• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stopping Means Achieving: A Weaker Logic of Knowing How*

    2017-01-20 08:28:50YanjunLi
    邏輯學(xué)研究 2016年4期
    關(guān)鍵詞:公理弱化語(yǔ)義

    Yanjun Li

    Faculty of Philosophy,University of Groningeny.j.li@rug.nl

    Stopping Means Achieving: A Weaker Logic of Knowing How*

    Yanjun Li

    Faculty of Philosophy,University of Groningeny.j.li@rug.nl

    .This paper proposes a weaker but more realistic semantics to the knowing-how operator proposed by Y.Wang in 2015.According to this semantics,an agent knows how to achieveφgivenψif(s)he has a finite linearplan by which(s)he can always end up with aφ-state when the execution of the plan terminates,either successfully or not.This weaker interpretation of knowing-how results in a weaker logic where the composition axiom in Wang’s paper no longer holds.We present a sound and complete axiomatic system of this logic and prove that this logic is decidable.

    1 Introduction

    Epistemic logic proposed by von Wright and Hintikka[14,26]is a modal logic that is concerned with reasoning about knowledge.It formalizes the propositional knowledge,knowledge of the form“knowing that”,as a modal formulaKφwhich expressesthe agentknowsthatφholds.Itinterpretsknowledge-thatregarding agents’uncertainty.The agent knows thatφata statesifand only ifhe can rule out allthe?φepistemic possibilities ats.Epistemic logic is widely applied in theoretical computer science,artificial intelligence,economic and linguistics(see[4]).

    However,knowledge is not only expressed by“knowing that”,but also by other expressions,such as“knowing how”,“knowing what”,“knowing why”,and so on. Among all these expressions,“knowing how”(and the knowledge-how that it expresses)is the most discussed one.Despite the heated philosophical discussions on whether knowledge-how is a subspecies of knowledge-that(see the survey by [7]),researchers in artificial intelligence and logic have largely adopted the view that knowledge-how can be reduced to knowledge-that and ability.

    In artificial intelligence,beginning from McCarthy and Hayes([16,17]),researchers started to study what it means for a computer program to“know how”toachieve a state of affairsφin terms of its ability.In particular,Moore’s work([18]) is highly influential on representation and reasoning of knowledge and ability.According to Moore,there are two possible ways to define the agent’s knowledge-how:

    (I)There exists an actionasuch that the agent knows that the performance ofawill result inφ;

    (II)The agent knows that there exists an actionasuch that the performance ofawill result inφ.

    The first is ade redefinition of knowledge-how,and the second is ade dictodefinition.Moore pointed out that the first definition is too strong and the second is too weak.Therefore,he proposed an adapted,but very complicated version of the definition.Moore’s formalism has inspired a large body of work in artificial intelligence on knowledge and ability([9,1]).

    In logic,the framework of Alternating-time Temporal Logic(ATL)is concerned with reasoning about agent’s abilities in game structures.By adding the knowledge operator to this framework(see[2]),it can express that the agent knows that there is a strategy to enforceφf(shuō)rom the current state.However,it is still ade dictoreading of knowledge-how,and it is too weak to define knowledge-how.To solve this problem, researchersproposed differentsolutions([3,12,13]),such asmaking the strategy uniform,or specifying the explicit actions in the modality(e.g.,knowing that performingabcwill achieveφ).

    In the above-mentioned works,knowledge-how is usually expressed in a very rich logical language involving quantifiers or various complicated modalities.However,starting from[11,15,19],logiciansattempted to formalize some knowledge-wh, such as“knowing whether”,“knowing what”et al,as a whole modality,in the similar way of epistemic logic dealing with knowledge-that.The recent works([5,6,10,21, 22,23,24])are in line with this idea.

    In particular,[21]proposed a single-agentlogic of knowing how,which includes modal formulaKh(ψ,φ)to express that the agent knows how to achieveφgiven the preconditionψ.The models are labelled transition systems which reflect agent’s ability.Thusthe modelsare also calledabilitymaps.The formulaKh(ψ,χ)isinterpreted in ade rereading of knowledge-how:there exists an action sequence(also called a plan)σsuch that(1)performingσat eachψ-state will achieve aφ-state;and(2)the execution of the plan will never fail.In automated planning,such a plan is called aconformant plan(cf.[8,20]).Considering Example 1 which represents a map of a floor in a building where the agent can go right(r)or up(u).1This example is taken from[25,27,21].According to Wang’s interpretation of knowledge-how,the agent here knows how to achieveqgivenpbecause there is a conformant planru(first moving right then moving up)for achievingq-states fromp-states.

    Example 1

    However,the demands that a conformant plan askes may be too strong,in the sense that the execution of the plan willneverfail.Intuitively,we still be comfortable to say“we know how to achieveφgivenψ”only if we will always end up with aφ-state when the execution of the plan terminates,either successfully or not.For example,letqbe true only on the states5in Example 1 then there will be no conformant plans for achieving the onlyq-states5fromp-states,but we still say that“we know how to achieve theq-state fromp-states”because we can get there by moving right at most three times.The plan of moving right three times is not a conformant plan since the execution of the plan starting froms3will fail to continue ats5,but this plan will still guarantee our achieving theq-states5in the sense that we will always end up withs5when the execution of the plan terminates.We call it a weak conformant plan. A weak conformant plan for achievingφ-states fromψ-states is a finite linear action sequence such that the execution of the action sequence at eachψ-state will always terminate on aφ-state,either successfully or not.Intuitively,a weak conformant plan is enough for our knowing how to achieveφgivenψ.

    This paper interprets the knowledge-how formulaKh(ψ,φ)as that there is a weak conformant plan for achievingφgivenψ.Compared to the interpretation of [21],our interpretation is weaker,but it is more realistic.We also present a sound and complete axiomatic system.It shows that this weaker interpretation results in a weaker logic.The composition axiom in[21]

    is not valid under this weaker semantic.Even though the logic is weaker,the proof of the completenessisnon-trivial.We also define an alternative non-standard semantics. By reducing a decidable problem w.r.t.our weaker semantics to a decidable problem w.r.t.this alternative non-standard semantics,we show that this logic is decidable. Whatismore,from the perspective ofthe non-standard semantics,we can see thatour interpretation of knowledge-how is almost the same with Moore’s first interpretation (I).

    The rest of the paper is organized as follows.Section 2 introduces the language and semantics.Section 3 presents an axiomatic system,which is weaker than the system given in[21].Section 4 shows that our logic is decidable by reducing a standard decidable problem to a decidable problem w.r.t.the non-standard semantics.In the last section,we conclude with future directions.

    2 Language and semantics

    In this section,we will introduce the language and the semantics.The language is the same as[21].The intuition of the semantics is that we know how to achieveφgivenψif and only if we have a weak conformant plan for achievingφ-states fromψ-states.

    Definition 1(Language)Given a set of proposition lettersP,the languageLis defined as follows:

    wherep∈P.KhW(ψ,φ)expresses that the agent knows how to achieveφgivenψ. We use the standard abbreviations⊥,φ∨ψandφ→ψ.The same as[21],we defineUφasKhW(?φ,⊥).Uis intended to be a universal modality,and it will become more clear after we define the semantics.

    Definition 2(Model)A model(also called an ability map)is essentially a labelled transition system(S,Σ,R,V)where:

    ·Sis a non-empty set of states;

    ·Σ is a set of actions(or labels);

    ·R:Σ→2S×Sis a collection of transitions labelled by actions in Σ;

    ·V:S→2Pis a valuation function.

    Definition 3(Terminal States)Given a states∈Sand an action sequenceσ=a1···an∈Σ?,TERMS(s,σ)is the set of states at which executingσonsmight terminate.Formally,it is defined as

    Definition 4(Semantics)Supposesis a state in a modelM=(S,Σ,R,V).Then

    we inductively define the notion of a formulaφbeing satisfied(or true)inMat statesas follows:

    where?ψ?={s∈S|M,s?ψ}.

    We also call the semantics defined here as the standard semantics,to distinguish it from the non-standard semantics defined in Section 4.Now we can also check that the operatorUdefined byKhW(?φ,⊥)is indeed auniversal modality:

    Under this semantics,the composition axiom in[21],

    isnotvalid.The following example presentsa modelon which the composition axiom is not true.

    Example 2ModelMis depicted as follows.

    ·M,s1?KhW(p,r)since there is a weak conformant plana.Please note that executingaons2will terminate on itself.

    ·M,s1?KhW(r,q)since there is a weak conformant planb.Executingbon eachr-states,eithers3ors2,will achieving on aq-state.

    ·M,s1?KhW(p,q)since there are no weak conformant plans for achievingq-states fromp-states.Particularly,abis not a weak conformant plan.The performance ofabons1will result in aq-states5,but executingabonp-states2will terminate on itself.

    The composition of two weak conformant plan might not be a weak conformant plan any more.Just as it is shown in Example 2,ais a weak conformant plan for achievingr-states fromp-states,andbis a weak conformant plan for achievingqstates fromr-states,but the compositionabis not a weak conformant plan for achievingq-states fromp-states.There are no weak conformant plans for how to achieveq-states fromp-states in this example.

    Definition 5(SK? System)The axiomatic system SK? is defined in Table 1.We write SK??φ(or sometimes just?φ)to mean that the formulaφis derivable in the axiomatic system SK?;the negation of SK??φis written SK??φ(or just?φ).To say thata setDofformulasis SK?-inconsistent(orjustinconsistent)means that there is a finite subsetD′?Dsuch that??∧D′,where∧D′:=∧φ∈D′φ

    ifD′/=?and∧φ∈?φ:=?.To say that a set of formulas is SK?-consistent(or just consistent)means that the set of formulas is not inconsistent.Consistency or inconsistency of a formula refers to the consistency or inconsistency of the singleton set containing the formula.

    Table 1:System SK?M

    All the axioms here except UKh are also axioms in the axiomatic system addressed in[21],where UKh is deducible from the composition axiom.As observed in Example 2,The composition axiom is not valid by our semantics.It means that the system here is strictly weaker than the syetem in[21],which is in line with the fact that here knowledge-how is interpreted in a weaker way.However,even though the system is weaker,the proof of its completeness is highly non-trivial.We will explain the reason later in the proof.

    Proposition 1?Uχ∧Uψ→U(χ∧ψ)

    Proof(1)?χ→(ψ→(χ∧ψ))by propositional logic

    (2)?U(χ→(ψ→(χ∧ψ)))by Rule NECU

    (3)?Uχ→U(ψ→(χ∧ψ))by Axiom DISTU

    (4)?U(ψ→(χ∧ψ))→(Uψ→U(χ∧ψ))by Axiom DISTU

    (5)?Uχ→(Uψ→U(χ∧ψ))by(3)and(4)

    (6)?Uχ∧Uψ→U(χ∧ψ)by propositional logic□

    Proposition 2?U(p′→p)∧U(q→q′)∧KhW(p,q)→KhW(p′,q′)

    ProofAssuming thatM,s?U(p′→p)∧U(q→q′)∧KhW(p,q),we need to show thatM,s?KhW(p′,q′).SinceM,s?KhW(p,q),it follows that there existsσ∈Σ?such that for eachw∈?p?and eacht∈TERMS(w,σ)we haveM,t?q(?).In order to showM,s?KhW(p′,q′),we only need to show thatM,t′?q′for eachw′∈?p′?and eacht′∈TERMS(w′,σ).

    Givenw′∈?p′?,it follows byM,s?U(p′→p)thatw′∈?p?.Due to(?),we have that for eacht′∈TERMS(w′,σ):M,t′?q,namelyt′∈?q?.Moreover,sinceM,s?U(q→q′),we have?q???q′?.Therefore,we have thatt′∈?q′?,namelyM,t′?q′,for eacht′∈TERMS(w′,σ).Thus,M,s?KhW(p′,q′).□

    SinceUis a universal modality,DISTU,TU and EMPKh are obviously valid. Because the modalityKhWis not local,it is easy to show that 4KhU and 5KhU are valid.Along with Propositions 2,we have that all axioms are valid.Moreover,due to a standard argument in modal logic,we know that the rules MP,NECU and SUB preserve formula’s validity.Therefore,the soundness of SK? follows immediately.Theorem 1(Soundness)SK? is sound w.r.t.the standard semantics.

    3 Completeness

    This section will show that SK? is complete w.r.t.the standard semantics.Here are some notions before we prove the completeness.Given a set ofLformulas Δ,let Δ|KhWand Δ|?KhWbe the collections of its positive and negativeKhWformulas:

    In the following,let Γ be a maximal consistent set(MCS)ofLformulas.We first prepare ourselves with some useful definitions and handy propositions.

    Definition 6Let ΦΓbe the set of all MCS Δ such that Δ|KhW=Γ|KhW.

    Proposition3ForeachΔ∈ΦΓ,we haveKhW(ψ,φ)∈Γifand only ifKhW(ψ,φ)∈Δ for allKhW(ψ,φ)∈L.

    Proposition 4Ifφ∈Δ for all Δ∈ΦΓthenUφ∈Δ for all Δ∈ΦΓ.

    By NECU,

    By DISTU we have:

    Now it is immediate thatUφ∈Γ.Due to Proposition 3,Uφ∈Δ for all Δ∈ΦΓ.□

    Proposition 5GivenKhW(ψ,φ)∈Γ and Δ∈ΦΓ,ifψ∈Δ then there exists Δ′∈ΦΓsuch thatφ∈Δ′.

    ProofAssumingKhW(ψ,φ)∈Γandψ∈Δ∈ΦΓ,ifthere doesnotexistΔ′∈ΦΓ

    such thatφ∈Δ′,it means that?φ∈Δ′for all Δ′∈ΦΓ.It follows by Proposition 4 thatU?φ∈Γ,and thenU(φ→⊥)∈Γ.SinceU(φ→⊥)andKhW(ψ,φ)∈Γ,it follows by UKh thatKhW(ψ,⊥)∈Γ,namelyU?ψ∈Γ.By Proposition 3,we have thatU?ψ∈Δ.It follows by TU that?ψ∈Δ.This is contradictory withψ∈Δ. Therefore,there exists Δ′∈ΦΓsuch thatφ∈Δ′.□

    SinceKhWformulas are globally true or false,it is not possible to satisfy each consistentKhWformulas simultaneously in one model.Therefore,in the following, we build a separate canonical model for each MCS Γ.Because the following proofsare quite technical,itiscrucialfirstto understand the ideasbehind the canonicalmodel construction.Besides satisfyingKhW(ψ,φ),the canonical model also needs to meet the following two requirements.

    (1)Generally,KhW(ψ,φ)cannot be satisfied by a one-step plan.Otherwise, the canonical model will always satisfy the formula thatKhW(p,?p)∧KhW(?p,q)→KhW(p,q)which is not a valid formula.Therefore,in the canonical model,KhW(ψ,φ)willbe satisfied by a two-step plan〈ψ,ψφ〉〈ψφ,φ〉.Ifwe already reach aφ-state by the first step〈ψ,ψφ〉,we do not need to go further anymore.If we arrive at a?φ-state by〈ψ,ψφ〉,then we need to make sure that doing the second step〈ψφ,φ〉on this state will achieve onlyφ-states.

    (2)If〈ψ,ψφ〉〈ψφ,φ〉is a weak conformant plan forKhm(ψ,φ),then〈ψ,ψφ〉must be executable on at least one?ψ-state.The reason is that if〈ψ,ψφ〉is only executable atψ-states then the canonical model will always satisfyKhW(ψ,φ)→KhW(ψ∨φ,φ)which is not a valid formula.If we allow〈ψ,ψφ〉also executable at?ψ-states,we must treat the step fromψ-states and?ψ-states differently.Otherwise, the canonical model will always satisfyKhW(ψ,φ)→KhW(?,φ).Our method is that the step〈ψ,ψφ〉starting fromψ-states will reach only states marked withψφ. This is why we includeψφmarkers in the building blocks of the canonical model besides maximal consistent set.2In[21],the canonical models are much simpler:we just need MCSs and the canonical relations are simply labelled by〈ψ,φ〉forKh(ψ,φ)∈Γ.

    ·Sc={(Δ,ψφ)|Δ∈ΦΓ,KhW(ψ,φ)∈Γ}.We write the pair inSasw,v,···,and refer to the first entry ofw∈Sas L(w),to the second entry as R(w);

    ·ΣΓ={〈ψ,ψφ〉,〈ψφ,φ〉|KhW(ψ,φ)∈Γ};

    ·p∈Vc(w)??p∈L(w).

    For eachw∈S,we also callwaψ-state ifψ∈L(w).

    Please note thatScisnon-empty because(Γ,??)∈Sc.We firstshow thateach Δ∈ΦΓappears as L(w)for somew∈Sc.

    Proposition 6For each Δ∈ΦΓ,there existsw∈Scsuch that L(w)=Δ.

    ProofSince??→?,it follows by NECU that?U(?→?).Thus,we haveU(?→?)∈Γ.It follows by EMPKhm thatKhW(?,?)∈Γ.Thus,we have that(Δ,??)∈Sc.□

    Since ?!师郸?it follows by Proposition 6 thatSc/=?.

    Proposition 4 helps us to prove the following proposition which will play crucial roles in the completeness proof.Note that according to Proposition 4,to obtain thatUφin alltheΔ∈ΦΓ,we justneed to show thatφisin alltheΔ∈ΦΓ,notnecessarily in all thew∈Sc.

    ·a1=〈ψ1φ1,φ1〉We willshow thatσ′=?satisfiesthatforeachψ-statew∈Scand each statet∈TERMS(w,σ′)we haveφ∈L(t).We only need to show thatψ→φ∈Δ for each Δ∈ΦΓ.If not,there exists Δ′∈ΦΓsuch that{ψ,?φ}?Δ′.Letχbe a formula such that?χ?ψ1andχ/=ψ1.Since?χ→?,it follows by NECU and EMPKh thatKhW(χ,?)∈Γ.Then we have aψ-statew′=(Δ′,χ?)∈Sc.Sinceχ/=ψ1,a1is not executable onw′,and then we have{w′}=TERMS(w′,σ).Since?φ∈L(w′),this is contradictory with our assumption.Thus we haveψ→φ∈Δ for each Δ∈ΦΓ.

    ·a1=〈ψ1,ψ1φ1〉There are two cases based on the form ofa2:–a2=〈ψ2,ψ2φ2〉There are two cases:U?ψ2∈Γ or not.

    –a2=〈ψ2φ2,φ2〉There are two cases:U(ψ→ψ1)∈Γ or not.

    *There exists Δ∈ΦΓsuch thatψ,?ψ1∈Δ.In this case,it must be thatφ∈Δ′for each Δ′∈ΦΓ.If not,lett= where?φ∈Δ′,?ψ2?ψ′2andψ2/=ψ2.Letwbe a state such that

    ProofBoolean cases are trivial,and we only focus on the case ofKhW(ψ,φ).

    ·n=0 It meansσ=?.It follows by HI thatψ∈Δ impliesφ∈Δ for all Δ∈ΦΓ.Therefore,we haveψ→φ∈Δ for all Δ∈ΦΓ.It follows by Proposition 4 thatU(ψ→φ)∈Γ.By EMPKh,we havew thatKhW(ψ,φ)∈Γ.It follows by Proposition 3 thatKhW(ψ,φ)∈L(w).

    ·n>0 There are three cases.

    Theorem 2(Completeness)SK? is complete w.r.t.the standard semantics.

    Similar with the proof of the completeness in[21],our canonical model is also based on a certain maximal consistent set Γ,but there are some critical differences. First,the state of the canonical model is a pair consisting of a maximal consistent set and a marker.The marker plays an important role in defining the binary relations of actions.Second,each knowing-how formula is generally realized by a weak conformant plan consisting of two actions.

    4 Decidability

    Thissection willshow thatthe problem thatwhethera formulaφisvalid w.r.t.the standard semantics is decidable.The strategy is that we firstly define a non-standard semantics and show thatφis valid w.r.t.the standard semantics if and only ifφis valid w.r.t.the non-standard semantics.Next,we show thatφhas a bounded model ifφis satisfiable w.r.t.the non-standard model.

    Definition 8(Non-standard semantics)Given a pointed modelM,sand a formulaφ,we writeM,s?φto mean thatφis true atM,sw.r.t.the non-standard semantics?.The non-standard semantics?is defined by the following induction on formula construction.

    M,s??alwaysM,s?p??s∈V(p).M,s??φ??M,s?φ.M,s?φ∧ψ??M,s?φandM,s?ψ.M,s?KhW(ψ,φ)??there existsa∈Σ●such that for allM,u?φ:ais executable atuandM,v?φf(shuō)or allv∈Ra(u)

    where Σ●=Σ∪{?}.To sayφis valid w.r.t.the non-standard semantics,written?φ, meansM,s?φf(shuō)or all pointed modelM,s.

    In this non-standard semantics,the knowledge-how is interpreted almost the same with Moore’s first interpretation(I).The only difference is that the witness action for the knowledge-how might be epsilon?.Intuitively,it means that ifφis true on eachψ-state then we know how to achieveφgivenψtrivially by doing nothing.

    LetM,s?Uφbe defined asM,u?φf(shuō)or allu∈S.It is easy to show that

    In order to show thatφis valid w.r.t.the standard semantics if and only ifφis valid w.r.t.the non-standard semantics,it follows by Theorem 1 and Theorem 2 that we only need to show that SK? is sound and complete w.r.t.the non-standard semantics.

    SinceKhWis also a universal modality,it is easy to verify that SK? is sound w.r.t.the non-standard semantics.

    Proposition 8If?φthen?φ.

    Next we will show that SK? is complete w.r.t.the non-standard semantics. Given a consistent formulaφ,we will show thatφis satisfiable w.r.t.the non-standard semantics.

    LetSub(φ)be the set of all sub-formulas ofφ.Let~ψ:=χifχis a negation formula,otherwise,~ψ:=?χ.It is obvious that??ψ?~ψ.LetSub+(φ):=Sub(φ)∪{~ψ|ψ∈Sub(φ)}.It is obvious that|Sub+(φ)|≤2|φ|where|φ|is the length ofφ.

    Definition9(Atom)An atom ofSub+(φ)Aisa maximalconsistentsetwith respect toSub+(φ),if and only if,Ais a consistent subset ofSub+(φ)such that for eachψ∈Sub+(φ)ifA∪{ψ}is consistent thenA:=A∪{ψ}.We useA,B,Cto denote atoms.

    Proposition 9If Γ is a consistent subset ofSub+(φ)then there exists an atomBofSub+(φ)such that Γ?B.

    LetAbe an atom ofSub+(φ)such thatφ∈A.We define ΘA=A|KhW∪A|?KhW.

    Definition 10The modelMA=〈SA,ΣA,RA,VA〉is defined as follows.

    ·SA={Bis an atom ofSub+(φ)|(B|KhW∪B|?KhW)=ΘA};

    ·ΣA={〈χ,ψ〉|KhW(χ,ψ)∈ΘA};

    ·p∈VA(B)??p∈B,for eachp∈Sub+(φ).SAis non-empty becauseA∈SA.

    Proposition 10ΘA?U∧ΘA

    Proposition 11For eachψ∈Sub+(φ),ifψ∈Bfor allB∈SAthen ΘA?Uψ.

    Proposition 12Givenχ∈Sub+(φ)andB∈SA,ifχ∈Bimplies that〈χ′,ψ′〉∈ΣAis executable atBthen we have ΘA?U(χ→χ′).

    ProofAssume that ΘA∪{χ,~χ′}is consistent.It follows that there existsC∈SAsuch that ΘA∪{χ,~χ′}?C.It follows thatχ∈Cand〈χ′,ψ′〉is not executable atC.Contradiction.Therefore,ΘA∪{χ,~χ′}is inconsistent.Thus, we have?∧ΘA→(χ→χ′).It follows by Rule NECU and Axiom DISTU that?U∧ΘA→U(χ→χ′).It follows by Proposition 10 that ΘA?U(χ→χ′).□

    Proposition 14For eachψ∈Sub+(φ),MA,B?ψiffψ∈B.

    ProofBoolean cases are trivial;we only focus on the case ofKhW(χ,ψ).

    ·a=?.It follows thatM,C?ψifM,C?χ.By IH,we have thatχ∈Cimpliesψ∈Cfor allC∈SA.Therefore,we have ΘA∪{χ,?ψ}is inconsistent.It follows that ΘA?χ→ψ.It follows by Rule NECU,Axiom DISTU,and Proposition 10 that ΘA?U(χ→ψ).It follows by Axiom EMPKh that ΘA?KhW(χ,ψ).Therefore,KhW(χ,ψ)∈B.

    ·a=〈χ′,ψ′〉∈ΣAand there is noC∈SAsuch thatχ∈C.It follows that ΘA∪{~χ}is inconsistent.Thus,we have ΘA??χ.It follows by Rule NECU,Axiom DISTU,and Proposition 10 that ΘA?U?χ,namely ΘA?KhW(χ,⊥).Since?U(⊥→ψ),it follows by Axiom UKh that ΘA?KhW(χ,ψ).Thus,we haveKhW(χ,ψ)∈B.

    ·a=〈χ′,ψ′〉∈ΣAandχ∈Cfor someC∈SA.It follows by IH that for eachχ∈B′we have〈χ′,ψ′〉is executable atB′.It follows by Proposition 12 that ΘA?U(χ→χ′).It follows by IH thatψ∈C′for eachC′∈SA

    Proposition 15If?φthen?φ.

    ProofWe only need to show that ifφis consistent thenφis satisfiable w.r.t.the non-standard semantics?.Ifφis consistent,it follows by Proposition 9 that there is an atomAofSub+(φ)such thatφ∈A.It follows by Proposition 14 thatM,A?φ.□

    It follows by Propositions 8 and 15 that SK? is sound and complete w.r.t.the non-standard semantics?.Since SK? is also sound and complete w.r.t.the standard semantics?,we have the following lemma.

    Lemma 2?φif and only if?φ.

    Lemma 3Ifφis satisfiable w.r.t.the non-standard semantics,there is a modelMsuch thatM,s?φand|M|≤O(2|φ|).

    ProofIfφis satisfiable w.r.t.the non-standard semantics,it follows by Proposition 8 thatφis consistent.Then by Definition 10,we can construct a modelMAwhereAis an atom ofSub+(φ)andφ∈A.It follows by Proposition 15 thatMA,A?φ. It is obvious that|MA|≤O(2|φ|).□

    Theorem 3(Decidability)The problem that whetherφis valid w.r.t.the standard semantics is decidable.

    ProofTo decide whetherφis valid w.r.t.the standard semantics,it follows by Lemma 2 that we only need to decide whetherφis valid w.r.t.the non-standard semantics.In other words,we only need to decide whether?φis satisfiable w.r.t.the non-standard semantics.It follows by Lemma 3 that the problem of whether?φis satisfiable w.r.t.the non-standard semantics is decidable.□

    5 Conclusion and future work

    In thispaper,we interpretthe knowing-how formulaKhW(ψ,φ)asthatthe agent has a weak conformant plan for achievingφgivenψ,and a weak conformant plan for achievingφ-states fromψ-states is a finite linear action sequence such that the performance of the action sequence at eachψ-state will always end up with aφstate,either successfully or not.Our interpretation of knowledge-how is weaker than the interpretation of[21]where knowledge-how is interpreted as that the agent has a conformant plan,but our interpretation is more realistic.We also present a soundand complete axiomatic system.It shows that this system is weaker than the system addressed in[21].We also show that this logic is decidable by reducing a standard decidable problem to a decidable problem w.r.t.the non-standard semantics.

    One more interesting thing isthatthe canonicalmodelismuch more complicated even though the axiomatic system is weaker.Mainly,KhWformulas are realized by a two-step plan in our canonical model while they are realized by a one-step plan in the canonical model in[21].This also affords us some useful ideas about how to construct the decision procedure for the logic with tableau method.For example,for the tableau system of our logic,it is not enough to consider only one-step plans.

    The non-standard semantics played a major role in this paper not only because it is the key step in the proof of the decidability but also because it reveals the fact that our formalization of knowledge-how is in principle the same with Moore’s first interpretation.It also shows that Moore’s interpretation does not contain the trivial case of knowing how to guarantee a state of affairs by doing nothing.

    For future directions,we can express the existence of a weak conformant plan in the logic framework proposed in[27],where the existence of a conformant plan can be expressed by a formula.Moreover,we can study the knowing-how logic under fixed action set.In ourmodel,the action setΣisa partofthe model,butitis clearthat for different Σ we will get different logics.For example,if Σ is empty,KhW(ψ,φ)is equivalent toU(ψ→φ).If Σ is a singleton,the formulaKhW(p,q)∧KhW(q,r)→KhW(p,r)will be valid under our standard semantics.The more interesting thing is to compare the logic containing a finite Σ with the logic containing an infinite Σ.

    Another exciting research field is the multi-agent version ofKhW.We can also considergroup notionsof“knowing how”.Especially,the contribute knowledge-how will be very useful.If you know how to achieve B from A and I know how to achieve C from B,we two together should know how to achieve C form A.Moreover,it also makes good sense to extend our language with public announcement operator.The update ofthe new information willresultin the change ofthe background information throughoutthe model,and thiswillaffectthe knowledge-how.We also conjecture that adding public announcement operator to our logic will make the expressivity strictly stronger.

    [1]T.?gotnes,V.Goranko,W.Jamroga and M.Wooldridge,2015,“Knowledge and ability”,in H.van Ditmarsch,J.Halpern,W.van der Hoek and B.Kooi(eds.),Handbook of Epistemic Logic,pp.543–589,College Publications.

    [2]R.Alur,T.Henzinger and O.Kupferman,2002,“Alternating-time temporal logic”,Journal of the ACM,49:672–713.

    [3]F.Belardinelli,2014,“Reasoning about knowledge and strategies:Epistemic strategy logic”,Proceedings of the Second International Workshop on Strategic Reasoning, pp.27–33,EPTCS.

    [4]H.van Ditmarsch,J.Y.Halpern,W.van der Hoek and B.Kooi(eds.),2015,Handbook of Epistemic Logic,College Publications.

    [5]J.Fan,Y.Wang and H.van Ditmarsch,2014,“Almost necessary”,Advances in Modal Logic,Vol.10,pp.178–196.

    [6]J.Fan,Y.Wang and H.van Ditmarsch,2015,“Contingency and knowing whether”,The Review of Symbolic Logic,8:75–107.

    [7]J.Fantl,2008,“Knowing-how and knowing-that”,Philosophy Compass,3(3):451–470.

    [8]M.Ghallab,D.Nau and P.Traverso,2004,Automated Planning:Theory and Practice, Morgan Kaufmann.

    [9]P.Gochet,2013,“An open problem in the logic of knowing how”,in J.Hintikka(ed.),Open Problems in Epistemology,The Philosophical Society of Finland.

    [10]T.Gu and Y.Wang,2016,“‘Knowing value’logic as a normal modal logic”,Advances in Modal Logic,Vol.11,pp.362–381.

    [11]S.Hart,A.Heifetz and D.Samet,1996,“Knowing whether,knowing that,and the cardinality of state spaces”,Journal of Economic Theory,70(1):249–256.

    [12]A.Herzig,2015,“Logics of knowledge and action:Critical analysis and challenges”,Autonomous Agents and Multi-Agent Systems,29(5):719–753.

    [13]A.Herzig,E.Lorini and D.Walther,2013,“Reasoning about actions meets strategic logics”,Proceedings of LORI 2013,pp.162–175.

    [14]J.Hintikka,1962,Knowledge and Belief:An Introduction to the Logic of the Two Notions,Cornell University Press.

    [15]W.van der Hoek and A.Lomuscio,2003,“Ignore at your peril—Towards a logic for ignorance”,Proceedings of AAMAS-03,pp.1148–1149.

    [16]J.McCarthy,1979,“First-order theories of individual concepts and propositions”,Machine Intelligence,9:129–147.

    [17]J.McCarthy and P.J.Hayes,1969,“Some philosophical problems from the standpoint of artificial intelligence”,Machine Intelligence,pp.463–502,Edinburgh University Press.

    [18]R.C.Moore,1985,“A formal theory of knowledge and action”,in J.R.Hobbs and R.C.Moore(eds.),Formal Theories of the Commonsense World,Ablex Publishing Corporation.

    [19]J.A.Plaza,1989,“Logics of public communications”,in M.L.Emrich,M.S.Pfeifer, M.Hadzikadic and Z.W.Ras(eds.),Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems,pp.201–216.

    [20]D.E.Smith and D.S.Weld,1998,“Conformant graphplan”,AAAI-98:Proceedings of the Fifteenth National Conference on Artificial Intelligence,pp.889–896.

    [21]Y.Wang,2015,“A logic of knowing how”,Proceedings of LORI 2015,pp.392–405.

    [22]Y.Wang,2017,“A logic of goal-directed knowing how”,Synthese,to appear.

    [23]Y.Wang and J.Fan,2013,“Knowing that,knowing what,and public communication:Public announcement logic withKvoperators”,Proceedings of the 23rd IJCAI, pp.1147–1154.

    [24]Y.Wang and J.Fan,2014,“Conditionally knowing what”,Advances in Modal Logic,Vol.10,pp.569–587.

    [25]Y.Wang and Y.Li,2012,“Not all those who wander are lost:Dynamic epistemic reasoning in navigation”,Advances in Modal Logic,Vol.9,pp.559–580.

    [26]G.H.von Wright,1951,An Essay in Modal Logic,Amsterdam:North Holland.

    [27]Q.Yu,Y.Li and Y.Wang,2016,“A dynamic epistemic framework for conformant planning”,Proceedings of TARK XV,pp.298–318.

    停下即完成:“知道如何”的弱邏輯

    李延軍
    格羅寧根大學(xué)哲學(xué)系y.j.li@rug.nl

    本論文針對(duì)王彥晶提出的“知道如何”的模態(tài)算子提出了一種新的語(yǔ)義。與原來(lái)的語(yǔ)義相比,我們的語(yǔ)義比較弱但是卻更容易實(shí)現(xiàn)。根據(jù)該語(yǔ)義,主體知道如何從狀態(tài)ψ到達(dá)狀態(tài)φ當(dāng)且僅當(dāng)主體有一個(gè)有窮的線性動(dòng)作系列使得執(zhí)行該動(dòng)作系列停止后的狀態(tài)即是目的狀態(tài)。這種弱化的新語(yǔ)義導(dǎo)致了一種弱化的邏輯。原來(lái)邏輯系統(tǒng)里面的組合公理在我們的新語(yǔ)義下不再有效。我們也給出了該邏輯的一個(gè)公理系統(tǒng)并證明了其可靠性和完全性。同時(shí),我們也證明了該邏輯具有可判定性。

    Received2016-06-07

    *The author acknowledges the support from China Scholarship Council.The author thanks Yanjing Wang for telling the author the idea of the weak conformant plan and encouraging the author to write this paper.The author thanks Stipe Pandzic and Yuri David Santos for their helpful comments to make the paper more readable.The author is grateful to the two anonymous reviewers of this journal for their comments helping the author to improve the original work.Especially,one of them pointed out the interesting future direction of studying the logic under a finite action set.

    猜你喜歡
    公理弱化語(yǔ)義
    語(yǔ)言與語(yǔ)義
    歐幾里得的公理方法
    如何解決果樹盆景弱化的問(wèn)題
    基于ANSYS的硬塑氣囊蓋板弱化研究
    Abstracts and Key Words
    “上”與“下”語(yǔ)義的不對(duì)稱性及其認(rèn)知闡釋
    公理是什么
    自然主義是一種需要弱化的社會(huì)科學(xué)綱領(lǐng)
    認(rèn)知范疇模糊與語(yǔ)義模糊
    數(shù)學(xué)機(jī)械化視野中算法與公理法的辯證統(tǒng)一
    啦啦啦视频在线资源免费观看| 精品亚洲成a人片在线观看| 久久精品国产a三级三级三级| 国产精品不卡视频一区二区| 成人毛片a级毛片在线播放| 99久久精品热视频| 精品国产国语对白av| 欧美日韩亚洲高清精品| 五月开心婷婷网| 91aial.com中文字幕在线观看| 国国产精品蜜臀av免费| 精品人妻熟女av久视频| 精品久久久噜噜| 熟女电影av网| 国产伦精品一区二区三区视频9| 亚洲精品久久午夜乱码| 中文字幕亚洲精品专区| 十八禁网站网址无遮挡 | 国产在视频线精品| 亚洲图色成人| 在线天堂最新版资源| 午夜av观看不卡| 久久影院123| 日韩 亚洲 欧美在线| 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说| 99久久精品热视频| 久久国内精品自在自线图片| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| 精品久久国产蜜桃| 麻豆成人午夜福利视频| 亚洲人成网站在线观看播放| 国产精品福利在线免费观看| 伦理电影免费视频| 久久精品久久久久久久性| 国产又色又爽无遮挡免| 国产黄色免费在线视频| 黄色怎么调成土黄色| 韩国高清视频一区二区三区| 麻豆成人av视频| 边亲边吃奶的免费视频| 边亲边吃奶的免费视频| 国产精品蜜桃在线观看| 国产精品久久久久久精品古装| 国产69精品久久久久777片| 精品卡一卡二卡四卡免费| 18禁在线播放成人免费| 欧美日韩国产mv在线观看视频| 黄色视频在线播放观看不卡| 欧美日韩亚洲高清精品| 日本黄色日本黄色录像| 深夜a级毛片| 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 偷拍熟女少妇极品色| a级毛色黄片| 亚洲精品一二三| freevideosex欧美| 一级二级三级毛片免费看| 国产乱来视频区| 尾随美女入室| 99热国产这里只有精品6| 国精品久久久久久国模美| 亚洲国产欧美日韩在线播放 | 九色成人免费人妻av| 99久久精品国产国产毛片| 亚洲第一av免费看| 永久免费av网站大全| 亚洲内射少妇av| 麻豆成人午夜福利视频| 国产老妇伦熟女老妇高清| 中文欧美无线码| 成人黄色视频免费在线看| 精品久久久久久久久亚洲| 国产亚洲91精品色在线| 校园人妻丝袜中文字幕| 亚洲国产欧美日韩在线播放 | 久久午夜综合久久蜜桃| 免费看av在线观看网站| .国产精品久久| 亚洲伊人久久精品综合| 丝袜脚勾引网站| a级一级毛片免费在线观看| 日韩av在线免费看完整版不卡| 免费av中文字幕在线| 亚洲精品成人av观看孕妇| 国产精品人妻久久久久久| 只有这里有精品99| 午夜福利视频精品| 成人美女网站在线观看视频| 这个男人来自地球电影免费观看 | 日本黄色片子视频| 欧美最新免费一区二区三区| 一级片'在线观看视频| 亚洲欧美中文字幕日韩二区| 欧美人与善性xxx| 美女主播在线视频| 亚洲婷婷狠狠爱综合网| 国产高清三级在线| 亚洲av中文av极速乱| 18禁在线播放成人免费| 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| av一本久久久久| 青春草国产在线视频| 在线精品无人区一区二区三| 一本色道久久久久久精品综合| 久久国内精品自在自线图片| a级片在线免费高清观看视频| 日本av免费视频播放| 国产免费视频播放在线视频| 日本91视频免费播放| 中文天堂在线官网| 青春草亚洲视频在线观看| 亚洲av不卡在线观看| av天堂中文字幕网| 黑人猛操日本美女一级片| 日韩一区二区三区影片| 欧美最新免费一区二区三区| √禁漫天堂资源中文www| 国产精品国产三级国产专区5o| 高清视频免费观看一区二区| 免费不卡的大黄色大毛片视频在线观看| 色婷婷久久久亚洲欧美| 麻豆成人av视频| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 男人添女人高潮全过程视频| 五月伊人婷婷丁香| av不卡在线播放| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 亚洲va在线va天堂va国产| 男人添女人高潮全过程视频| av福利片在线| 精品人妻熟女av久视频| 99re6热这里在线精品视频| 视频区图区小说| 我要看黄色一级片免费的| 赤兔流量卡办理| 国产一区二区三区av在线| 啦啦啦视频在线资源免费观看| 丁香六月天网| 亚洲美女黄色视频免费看| 好男人视频免费观看在线| 午夜影院在线不卡| 国产 一区精品| 久久午夜福利片| 亚洲丝袜综合中文字幕| 少妇人妻 视频| 亚洲四区av| 国产午夜精品一二区理论片| 美女国产视频在线观看| 性色av一级| 亚洲成色77777| 2018国产大陆天天弄谢| 精品99又大又爽又粗少妇毛片| 国产熟女欧美一区二区| 久久ye,这里只有精品| 女的被弄到高潮叫床怎么办| 国产免费福利视频在线观看| 免费观看性生交大片5| av黄色大香蕉| 中文欧美无线码| 午夜老司机福利剧场| 午夜免费观看性视频| 深夜a级毛片| 午夜福利影视在线免费观看| 人妻一区二区av| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影小说| 赤兔流量卡办理| 国产黄色免费在线视频| 久久精品久久久久久噜噜老黄| 80岁老熟妇乱子伦牲交| 国产一区二区三区综合在线观看 | 精品国产国语对白av| 91精品国产九色| 国产又色又爽无遮挡免| 男的添女的下面高潮视频| 国产亚洲91精品色在线| 一区二区三区乱码不卡18| 国产欧美日韩一区二区三区在线 | 波野结衣二区三区在线| 欧美亚洲 丝袜 人妻 在线| 国产亚洲最大av| 一本一本综合久久| 国产日韩欧美在线精品| 亚洲熟女精品中文字幕| 国产亚洲精品久久久com| 97超碰精品成人国产| 又大又黄又爽视频免费| 国产视频内射| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| 久久狼人影院| 精品久久久久久电影网| 日本黄色片子视频| 久久久久久久久久久久大奶| 99九九在线精品视频 | 免费观看无遮挡的男女| 在线播放无遮挡| 久久久久久久久大av| 97精品久久久久久久久久精品| 五月开心婷婷网| 日本猛色少妇xxxxx猛交久久| 免费观看的影片在线观看| 韩国av在线不卡| 嫩草影院新地址| 秋霞在线观看毛片| 久久这里有精品视频免费| 久久婷婷青草| 我的老师免费观看完整版| 爱豆传媒免费全集在线观看| 亚洲高清免费不卡视频| 国产精品蜜桃在线观看| 岛国毛片在线播放| 国产精品福利在线免费观看| 青春草亚洲视频在线观看| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 少妇熟女欧美另类| h视频一区二区三区| 亚洲av欧美aⅴ国产| 一区二区三区精品91| 日韩一区二区视频免费看| 亚洲av中文av极速乱| 少妇人妻一区二区三区视频| 国产成人免费无遮挡视频| tube8黄色片| 纵有疾风起免费观看全集完整版| 大码成人一级视频| 国内精品宾馆在线| 少妇被粗大的猛进出69影院 | 日日爽夜夜爽网站| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 国产伦精品一区二区三区视频9| 人妻人人澡人人爽人人| 国产高清三级在线| 男女免费视频国产| √禁漫天堂资源中文www| 欧美日韩av久久| 熟女av电影| 午夜av观看不卡| 久久 成人 亚洲| 九九爱精品视频在线观看| 成人免费观看视频高清| 国产熟女午夜一区二区三区 | 一本久久精品| 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| av福利片在线| 国产高清有码在线观看视频| 欧美3d第一页| 伦精品一区二区三区| av播播在线观看一区| 在线观看国产h片| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| 中文乱码字字幕精品一区二区三区| av黄色大香蕉| 黑丝袜美女国产一区| 搡女人真爽免费视频火全软件| 18禁在线播放成人免费| 国产亚洲一区二区精品| 久久av网站| 亚洲一区二区三区欧美精品| 欧美精品国产亚洲| 亚洲婷婷狠狠爱综合网| 亚洲国产成人一精品久久久| 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 亚洲综合色惰| 日本爱情动作片www.在线观看| 在线亚洲精品国产二区图片欧美 | 欧美激情极品国产一区二区三区 | 精品久久久精品久久久| 久久精品夜色国产| 成年女人在线观看亚洲视频| 欧美精品一区二区大全| 国产一区亚洲一区在线观看| 亚洲高清免费不卡视频| 亚洲av不卡在线观看| 国产毛片在线视频| 久久99一区二区三区| 丰满人妻一区二区三区视频av| 在线观看免费高清a一片| 亚洲va在线va天堂va国产| 精品人妻熟女av久视频| 在线免费观看不下载黄p国产| 人妻系列 视频| 99久久精品一区二区三区| 99re6热这里在线精品视频| 大话2 男鬼变身卡| 国产伦精品一区二区三区视频9| 欧美另类一区| 在现免费观看毛片| 久久精品国产亚洲av天美| 国产午夜精品一二区理论片| 久久人妻熟女aⅴ| 亚洲美女黄色视频免费看| 国产男人的电影天堂91| 少妇猛男粗大的猛烈进出视频| 三级国产精品片| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 国产综合精华液| 大香蕉97超碰在线| 黑人巨大精品欧美一区二区蜜桃 | av播播在线观看一区| 欧美另类一区| 在线 av 中文字幕| 亚洲美女搞黄在线观看| 久久久久久久久久久免费av| 成人黄色视频免费在线看| 男女国产视频网站| 人妻人人澡人人爽人人| 99热这里只有精品一区| 国产av一区二区精品久久| 国产成人精品无人区| 九九久久精品国产亚洲av麻豆| 人人妻人人添人人爽欧美一区卜| 国产69精品久久久久777片| 欧美高清成人免费视频www| 国语对白做爰xxxⅹ性视频网站| 日日啪夜夜爽| 亚洲电影在线观看av| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 国产在线一区二区三区精| 国产精品.久久久| 少妇被粗大猛烈的视频| 亚洲色图综合在线观看| 超碰97精品在线观看| 色5月婷婷丁香| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 亚洲综合色惰| 中文乱码字字幕精品一区二区三区| 久热这里只有精品99| 亚洲精品视频女| 亚洲欧洲精品一区二区精品久久久 | 偷拍熟女少妇极品色| 极品教师在线视频| 色94色欧美一区二区| 色吧在线观看| 我要看黄色一级片免费的| 精品一区二区三卡| 在线观看免费日韩欧美大片 | 一级a做视频免费观看| 韩国av在线不卡| 大香蕉久久网| 色吧在线观看| 日韩亚洲欧美综合| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| 精品卡一卡二卡四卡免费| 国产欧美日韩精品一区二区| 国产精品成人在线| 精品久久久精品久久久| 国产午夜精品一二区理论片| 午夜av观看不卡| 高清午夜精品一区二区三区| 欧美日韩在线观看h| 精品午夜福利在线看| 久久精品夜色国产| 欧美老熟妇乱子伦牲交| 99热国产这里只有精品6| 国产精品熟女久久久久浪| 18+在线观看网站| 观看av在线不卡| 一本久久精品| 99久久精品一区二区三区| 2022亚洲国产成人精品| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 久久99精品国语久久久| 嫩草影院入口| 国产欧美日韩精品一区二区| 中文欧美无线码| 午夜福利影视在线免费观看| 在线播放无遮挡| 免费观看a级毛片全部| 久久国内精品自在自线图片| 97超碰精品成人国产| 少妇丰满av| 欧美 亚洲 国产 日韩一| 日韩精品免费视频一区二区三区 | 一级毛片我不卡| 亚洲欧美成人精品一区二区| 亚洲天堂av无毛| 久久青草综合色| 观看免费一级毛片| 久久久午夜欧美精品| 观看美女的网站| 精品亚洲乱码少妇综合久久| 永久网站在线| 国产高清国产精品国产三级| 欧美3d第一页| 国产有黄有色有爽视频| 成人特级av手机在线观看| 如何舔出高潮| 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 18禁动态无遮挡网站| 我的老师免费观看完整版| 精品少妇久久久久久888优播| 黑人巨大精品欧美一区二区蜜桃 | 一本大道久久a久久精品| 午夜福利,免费看| 3wmmmm亚洲av在线观看| 亚洲欧美清纯卡通| 久久精品国产a三级三级三级| 麻豆成人av视频| 国产精品秋霞免费鲁丝片| 在线观看美女被高潮喷水网站| 国产爽快片一区二区三区| 亚洲国产精品一区二区三区在线| 天美传媒精品一区二区| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区黑人 | 搡老乐熟女国产| 国产精品国产三级国产专区5o| 女人久久www免费人成看片| 精品久久久久久久久av| 久久精品国产亚洲网站| 精品人妻熟女毛片av久久网站| 一区二区av电影网| 欧美精品亚洲一区二区| 尾随美女入室| 精品久久久久久电影网| 免费黄色在线免费观看| 欧美+日韩+精品| 亚洲美女视频黄频| 国产美女午夜福利| 老司机影院毛片| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 2022亚洲国产成人精品| 美女福利国产在线| 亚洲三级黄色毛片| 国产真实伦视频高清在线观看| 丰满少妇做爰视频| 国产午夜精品一二区理论片| 极品人妻少妇av视频| 亚洲国产色片| 成年人免费黄色播放视频 | 欧美性感艳星| 黑人巨大精品欧美一区二区蜜桃 | 91久久精品电影网| 黄色怎么调成土黄色| 中文字幕久久专区| 婷婷色麻豆天堂久久| 亚洲高清免费不卡视频| 91精品一卡2卡3卡4卡| 亚洲av.av天堂| 国产中年淑女户外野战色| 亚洲成人av在线免费| 少妇被粗大的猛进出69影院 | 一级毛片电影观看| 乱码一卡2卡4卡精品| 亚洲精品日韩av片在线观看| 曰老女人黄片| 精品国产一区二区三区久久久樱花| 久久综合国产亚洲精品| 亚洲第一av免费看| 成人黄色视频免费在线看| 国产黄色视频一区二区在线观看| 色网站视频免费| 国产黄片视频在线免费观看| 亚洲第一av免费看| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 亚洲精品aⅴ在线观看| 国产免费一区二区三区四区乱码| 人妻一区二区av| 国产精品免费大片| 亚洲精品乱码久久久v下载方式| 最新的欧美精品一区二区| 国产亚洲精品久久久com| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 亚洲第一av免费看| 一区二区av电影网| 亚洲av综合色区一区| 男女边摸边吃奶| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区| 狂野欧美激情性xxxx在线观看| 一个人免费看片子| 久久国产乱子免费精品| av不卡在线播放| 夫妻性生交免费视频一级片| 人人妻人人添人人爽欧美一区卜| 久久婷婷青草| 各种免费的搞黄视频| 97在线人人人人妻| 五月伊人婷婷丁香| 三级国产精品片| 国产永久视频网站| 国产精品熟女久久久久浪| 亚洲成色77777| 国产黄片视频在线免费观看| 亚洲人成网站在线观看播放| 在线观看三级黄色| 自线自在国产av| 日本色播在线视频| 另类精品久久| 男女啪啪激烈高潮av片| 亚洲四区av| 欧美区成人在线视频| 嫩草影院入口| 九草在线视频观看| 一级二级三级毛片免费看| 国产伦精品一区二区三区四那| 亚洲av.av天堂| av线在线观看网站| 国内揄拍国产精品人妻在线| 亚洲成人一二三区av| 国产亚洲5aaaaa淫片| 丰满饥渴人妻一区二区三| 国产极品天堂在线| 天堂俺去俺来也www色官网| 如日韩欧美国产精品一区二区三区 | 在线观看免费视频网站a站| 一级毛片 在线播放| av在线app专区| 99久久精品热视频| 亚洲国产欧美日韩在线播放 | 99久久精品国产国产毛片| h日本视频在线播放| av在线播放精品| 尾随美女入室| 久久久国产一区二区| 老熟女久久久| 国产欧美日韩综合在线一区二区 | av专区在线播放| 黑人高潮一二区| 一个人免费看片子| 成人毛片60女人毛片免费| 嫩草影院新地址| 国产精品人妻久久久久久| 国产 一区精品| 日韩亚洲欧美综合| 人人妻人人爽人人添夜夜欢视频 | 免费观看的影片在线观看| 色网站视频免费| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| 一二三四中文在线观看免费高清| 少妇高潮的动态图| 人人妻人人添人人爽欧美一区卜| 麻豆成人av视频| 国产高清国产精品国产三级| 少妇的逼水好多| 高清av免费在线| 国产成人精品一,二区| 久久久久视频综合| 97在线人人人人妻| 成人国产av品久久久| 秋霞在线观看毛片| 两个人的视频大全免费| 亚洲精品日本国产第一区| 午夜福利网站1000一区二区三区| 春色校园在线视频观看| 久久国产精品大桥未久av | 人妻一区二区av| 9色porny在线观看| 色5月婷婷丁香| 9色porny在线观看| 一个人看视频在线观看www免费| 亚洲精品久久午夜乱码| 亚洲国产日韩一区二区| 久久97久久精品| 欧美激情国产日韩精品一区| 啦啦啦中文免费视频观看日本| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 久久鲁丝午夜福利片| 日日爽夜夜爽网站| 大香蕉久久网| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看| 国产成人a∨麻豆精品| h日本视频在线播放| 99久久综合免费| 亚洲成色77777| 日韩免费高清中文字幕av| 男女免费视频国产| 成年人午夜在线观看视频| 亚洲精品视频女| 亚洲天堂av无毛| 91精品国产九色| av免费观看日本| 丝瓜视频免费看黄片| 99久久中文字幕三级久久日本| 一个人免费看片子| 中文精品一卡2卡3卡4更新| 日韩电影二区| av天堂久久9| 精品人妻熟女毛片av久久网站| 一二三四中文在线观看免费高清| 波野结衣二区三区在线| 婷婷色综合www| 国产精品一区二区性色av|