鞠曉紅,李 瑤,王月華, 趙蓬波
下呼吸道感染來源銅綠假單胞菌毒力基因與氟喹諾酮類藥物的耐藥性研究
鞠曉紅1,李 瑤1,王月華1, 趙蓬波2
目的 檢測(cè)下呼吸道感染患者分離的銅綠假單胞菌毒力基因exoS、exoU表達(dá)及與氟喹諾酮耐藥性的相關(guān)性。方法 收集2015年10月至2016年3月住院患者痰標(biāo)本中分離的銅綠假單胞菌,以液體稀釋法測(cè)定藥物敏感性;PCR法擴(kuò)增exoS、exoU基因。結(jié)果 檢出銅綠假單胞菌46株,exoS、exoU基因陽(yáng)性率分別為86.96%(40 /46)和69.57%(32/46),檢出率最高的基因型是exoS+/exoU+(60.87%,28/46)。其中36.96%(17/46)為多重耐藥菌(MDR)。氟喹諾酮不敏感(FQ-NS)菌株78.95%(15/19)為MDR,89.47%(17/19)表達(dá)exoU基因,明顯高于氟喹諾酮敏感(FQ-S)菌株(P<0.05)。與FQ-S菌株相比,F(xiàn)Q-NS菌株耐藥嚴(yán)重,對(duì)氨曲南和頭孢吡肟耐藥率高達(dá)70%以上,對(duì)美羅培南和亞胺培南耐藥率高于50%。耐藥率較低的藥物有多黏菌素B(10.53%,2/19)、阿米卡星(10.53%,2/19)、頭孢他啶(15.79%,3/19)和慶大霉素(21.05%,4/19)。結(jié)論 下呼吸道感染銅綠假單胞菌毒力基因exoS、exoU陽(yáng)性率較高,以exoS+/exoU+基因型為主。與FQ-S比較,F(xiàn)Q-NS菌株耐藥性更為嚴(yán)重,exoU陽(yáng)性率更高,提示臨床應(yīng)加強(qiáng)毒力基因及耐藥性監(jiān)測(cè)。
銅綠假單胞菌;exoS基因;exoU基因;耐藥性;氟喹諾酮耐藥
Supported by the Jiangsu Key Laboratory of Medical Science and Laboratory Medicine(No.JSKLM-2014-016)
下呼吸道是住院患者最常見的感染部位,在免疫功能低下和囊性肺纖維化患者,銅綠假單胞菌可引起致死性感染。隨著β-內(nèi)酰胺類藥物的廣泛應(yīng)用,銅綠假單胞菌對(duì)碳青霉烯類藥物的耐藥性不斷攀升,氟喹諾酮類(Fluoroquinolones,F(xiàn)QNs)是治療碳青霉烯耐藥銅綠假單胞菌感染的有效藥物之一。然而,隨著用藥頻度增加,氟喹諾酮耐藥菌株在世界范圍內(nèi)呈明顯上升趨勢(shì)。且銅綠假單胞菌攜帶眾多毒力基因,尤其是Ⅲ型分泌系統(tǒng)(type Ⅲ secretion system,T3SS)的exoS、exoU基因,使銅綠假單胞菌感染成為臨床面臨的棘手問題之一。因此,本研究對(duì)痰標(biāo)本中分離的銅綠假單胞菌進(jìn)行毒力基因exoS、exoU及耐藥性檢測(cè),分析其與氟喹諾酮耐藥的相關(guān)性,為臨床感染治療及新藥研發(fā)提供有益參考。
1.1 菌株來源 收集2015年10月至2016年3月吉林省人民醫(yī)院住院患者送檢的痰標(biāo)本,常規(guī)分離培養(yǎng),經(jīng)Phoenix 100全自動(dòng)微生物鑒定系統(tǒng)(美國(guó)Becton Dickinson公司)鑒定為銅綠假單胞菌(剔除同一株菌)。標(biāo)本全部為自然咳痰法采集,驗(yàn)收與處理依據(jù)《全國(guó)臨床檢驗(yàn)操作規(guī)程》(第3版)進(jìn)行[1]。
1.2 藥敏試驗(yàn) 抗菌藥物敏感試驗(yàn)采用液體稀釋法,結(jié)果依據(jù)美國(guó)臨床實(shí)驗(yàn)室標(biāo)準(zhǔn)委員會(huì)(Clinical and Labortory Standards Institute,CLSI)2014年版標(biāo)準(zhǔn)判讀[2]。監(jiān)測(cè)的抗菌藥物有阿米卡星、多黏菌素B、氨曲南、環(huán)丙沙星、左氧氟沙星、慶大霉素、哌拉西林、哌拉西林/他唑巴坦、頭孢他啶、頭孢吡肟、亞胺培南和美羅培南12種,均為美國(guó)Becton Dickinson公司產(chǎn)品。將對(duì)3類及以上抗菌藥物耐藥的菌株(每一類至少對(duì)1種藥物耐藥)定義為多重耐藥菌((multidrug resistant,MDR)[3]。質(zhì)控菌株為銅綠假單胞菌ATCC27853。
1.3 引物設(shè)計(jì)與合成 引物設(shè)計(jì)參照文獻(xiàn)[4],由北京鼎國(guó)昌盛生物技術(shù)有限公司合成。exoS引物 F:5′-CCGGCATTCACTACGCGG,R:5′-GTTCGTGACGTCTTTCTTTTA,目的基因片段573 bp。exoU引物F:5′-GGGAATACTTTCCGGGAAGTT,R:5′-CGATCTCGCTGCTAATGTGTT,目的基因片段428 bp。
1.4 細(xì)菌DNA模板制備 采用煮沸法。挑取單個(gè)菌落懸浮于增菌肉湯中,振蕩培養(yǎng)18 h,取1.5 mL菌液2 000 r/min離心6 min,收集細(xì)菌重懸于300 μL去離子水中,混勻后煮沸5 min。12 000 r/ min低溫離心(離心機(jī)為Eppendorf公司產(chǎn)品)10 min后取上清,即為細(xì)菌總DNA,經(jīng)紫外分光光度計(jì)檢測(cè)濃度和質(zhì)量,-20 ℃儲(chǔ)存?zhèn)溆谩?/p>
1.5exoS、exoU基因擴(kuò)增 按照PCR試劑盒說明書加樣。循環(huán)參數(shù):94 ℃預(yù)變性5 min、變性45 s,55 ℃(exoU為57 ℃)退火1 min,72 ℃延伸1 min,反應(yīng)30個(gè)循環(huán),72 ℃延伸5 min。產(chǎn)物經(jīng)1% 瓊脂糖凝膠電泳(電泳儀為北京六一儀器廠產(chǎn)品),電泳后用凝膠成像儀(美國(guó)Bio-rad公司)觀察并拍攝記錄結(jié)果。PCR擴(kuò)增儀為Eppendorf 公司產(chǎn)品,PCR擴(kuò)增試劑盒、DNA Marker及核酸染料購(gòu)自北京鼎國(guó)昌盛生物技術(shù)有限公司。
1.6 數(shù)據(jù)分析 采用WHONET5.6細(xì)菌監(jiān)測(cè)軟件和Excel表進(jìn)行數(shù)據(jù)整理分析。統(tǒng)計(jì)學(xué)分析采用χ2檢驗(yàn),P<0.05有統(tǒng)計(jì)學(xué)差異。
2.1 毒力基因exoS、exoU的表達(dá) 共檢出46株銅綠假單胞菌,40株(86.96%)exoS基因陽(yáng)性、32株(69.57%)exoU基因陽(yáng)性,PCR產(chǎn)物電泳結(jié)果見圖1。60.87%的菌株同時(shí)攜帶兩種基因(exoS+/exoU+),只攜帶exoS(exoS+/exoU-)或exoU(exoS-/exoU+)基因的菌株分別占26.09%和8.70%,只有4.35%的菌株未檢出毒力基因,具體結(jié)果見表1。exoS+/exoU+檢出率明顯高于其他3種基因型,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
M:Marker;exoS陰性標(biāo)本:2、3、6、14、33、38號(hào);exoU陰性標(biāo)本:2、3、21、22、26、29、33、35、39、40、43~46號(hào)圖1 銅綠假單胞菌exoS、exoU基因電泳圖Fig.1 Electrophoresis figure of exoS and exoU genes in P. aeruginosa
2.2 FQ-S和FQ-NS菌株毒力基因表達(dá)比較 依據(jù)對(duì)環(huán)丙沙星和左氧氟沙星的耐藥性將46株菌劃分為氟喹諾酮敏感(FQ-S)和氟喹諾酮不敏感(FQ-NS)兩組(對(duì)環(huán)丙沙星和左氧氟沙星均敏感菌株為FQ-S,對(duì)其中之一中介或耐藥為FQ-NS)[5]。FQ-S和FQ-NS菌株檢出率分別為58.70%(27株)和41.30%(19株),兩組表達(dá)率最高的基因型均為exoS+/exoU+,但FQ-NS組陽(yáng)性率明顯高于FQ-S組(P<0.05)。FQ-NS組exoU基因攜帶率高達(dá)89.47%,明顯高于FQ-S組,具有統(tǒng)計(jì)學(xué)差異(P<0.05)。結(jié)果見表1。
表1 銅綠假單胞菌FQ-S和FQ-NS菌株毒力基因表達(dá)比較
Tab.1 Comparison on virulence genes between FQ-S and FQ-NS ofP.aeruginosa
genetypeFQ-NS(19)FQ-S(27)χ2valuePvalueTotal(46)n%n%n%exoS+/exoU+1578.951348.154.43<0.052860.87exoS+/exoU-15.261140.745.56<0.051226.09exoS-/exoU+210.5327.410.025>0.0548.70exoS-/exoU-15.2613.70——24.35exoS+1684.212488.893.16×10-4>0.054086.96exoU+1789.471555.566.06<0.053269.57
注:—未做該項(xiàng)比較;n:菌株數(shù);%:陽(yáng)性率
Note:— no comparison; n: strain number; %: positive rate
2.3 耐藥性分析 46株檢出菌中17株(36.96%)為MDR。與FQ-S組相比,F(xiàn)Q-NS組耐藥嚴(yán)重,78.95%(15/19)為MDR,明顯高于FQ-S組的7.41%(2/27),具有統(tǒng)計(jì)學(xué)差異(P<0.005)。碳青霉烯耐藥菌株86.67%(13/15)為FQ-NS;碳青霉烯敏感菌株中只有19.35%(6/31)為FQ-NS。在12種監(jiān)測(cè)藥物中,F(xiàn)Q-NS組耐藥率低于40%的藥物只有4種,對(duì)碳青霉烯類藥物耐藥率高達(dá)50%以上;FQ-S組除氨曲南耐藥率為40.74%外,其他11種藥物耐藥率均低于30%,未檢測(cè)到阿米卡星、慶大霉素耐藥菌株。除多黏菌素B和頭孢他啶外,兩組細(xì)菌耐藥性差異有統(tǒng)計(jì)學(xué)意義,結(jié)果見表2。
表2 FQ-S和FQ-NS銅綠假單胞菌耐藥性比較
Tab.2 Comparison on drug resistance between FQ-S and FQ-NS ofP.aeruginosa
antibacterialagentsFQ-NS(19)FQ-S(27)n%n%χ2valuePvalueTotal(46)n%阿米卡星amikacin210.5300.00——24.35氨曲南aztrenam1578.951140.746.62<0.052656.52多黏菌素BpolymyxinB210.5313.700.099>0.0536.52環(huán)丙沙星ciprofloxacin1473.6800.00——1430.43美羅培南meropenem1052.63311.119.48<0.0051328.26哌拉西林piperacillin1157.89311.1111.53<0.0051430.43哌拉西林/他唑巴坦piperacillin/tozobactam947.3727.417.72<0.011123.91表2(續(xù))antibacterialagentsFQ-NS(19)FQ-S(27)n%n%χ2valuePvalueTotal(46)n%慶大霉素gentamicin421.0500.00——48.70頭孢吡肟cefepime1578.95725.9312.56<0.0052247.83頭孢他啶ceftazidime315.7927.410.17>0.05510.87亞胺培南imipenem1263.16311.1113.75<0.0051532.61左氧氟沙星levofloxacin1489.470.000.00——1736.96
注:—未做該項(xiàng)比較;n:菌株數(shù);%:陽(yáng)性率
Note:— no comparison; n: strain number; %: positive rate
氟喹諾酮類藥物是治療碳青霉烯耐藥銅綠假單胞菌感染的主要藥物之一,但近年來,耐藥菌株呈增多趨勢(shì),特別是氟喹諾酮耐藥和T3SS毒力基因同時(shí)存在的銅綠假單胞菌感染,往往是臨床預(yù)后不良的征兆[6]。研究表明,exoS、exoU基因的表達(dá)與氟喹諾酮耐藥密切相關(guān),可能是細(xì)菌在藥物的選擇壓力下,攜帶毒力基因菌株選擇通過耐藥相關(guān)基因突變適應(yīng)生存環(huán)境、得以存活的結(jié)果[7-8]。
exoS基因編碼的ExoS蛋白同時(shí)具有GTP酶活化蛋白(GTPase-activating protein,GAP)活性和ADP核糖基轉(zhuǎn)移酶(ADP-ribosyltransferase,ADPRT)活性,破壞宿主細(xì)胞肌動(dòng)蛋白細(xì)胞骨架重排、干擾信號(hào)傳導(dǎo),導(dǎo)致細(xì)胞凋亡[9]。exoU基因編碼的ExoU蛋白具有磷脂酶A活性,被認(rèn)為是T3SS分泌的毒性最強(qiáng)蛋白,在致病中發(fā)揮的作用最大[10]。本研究顯示,痰標(biāo)本中銅綠假單胞菌exoS、exoU基因表達(dá)率較高,86.96%的菌株表達(dá)exoS,69.57%的菌株表達(dá)exoU,檢出率最高的基因型是exoS+/exoU+(60.87%),明顯高于其他3種基因型,提示本地區(qū)住院患者呼吸道感染的銅綠假單胞菌致病能力較強(qiáng),可能是造成呼吸道感染率高、治療困難、住院時(shí)間長(zhǎng)的主要因素。
與FQ-S菌株相比,F(xiàn)Q-NS菌株exoU基因和exoS+/exoU+基因型陽(yáng)性率均明顯高于FQ-S組(P<0.05)。推測(cè)可能是exoU陽(yáng)性菌株更易發(fā)生氟喹諾酮耐藥基因突變,使其獲得更高耐藥性的結(jié)果[11]。本研究亦表明,F(xiàn)Q-NS組的MDR菌株檢出率明顯高于FQ-S組(78.95% vs 7.41%,P<0.005),與相關(guān)報(bào)道一致[12-13]。
耐藥性分析發(fā)現(xiàn),46株檢出菌對(duì)12種監(jiān)測(cè)藥物總耐藥率大于40%的只有氨曲南(56.52%)和頭孢吡肟(47.83%),對(duì)環(huán)丙沙星和左氧氟沙星的耐藥率分別為30.43%和36.96%。但分組比較發(fā)現(xiàn),F(xiàn)Q-NS組對(duì)美羅培南(52.63%)、哌拉西林(57.89%)、哌拉西林/他唑巴坦(47.37%)、亞胺培南(63.16%)耐藥率均大于40%,明顯高于FQ-S組(P<0.05)。由此可見,如果只按照總耐藥率進(jìn)行經(jīng)驗(yàn)治療,很可能導(dǎo)致治療失敗、延誤病情。進(jìn)一步分析發(fā)現(xiàn),碳青霉烯耐藥菌株86.67%屬于FQ-NS。國(guó)外研究認(rèn)為,碳青霉烯耐藥菌株更易發(fā)生gyrA和parC基因位點(diǎn)堿基置換導(dǎo)致表達(dá)蛋白改變[11],而國(guó)內(nèi)研究顯示耐藥的主要原因是gyrA和gyrB基因位點(diǎn)的缺失和插入[14],推測(cè)可能與地域、用藥習(xí)慣及入選患者不同有關(guān)。上述結(jié)果提示,對(duì)銅綠假單胞菌感染的治療應(yīng)依據(jù)氟喹諾酮類藥物的耐藥性選擇藥物。兩組細(xì)菌耐藥率均較低的有阿米卡星、多黏菌素B、頭孢他啶和慶大霉素,提示在下呼吸道銅綠假單胞菌感染的經(jīng)驗(yàn)治療上可優(yōu)先考慮上述藥物。研究同時(shí)發(fā)現(xiàn),部分菌株對(duì)碳青霉烯耐藥,但對(duì)頭孢菌素敏感,推測(cè)耐藥機(jī)制可能與產(chǎn)碳青霉烯酶無(wú)關(guān),而是外排系統(tǒng)MexAB-OprM和MexCD-OprJ過度表達(dá)所致[15]。
[1] Ye YW, Wang YS, Shen ZY. National guide to clinical laboratory procedures[S]. Third Edition.Nanjing: Southeast University Publishing House, 2006: 744-745.(in Chinese)
葉應(yīng)嫵,王毓三,申子瑜.全國(guó)臨床檢驗(yàn)操作規(guī)程[S].3版.南京: 東南大學(xué)出版社,2006:744-745.
[2] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[S]. Twenty-Fourth Informational Supplement, 2014.
[3] Ding YL, Chen YH, Yao WZ, et al. Analysis of antimicrobial resistance of multidrug resistantPseudomonasaeruginosa[J]. Chin J Antibiotics, 2012, 37(1): 63-67.(in Chinese)
丁艷苓,陳亞紅,姚婉貞,等.多重耐藥銅綠假單胞菌的耐藥性分析[J].中國(guó)抗生素雜志, 2012,37(1): 63-67.
[4] Feltman H, Schulert G, Khan S, et al. Prevalence of type III secretion genes in clinical and environmental isolates ofPseudomonasaeruginosa[J]. Microbiology, 2001, 147(10): 2659-2669. DOI: 10.1099/00221287-147-10-2659
[5] Cho HH, Kwon KC, Kim S, et al. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistantPseudomonasaeruginosa[J]. Ann Lab Med, 2014, 34(4): 286-292. DOI: 10.3343/alm.2014.34.4.286
[6] Wong-Beringer A, Wiener-Kronish J, Lynch S, et al. Comparison of type Ⅲ secretion system virulence among fluoroquinolone-susceptible and resistant clinical isolates ofPseudomonaseruginosa[J]. Clin Microbiol Infect, 2008, 14(4): 330-336. DOI: 10.1111/j.1469-0691.2007.01939.x
[7] Garey KW, Vo QP, Larocco MT, et al. Prevalence of type III secretion system protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients withPseudomonasaeruginosa[J]. J Chemother, 2008, 20(6): 714-720. DOI: 10.1179/joc.2008.20.6.714
[8] Maatallah M, Cheriaa J, Backhrouf A, et al. Population structure ofPseudomonasaeruginosafrom five mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235[J]. PLoS One, 2011, 6(10): e25617. DOI: 10.1371/j.pone.0025617
[9] Galle M, Carpentier I, Beyaert R. Structure and function of the type III secretion system ofpseudomonasaeruginosa[J]. Curr Protein Pept Sci, 2012, 13(8): 831-842.
[10] Howell HK, Logan LK, Hausera AR. Type III secretion of ExoU is critical during earlypseudomonasaeruginosapneumonia[J]. MBio, 2013, 4(2): e00032. DOI: 10.1128/mBio.00032-13
[11] Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype inPseudomonasaeruginosa[J]. PLOS One, 2012, 7(8): e42973. DOI: 10.1371/j.pone.0042973
[12] Flamm RK, Weaver MK, Thornsberry C, et al. Factors associated with relative rates of antibiotic resistance inPseudomonasaeruginosisolates tested in clinical laboratories in the United States from 1999 to 2002[J]. Antimicrob Agents Chemother, 2004, 48(7): 2431-2436. DOI: 10.1128/AAC.48.7.2431-2436.2004
[13] Hau DI, Okamoto MP, Murthy R, et al. Fluoroquinolone-resistantPseudomonasaeruginosa: risk factors for acquisition and impact on outcomes[J]. J Antimicrob Chemother, 2005, 55(4): 535-541. DOI: 10.1093/jac/dki026.
[14] Zhang GD, Zeng ZR, Wang Y, et al. Mechanisms of gyrA,gyrB and efflux system jointly mediating quinlone resistance in clinical isolates ofPseudomonasaeruginosa[J]. Chin J Infect Chemother, 2014, 14(3): 224-228.(in Chinese)
張國(guó)棟,曾章銳,王瑩,等.gyrA、gyrB和外排系統(tǒng)共同介導(dǎo)銅綠假單胞菌對(duì)喹諾酮類耐藥機(jī)制研究[J].中國(guó)感染與化療雜志,2014,14(3): 224-228.
[15] Zeng ZR, Shao HF, Wang WP, et al. Study on mechanism of imipenem resistance of ephalosporin-susceptible or intermediatePseudomonasaeruginosa[J]. Chin J Clin Lab Sci,2013, 31(1): 24-27.(in Chinese)
曾章銳,邵海楓,王衛(wèi)萍,等.頭孢菌素敏感或中介的銅綠假單胞菌對(duì)亞胺培南耐藥機(jī)制的研究[J].臨床檢驗(yàn)雜志,2013,31(1): 24-27.
Correlation between virulence genotype and fluoroquinolone drugs resistance inPseudomonasaeruginosaof lower respiratory tract infection
JU Xiao-hong1, LI Yao1, WANG Yue-hua1, ZHAO Peng-bo2
(1.AcademyofLaboratory,JilinMedicalUniversity,Jilin132013,China;2.DepartmentofClinicalLaboratory,JilinProvincialPeople'sHospital,Jilin132000,China)
We investigated the correlation between toxin geneexoS,exoUand fluoroquinolone resistance in lower respiratory tract infection withP.aeruginosaso as to provide guidance for reasonable treatment of clinical infections. We collectedP.aeruginosaof sputum samples in hospitalized patients from October 2015 to March 2016.The antimicrobial susceptibility was tested by liquid dilution method.TheexoSandexoUgenes were detected by PCR technique. Results showed that forty-sixP.aeruginosastrains were identified from sputum. TheexoSandexoUgene positive rate were 86.96%(40/46) and 69.57%(32/46) respectively, and the highest proportion of genotype wasexoS+/exoU+(60.87%,28/46). Among them, 36.96% (17/46) were multiple drug-resistant bacteria(MDR). Fluoroquinolone non-sensitive (FQ-NS) strain were 78.95% (15/19) for MDR and 89.47%(17/19)exoUgene were positive, which was significantly higher than the fluoroquinolone sensitive strains (FQ-S). Compared with the FQ-S strain, FQ-NS strains were serious drug resistance. The drug resistant rate of cefepime and aztreonam were more than 70%, and then meropenem and imipenem were more than 50%. The drugs of lower resistance rate in FQ-NS strain had polymyxin B(10.53%,2/19), amikacin(10.53%,2/19), ceftazidime(15.79%,3/19) and gentamicin (21.05%,4/19).P.aeruginosaof lower respiratory infection carried toxin genesexoSandexoUwere higher, the main genetpy wasexoS+/exoU+.FQ-NS strains were higher drug resistance rate and a higher proportion ofexoU+ strains than FQ-S strains. We should strengthen virulence genes test and drug resistance monitoring in clinical practice.
Pseudomonasaeruginos;exoS;exoU; resistance drug; fluoroquinolone resistance
10.3969/j.issn.1002-2694.2017.01.007
江蘇省檢驗(yàn)醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(No.JSKLM-2014-016)
1.吉林醫(yī)藥學(xué)院檢驗(yàn)學(xué)院,吉林 132013; 2.吉林省人民醫(yī)院檢驗(yàn)科,長(zhǎng)春 132000 Email: lijin838@126.com
R378
A
1002-2694(2017)01-0038-05
2016-07-21 編輯:李友松