir分為0.3,1.0和3.0 mg·kg-1組。在用Western蛋白印跡實(shí)驗(yàn)確定Sir 1.0 mg·kg-1為有效劑量后,后續(xù)實(shí)驗(yàn)Sir劑量為1.0 mg·kg-1。
1.3 Western蛋白印跡法檢測海馬和皮質(zhì)S6蛋白的表達(dá)及磷酸化水平
小鼠在KA致癇后3 d、1周、3周和5周斷頭取腦,分離海馬及相應(yīng)大小的皮質(zhì)組織,經(jīng)超聲裂解組織后離心取上清測定蛋白濃度。蛋白經(jīng)SDSPAGE電泳分離和轉(zhuǎn)膜,在脫脂牛奶中室溫封閉1 h,分別加入p-S6和S6抗體孵育,采用ECL化學(xué)發(fā)光法獲取蛋白表達(dá)信號(hào),并采用ImageJ軟件分析其積分吸光度,計(jì)算p-S6/S6的比值。
1.4 Doublecortin(DCX)免疫熒光染色檢測海馬神經(jīng)元發(fā)育
小鼠經(jīng)5%水合氯醛深度麻醉后暴露心臟,迅速將注射器針插入小鼠左心室,并剪開右心耳,灌以生理鹽水,繼以4%多聚甲醛磷酸鹽緩沖液快速灌注,迅速開顱取全腦,4%多聚甲醛磷酸鹽緩沖液繼續(xù)固定24 h,依次經(jīng)15%、30%蔗糖溶液脫水包埋,經(jīng)冠狀切面冰凍切片,片厚20 μm,貼附于涂有鉻釩明膠的載玻片上,每隔100 μm取一片。切片用PBS沖洗后,在含有0.1%Triton X-100和5%小牛血清蛋白的TBS緩沖液中室溫孵育30 min。后與DCX特異性一抗于4℃孵育過夜,次日與相應(yīng)熒光標(biāo)記的二抗反應(yīng),結(jié)果在激光共聚焦顯微鏡下觀察。選定固定區(qū)域進(jìn)行計(jì)數(shù),計(jì)算單位面積內(nèi)各組DCX陽性細(xì)胞數(shù)量。
1.5 Morris水迷宮實(shí)驗(yàn)檢測平臺(tái)潛伏期、游泳距離、游泳速度和平臺(tái)穿過次數(shù)
造模后給藥4周開始進(jìn)行水迷宮實(shí)驗(yàn)。水迷宮實(shí)驗(yàn)前需對(duì)小鼠進(jìn)行連續(xù)4 d的訓(xùn)練,每天訓(xùn)練4次,每次間隔1 h。實(shí)驗(yàn)前,先將小鼠置于平臺(tái)上10 s,讓其觀察周圍環(huán)境,隨后將小鼠分別從4個(gè)象限隨機(jī)放入水迷宮中。攝像頭記錄小鼠運(yùn)動(dòng)軌跡,當(dāng)小鼠到達(dá)平臺(tái)后10 s停止記錄。如小鼠在60 s內(nèi)未找到平臺(tái),則引導(dǎo)其到平臺(tái)上并停留10 s。訓(xùn)練4 d后,將小鼠從平臺(tái)對(duì)面象限放入水迷宮中,小鼠的平臺(tái)潛伏期(小鼠到達(dá)平臺(tái)的時(shí)間)、游泳距離、游泳速度以及撤掉平臺(tái)后穿過平臺(tái)區(qū)域的次數(shù)將由SmartV2.5軟件記錄。
1.6 懸尾實(shí)驗(yàn)檢測小鼠記錄小鼠6 min內(nèi)的累計(jì)不動(dòng)時(shí)間
小鼠在完成水迷宮實(shí)驗(yàn)后進(jìn)行懸尾、O迷宮以及新事物認(rèn)知實(shí)驗(yàn)。實(shí)驗(yàn)前3 d,實(shí)驗(yàn)者對(duì)動(dòng)物進(jìn)行適應(yīng)性接觸。實(shí)驗(yàn)當(dāng)天,將動(dòng)物移入測試間適應(yīng)30 min。將小鼠置于懸尾箱(20 cm×20 cm×30 cm),距尾尖0.75 cm用膠帶固定尾部,使小鼠頭向下懸掛,用攝像頭記錄小鼠6 min內(nèi)的累計(jì)不動(dòng)時(shí)間。
1.7 O迷宮實(shí)驗(yàn)記錄小鼠5 min內(nèi)移動(dòng)距離和開臂中停留時(shí)間
O迷宮是根據(jù)動(dòng)物對(duì)新異環(huán)境的探究特性和對(duì)高懸敞開臂的恐懼形成矛盾沖突行為來考察動(dòng)物的焦慮狀態(tài)。將小鼠面對(duì)閉臂區(qū),放置于開臂和閉臂區(qū)的接點(diǎn)處,記錄5 min內(nèi)移動(dòng)距離和開臂中停留時(shí)間。
1.8 新事物認(rèn)知實(shí)驗(yàn)記錄小鼠對(duì)新事物的觸碰時(shí)間、觸碰頻率、移動(dòng)速度與距離
在測試期間,小鼠現(xiàn)放入開口方木盒(50 cm× 50 cm×25 cm)內(nèi)并允許自由探索5 min以期適應(yīng)環(huán)境。然后,將小鼠移入飼養(yǎng)籠內(nèi)。5 min后,小鼠返回盒內(nèi)進(jìn)入受訓(xùn)期。此時(shí),有兩個(gè)完全相同的物體(彩色紙盒,大小為6.0 cm×6.0 cm×3.5 cm)于距盒壁8 cm處沿一方墻直線排開。小鼠自另外兩個(gè)拐角之一放入盒內(nèi),在自由探索5 min后再被送回飼養(yǎng)籠內(nèi)。間歇5 min后,小鼠被再引入實(shí)驗(yàn)盒內(nèi)進(jìn)行實(shí)驗(yàn)期的自由探索。此時(shí),兩個(gè)受訓(xùn)期使用過的彩色紙盒之一被一紫色小盒(7.0 cm×7.0 cm×5.5 cm)置換并位于原位,而另一已熟悉的彩色紙盒被移至新物體相對(duì)的拐角以防止小鼠空間的偏倚。記錄小鼠對(duì)新事物的觸碰時(shí)間、觸碰頻率、移動(dòng)速度和距離。
1.9 統(tǒng)計(jì)學(xué)分析
所有數(shù)據(jù)均用SPSS19.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)分析。數(shù)據(jù)采用多組間比較用AVONA分析,組間兩兩比較采用LSD檢驗(yàn),結(jié)果描述用均值表示,P<0.05認(rèn)為差異具有統(tǒng)計(jì)學(xué)意義。
2.1 Sir對(duì)KA致癇未成年小鼠海馬和皮質(zhì)S6蛋白磷酸化的影響
KA造模后,給予Sir 0.3,1.0和3.0 mg·kg-1,連續(xù)7 d。與正常對(duì)照組相比,模型組海馬和皮質(zhì)均出現(xiàn)p-S6表達(dá)增加;Sir 0.3 mg·kg-1給藥組并未見S6蛋白磷酸化明顯抑制,而Sir 1.0 mg·kg-1可顯著逆轉(zhuǎn)p-S6的過度激活(P<0.05),Sir 3.0 mg·kg-1逆轉(zhuǎn)p-S6的過度激活作用更顯著(P<0.01)(圖1)。在給藥后3 d、3周和5周的實(shí)驗(yàn)中均得到類似結(jié)果(結(jié)果未顯示)。上述結(jié)果提示,Sir 1.0 mg·kg-1對(duì)KA致癇后誘發(fā)的mTOR信號(hào)通路異常激活均有抑制作用。因此,在后續(xù)實(shí)驗(yàn)中,選取1.0 mg·kg-1作為Sir的給藥劑量。
Fig.1 Effect of sirolimus(Rapamycin,Sir)on phosphorylation of S6 protein in hippocampus(A,B)and cortex(C,D)of kainic acid(KA)-induced seizure of young mice by Western blotting.Mice were given KA 12.0 mg·kg-1(ip),and 24 h later Sir was given and sacrificed at 7 d.B And D were the semiquantitative results of A and C,respectively.x±s,n=6.*P<0.05,compared with normal control group;#P<0.05,##P<0.01,compared with KA model group.
2.2 低劑量Sir對(duì)KA致癇未成年小鼠海馬DCX表達(dá)和體質(zhì)量無明顯影響
如圖2A~D所示,模型組小鼠海馬區(qū)DCX的陽性細(xì)胞數(shù)與正常對(duì)照組無顯著差異,Sir 1.0 mg·kg-1給藥組雖然可見陽性細(xì)胞數(shù)有一定減少但未具顯著性差異。
模型組小鼠體質(zhì)量較正常對(duì)照組稍有減輕,Sir 1.0 mg·kg-1組減輕更顯著,但3組間并無顯著差異(圖3)。以上結(jié)果提示,小劑量Sir對(duì)KA致癇未成年小鼠的體質(zhì)量和神經(jīng)元并無顯著影響。
Fig.2 Effect of Sir 1.0 mg·kg-1on neuron development in young mice after KA induced seizure by doublecortin(DCX)immunofluorescent staining(×40).See Fig.1 for the treatment.A-C:representative images of DCX;D:quantitative result of DCX positive cells per field in different groups.x±s,n=16.
Fig.3 Effect of Sir 1.0 mg·kg-1on body mass of young mice after KA induced seizure.See Fig.1 for the treatment.x±s,n=12.
2.3 低劑量Sir對(duì)KA致癇未成年小鼠學(xué)習(xí)記憶的影響
Morris水迷宮檢測結(jié)果顯示(圖4),與正常對(duì)照組相比,KA致癇小鼠平臺(tái)潛伏期明顯增長(P<0.05),穿越平臺(tái)次數(shù)明顯降低(P<0.05),游泳距離顯著延長(P<0.05),提示空間記憶功能受損。與模型組比,Sir 1.0 mg·kg-1給藥明顯縮短平臺(tái)潛伏期和游泳距離(P<0.05),增加穿越平臺(tái)象限次數(shù)(P<0.05),可逆轉(zhuǎn)學(xué)習(xí)記憶功能的損害。三組間游泳速度并無顯著性差異。
Fig.4 Effect of Sir 1.0 mg·kg-1on escape latency(A),number of platform crossings(B),swimming length(C)and swimming speed(D)in young mice after KA induced seizure.Mice of 10 d of age were induced seizure and administered Sir for 4 weeks and subjected to Morris water maze experiment.x±s,n=12.*P<0.05,compared with normal control group;#P<0.05,compared with KA model group.
2.4 低劑量Sir對(duì)KA致癇未成年小鼠累計(jì)不動(dòng)時(shí)間的影響
懸尾結(jié)果顯示(圖5),與正常對(duì)照組相比,模型組小鼠6 min內(nèi)的累計(jì)不動(dòng)時(shí)間顯著延長(P<0.05),Sir 1.0 mg·kg-1給藥后可縮短小鼠6 min內(nèi)的累計(jì)不動(dòng)時(shí)間,緩解此種焦慮抑郁狀態(tài)(P<0.05)。
Fig.5 Effect of Sir 1.0 mg·kg-1on freezing time in open arm in young mice after KA induced seizure by tail suspension test.See Fig.3 for the treatment.x±s,n=12.*P<0.05,compared with normal control group;#P<0.05,compared with KA model group.
2.5 低劑量Sir對(duì)KA致癇未成年小鼠內(nèi)移動(dòng)距離和開臂中停留時(shí)間的影響
O迷宮結(jié)果顯示(圖6),與正常對(duì)照小鼠組相比,模型組小鼠移動(dòng)距離縮短及在開臂中停留時(shí)間縮短(P<0.05),Sir 1.0 mg·kg-1給藥后對(duì)上述各種異常均有不同程度的緩解(P<0.05)。
Fig.6 Effect of Sir 1.0 mg·kg-1on migration length(A)and retention time in open arm(B)in young mice after KA induced seizure by O maze.See Fig.3 for the treatment.x±s,n=12.*P<0.05,compared with normal control group;#P<0.05,compared with KA model group.
2.6 低劑量Sir對(duì)KA致癇未成年小鼠新事物認(rèn)知實(shí)驗(yàn)對(duì)新事物的觸碰時(shí)間、觸碰頻率、移動(dòng)速度與距離的影響
新事物認(rèn)識(shí)結(jié)果顯示(圖7),與正常對(duì)照小鼠組相比,模型組小鼠新事物認(rèn)知實(shí)驗(yàn)中對(duì)新事物的觸碰時(shí)間與觸碰頻率,并伴隨移動(dòng)速度與距離的顯著下降(P<0.05),Sir 1.0 mg·kg-1給藥后可緩解此種焦慮抑郁狀態(tài)(P<0.05)。
Fig.7 Effect of Sir 1.0 mg·kg-1on retention time with new object(A),touch frequency(B),migration length(C),and average speed(D)in young mice after KA induced seizure by new object recognition test.See Fig.3 for the treatment.x±s,n=12.*P<0.05,compared with normal control group;#P<0.05,compared with KA model group.
在我們前期對(duì)Sir副作用的研究中發(fā)現(xiàn),較大劑量的Sir可導(dǎo)致未成年期小鼠生長發(fā)育遲緩[23]。在本研究中,我們嘗試降低Sir劑量,從而達(dá)到降低過度激活的mTOR信號(hào)通路但又不影響生長發(fā)育的效果。本研究結(jié)果顯示,Sir 1.0 mg·kg-1則可以顯著抑制KA致癇后S6蛋白磷酸化。以DCX陽性細(xì)胞數(shù)目為指標(biāo),觀察Sir對(duì)神經(jīng)元發(fā)育的影響,Sir 1.0 mg·kg-1對(duì)DCX的陽性細(xì)胞數(shù)并無顯著影響,體質(zhì)量的下降無顯著意義,本課題雖并未對(duì)Sir的其他副作用(如免疫抑制作用)進(jìn)行系統(tǒng)觀測,但上述結(jié)果提示,Sir 1.0 mg·kg-1產(chǎn)生的副作用并不明顯,為未成年小鼠癲癇合適的給藥劑量。在我們前期對(duì)正常10日齡大鼠使用Sir的觀察中,發(fā)現(xiàn)Sir 1.0 mg·kg-1對(duì)10日齡大鼠生長發(fā)育有一定延緩作用[23],與本次實(shí)驗(yàn)數(shù)據(jù)略有不同,其原因可能與KA致癇后mTOR信號(hào)通路本身過度激活有關(guān)。行為學(xué)結(jié)束后,我們又檢測了S6蛋白及其磷酸化水平,結(jié)果與7 d處死時(shí)一致,Sir 1.0 mg·kg-1能顯著逆轉(zhuǎn)KA所致信號(hào)通路激活。由此可見,行為學(xué)與p-S6水平存在一致性。
目前研究顯示,癲癇患者常伴有認(rèn)知障礙和抑郁癥等癲癇共病。癲癇發(fā)生后癇樣放電干擾正常神經(jīng)元間的信息傳遞,改變正常的突觸連接和回路生長,導(dǎo)致神經(jīng)元功能紊亂;癲癇發(fā)作伴發(fā)的低氧血癥、高碳酸血癥、興奮性神經(jīng)遞質(zhì)過度釋放等都會(huì)導(dǎo)致神經(jīng)元凋亡和壞死;癲癇發(fā)作后細(xì)胞因子表達(dá)異常,影響神經(jīng)發(fā)生和突觸可塑性、神經(jīng)組織發(fā)育異常、代謝異常以及睡障礙和神經(jīng)遞質(zhì)系統(tǒng)異常等,從而導(dǎo)致學(xué)習(xí)記憶功能受損[24]。在中央顳葉癲癇患者的致灶區(qū),5-羥色胺與受體結(jié)合降低,同時(shí)還發(fā)現(xiàn)海馬區(qū)與扣帶回區(qū)5-羥色胺結(jié)合降低的水平影響情緒沮喪的程度[25]。癲癇與抑郁共病的發(fā)病機(jī)制,主要包括下丘腦-垂體-腎上腺軸功能失調(diào),興奮性神經(jīng)遞質(zhì)谷氨酸功能失調(diào),去甲腎上腺素和5-羥色胺傳遞缺陷等神經(jīng)遞質(zhì)和(或)神經(jīng)病理異常[26]??梢姡d癇與認(rèn)知障礙和抑郁癥等共病存在著共同的發(fā)病機(jī)制。本實(shí)驗(yàn)中,在KA致癇的未成年C57BL/6小鼠中,雖未見明顯自發(fā)性癲癇發(fā)作從而無法評(píng)估Sir對(duì)癲癇的抑制作用,但在我們前期對(duì)KA致癇大鼠的研究中,發(fā)現(xiàn)Sir可顯著抑制KA致癇后自發(fā)性癲癇的發(fā)作[10]。本研究亦發(fā)現(xiàn)Sir可抑制KA致癇后學(xué)習(xí)記憶功能障礙和興奮焦慮狀態(tài),提示mTOR信號(hào)通路可能是癲癇和癲癇后共病的共同發(fā)病機(jī)制。
綜上所述,低劑量Sir能降低KA致癇未成年小鼠mTOR信號(hào)通路的激活,并改善學(xué)習(xí)記憶功能障礙和焦慮抑郁狀態(tài),且無明顯不良反應(yīng)。
[1] Kobau R,Zahran H,Thurman DJ,Zack MM,Henry TR,Schachter SC,et al.Epilepsy surveilance among adults-19 States,Behavioral Risk Factor Surveillance System,2005[J].MMWR Surveill Summ,2008,57(6):1-20.
[2] Wiebe S,Hesdorffer DC.Epilepsy:being ill in more ways than one[J].Epilepsy Curr,2007,7(6):145-148.
[3]Badawy RA,Harvey AS,Macdonell RA.Cortical hyperexcitability and epileptogenesis:understanding the mechanisms of epilepsy-Part 2[J].J Clin Neu?rosci,2009,16(4):485-500.
[4] Wirrell EC,Grossardt BR,Wong-Kisiel LC,Nickels KC.Incidence and classification of newonsetepilepsyand epilepsysyndromesin children in Olmsted County,Minnesota from 1980 to 2004:a population-based study[J].Epilepsy Res,2011,95(1/2):110-118.
[5] Talos DM,Sun H,Zhou X,F(xiàn)itzgerald EC,Jackson MC,Klein PM,et al.The interaction between early life epilepsy and autistic-like behavioral consequences:a role for the mammalian target of rapamycin(mTOR)pathway[J].PLoS One,2012,7(5):e35885.
[6]Li S,He NH.Diagnosis and treatment of neonatal seizures[J].Chin Gen Prac(中國全科醫(yī)學(xué)),2005,8(24):2073-2075.
[7] Russo E,Citraro R,Constanti A,De Sarro G. The mTOR signaling pathway in the brain:focus on epilepsy and epileptogenesis[J].Mol Neurobiol,2012,46(3):662-681.
[8] Avruch J,Lin Y,Long X,Murthy S,Ortiz-Vega S. Recent advances in the regulation of the TOR pathway by insulin and nutrients[J].Curr Opin Clin Nutr Metab Care,2005,8(1):67-72.
[9] Chen L,Hu L,Dong JY,Ye Q,Hua N,Wong M,et al.Rapamycin has paradoxical effects on S6 phosphorylation in rats with and without seizures[J].Epilepsia,2012,53(11):2026-2033.
[10]Zeng LH,Rensing NR,Wong M.The mammalian target of Rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy[J].J Neurosci,2009,29(21):6964-6972.
[11] Harris TE,Lawrence JC Jr.TOR Signaling[J]. Sci STKE,2003,2003(212):re15.
[12] Chong ZZ,Shang YC,Wang SH,Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of Rapamycin[J]. Prog Neurobiol,2012,99(2):128-148.
[13] Maiese K.Cutting through the complexities of mTOR for the treatment of stroke[J].Curr Neuro?vasc Res,2014,11(2):177-186.
[14] Kamada Y,Sekito T,Ohsumi Y.Autophagy in yeast:a TOR-mediated response to nutrient starvation[J].Curr Top Microbiol Immunol,2004,279:73-84.
[15]Cascino GD.Epilepsy:contemporary perspectives on evaluation and treatment[J].Mayo Clin Proc,1994,69(12):1199-1211.
[16]Wong M,Ess KC,Uhlmann EJ,Jansen LA,Li W,Crino PB,et al.Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model[J]. Ann Neurol,2003,54(2):251-256.
[17]Meikle L,Pollizzi K,Egnor A,Kramvis I,Lane H,Sahin M,et al.Response of a neuronal model of tuberous sclerosis to mammalian target of Rapamycin(mTOR)inhibitors:effects on mTORC1 and Akt signaling lead to improved survival and function[J].J Neurosci,2008,28(21):5422-5432.
[18]Orlova KA,Parker WE,Heuer GG,Tsai V,Yoon J,Baybis M,et al.STRADalpha Deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice[J].J Clin Invest,2010,120(5):1591-1602.
[19]Zhou J,Blundell J,Ogawa S,Kwon CH,Zhang W,Sinton C,etal.Pharmacologicalinhibition of mTORC1 suppresses anatomical,cellular,and behavioral abnormalities in neural-specific Pten knock-outmice[J].J Neurosci,2009,29(6):1773-1783.
[20]Zeng LH,Xu L,Gutmann DH,Wong M.Siramycin prevents epilepsy in a mouse model of tuberous sclerosis complex[J].Ann Neurol,2008,63(4):444-453.
[21]Chen L,Hu L,Dong JY,Ye Q,Hua N,Wong M,Zeng LH.Siramycin has paradoxical effects on S6 phosphorylation in rats with and without seizures[J]. Epilepsia,2012,53(11):2026-2033.
[22]Racine RJ,Burnham WM,Gartner JG,Levitan D. Rates of motor seizure development in rats subjected to electrical brain stimulation:strain and inter-stimulation interval effects[J].Electro?encephalogr Clin Neurophysiol,1973,35(5):553-556.
[23]Lu Z,Liu F,Chen L,Zhang H,Ding Y,Liu J,et al. Effect of chronic administration of low dose Rapa?mycin on development and immunity in young rats[J].PLoS One,2015,10(8):e0135256.
[24]Chen ZM,Ding MP.Research progress in the comorbidity of epilepsy and depression[J].Mod Pract Med(現(xiàn)代實(shí)用醫(yī)學(xué)),2014,26(12):1465-1467.
[25]Theodore WH, Hasler G, Giovacchini GA,Reeves-Tyer P,Herscovitch PA.Reduced hippo?campal 5HT1A PET receptor binding and depres?sion in temporal lobe epilepsy[J].Epilepsia,2007,48(8):1526-1530.
[26]Chen ML,Bai Y.Relationship between epilepsy and cognition dysfunction[J].Chin J Rehabil Theory Pract(中國康復(fù)理論與實(shí)踐),2012,18(4):341-343.
Effective dosage of sirolimus for seizure treatment of immature C57BL/6 mice induced by kainic acid
WU Mei-ling,YANG Xin-jie,LIU Fu-rong,WANG Yu-zhi,CHEN Dan-jiao, WU Yun,ZHU Feng,ZENG Ling-hui
(School of Medicine,Zhejiang University City College,Hangzhou 310015,China)
OBJECTIVETo explore the safe and effective dose of sirolimus(Rapamycin,Sir)and its effect on seizure comorbidities.METHODSImmature C57BL/6 mice at postnatal 10 d of age were administered with kainic acid(KA)12.0 mg·kg-1intraperitoneally by a single injection to induce acute seizure.Sir 0.3,1.0 and 3.0 mg·kg-1was injected 24 h after seizure every other day until 3 d,1 week, 3 weeks,5 weeks and 6 weeks.Western blotting analysis was used to detect the expression and phos?phorylation level of S6 protein and to determine the minimum effective dose of Sir.Effect of the mini?mum effective dose of Sir on cognitive function and body growth was observed by several evaluations. Immunofluorescent intensity of Doublecortin(DCX)immunofluorescent staining was conducted to evaluate the development of neurons in the hippocampus.Morris water maze was used to assess the cognitive function.Tail suspension test,O maze and new object recognition test were used to study the anxiety-like behaviors of mice.RESULTSThe result of Western blotting showed that Sir 0.3 mg·kg-1had no significant effect on the phosphorylation of S6 protein in normal mice or KA mice,whereas 1.0 and 3.0 mg·kg-1could significantly inhibit the phosphorylation of S6 protein in KA mice(P<0.05).Sir 1.0 mg·kg-1had no obvious effect on DCX-positive cells or body wass.Morris water maze showed that KA-induced seizure resulted in prolonged escape latency and swimming length(P<0.05),and a decreased crossing number of target quadrant(P<0.05).Sir 1.0 mg·kg-1significantly reversed the deficit of cognitive function of KA-induced seizure mice(P<0.05),whereas no significant difference was found between Sir group and normal control group.Compared with normal control group,model group showed increased freezing time in tail suspension test(P<0.05),decreased migration length and reten?tion time in open arms in O maze(P<0.05),decreased retention time and touch frequency with new objects,migration length and average speed in new object recognition test(P<0.05).Sir 1.0 mg·kg-1significantly reversed the above anxiety and depression status,whereas no significant difference was found between sirolimus group and normal control group.CONCLUSIONSir 1.0 mg·kg-1inhibits the abnormal activation of mTOR pathway and the formation of epilepsy comorbidity in immature mice. Along with its mild side effect in development,Sir 1.0 mg·kg-1will be an ideal dose to be used in the treatment of seizure in immature mice.
epileptic seizure;sirolimus;learning and memory;protein expression
s:ZHU Feng,Tel:(0571)88018979,E-mail:zhuf@zucc.edu.cn;ZENG Ling-hui,Tel:(0571) 88284356,E-mail:zenglh@zucc.edu.cn
R971.6
:A
:1000-3002-(2017)01-0051-08
10.3867/j.issn.1000-3002.2017.01.006
2016-07-13 接受日期:2016-11-26)
(本文編輯:喬 虹)
國家自然科學(xué)基金(81371429);杭州市科技局重大科技創(chuàng)新項(xiàng)目(20152013A02);杭州市科技局社會(huì)公益項(xiàng)目(20160533B73)
吳美玲,女,碩士研究生,從事神經(jīng)系統(tǒng)疾病藥理學(xué)研究。
朱 鋒,E-mail:zhuf@zucc.edu.cn,Tel:(0571)88018979;曾玲暉,E-mail:zenglh@zucc.edu.cn,Tel:(0571)88284356
Foundation item:The project supported by National Natural Science Foundation of China(81371429);Hangzhou Science and Technology Major Project for Innovation(20152013A02);and Hangzhou Science and Technology Project (20160533B73)