• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Temporal-Spatial Logic for Branching Space-times*

    2017-01-20 08:28:54HuLiu
    邏輯學(xué)研究 2016年4期
    關(guān)鍵詞:中山大學(xué)分支算子

    Hu Liu

    Institute of Logic and Cognition,Sun Yat-sen Universityliuhu2@mail.sysu.edu.cn

    A Temporal-Spatial Logic for Branching Space-times*

    Hu Liu

    Institute of Logic and Cognition,Sun Yat-sen Universityliuhu2@mail.sysu.edu.cn

    .Branching space-times,which was proposed by(Belnap,1992),is a framework that generalizes branching time by introducing a space-like relation to“our world”.We present in this papera formallanguage to characterize properties ofbranching space-times.We use a space like operator to reflect the space-like relation.The paper focuses on a Hilbert style proof theory of temporal logic for branching space-times.We present some limited results of completeness.

    1 Introduction

    The focus of the present paper is a temporal logic for branching space-times, which goes back to[1].Different aspects of branching space-times have been studied in[2,3,9,10,11,12],which,from the pointofview oflogic,are allmodeltheoretical. We start in this paper to investigate a formal language of temporal-spatial logic for branching space-times.

    Temporal logics are formalizasions of time.The simplest way to think of time in an abstract manner is to picture it as a line.Formally,it is a structure(T,<),whereTis a set of time points,and<is a linear order onT,i.e.<is(1)irreflexive,(2) transitive,and(3)trichotomous.This linear time(LT)picture is dominant in science and in most people’s minds.Some philosophers argue that indeterminism is indispensable to any theoretical framework of our world.So-calledbranching time(BT), which reflects the indeterminism,has received much attention from temporal logicians.A BT-structure is a flow of time without the condition(3)on<,and satisfies no backward branching:every point’s past is a linear order.Only branching to the future is allowed in branching time,which means that from a given point,the future may be undetermined,while the past is always determined.

    Though richer than linear time,a branching time is still insufficient to capture some intuitive ideasabouttime,such asthe factthatsome eventsmay happen simultaneously at different places so that they have a space-like relation.Belnap’s branching space-time([1]),BST for short,is a framework that captures such properties of time,or space-time.It is a combination of indeterminism and relativistic space-times in a single structure.

    Temporal logic is an active area of interest for decades.Many results have been known concerning temporal logics of branching time.There are two schools of branching time temporal logics:Peircean and Ockhamist.([13])Taking the future operatorFas an example,Peircean logic interprets the sentenceFαas“α will be true in every possible future.”Formally,letMbe a branching time model,ta point in it,andha history in this model(a maximal linear order).Then

    From the point of view of Ockhamist logic,it is meaningless to assign a truth value toFφat a pointtwithout specifying which history is concerned.The satisfaction relation in Ockhamist logic is defined as follows:

    In Ockhamist logic,a historical possibility operator?was introduced to express the manifoldness of the future.That?αis true at a pointtin a historyhmeans thatαhappens attin some history passing throught.Formally,

    The semantic rule for this?involves quantification over histories so that it is not a Kripke-style semantics.In order to replace this second-order condition,some authors have suggested first-order alternatives:Thomason’sKamp frame([14]),Burgess’sBundled tree([5])and Zanardo’sOckhamist frame([15]).It has been proved that those frameworks are semantically equivalent.

    Ockhamistlogic is strictly more expressive than Peircean logic,and has received much more attention than the latter.The logic defined in this paper is an Ockhamist style spatial-temporal logic.

    2 Ockhamist BST structure

    2.1Branching space-times and bundled worlds

    We first introduce a version of branching space-times structure slightly different from the original one in[1].

    Definition 2.1ABranching space-timestructure is a non-empty strict partial orderE=(E,?).A subsethofEisdirectedif any paire1,e2∈hhave a common upper bound inh.Ahistoryis a maximal directed set.There are three postulates on BST structures:

    (1)Weak Prior Choice Principle(WPCP):Suppose that two historiesh1andh2intersect ande1∈h1?h2.Then there exists ae2?e1such thate2is a choice point ofh1andh2,that is,e2is a maximal point inh1∩h2.

    (2)Incompatibility Principle(IP):Suppose thate1∈h1?h2,e2∈h2?h1,and there exists a choice pointesuch thate?e1ande?e2.Thene1ande2are incompatible,that is,e1ande2have no common upper bound.

    (3)Weak Historical Connection(WHC):Ifh1∩h2/=?andh2∩h3/=?,then

    h1∩h3/=?.

    WPCP says that for ane1∈h1?h2,the fact of it belonging to one history and not to the other history must happen for a reason.That is,a past choice pointe2that divided the two histories.IP guarantees that two histories that was divided by a choice points are indeed separated.

    Throughout this paper we assume the languageL,whose alphabet consists of a countable set of propositional variablesp0,p1,...,Boolean connectives?,→,and four modalitiesG,H,S,□.Letα,β,...range over formulas.Formulas are constructed as follows:

    Other Boolean connectivesare defined asusual.GandHare temporaloperators with the respectively intended meaning“···will always be true”and“···has always been true”.□is the historical necessity modality with the intended meaning“···is true in any other history.”Sis a space-like operator that is read as“···is true at all space-like related points.”

    LetF,P,D,?be abbreviations for?G?,?H?,?S?,?□?respectively.LetAα=α∧Gα∧Hα∧Sα.Aαmeans thatαis true throughout the given history. LetEαstand for?A?α.

    Given a BST structureE=(E,?),we say thatU={(h,e):his a history inEande∈h}is theuniverseonE.Avaluation Vis a function assigning to each propositional variable a subset ofU.The definition ofV(α)for an arbitrary formulaαis as follows:

    (1)V(?α)=U?V(α).

    (2)V(α→β)=V(?α)∪V(β).

    (3)V(Gα)={(h,e)∈U:?e′∈h(e′?e?(h,e′)∈V(α))}.

    (4)V(Hα)={(h,e)∈U:?e′∈h(e′?e?(h,e′)∈V(α))}.

    (5)V(Sα)={(h,e)∈U:?e′∈h((e′/=e¬e′?e¬e?e′)?(h,e′)∈V(α))}.

    (6)V(□α)={(h,e)∈U:?h′((e∈h′&h′/=h)?(h′,e)∈V(α))}.

    Clearly,□operator is different from the usual historical necessity operator used in branching time in that it corresponds an irreflexive relation over histories.The usual operator,say□′,can be incorporated into BST as follows:

    ·V(□′α)={(h,e)∈U:?h′(e∈h′?(h′,e)∈V(α))}.

    □′is definable by□as that□′α=□α∧α.The reverse does not hold.We use the more expressive□in order to characterize postulates of branching space-times.

    Item(6)contains a quantifieroverhistoriesso thatitisnotKripke-style.In order to obtain a first-order condition and a Kripke-style semantics,we adopt the idea of“bundled tree”presented in[5].We use a similar notion namedbundled world.

    Definition 2.2Abundled world Fis a pair(E,H),whereEis a BST structure andHis a bundle on it;that is,His a subset of the universeUonEsuch that(h,e)∈Himplies that for everye1∈h,(h,e1)∈H;and for everye∈E,there is at least one (h,e)∈H.

    A valuation on a bundled world(E,H)assigns to each propositional variable a subset ofH.The notions of valuationV(α)for a formulaαcan be obtained by replacingUbyHin the above semantic definition,and replacing item(6)by item (6’),in which the quantifier is overH,instead of over histories.

    (6’)V(□α)={(h,e)∈U:?(h′,e)((e∈h′&h′/=h)?(h′,e)∈V(α))}.

    2.2Ockhamist BST structure

    In this section we introduce a Kripke structure defined on bundled worlds.The name of the structure,Ockhamist BST structure,comes from Zanardo’sOckhamist framefor branching time.Intuitively,each point in an Ockhamist BST structure is a first-order variable that can be thought of as ranging over pairs(h,e),where(h,e) is an element of the corresponding bundled world.We will show that the semantics defined on an Ockhamist BST structure is equivalent to the semantics defined on a bundled world.

    Definition 2.3We say a tripleF=(W,<,~)is a(basic)structureif W is a nonempty set,<and~are two binary relations on W such that<is irreflexive and transitive,and~is an equivalence relation.Letw1,w2,etc.,range overW.

    Intuitively,ifw1,w2∈Wrespectively represent(h1,e1)and(h2,e2)in the corresponding bundled world,thenw1<w2implies thath1=h2ande1?e2,andw1~w2implies thate1=e2.

    Definition 2.4(1)≤is the reflexive closure of<.

    (2)w1andw2are connected,denoted byw1?cw2,is defined as that eitherw1=w2, orw1<w2,orw1>w2,orw1andw2have a common upper upper bound.w1/?cw2says thatw1is not connected tow2.We letC1,C2,...range over the set of maximal connected sets.

    (3)w1?sw2is defined asw1?cw2,w1/=w2,not w1<w2andnot w2<w1.w1?sw2is read as thatw1isspace-like relatedtow2.

    Definition 2.6[w]is achoice pointfor two maximal connected setsC1andC2if [w]intersects bothC1andC2,and there is no[w1]?[w]such that[w1]intersects both of them.

    Definition 2.7We say a structureF=(W,<,~)is anOckhamist BST structurewhenever it satisfies all of the following statements:

    (Dis)If w1~w2,thennotw1<w2.

    (Dismeans“Disjointness of<and~.”)

    (DH)If?w(w<w1&w<w2),then?w(w≥w1&w≥w2).

    (DHmeans“Directedness of Histories.”)

    (PI)If w1~w2,then there exists an order-isomorphism f between{w:w<w1}and{w:w<w2}such that for all w<w1,w~f(w).

    (PImeans“Past Isomorphism.”)

    (MH)If w1~w2and w1/=w2,then?w((w>w1)&?w3((w3>w2)?notw~w3)).

    (MHmeans“Maximality of Histories.”)

    (WHC)If?w1∈C1?w2∈C2(w1~w2)and?w2∈C2?w3∈C3(w2~w3),then?w1∈C1?w3∈C3(w1~w3).

    (WHCmeans“Weak Historical Connection”.)

    (WPCP)If C1∩C2/=?,[w1]∩C1=w1,[w1]∩C2=?,then there exists a choice point[w]such that([w]∩C1=w)?w<w1.

    (WPCPmeans“Weak Prior Choice Principle”.)

    (IP)If w1∈C1,w2∈C2,[w1]∩C2=?,[w2]∩C1=?,and there exists a

    choice point[w]for C1and C2such that[w]?[w1]&[w]?[w2],then

    there does not exist a Csuch that[w1]∩C/=?&[w2]∩C/=?.

    (IPmeans“Incompatibility Principle.”)

    A structure having the propertyDiswill be called aDis-structure and similarly we shall refer toDH-structures,(Dis+DH)-structures and so on.

    Lemma 2.8Given anOckhamist BST structure F=(W,<,~),letE=(W/~,?)(?is as defined in Def.2.5),andH={[C]|Cis a maximal connected set}. ThenEis a branching space-times,and(E,H)is a bundled world.

    ProofSuppose that[w1]?[w2]and[w2]?[w3].By the definition of?and the transitivity of<,[w1]?[w3].Thus?is transitive.

    Now we show that every maximal connected setCinFreflects a history,i.e. [C]is a history inE.Suppose thatw1∈C,w2∈C,w∈C,and[w]?[w1]and [w]?[w1].By the definition of?,there exists aw∈[w]such thatw<w1andw<w2.ByDH,there exists aw′∈Csuch thatw′≥w1&w′≥w2.ByPI, [w′]?[w1]and[w′]?[w2].Therefore[C]is directed.

    Suppose thatw2is such that[w2]/∈[C1].We show that[C1]∪{[w2]}is not directed.Suppose otherwise.Then we must have that for anyw1∈C1,[w1]?[w2],otherwise,by the definition of?,[w2]∈[C1].w2must be in some maximal connected set,sayC2.Then[C1]?[C2],which contradictsMH.

    ThatEsatisfies weak historical connection,weak prior choice principle and incompatibility principle is guaranteed byWHC,WPCPandIPrespectively.Thus,Eis a branching space-times.We have already shown that each[C]is a history inE. ThatHis a bundle follows fromCbeing a maximal connected set.□

    The reverse of 2.8 also holds.The proof is omitted.

    Lemma 2.9Given a bundled world((E,?),H),letW={hi∩{e:e?ej}:hi∈Handej∈hi};let<be the proper-superset relation?onW;letw1~w2iffw1=hi∩{e:e?ej}andw2=hl∩{e:e?ej}for aejin E andhi,hl∈H. ThenF=(W,<,~)is an Ockhamist BST structure.

    From lemma 2.8 and 2.9,two relationsfandgcould be defined as follows:

    ·f((W,<,~))=(E,H),where(W,<,~)is an Ockhamist BST structure,

    (E,H)is a bundled world as defined in lemma 2.8.

    ·g(((E,?),H))=(W,<,~),where((E,?),H)is a bundled world,(W,<,~)is an Ockhamist BST structure as defined in lemma 2.9.

    Theorem 2.10(1)fandgare bijections;(2)for anyOckhamist BST structure F,gf(F)=F;(3)for any bundled world E,fg(E)=E.

    Proof(1)iseasy to check.For(2),supposeF=(W,<,~).Letf(F)=((W/~,?),H).Letg(((W/~,?),H))=(W′,<′,~′).It is sufficient to show that (W′,<′,~′)is the same structure as(W,<,~),i.e.they are isomorphic.By the definition offandg,eachw′∈W′is of the form[C]∩{[wC]:[wC]?[w]},and [C]∩[w]/=?.Define a functionτas follows:

    The proof for(3)is similar and omitted.□

    Definition 2.11Amodel Mis a tuple(F,V),whereF=(W,<,~)is anOckhamist BST structureandVis an valuation function assigning to each propositional variable a set of pointsW′?W.The definition ofV(α)for a formulaαis as followed:

    ·V(?α)=W?V(α).

    ·V(α→β=V(?α)∪V(β)).

    ·V(Gα)={w∈W:?w1(w1>w?w1∈V(α))}.

    ·V(Hα)={w∈W:?w1(w1<w?w1∈V(α))}.

    ·V(□α)={w∈W:?w1((w1~w&w1/=w)?w1∈V(α))}.

    ·V(Sα)={w∈W:?w1(w1?sw?w1∈V(α)}.

    Satisfaction and validity are defined asusual,and denoted byw|=φand|=φ.It is easy to see that the semantics on Ockhamist BST structures in 2.11 is semantically equivalent to the one defined on bundled worlds.

    3 Axiomatizations of Ockhamist BST structures

    3.1The axioms

    Since the semantics defined on bundled worlds is equivalent to that defined on Ockhamist BST structures,we can now focus on Ockhamist BST Structure.

    An Ockhamist BST structure is a basic structure plus the seven conditions in definition 2.7.The axioms contain those axioms of the basic temporal logic:

    (A0)propositional calculus.

    (A1-A4)G(p→q)→(Gp→Gq),H(p→q)→(Hp→Hq),

    □(p→q)→(□p→□q),S(p→q)→(Sp→Sq).

    (A5-A6)p→GPp,p→HFp.

    As well known,there is no axiom for irreflexivity.For transitivity,we have

    (A7-A8)Gp→GGp,Hp→HHp.

    We have two axioms for the□operator:

    (A9-A10)(□p∧p)→□□p,p→□?p.

    As for the space-like operatorS(D),the connectivity property seems stating an infinite condition,which state that,whereλis an ordinal,

    The sentence is not a well formed formula.Fortunately,with the help ofDH,we could reduce it to a legitimate formula.Where two points are connected,byDHand an(transfinite)induction on number of steps that connect the two point,it can be verified that the two points must connect within two steps.Therefore,we can have the following axiom characterizing connectivity:

    (A11)Dp→FPp.

    Now we consider axioms for the seven additional conditions to basic structures. There is no corresponding axiom forDis,which is a version of irreflexivity ForDH, we have the following:

    Lemma 3.1A basic structure is a DH-structure iff it validates(A12):

    (A12)(Fp∧Fq)→(F(p∧q)∨F(p∧Pq)∨F(q∧Pp)∨F(Pp∧Pq)).

    ProofThe point is that there are four cases for two pointsw1andw2to have a common upper bound.That is,the case whenw1=w2,corresponding toF(p∧q); the cases whenw1>w2orw1<w2,corresponding toF(p∧Pq)orF(q∧Pp);the case when?w(w>w1&w>w2),corresponding toF(Pp∧Pq).□

    Because axioms forthe otherconditionsdepend onWHC,we shalldiscussWHCfirst.

    Lemma 3.2A basic structure is a WHC-structure iff it validates(A13):

    (A13)E?E?Ep→(Ep∨E?Ep).

    ProofSuppose thata structure isaWHC-structure,andE?E?Epistrue ata pointwof the structure.LetC1be the maximal connected set such thatw∈C1.Because we do not haveDis,each time we encounter a?operator,there are two possibilities: either stay within the current maximal connected set,or switch to another maximal connected set.Thus,we have four cases now.Assume thatC2andC3aresomemaximal connected sets.

    Case(1)corresponds to the case that the first application of?drags us fromC1toC2,and the second application of?drags us fromC2toC3.There are two further subcases:(i)C1=C3.In this subcase we havew|=Ep,therefore satisfies(A13). (ii)C1/=C3.In this subcase,byWHC,?w1∈C1?w3∈C3(w1~w3).Therefore,w|=E?Ep,and satisfies(A13).

    Case(4)corresponds to the case that both applications of?stay withinC1.It is clear thatw|=E?Epin this case.

    The other direction is omitted.□

    Validity of the following axioms depends onWHCas a precondition.

    Lemma 3.3A WHC-structure is also a MH-structure,i.e.a WHC+MH-structure iff it validates(A14):

    (A14)(Ap∧A□A?p)→□F□?p.

    ProofSuppose that the structure being considered is aWHC+MH-structure,andAp∧A□A?pis true at a pointw1in a maximal connected setC1.ByAp,we know thatpis true throughoutC1.ByA□A?p,we know thatpis false throughout all other maximal connected setsCithat areaccessiblefromC1in the sense that there exists a[w′]such that[w′]∩C1/=?and[w′]∩Ci/=?.

    Lemma 3.4A WHC-structure is also a WPCP-structure iff it validates(A15):

    (A15)(□p∧E?(A?p∧A□Ap))→P(??p∧G□p).

    ProofSuppose that the current history ish1and the current point isw1.The antecedent of A15 says that there is another historyh2such thatw1is not inh2andpis false inh2andpis true in all other histories includingh1.The consequent indicates that a choice point exists in the past ofw1.□

    Lemma 3.5A WHC-structure is also a IP-structure iff it validates(A16):

    (A16)(G□p∧?(G?p∧p∧Hp∧Sp∧A□Ap))→G□A□p.

    ProofSuppose thatFisa WHC-structure and doesnotsatisfy IP.Then there are two maximalconnected setC1andC2and a choice point[w]forthem withw1∈[w]∩C1,w2∈[w]∩C2such that for a pointu>w1and a pointv>w2,there is a maximal connected setCthatintersectsboth[u]and[v].LetVbe a valuation such thatpistrue at all points except the pointsv′>w2.Then the antecedent of A16 is true at pointw1.Because there is aCthat intersects both[u]and[v],we know thatu|=?E??p. Thenw1|=F?E??p;that is,the consequent of A16 is not true atw1.A16 is not true atw1.The other direction is omitted.□

    Let

    (D)Gp→Fp.

    The systemSconsists of axioms(D),(A1)-(A12)and the following rules:

    Consider the set of allS-maximal consistent sets(MCSs).Define relations<Mand~Mon this set as

    <Mcan be defined equivalently by Γ<MΔ?Δ?{δ:Fδ∈Γ}?{δ:Hδ∈Δ}?Γ?Γ?{δ:Pδ∈Δ};also,?!玀Δ is equivalent to(Γ=Δ or Δ?{δ:?δ∈Γ}).

    Lemma 3.6(1)IfFα∈Γ,then there exists a Δ such thatα∈Δ and Γ<MΔ.

    (2)IfPα∈Γ,then there exists a Δ such thatα∈Δ and Γ>MΔ.

    (3)If?α∈Γ,then there exists a Δ such thatα∈Δ and ?!玀Δ.

    (4)IfDα∈Γ,then there existsaΔsuch thatα∈Δ,andΓandΔare connected by<M.

    Lemma 3.7If Δ<MΓ and Δ<M?!?then there exist a Σ such that Γ<MΣ and Γ′<MΣ.

    It can be verified that the relation~Mis an equivalence relation on the set of MCSs;and<Mis transitive.However,<Mis not irreflexive in general.Note that the relation corresponds to?is also irreflexive.We use the methodelimination of counterexamples([6,7])in the proof.

    Definition 3.8(1)A chronicle on a structureFis a function C assigning each point ofFa MCS and satisfying

    for allv,winF,v~w?C(v)~MC(w)andv<w?C(v)<MC(w)

    (2)A chronicle onFis full whenever,for every point w,

    (a)Fα∈C(w)??v(w<v&α∈C(v));

    (b)Pα∈C(w)??v(w>v&α∈C(v));

    (c)?α∈C(w)??v(w~v&w/=v&α∈C(v));

    (d)Dα∈C(w)??v(w?sv&α∈C(v)).

    Given a chronicleConF,define a valuationV:w∈V(p)?p∈C(w).By induction on the structure of a formulaα,it can be shown that ifCis full,then for every pointw,w∈V(α)?α∈C(w).Then,proving a given set of formulas Γ satisfiable is equivalent to proving that there exists a structureFand a full chronicleCon it such that Γ?C(w)for somewinF.

    Given a structureFand a chronicleCon it,we say that(w,Fα)is a counterexample in the chronicleCwhenever the right side of 3.8(2)a is false for(w,Fα).The cases for(w,Pα),(w,?α),(w,Dα)are similarly defined.

    The eliminability of counterexamples is based on the following lemma.

    Lemma 3.9IfCis a chronicle on a finite DH-structureFand(w,Fα)is a counterexample,then there exists a finite DH-structureF′?Fand a chronicleC′on it such that(w,Fα)is not a counterexample inC′.Similarly,we can eliminate the counterexample of the form(w,Pα),(w,?α),or(w,Dα).

    ProofSuppose that(w,Fα)is a counterexample in the chronicleConF.By lemma 3.6,there exists a Δ such thatα∈Δ and Γ<MΔ.We extendFto a structureF′by adding a new pointxtoFand by extending<and~to<′and~′:<′is the smallest strict partial order containing<and such thatw<′x;~′=~∪(x,x). The chronicleCis extended to a chronicleC′onF′by assigning Δ tox.(w,Fα)is not a counterexample in the chronicleC′onF′.The elimination of a counterexample (w,Pα)is similar to that of(w,Fα).

    Let(w,Dα)be a counterexample in the chronicleConF.By axiom A11,FPα∈C(w).If(w,FPα)is not a counterexample,letF′′=F,C′′=C,andx′′be a point such thatx′′>wandPα∈C(x′′);if(w,FPα)is a counterexample,then we extendFto a structureF′′andCto a chronicleC′′with(w,FPα)eliminated by adding a new pointx′′and assigning a Δ tox′′such thatPα∈Δ.

    Regardless of whether or not(x′′,Pα)is a counterexample in the chronicleC′′, we extendF′′to a structureF′by adding a new pointx′,and extending<and~inF′′to<′and~′:<′is the smallest strict partial order containing<and such thatx′<′x′′;~′=~∪(x′,x′).By lemma 3.6(2),we extend chronicleC′′to a chronicleC′onF′by assigning a Δ tox′such thatα∈Δ and Δ<MC′(x′′).By the above construction,x′is a space-like related point tow.

    The elimination of(w,?α)uses lemma 3.6(3)to add a pointxtoFand extendCtoC′by assigning Δ tox,whereα∈Δ and Δ~MC(w).The relations are extended as<′=<and~′=~∪{(x,x),(x,w),(w,x)}.

    In general,the structureF′obtained by the elimination of(w,Fα),(w,Pα), (w,Dα),or(w,?α)is not a DH-structure.In that case,guided by lemma 3.7,we can extendF′to a DH-structure and extendC′to a chronicle on that structure.Then we get a DH-structure and a chronicle on it such that(w,Fα)[(w,Pα),(w,Dα),or (w,?α)]is not a counterexample.□

    Theorem3.11The systemSisstrongly complete with respectto the family ofrightserial DH-structures.

    Fas defined in 3.10 is actually a Dis-structure.Thus,we have that

    Theorem 3.12The systemSis strongly complete with respect to the family of right-serial(Dis+DH)-structures.

    ProofEvery consistent set is extendable to a maximal consistent set by standard techniques.It is sufficient to show that for every maximal consistent set Γ,there exists a right-serial DH-structureFand a full chronicleCon it such that Γ=C(v) for somevinF.

    LetF0be the DH-structure that contains only one elementw0such that<0is an empty relation,and~0={(w0,w0)},andC0is a chronicle onF0such thatC0(w0)=Γ.Letα0,...,αn,...be a chain of all formulas of the formFα,Pα,Dα,or?αin which each formula occurs infinitely often.Define a sequence of DH-structuresF0,...,Fn,...,with respective chroniclesC0,...,Cn,...,such that for eachi,all counterexamples(v,αi)inCiare eliminated inCi+1.Lemma 3.9 guarantees that such a sequence exists.LetF=∪i∈ωFiandC=∪

    i∈ωCi.By lemma 3.10,Fis a DH-structure andCis a chronicle on it.BecauseF(p∨?p)is in every member of chronicalC,there does not exist a dead end inF.Otherwise,F(p∨?p) is an counterexample in that dead end,and will be eliminated in the sequence we constructed.

    It remains to show thatCis full.Suppose otherwise.That is,suppose that there exists a counterexample(v,α)inC.By the construction ofC,(v,α)is a counterexample in finitely manyCn.Becauseαoccurs infinitely often in the sequence,(v,α) will be eventually eliminated.Thus(v,α)is not a counterexample inC.□

    Now we focus on other postulates of Ockhamist BST structures.The following is a list of axioms.

    LetS′be the system obtained by extendingSwith axioms A13-A16.we have that

    Theorem 3.13The systemS′is strongly complete with respect to the family of right-serial(Dis+DH+WHC+MH+IP+WPCP)-structures.

    S′is not a system for Ockhamist BST structures.There remains the postulate PI to be dealt with.The problem is still open.Considering the following axiom:

    (A18)H□p→□Hp(To reflect PI)

    API-structure doesnotvalidate the axiom.To do so anothercondition hasto be added to the PI-structure.The following lemma from[8]also holds in BST:

    Lemma 3.14A structureFvalidates A18 iffFis irreflexive and satisfies PI.

    There are some other important properties which we do not take as postulates of Ockhamist BST structures.Concerning the application of BST(see[2],[3]),such properties may include

    (1)Density:Ifw1<w2,then there exists aw3such thatw1<w3andw3<w2.

    (2)Infima:Every nonempty lower bounded chain has an infimum;that is,a maximal lower bound.

    (3)Weak No Funny Business:Ifw1andw2are two space like related points such thatw1∈C1andw2∈C2,then there exists a maximal connected setC(a history)such thatw1∈Candw2∈Candw1(andw2)is not a choice point forCandC1(andC2).

    (4)Chain Choice Principle:If a lower bounded chainXis inC1?C2,then there exists a choice point forC1andC2lying in the past ofX.

    The axiomsthatcan be characterized by density,infima and weak no funny business are respectively

    (1)Fp→FFp

    (2)(F(p∧Sp)∧F(G?p∧?p))→F(HFp∧G?p)

    (3)(G□p∧?DG□q)→?(Fp∧DFq)

    Verification of validity of the three formulas is omitted.We have not found an axiom for the chain choice principle yet.

    The Ockhamist BST structure is semantically equivalent to the bundled world defined in Def.2.2,in which the bundle may not contain all possible histories in the structure,which Belnap calledmissing historiesin[4].Considering the BST structure without reference to bundles,or in other words,the bundled world of which the bundle containsallpossible histories,we may callita complete OckhamistBSTstruc-ture.Clearly,a complete system for the complete Ockhamist BST structure should include all A1-A6 as its theorems.However,the complete Ockhamist BST structure is not semantically equivalent to the Ockhamist BST structure.The Burgess’s formula,□G?F□p→?GFp([15]),suffices to show that.This formula is valid in the classofcomplete OckhamistBSTstructures,butisnotvalid in the classof Ockhamist BST structures.

    In conclusion,as indicated,several problems remain.What has been accomplished here isto connecta prooftheory with the BSTOckhamistsemantics.A spacelike operator is defined and a system for the operator is given.The resultant temporal logic therefore is a temporal-spatial logic.

    [1]N.Belnap,1992,“Branching space-time”,Synthese,92(3):385–434.

    [2]N.Belnap,2002,“EPR-like funny business in the theory of branching space-times”, in T.Placek and J.Butterfield(eds.),Non-locality and Modality,pp.293–315,Kluwer Academic Publishers.

    [3]N.Belnap,2005,“A theory of causation:Causae causantes(originating causes)as inus conditions in branching space-times”,The British Journal for the Philosophy of Science,56(2):221–253.

    [4]N.D.Belnap,M.Perloff and M.Xu,2001,Facing the future:Agents and Choices in Our Indeterminist World,Oxford University Press.

    [5]J.Burgess,1979,“Logic and time”,Journal of Symbolic Logic,44(4):566–582.

    [6]J.Burgess,1980,“Decidability for branching time”,Studia Logica,39(2):203–218.

    [7]J.Burgess,1982,“Axioms for tense logic I:‘Since’and‘Until’”,Notre Dame Journal of Formal Logic,23:367–374.

    [8]D.Gabbay,I.Hodkinson and M.Reynolds,1994,TemporalLogic:MathematicalFoundations and Computational Aspects,Volume I,Oxford University Press.

    [9]T.Kowalski and T.Placek,2000,“GHZ theorems in the framework of outcomes in branching space-time”,International Journal of Theoretical Physics,39(3):765–775.

    [10]T.Müller,2005,“Modeling modal talk in quantum mechanics”,International Journal of Theoretical Physics,44(4):375–383.

    [11]T.Müller,2005,“Probability theory and causation:Abranching space-times analysis”,The British Journal for the Philosophy of Science,56(3):487–520.

    [12]T.Placek,2000,“Stochastic outcomes in branching space-time:Analysis of Bell’s theorem”,The British Journal for the Philosophy of Science,51(3):445–475.

    [13]A.Prior,1967,Past,Present and Future,Oxford University Press.

    [14]R.Thomason,1984,“Combinationsoftense and modality”,in D.Gabbay and F.Guenthner(eds.),Handbook of Philosophical Logic,Vol.2,pp.135–165,D.Reidel.

    [15]A.Zanardo,1996,“Branching-time logic with quantification over branches:The point of view of modal logic”,Journal of Symbolic Logic,61(1):1–39.

    分支時(shí)空結(jié)構(gòu)上的時(shí)空邏輯

    劉虎
    中山大學(xué)邏輯與認(rèn)知研究所liuhu2@mail.sysu.edu.cn

    Belnap通過(guò)在分支時(shí)間結(jié)構(gòu)上添加空間關(guān)系,提出了更一般化的分支時(shí)空結(jié)構(gòu)。在本文中,我們首次為這種分支時(shí)空結(jié)構(gòu)建立相應(yīng)的邏輯系統(tǒng)。在該邏輯中,我們引入一個(gè)空間模態(tài)算子來(lái)表達(dá)模型中的空間關(guān)系。我們給出該邏輯的公理系統(tǒng),并證明它的完備性。

    Received2016-05-09

    *I would like to thank Nuel Belnap for his detailed reading of the earlier version of this paper and numerous pertinent comments and criticisms.This research is supported by NSSFC Grant(14ZDB015) and the National Fund of Social Science(13BZX066).

    猜你喜歡
    中山大學(xué)分支算子
    擬微分算子在Hp(ω)上的有界性
    我國(guó)最大海洋綜合科考實(shí)習(xí)船“中山大學(xué)號(hào)”下水
    軍事文摘(2020年22期)2021-01-04 02:16:46
    中山大學(xué)歷史地理信息系統(tǒng)(SYSU-HGIS)實(shí)驗(yàn)室簡(jiǎn)介
    各向異性次Laplace算子和擬p-次Laplace算子的Picone恒等式及其應(yīng)用
    巧分支與枝
    一擊止“痛”!450余水產(chǎn)人聚焦第九屆中山大學(xué)水產(chǎn)飼料技術(shù)創(chuàng)新大會(huì),教你從百億到百年
    一類Markov模算子半群與相應(yīng)的算子值Dirichlet型刻畫
    一類擬齊次多項(xiàng)式中心的極限環(huán)分支
    Roper-Suffridge延拓算子與Loewner鏈
    中山大學(xué)點(diǎn)滴回憶
    廣州文博(2016年0期)2016-02-27 12:49:15
    99精品在免费线老司机午夜| av.在线天堂| 小说图片视频综合网站| 日本五十路高清| 美女黄网站色视频| 亚洲国产欧美在线一区| 欧美+日韩+精品| 国产日本99.免费观看| 国产真实乱freesex| 国产黄色视频一区二区在线观看 | 男女啪啪激烈高潮av片| 国产亚洲5aaaaa淫片| 97人妻精品一区二区三区麻豆| 日韩精品有码人妻一区| a级毛片a级免费在线| 亚洲精品影视一区二区三区av| 国产精品久久久久久精品电影小说 | 国产精品美女特级片免费视频播放器| 美女 人体艺术 gogo| 成年免费大片在线观看| 欧美另类亚洲清纯唯美| av在线老鸭窝| 精品久久久久久久人妻蜜臀av| 网址你懂的国产日韩在线| 日本黄大片高清| 亚洲成人中文字幕在线播放| 久久久久久久久大av| 又粗又硬又长又爽又黄的视频 | 晚上一个人看的免费电影| 亚洲图色成人| 国产在线男女| 久久久久久久亚洲中文字幕| 日韩欧美国产在线观看| 中文字幕av在线有码专区| 国产毛片a区久久久久| 亚洲人成网站在线播放欧美日韩| 大型黄色视频在线免费观看| 丰满的人妻完整版| 综合色av麻豆| 性色avwww在线观看| 久久久国产成人精品二区| 国产午夜精品一二区理论片| 欧美不卡视频在线免费观看| 日韩一本色道免费dvd| 身体一侧抽搐| 天天躁夜夜躁狠狠久久av| 在线观看av片永久免费下载| 欧美精品一区二区大全| 日本-黄色视频高清免费观看| 12—13女人毛片做爰片一| 亚洲精品久久久久久婷婷小说 | 国产高清三级在线| 国产综合懂色| 又爽又黄a免费视频| 中国美白少妇内射xxxbb| 成人毛片60女人毛片免费| 我的女老师完整版在线观看| 卡戴珊不雅视频在线播放| 麻豆精品久久久久久蜜桃| 国产激情偷乱视频一区二区| 国产极品精品免费视频能看的| 男女做爰动态图高潮gif福利片| 青青草视频在线视频观看| 少妇人妻精品综合一区二区 | 2021天堂中文幕一二区在线观| 亚洲欧洲日产国产| 好男人在线观看高清免费视频| 蜜桃久久精品国产亚洲av| 特级一级黄色大片| 国产极品精品免费视频能看的| 男的添女的下面高潮视频| 国产真实伦视频高清在线观看| 欧美日韩综合久久久久久| 日韩av在线大香蕉| 天堂√8在线中文| 国产成人91sexporn| 哪个播放器可以免费观看大片| 亚洲美女视频黄频| 一边亲一边摸免费视频| 天堂√8在线中文| 中文字幕熟女人妻在线| 色播亚洲综合网| 最近手机中文字幕大全| 国产美女午夜福利| 蜜桃亚洲精品一区二区三区| 成年av动漫网址| 99久久成人亚洲精品观看| 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 亚洲,欧美,日韩| 亚洲精品乱码久久久久久按摩| 国产精品爽爽va在线观看网站| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| av在线观看视频网站免费| 久久综合国产亚洲精品| 亚洲精品乱码久久久v下载方式| 国产精品一区二区在线观看99 | 联通29元200g的流量卡| 国产午夜精品久久久久久一区二区三区| 超碰av人人做人人爽久久| 如何舔出高潮| 精品熟女少妇av免费看| 亚洲最大成人av| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| 久久99热这里只有精品18| 中文在线观看免费www的网站| 国产午夜精品论理片| av国产免费在线观看| 免费人成视频x8x8入口观看| 精品久久久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 国产精品无大码| 日本av手机在线免费观看| 欧美成人精品欧美一级黄| 国语自产精品视频在线第100页| 在线观看一区二区三区| 亚洲欧美清纯卡通| 久久这里有精品视频免费| 欧美+亚洲+日韩+国产| 免费大片18禁| 国产综合懂色| 人人妻人人澡欧美一区二区| 岛国在线免费视频观看| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久中文| 亚洲人成网站在线播放欧美日韩| 黄片wwwwww| 成人特级av手机在线观看| 国产精品女同一区二区软件| 夜夜爽天天搞| 亚洲av免费高清在线观看| 国产v大片淫在线免费观看| 午夜精品一区二区三区免费看| 国产伦一二天堂av在线观看| av在线亚洲专区| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 黄片无遮挡物在线观看| 亚洲自偷自拍三级| 秋霞在线观看毛片| av福利片在线观看| 综合色av麻豆| 亚洲av电影不卡..在线观看| 成人亚洲欧美一区二区av| 亚洲18禁久久av| 国产老妇伦熟女老妇高清| 国产精品人妻久久久久久| 日本色播在线视频| 久久久久九九精品影院| 亚洲,欧美,日韩| 男女做爰动态图高潮gif福利片| 99久国产av精品国产电影| 精品久久久久久久人妻蜜臀av| 国产 一区精品| 欧美成人a在线观看| 午夜精品一区二区三区免费看| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| 免费看光身美女| 亚洲av.av天堂| 人妻少妇偷人精品九色| 免费看光身美女| 免费电影在线观看免费观看| 国产单亲对白刺激| 日本黄色视频三级网站网址| 天美传媒精品一区二区| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| 免费观看的影片在线观看| 国产成人午夜福利电影在线观看| 亚洲av.av天堂| www.色视频.com| 黄色日韩在线| 亚洲中文字幕日韩| 久久国产乱子免费精品| 久久久成人免费电影| 亚洲最大成人av| 久久久色成人| 直男gayav资源| 黄色一级大片看看| 国产极品天堂在线| 日韩三级伦理在线观看| 欧美精品国产亚洲| 欧美xxxx黑人xx丫x性爽| 午夜爱爱视频在线播放| 精品人妻一区二区三区麻豆| 婷婷亚洲欧美| 久久99蜜桃精品久久| 又粗又硬又长又爽又黄的视频 | 国产一级毛片在线| 午夜视频国产福利| 九九在线视频观看精品| 国产一区二区在线观看日韩| 日本免费a在线| 一本精品99久久精品77| 午夜福利在线在线| 性色avwww在线观看| 欧美高清成人免费视频www| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说 | 日韩高清综合在线| 特级一级黄色大片| 国国产精品蜜臀av免费| av黄色大香蕉| 中文欧美无线码| 免费人成视频x8x8入口观看| 免费看av在线观看网站| 99久久精品一区二区三区| 小说图片视频综合网站| 菩萨蛮人人尽说江南好唐韦庄 | av免费在线看不卡| 卡戴珊不雅视频在线播放| 麻豆精品久久久久久蜜桃| 欧美成人精品欧美一级黄| 国产色爽女视频免费观看| 国产精品一区二区三区四区免费观看| 国产真实伦视频高清在线观看| 国产不卡一卡二| 九色成人免费人妻av| 一个人观看的视频www高清免费观看| 最后的刺客免费高清国语| 亚洲久久久久久中文字幕| 国产毛片a区久久久久| 国产成年人精品一区二区| 美女高潮的动态| 亚洲精品乱码久久久v下载方式| 内射极品少妇av片p| 日韩欧美 国产精品| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 日本在线视频免费播放| 少妇的逼水好多| 高清午夜精品一区二区三区 | 日本黄色片子视频| 赤兔流量卡办理| 神马国产精品三级电影在线观看| 少妇的逼好多水| 成人性生交大片免费视频hd| 亚洲三级黄色毛片| 国产成人精品久久久久久| 国产成年人精品一区二区| 99久国产av精品国产电影| 一个人看视频在线观看www免费| 国产男人的电影天堂91| 99久久人妻综合| 亚洲精品乱码久久久久久按摩| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱 | 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 国产中年淑女户外野战色| 亚洲人成网站在线播放欧美日韩| 91在线精品国自产拍蜜月| 久久这里有精品视频免费| 国产伦精品一区二区三区视频9| 免费在线观看成人毛片| 在线天堂最新版资源| 搡老妇女老女人老熟妇| 看黄色毛片网站| 99久久中文字幕三级久久日本| 美女高潮的动态| 亚洲成人久久性| 性插视频无遮挡在线免费观看| 亚洲成av人片在线播放无| 国产精品国产三级国产av玫瑰| 嘟嘟电影网在线观看| 一进一出抽搐gif免费好疼| 久久韩国三级中文字幕| 国产午夜精品论理片| 亚洲av成人av| 国产在线精品亚洲第一网站| 久久精品国产清高在天天线| 中出人妻视频一区二区| 色哟哟哟哟哟哟| 一区二区三区四区激情视频 | 亚洲七黄色美女视频| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看 | 亚洲三级黄色毛片| 亚州av有码| 校园春色视频在线观看| 深夜a级毛片| 国产精品久久久久久精品电影小说 | 免费一级毛片在线播放高清视频| 国产精品国产三级国产av玫瑰| 欧美成人免费av一区二区三区| 男人舔奶头视频| 午夜福利视频1000在线观看| 夫妻性生交免费视频一级片| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| 波多野结衣高清作品| 如何舔出高潮| 久久人人精品亚洲av| 久99久视频精品免费| 亚洲中文字幕日韩| 午夜老司机福利剧场| 91精品一卡2卡3卡4卡| 亚洲精品亚洲一区二区| 91av网一区二区| 国产一区二区激情短视频| 少妇人妻精品综合一区二区 | 免费看光身美女| 少妇丰满av| 精品久久久久久久末码| 老司机福利观看| 在线观看66精品国产| 国产精品,欧美在线| 久久久国产成人免费| 91精品一卡2卡3卡4卡| 免费观看a级毛片全部| or卡值多少钱| 干丝袜人妻中文字幕| 久久久久国产网址| 男女下面进入的视频免费午夜| 成人无遮挡网站| 国产精品电影一区二区三区| av天堂在线播放| 麻豆国产av国片精品| 插逼视频在线观看| 久久韩国三级中文字幕| 看十八女毛片水多多多| 99久久无色码亚洲精品果冻| 看十八女毛片水多多多| 夜夜爽天天搞| 国产精品一区二区在线观看99 | 欧美日本亚洲视频在线播放| 久99久视频精品免费| 国内精品美女久久久久久| 在线观看午夜福利视频| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜爱| 国产精品99久久久久久久久| 最近视频中文字幕2019在线8| 免费一级毛片在线播放高清视频| 成年女人永久免费观看视频| 免费一级毛片在线播放高清视频| 亚洲国产欧美人成| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 日本一本二区三区精品| av又黄又爽大尺度在线免费看 | 日韩在线高清观看一区二区三区| 噜噜噜噜噜久久久久久91| av专区在线播放| 天堂√8在线中文| 亚洲av成人精品一区久久| 国产私拍福利视频在线观看| av在线老鸭窝| 国产成年人精品一区二区| 国产大屁股一区二区在线视频| avwww免费| 晚上一个人看的免费电影| 国产一区二区三区av在线 | 国产成人91sexporn| 成年av动漫网址| 26uuu在线亚洲综合色| 一级av片app| 久久99蜜桃精品久久| 青春草国产在线视频 | 国产片特级美女逼逼视频| 日本黄色视频三级网站网址| 在现免费观看毛片| 我的老师免费观看完整版| 久久九九热精品免费| 高清午夜精品一区二区三区 | 国产精品久久久久久亚洲av鲁大| 中文字幕精品亚洲无线码一区| ponron亚洲| 在线免费十八禁| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看| 亚洲中文字幕日韩| 欧美色视频一区免费| 国产精品一区二区性色av| 在现免费观看毛片| 高清毛片免费看| 色噜噜av男人的天堂激情| 国产一级毛片在线| 精品国产三级普通话版| 天堂影院成人在线观看| 亚洲自偷自拍三级| 99精品在免费线老司机午夜| 欧美性猛交黑人性爽| 国产伦精品一区二区三区四那| 国产一区二区激情短视频| 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| 一级黄片播放器| 亚洲精品久久久久久婷婷小说 | 99热这里只有精品一区| 日韩制服骚丝袜av| 99热这里只有精品一区| 国产精品一及| 亚洲三级黄色毛片| 欧美性猛交黑人性爽| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 麻豆国产97在线/欧美| 成人欧美大片| 中国国产av一级| 麻豆成人av视频| 日本av手机在线免费观看| 九草在线视频观看| 在线观看午夜福利视频| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 大型黄色视频在线免费观看| 麻豆av噜噜一区二区三区| 国产精品无大码| 特大巨黑吊av在线直播| 免费av毛片视频| 观看免费一级毛片| 麻豆国产97在线/欧美| 国产午夜精品一二区理论片| 综合色丁香网| 人人妻人人澡人人爽人人夜夜 | 国产精品,欧美在线| 亚洲人成网站高清观看| 国产一区二区激情短视频| kizo精华| av视频在线观看入口| 看十八女毛片水多多多| 美女cb高潮喷水在线观看| 日本黄大片高清| 亚洲成人久久爱视频| 久久欧美精品欧美久久欧美| 中出人妻视频一区二区| 丰满的人妻完整版| 国产探花在线观看一区二区| 舔av片在线| 不卡视频在线观看欧美| 国产精品久久视频播放| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 久久人人精品亚洲av| 极品教师在线视频| 91麻豆精品激情在线观看国产| 亚洲av成人精品一区久久| 男女边吃奶边做爰视频| 国产午夜精品论理片| 久久6这里有精品| 人人妻人人澡人人爽人人夜夜 | 精品午夜福利在线看| 国产av麻豆久久久久久久| 成人特级av手机在线观看| 久久久精品大字幕| 亚洲av男天堂| 久久精品久久久久久久性| 欧美三级亚洲精品| 亚洲av一区综合| 欧美变态另类bdsm刘玥| 在线免费观看的www视频| 如何舔出高潮| 国产av在哪里看| 国产美女午夜福利| 三级国产精品欧美在线观看| 嫩草影院入口| 黄色一级大片看看| 免费大片18禁| 日韩在线高清观看一区二区三区| АⅤ资源中文在线天堂| 老师上课跳d突然被开到最大视频| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 亚洲激情五月婷婷啪啪| 精品欧美国产一区二区三| 在线a可以看的网站| 欧美zozozo另类| 国产免费男女视频| 亚洲最大成人av| 中文字幕av在线有码专区| 九色成人免费人妻av| 大又大粗又爽又黄少妇毛片口| 美女黄网站色视频| 国产激情偷乱视频一区二区| 亚洲av第一区精品v没综合| 婷婷精品国产亚洲av| 午夜精品在线福利| av在线观看视频网站免费| 99热这里只有精品一区| 亚洲18禁久久av| 91精品一卡2卡3卡4卡| 69av精品久久久久久| 日本黄色视频三级网站网址| 人妻系列 视频| 国内揄拍国产精品人妻在线| 黄色欧美视频在线观看| 欧美性感艳星| 欧美日韩综合久久久久久| 能在线免费观看的黄片| 久久国产乱子免费精品| 国产综合懂色| 舔av片在线| 亚洲经典国产精华液单| 在线免费十八禁| 国产 一区精品| 国产大屁股一区二区在线视频| 久久久久久久午夜电影| 黄色一级大片看看| 欧美色视频一区免费| 国产午夜精品久久久久久一区二区三区| 国内久久婷婷六月综合欲色啪| 国产亚洲91精品色在线| 久久久久久久久久成人| 高清毛片免费观看视频网站| 男人舔奶头视频| 精品久久久久久成人av| 欧美精品国产亚洲| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 自拍偷自拍亚洲精品老妇| 色视频www国产| 日韩一区二区视频免费看| 美女脱内裤让男人舔精品视频 | 久久久色成人| 亚洲中文字幕一区二区三区有码在线看| 免费观看的影片在线观看| 不卡一级毛片| 国产精品一区www在线观看| ponron亚洲| 51国产日韩欧美| 人人妻人人澡人人爽人人夜夜 | 久久草成人影院| 99久久精品热视频| 国内精品久久久久精免费| 亚洲av男天堂| av在线老鸭窝| 欧美精品国产亚洲| 成人午夜精彩视频在线观看| 狂野欧美激情性xxxx在线观看| 波多野结衣巨乳人妻| 国产一区二区三区在线臀色熟女| 伦精品一区二区三区| 嫩草影院新地址| 婷婷精品国产亚洲av| 毛片女人毛片| 日韩人妻高清精品专区| 国内精品一区二区在线观看| 国产伦理片在线播放av一区 | 欧美激情在线99| 女同久久另类99精品国产91| 国产成人影院久久av| 亚洲国产精品国产精品| 午夜a级毛片| 内地一区二区视频在线| 99久久精品热视频| 亚洲天堂国产精品一区在线| 在线免费观看的www视频| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| 久久精品国产亚洲av涩爱 | 伦精品一区二区三区| 国产黄色小视频在线观看| 内射极品少妇av片p| 男女视频在线观看网站免费| 在线观看66精品国产| 亚洲高清免费不卡视频| 国产午夜福利久久久久久| 国产精品久久久久久精品电影小说 | 精品人妻视频免费看| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 欧美成人免费av一区二区三区| 亚洲综合色惰| 欧美潮喷喷水| 欧美性感艳星| .国产精品久久| 男人的好看免费观看在线视频| 你懂的网址亚洲精品在线观看 | 日韩亚洲欧美综合| 成人毛片a级毛片在线播放| 国产黄色视频一区二区在线观看 | 91aial.com中文字幕在线观看| 成年免费大片在线观看| 五月伊人婷婷丁香| 国产综合懂色| 色哟哟·www| 国产免费男女视频| 日韩欧美精品免费久久| av专区在线播放| 久久综合国产亚洲精品| www.av在线官网国产| 一区二区三区四区激情视频 | 一区二区三区四区激情视频 | 91久久精品国产一区二区成人| 国产熟女欧美一区二区| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 尤物成人国产欧美一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| 亚洲精品亚洲一区二区| 性欧美人与动物交配| 亚洲在久久综合| 狂野欧美激情性xxxx在线观看| av专区在线播放| 成人特级av手机在线观看| 内射极品少妇av片p| 亚洲va在线va天堂va国产| 成人毛片a级毛片在线播放| 成人鲁丝片一二三区免费| 久久婷婷人人爽人人干人人爱| 黄色欧美视频在线观看| 99九九线精品视频在线观看视频| 九草在线视频观看| 一本久久中文字幕| 亚洲精品乱码久久久久久按摩|