• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epistemic Logic with Functional Dependency Operator*

    2017-01-20 08:28:51YifengDing
    邏輯學(xué)研究 2016年4期
    關(guān)鍵詞:先驗(yàn)算子語義

    Yifeng Ding

    Group in Logic and the Methodology of Science,UC Berkeleyyf.ding@berkeley.edu

    Epistemic Logic with Functional Dependency Operator*

    Yifeng Ding

    Group in Logic and the Methodology of Science,UC Berkeleyyf.ding@berkeley.edu

    .Epistemic logic with non-standard knowledge operators,especially the“knowingvalue”operator,has recently gathered much attention.With the“knowing-value”operator, we can express knowledge of individual variables,but not of the relations between them in general.In this paper,we propose a new operatorK fto express knowledge of the functional dependencies between variables.The semantics of thisK foperator uses a function domain which imposes a constraint on what counts as a functional dependency relation.By adjusting this function domain,different interesting logics arise,and in this paper we axiomatize three such logics in a single agent setting.Then we show how these three logics can be unified by allowing the function domain to vary relative to different agents and possible worlds.A multiagent axiomatization is given in this case.

    1 Introduction

    De reknowledge or in general non-standard knowledge in epistemic logic is attracting continuing attention.This line of research started from the very beginning of epistemic logic:Hintikka discussed a“knowing-who”operator in[4],and Plaza a“knowing-value”operatorKvin[5].However,it is the recent effort in providing formal semantics and axiomatizations of those non-standard knowledge operators,as outlined in[8],that layed a solid foundation for further investigation.Among all the non-standard knowledge operators axiomatized so far,the“knowing-value”,or equivalently the“knowing-what”operator,has received most attention,partly due to its mathematical elegance and partly because of its potential application in information security reasoning.Recent major development of thisKvoperator started with the axiomatization in[9,10],followed by the simplification of the semantics in[3] and the enrichment of the language through announcing values and propositions in [1,2].

    Building on the above results about the“knowing-value”operator,this paper considers the knowedge of thefunctional dependencybetween variables,which is a natural extension of the knowledge of individual variables to the knowledge of relationsamong variables.The precise meaning of“knowing a/the functionaldependencybetween variables”is not easy to pin down and might be context sensitive,as illustrated by the difficulty to choose the correct article here:it is safe to say“knowing the value of a variable”since a variable can only take one value in the actual world(or any world),but there might be quite a lot functions,different from each other,yet all governing the relation between the same two variables in a set of possible worlds.We postpone furtherdiscussion to the lastsection,butitshould be intuitive that“functionality”is at least a minimal requirement,that is,to know any functional dependency between variablescandd,at least for any two possible worlds wherechas the same value,dshould also have the same value,however different from the value ofc.

    Here one natural choice is to make functionality the only requirement of“knowing a/the functional dependency between variables”,and both[1,2]made this choice. The key intuition behind this choice is that,what matters in the end are the values of variables.Recall how implication in Heyting algebras for intuitionistic logic is defined:p→qis the weakest proposition such that if conjoined withpby taking conjunction,we get something stronger thanq,or in other words,we are able to inferq.In our knowing-value context,we might also be interested and only interested in knowing the values.Then,functional dependency ofduponcshould be interpreted as the weakest proposition such that if“conjoined”with the knowledge of the value ofd,we are able to infer the value ofc.

    The weakest proposition possessing this bridging-the-gap property depends on how we interpret the word“conjoin”here.If it is taken to be the propositional conjunction,then what we get is again the propositional implicationKv(c)→Kv(d). If“conjoin”means revealing the actual value ofcto the agent,then[c]Kv(d)in[2] is an exact formalization.Model-theoretically speaking this means that functionality betweencanddholds on the set of possible worlds where the value ofcis correct, and consequently,once all possible worlds wherec’s value is wrong are eliminated, the value ofdbecomes fixed and hence known.If“conjoin”means to entertain the hypothesis that one of the epistemically possible values ofcobtains,then the functionality condition fromctodamong all possible worlds is the minimal requirement. This is equivalent toK[c]Kv(d),which says:I know that for all possible values thatccan take,once that is revealed to be the real value ofc,the value ofdwill also be known.In[1],this is exactly the semantics ofKcd.

    Another famous work on dependency taking functionality as the only requirement is Dependence Logic.([6,7])The team semantics it uses for the dependence atom=(c,d)is exactly the functionality condition,though the teams in a model do not originate from an epistemic setting.

    The semantics to be proposed in this paper will differ from the above pure functionality approach and willsubsume itasa specialcase.Butthe key inspiration comes from the basic strategy explained in[8]:pack an existential quantifier and a modal quantifier together in the form of?x□φ(x).Under this pattern,the knowledge of the functional dependency of variablescanddis expressed as:there exists a functionfin a predetermined function domainFwhich works,in the sense thatd=f(c),in all epistemic scenarios.Thus,Fcan be seen as an agent’spriorknowledge aboutpossible functional dependency relations,and to know the dependency between variables is to find a possible function that works or explains all possibilities.To put it more colloquially,to know the functional dependency betweencanddis not simply to see that functionality holds between them,but also to see that the functional relation“make sense”.Let us useK f(C,d)to express this knowledge of functional dependency ofdupon a finite set of variablesC.

    As argued above,when“knowing-dependency”serves as a tool for expressing potential“knowing-value”,we do not need a requirement stronger than functionality. But this is not always the case.Consider a typical scenario in information security: agent A receives an encrypted messaged=enc(c)from agent B.Ideally,A knows the value ofd,sayd=0,but knows nothing aboutc.So the epistemically possible worlds for A are

    Certainly the functionality fromctodholds asdhas only one possible value.But agent A is apparently ignorant about the functional relationship between variablesdandc.The witness to the functionality here is the constant function 0,which is extremely unlikely to be the encryption function enc that B uses.So agent A would not in this case assert that she knows that the messagedshe receives is derived from the messagecthat B intends to send through some encryption:no encryption function she deems possible would allow all those possibilities.Thus,to claim the knowledge of the functional dependency ofdonc,we do need something more than functionality.With our operatorK f,we can useK fA({c},d)to express“A knows a functional dependency relation betweencanddthat is plausible in the information security context”,if we letFto be the set of all functions that is plausible in this context.

    Thus,theK foperatorcan be used to modelscenarioswhere the value ofvariables in the realized world(the agent’s world)is not the sole concern of the agent.It might be that our agent does not want an inexplicable relationship between variables,or it might be that the agent requires that any functional dependency she knows to be applicable not only to her actual world but also to worlds metaphysically possible or worlds evolved in time,where somea priorirules preclude too strange functional dependency relationships.In the previous case,certainlydis known to A already,but the constantfunction thatwitnessesthe functionality there isnotlikely to be applicable to another round of message exchange.

    In the rest of the paper,we first define the logic that incorporates knowledgeK,“knowing-value”Kvand“knowing-function”K foperators which we callLKVFand the corresponding base axiom system LKVF.Then we show how different domains of functions,viewed as a parameter ofLKVF,induce different sets of validities and axioms.Then all those cases will be put into a unified framework where a multiagentlogic with the same operators is axiomatized.In the last section,we will discuss further interpretations of“knowing a/the functional dependency between variables”and possible future work.

    2 Preliminaries

    2.1Syntax and Semantics of LKVF

    Definition 1(Syntax)Given a countably infinite setPof propositional letters and a setQof the names of variables,the formulas inLKVFare defined by:

    wherep∈P,d∈Q,andC?finQ.?finmeans a finite subset,possibly empty.

    HereKv(d)is to be interpreted as“knowing the value ofd”,andKφ“knowing thatφis the case”.K f(C,d)says that the agent knows a functional dependency relationship fromCtod.By convention,we set⊥,(φ∨ψ),(φ→ψ)as??,?(?φ∧?ψ),?(φ∧?ψ),and omit unnecessary parentheses.We also writeK f(c,d)as an abbreviation ofK f({c},d).

    Aswe are considering single agentS5,no explicitaccessibility relation isneeded. So formally,a model is:

    whereWis the set of possible worlds,U:W×P→{0,1}is the assignment for propositional letters,andV:W×Q→Gis the assignment for variables.For any finite subsetCofQ,we fix an order of the elements inCand defineV(w,C)=〈V(w,d)|d∈C〉.WhenCis empty,this degenerates into the unique empty tuple. We call this the joint assignment of variables inC,and whenever we have a function fromQtoG,if it is applied to a setC,we mean this joint assignment.Now the truth conditions are:

    Definition 2(Semantics)

    Here theKvoperator has the same meaning as that ofKvin[10]:Kv(d)means that under current epistemic uncertainty,the value ofdis certain.The new operatorK f(C,d)here means:the agent can find a function in the set of available functionsFthat can be used to explain the functional dependency relation betweenCandd. While both operators have the same structure in their semantics,namely?□,the key difference here is that,ifKv(d)is true,only one value will be the witness,yet forK fthis is usually not the case.

    To summarize,our logicLKVFextends the standard propositional epistemic logic by addingKv(d)andK f(C,d)to the language,adding a valuation of the variables to the models,and introducing a new function domainFas part of the logic. Now it has the following parameters:

    ·P:the set of propositional letters

    ·Q:the set of variable names

    ·G:the set of values that variables can take

    ·F:the set of functions that the agent deems possiblea priori.

    All of them will have some effect on the validities ofLKVF,butPandQwill remain unchanged throughout the whole paper,since they can be viewed as part of the language.Gneeds to be large for completeness results,and we will specify how large it should be.Fwill change the validities inLKVFin an interesting way.Thus,it will be one of the main focuses of this paper.Later we show howFcan also be put into the models.

    2.2Base Axiom System and Soundness Condition

    As defined above,theK foperator expresses functional dependencies among variables and thus resembles the dependency relation in database theory.Using Armstrong’s three axioms in[11],we obtain this base system LKVF:

    Here only the projectivity and transitivity axioms are used.The reason is that in our language the syntax ofK fallows only one variable to be dependent upon a set of variables,not a set upon a set.Thus,the additivity propertyK f(A,B)∧K f(A,C)→K f(A,B∪C)dealing with the second set of variables afterK fis not used and will follow from the properties of the conjunction if we defineK f(C,D)to be∧

    d∈DK f(C,d).Then the augmentation axiom in the usual presentation of Armstrong’s axioms follows from additivity,projectivity,and transitivity.To show this, supposeK f(A,B).By projectivity,K f(A∪C,C)andK f(A∪C,A).Together with the assumptionK f(A,B),we haveK f(A∪C,B).So by additivity applied toK f(A∪C,C)andK f(A∪C,B),K f(A∪C,B∪C).

    By convention,an empty conjunction is?.So when the setDin TRAN is empty,it actually saysK f(?,e)→K f(C,e)for allC?Q.And when the setCin VF is empty,it saysK f(?,d)→Kv(d).

    We will discuss the axiomatizations of three different settings using a large,a small,and an intermediateFinLKVFrespectively.For them,we either use LKVF itself or add some other special axioms.To simplify repetitive work,here we give a condition onFinLKVFfor the soundness of LKVF:

    Proposition1WhenFsatisfiesthe following,LKVF issound with respecttoLKVF:

    ·Foreveryi,j∈?such that0<i≤jand functionf:Gj→G,f(x1,x2,...,

    xj)=xiis inF.We denote this special projection function asidi,j.

    ·For everyf∈F,iffisn-ary withn≥1,then for everyg1,...gn∈F,f(g1(),...,gn())∈F.Namely,Fis closed under function composition.

    ProofHere we only prove the soundness of the three less trivial axioms:

    ·By the first property ofF,PROJ holds.Ifd∈C,supposedappears inCas theith variable,thenV(w,d)=V(w,C)[i]always holds,and thus the witness ofK f(C,d)isidi,|C|.

    ·By the second property ofF,TRAN holds.The antecedent of this axiom states the existence offandgis in the second property.So the composition offandgis exists inF,which witnesses the consequent of TRAN.

    ·We want to show

    LetCbe enumerated asc1,...,cnand suppose the antecedent in VF holds.

    Further we haveK f(C,d),which means we have af∈Fsuch that

    We will briefly mention howFis going to satisfy this soundness condition in all the following cases.

    3 Full Domain of Functions

    In this section,we deal with the case whereFis as large as possible,namelyF=∪{GGi|i∈N}.Now theK foperator degenerates into a functionality test,as all functions are allowed:

    M,w?K f(C,d)?

    This is true because once we have the right hand side true,we will obtain a partial functionfsatisfying?w∈W,f(V(w,C))=V(w,d).And it is trivial to extend this partial function into a total function.

    Now,ifM,w?Kv(d),then?w1,w2∈W,V(w1,d)=V(w2,d),so the right hand side of the above truth condition holds,and consequently,K f(C,d)is true inM,w.This justifies the soundness of our new axiom in this case:whereC?finQ,possibly empty.We name this axiom EXT because it means that in this case every function onG,regardless of its meaning,can serve as a witness of the truth condition ofK f.Further,Fsatisfies the condition given in Proposition 1,so LKVF+EXT is sound.In the following,we prove that ifGis sufficiently large, then LKVF+EXT is in fact complete as well.

    Given an arbitrary setAof formulas consistent in LKVF+EXT,the Lindenbaum lemma enables us to construct a maximal consistent set Γ such thatA?Γ. Now to build a model for Γ,we need to accompany this Γ by other maximal consistent sets(possible worlds).For example,if we have?K f(C,d)in Γ,then we need two possible worlds on which the values ofCcoincide while the values ofdon them diverge.

    To this end,we first define some useful sets.Given any maximal consistent set Γ,define

    They collect all the propositional and the value knowledge respectively in Γ.For anyC?Q,we sayCisclosed underK finΓ if for allCf?finCandd∈Qsuch thatK f(Cf,d)∈Γ,we haved∈Cas well.Using axioms TRAN and PROJ,it is not hard to see that for allC?finQ,

    is closed underK fin Γ andC?C+Γ.This can be seen as the dependency hull of the finite setC.An important observation is that,by axiom VF,ifK f(?,d)∈Γ,thenKv(d)∈Γ,so?+Γ?KvΓ.Also,by axiom EXT,ifKv(d)∈Γ thenK f(C,d)∈Γ for allC?Q.SoKvΓ?C+Γfor allC?finQ,and in particularKvΓ??+Γ.SoKvΓ=?+Γ.This motivates us to define the set of all finitely generated closed sets:

    ClearlyMΓis non-empty,andKv?!蔒Γ.Also,for allX∈Mwe haveKvΓ?X, so in other words,any finitely generated closed set contains all variables with known value.Then,we have the following disjoint decomposition ofQusingX∈MΓ:

    Intuitively,the values of the variables inKvΓmust hold fixed among all possible worlds;the values of the variables inXKvΓmust vary relative to those inKvΓin a uniform way to respect the functional dependencies among them;and the values of the variables inQXmust vary even when all values inXKvΓare fixed,since they are not determined byX.

    For example,supposeQ={a,b,c,d},G=?,and we want to model Γ whose knowledge consists only of:and their logical consequences such asK f(c,a).Then,when consideringX={a,b, c}=+Γ,we haveKvΓ={a},XKvΓ={b,c},andQX=j5i0abt0b.Among all possible worlds,the value ofamust be fixed;cmust change asc/∈KvΓ,but it should change together withbin case of violating functionality;anddhas to change even whenbtogether withcare fixed to refuteK f(b,d).Thus,one instantiation of this could be:

    where the columns are possible assignments.For everyX∈MΓwhich collects all closed set of variables,we need such possibilities to take care of all formulas of the form?K f(C,d)in Γ,because there will be oneX,namelyC+Γ,that separatesCandd.Then,the value ofdcan vary even when those ofCare fixed.

    The reason we are using only finitely generated closed subsets ofQis that,when|Q|is infinite,the cardinality remains the same.Formally,definePf(Q)to be the collection of all finite subsets ofQ,then|Pf(Q)|=|Q|when|Q|≥?0.Of course, whenQis finite,Pfcoincides withP,the ordinary powerset construction.Then,by the definition ofMΓ,|MΓ|≤|Pf(Q)|.

    Now suppose|G|≥|Pf(Q)×{0,1}|,which is the largeness condition forGin this case,then there exists an injectiong:M?!羬0,1}→G.Using thisgwe can define a functionVponM?!羬0,1}×Qas follows:

    Notice how this satisfies the informal requirement,illustrated by the example above, over the values the variables in different regions should take.Whend∈KvΓ,its value is fixed tog(?,0).Whend∈XKvΓ,its value depends onXas a whole but nothing else,so allvariablesinXKvΓchange uniformly from whatthey are assigned byg(?,·).Whend∈QX,its value further depends oni,so will change even when the values of the variables inXare fixed.

    Formally,this definition allows us to show:

    Proposition 2For allC?finQ,d∈Q:

    1.IfKv(d)∈Γ then

    2.IfKv(d)/∈Γ then

    3.IfK f(C,d)∈Γ then

    4.IfK f(C,d)/∈Γ then

    ProofFor the first part,the witness isx=g(?,0)and can be verified easily.For the second part,as we observed before,KvΓ=?+?!蔒Γ.Then,ifd/∈KvΓ,on〈KvΓ,0〉and〈KvΓ,1〉our valuation functionVpgives different values by the injectivity ofg.

    For the third part,two cases are possible.IfC?KvΓ,thend∈KvΓby VF. ThenVpassignsg(?,0)todon all〈X,i〉,making the consequent of the implication to be proven true throughout.

    Now supposeC/?KvΓand takec∈C(KvΓ)and〈X,i〉,〈X′,i′〉∈M×{0,1}such thatVp(〈X,i〉,C)=Vp(〈X′,i′〉,C).We first showX=X′by focusing on thisc/∈KvΓ.Sincec/∈KvΓ,by the definition ofVp,there existsj,k∈{0,1}such that

    By the injectivity ofg,they are equal only if at leastX=X′.Based on this,ifi=i′then〈X,i〉=〈X′,i′〉and triviallydreceives the same value fromVp.

    Ifi/=i′,recall that we assumedVp(〈X,i〉,C)=Vp(〈X,i′〉,C).For allc∈C, it follows thatc∈Xas otherwise the valuesVpgives tocdiffer oniandi′.HenceC?Xand by assumptionX∈MΓ,which meansXis closed.Thus,asK f(C,d)∈Γ,d∈Xas well.By definition,

    For the last part,we assume thatK f(C,d)/∈Γ.Thend/∈C+Γ.By the injectivity ofgand the fact thatC?C+Γ,

    whereas□

    The above proposition handles the knowledge and ignorance about values and functional dependencies.Now we need to combine it with a traditional completeness proof for epistemic S5 logic.Denote

    HereLis non-empty since by axiom T,KΓ?Γ so at least ?!蔐.Then we define a model on possible worldsW=L×MΓ×{0,1}:M=〈W,U,V〉where for every〈Δ,C,i〉∈W:

    where[p∈Δ]isthe indicatorfunction ofthe statementp∈Δ,which evaluatesto 1 if the statementistrue and 0 otherwise.Here each possible world hasthree components: a maximally consistentsetwhich containsallformulastrue atthe world(truth lemma), a closed set of variablesCwhich is responsible for instantiating the ignorance of the values of variables inCunder the functional dependency constraint,and a number 0 or 1 which is responsible for instantiating the ignorance of the functionality property between variables inCand variables outsideC.

    Now the goal is to show a truth lemma,i.e.,for all〈Δ,C,i〉∈W,φ∈Δ?M,〈Δ,C,i〉?φ.To this end,we first need the following simple observation.

    Proposition 3For all Δ∈L,

    ·Kv(d)∈Δ?Kv(d)∈Γ,

    ·K f(C,d)∈Δ?K f(C,d)∈Γ,

    ·Kφ∈Δ?Kφ∈Γ.

    ProofSimply use the axioms 4,5.For example,the third property follows from□

    Proposition 4IfKφ/∈Γ,then there exists Δ∈Lsuch that?φ∈Δ.

    ProofA standard exercise using necessitation and axiom K.□

    Now we can prove the truth lemma:

    Lemma 1For all〈Δ,C,i〉∈W,φ∈LKVF,φ∈Δ?M,〈Δ,C,i〉?φ.

    ProofBy induction onφ,with the following possibilities:

    ·φis a propositional letter or a boolean combination.This is standard.

    ·φ=Kv(d).Since Δ∈L,by Proposition 3,Kv(d)∈Δ?Kv(d)∈Γ.By Proposition 2,ifKv(d)∈Γ then

    for all〈Θ,D,j〉,〈Θ′,D′,j′〉∈W.IfKv(d)/∈Γ,by Proposition 2 again,there exists〈D,j〉,〈D′,j′〉∈M×{0,1}such that

    As such,

    ·φ=K f(D,d).Similar to the last one.By Proposition 3,K f(D,d)∈Δ?

    K f(D,d)∈Γ.By Proposition 2,K f(D,d)∈Γ?M,〈Δ,C,i〉?K f(D,d).

    ·φ=Kψ.By Proposition 3,Kψ∈Δ?Kψ∈Γ.IfKψ∈Γ,thenψ∈KΓ, so for all〈Θ,D,j〉∈W,as Θ∈L,ψ∈Θ.By the induction hypothesis,M,〈Θ,D,j〉?ψ.Thus,M,〈Δ,C,i〉?Kψ.

    On the other hand,ifKψ/∈Γ,by Proposition 4,there exists Θ∈Msuch that?φ∈Θ.By the induction hypothesis,M,〈Θ,?,0〉??ψ.SoM,〈Δ,C,i〉/?Kψ.To sum up,Kψ∈Γ?M,〈Δ,C,i〉?Kψ.□

    From this proposition,we know that for allφ∈Γ,M,〈Γ,?,0〉?φ.As the consistent setAwe chose at the very beginning is contained in Γ,M,〈Γ,?,0〉?A, which brings us:

    Theorem1Given|G|≥|Pf(Q)×{0,1}|andF=∪{GGi|i∈N},LKVF+EXT axiomatizesLKVF.

    4 Minimal Function Domain

    In Proposition 1 we proved the soundness condition for LKVF.Notice that the minimal function domain that satisfies this soundness condition isIn this section,we consider the axiomatization of the validities ofLKVFwith thisF. Here,two axioms besides our base system LKVF are valid:

    The validity of the first axiom is justified by:

    and notice thatwhenC=?,itdegeneratestoK f(?,d)→⊥orequivalently?K f(?,d), which is true because no zero-ary function exists inF.This also means that EXT is unsound in this case,because even ifKv(d)is true,K f(?,d)is false regardless.SoKv(d)→K f(C,d)is in general false.

    The validity of the second axiom follows from

    Thus,LKVF+CHOO+EQU is sound.Given these two axioms and the fact thatFconsists only of projection functions,K f(c,d)is actually talking about the equality ofc,dover all possible worlds,even though the value might not be known.This motivates the construction of the equivalence relation byK f(c,d)used below.

    Now we turn to the proofofthe completenessof LKVF+CHOO+EQU.Again, given a consistent setA,our plan is that we first extend it to a maximal consistent set Γ,then deal with itsde reknowledge and propositional knowledge separately,and finally take their Cartesian product to obtain a model of Γ.

    First,we partitionQinto equivalence classeswith equivalence relation~defined by

    Its reflexivity,symmetry and transitivity follow from the axioms PROJ,EQU,and TRAN.Indeed,if we use theC+ΓandMΓconstruction,MΓwill contain precisely those partitions and their unions.Every maximally consistent set,or a“world”,naturally gives rise to such an equivalence relation onQ.

    For everyc∈Q,define[c]={d|c~d},and for everyC?Q,define [C]=〈[c]|c∈C〉,the collection of the equivalence classes which contain at least one of its elements.In particular,[KvΓ]=〈[c]|Kv(c)∈?!?

    Now,if|G|≥|Q|≥|[Q]|,then there will be two injections from[Q]toG,uandv,such that

    For example,we can letube any injection and then make a rotation over the function values ofuon[Q][KvΓ]to obtainvin case ofQbeing finite,or letv(d)be the successor ofu(d)ford∈[Q][KvΓ]in case ofQbeing infinite(assuming it can bewell ordered).We do not need to seek more valuations of variables to prove the truth lemma in this case or to instantiate the ignorances of the knowledge about values in Γ.Any one of them is capable of refutingK f(C,d)/∈Γ and together they instantiateKv(d)/∈Γ.

    DefiningVpas a function from{u,v}×QtoGbyVp(t,d)=t([d]),the following proposition is true:

    Proposition 5For anyd∈Q,C?finQ:

    1.ifKv(d)∈Γ,?x∈G,?t∈{u,v},Vp(t,d)=x

    2.ifKv(d)/∈Γ,?t,t′∈{u,v},Vp(t,d)/=Vp(t′,d)

    3.ifK f(C,d)∈Γ,?f∈F,?t∈{u,v},f(Vp(t,C))=Vp(t,d)

    4.ifK f(C,d)/∈Γ,?f∈F,?t∈{u,v},f(Vp(t,C))/=Vp(t,d).

    ProofThe first two parts are immediate from the definition ofu,v:Kv(d)∈Γ?[d]∈[KvΓ]?u([d])=v([d])?Vp(u,d)=Vp(v,d).

    For the third property,supposeK f(C,d)∈Γ and enumerateCbyc1,...,cj. By axiom CHOO and the maximality of Γ,there existsisuch thatK f(ci,d)∈Γ and thus[d]=[ci].Now,for everyt∈{u,v},Vp(t,C)=〈[c1],[c2],...,[cj]〉,so [d]=idi,j(Vp(t,C))and we see that the functional relation betweenC,disidi,j.

    For the last one,supposeK f(C,d)/∈Γ.It follows that[d]/∈[C]because otherwise,[d]∈[C]and there existsc∈C,[d]=[c],henceK f(c,d)∈Γ.By axiom PROJ,K f(C,c)∈Γ,and then by axiom TRAN,K f(C,d)∈Γ,which contradicts the assumption.Again enumerateC=〈c1,...,cj〉.Sinceuis injective and[d]/∈[C],for allci∈C,u([d])/=u([ci]).Thus,for everyj-ary functionidi,j∈F,idi,j(Vp(u,C))=u([ci])/=u([d]).Actually we can usevhere as well. The reason we need both of them is that we need to instantiate?Kv(d)ford/∈KvΓ.□

    To build a model for Γ,define

    Then we have the following truth lemma:

    Lemma 2For all〈Γ,t〉∈W,〈Γ,t〉?φif and only ifφ∈Γ.

    ProofThe proof is similar to that of Lemma 1.The difference is that we need to use Proposition 5 instead of Proposition 2.□

    The completeness ofLKVF+CHOO+EQU follows,so we conclude:

    Theorem 2Given|G|≥|Q|,F=〈idi,j|i,j∈?,0<i≤j〉,LKVF+axiomatizesLKVF.

    5 Intermediate Function Domain

    In the previous two sections,we considered the minimal and the maximal function domains subject to our soundness condition.As we can see,in both cases the axiomatizations require some axioms besides the base system LKVF.And those axioms are not very intuitive if we intend to interpretK fas“knowing a/the functional dependency”.In this section,we show that we can construct a function domain such that ifFis set to it,LKVF will be complete and no extra axiom is needed.The construction is somewhat artificial but in the next section,we can view this as just one step of a completeness proof at a higher level.

    The main difficulty here is to refute the axiom scheme EXT used in the axiomatization of the full function domain case.EXT is validated in that case because whenever the value of a variable is known,a constant function can be used to explain the functional dependency between it and any other variables in all epistemic possibilities.Thus,to refute this scheme as an axiom,we must make sure that the function domain encodes information more than just functionality so that we can refuteK f(c,d)even when functionality holds,such as whenKv(d)is true.The function domain to be constructed below will enable a suitably constructed model to refuteK f(C,d)without ever looking into the functionality condition.

    To do this,we go to higher dimensions by assumingG=2Pf(Q),interpreted as functionsfrom the finite subsetsofQto{0,1}orasa ratherlong sequence indexed byPf(Q)where ateach index(dimension)Cwe can choose from{0,1}.Thisisactually only a size requirement,since so long as|G|≥|2Pf(Q)|,we can alwaysembed 2Pf(Q)intoGby an injection.For anyx∈GandC?finQ,we usex[C]to retrieve the image ofCunderx,which will be 0 or 1.Now we construct the intermediateF:

    Definition 3LetFbe the collection of the functionsfsatisfying the following constraints:whereyisf(x1,...xn),for allC?finQ,

    Alternatively,where

    with max()=0,defineF=∪i∈?Lmaxi.

    Notice that the requirement is specified for all dimensions individually,and they do not interfere with each other.This allows us to do constructions and proofs for each dimension separately.

    Now we can check that thisFsatisfies the soundness condition.Projection functions are all included inFbecause they all satisfy the above constraint:for anyC?finQ,eitherxi[C]=y[C]=1,where the antecedent and the consequent are both false,orxi[C]=y[C]=0,where they are both true.For compositionality,leth=f(g1,...gn).If all inputs tohare 0 at any dimensionC,then sinceg1,...gn∈F,they evaluate to 0 at dimensionC.Then all inputs tofare 0 at this dimensionC.So asf∈F,it evaluates to 0 as well.Thus,his inF.

    To prove the completeness of LKVF with respect toLKVFwith this new function domainF,again the satisfiability of any maximal consistent set Γ is required, and the crucial step is still the construction of a set of valuations such that the formulas of the formKv(d),?Kv(d),K f(C,d),and?K f(C,d)in Γ are satisfied.Indeed, for this purpose we only need two valuations,a situation similar to that in the case of the minimal function domain.This is because when?K f(C,d)∈Γ,we are refutingK f(C,d)not by a failure of functionality but by a failure of conformation toF.Breaking functionality requires at least two possible value assignments,but ifFsays no,a single possibility is too many.Recall theC+Γwe used in the previous two cases,which is defined as{d∈Q|K f(C,d)∈Γ}.Now we need to define a slightly differentMΓ:

    This is the collection of all finitely generated closed sets plusKvΓ.We need this extra union since axiom EXT is not available now,which meansKvΓis not automatically contained in anyC+Γ,and it is quite possible thatKvΓis not finitely generated.But still,MΓhas a cardinality no larger thanPf(Q),since ifQis finite,Pf(Q)contains all subsets ofQ,and if infinite,Pf(Q)is also infinite and adding one more element into it does not increase its cardinality.Thus,there is still a surjectiongfromPf(Q) toMΓ.We can think of thisgasa pseudo(·)+Γfunction,and itdoes notmatterwhich surjection we use forg.Now we can specify the two valuations we need:

    Definition 4Letgbe any surjection fromPf(Q)toMΓ.DefineV0,V1:Pf(Q)→Gsuch that for alld∈Q,C?finQ,

    The use ofV0is to refuteK f(C,d)if?K f(C,d)∈Γ,and the use ofV1is to refuteKvif?Kv(d)∈Γ.Now we prove this in detail:

    Proposition 6IfK f(C,d)∈Γ,then there existsf∈Fsuch that fori∈{0,1},f(Vi(C))=vi(d).If?K f(C,d)∈Γ,then for allf∈F,f(V0(C))/=V0(d).

    ProofTo prove the first claim,assume thatK f(C,d)∈Γ withCenumerated byc1,...,cn.We will construct a functionf∈Fthat works in bothV0andV1:for allD?finQ,V0(d)[D]=f(V0(C))[D]andV1(d)[D]=f(V1(C))[D].Obviously this construction should be done dimension by dimension.For anyD?finQ,the possibilities are:

    ·d∈g(D).Thus,by definition,V0(d)[D]=0.V1(d)[D]=0 as well since the only change happens whenD=KvΓ,and even in that case,only 1 turns to 0 and not vice versa.So we can definef(x1,...xn)[D]=0.ThenV0(d)[D]=f(V0(C))[D]andV1(d)[D]=f(V1(C))[D],regardless of whatV0(C)andV1(C)are.

    ·d/∈g(D).Sinceg(D)is closed andK f(C,d)∈Γ,C/?g(D).Findcp/∈g(D).Definef(x1,...xn)[D]=xp[D].This definition satisfies the requirement ofF.And it works forV0becausev0(d)[D]=V0(cp)[D]=1 (bothd,cpare outsideg(D)).It also works forV1because their values change to 0 together ifg(D)=KvΓ.

    To prove the second claim,recallthatC+Γ={d|K f(C,d)∈Γ}isclosed underK fin Γ and containsCby axioms TRAN and PROJ.Now sinceK f(C,d)/∈Γ,d/∈C+Γ.Asgis a surjection fromPf(Q)toMΓ,there existsD?finQsuch thatg(D)=C+Γ.Thus,by the definition ofV0,V0(d)[D]=1,while for allc∈C?C+Γ=g(D),V0(c)[D]=0.HenceV0(d)[D]>max(V0(C)[D]),which makes it impossible to find a functionf∈Fsuch thatf(V0(C))=V0(d).□

    Proposition 7IfKv(d)∈Γ,thenV0(d)=V1(d).IfKv(d)/∈Γ,thenV0(d)/=V1(d).

    ProofIfKv(d)∈Γ,thend∈KvΓ.Now for anyC?finQ,ifg(C)/=KvΓ,thenV1(d)[C]=V0(d)[C]by definition.Ifg(C)=KvΓ,V1(d)[C]=0,butV0(d)[C]=0 as well sinced∈KvΓ.Thus,V0(d)=V1(d).

    IfKv(d)/∈Γ,d/∈KvΓ.Since we explicitly addedKvΓto Γ,Kv?!蔒Γ,and we can find aC?finQsuch thatg(C)=KvΓ.Then,using the definition ofV0andV1,we knowV0(d)[C]=1 butV1(d)[C]=0,becauseg(C)=KvΓand we assumedd/∈KvΓ.Thus,V1(d)/=V0(d).□

    Based on the previous two propositions,we can build a model for Γ by definingWith a proof which is essentially the same as the proof of the truth lemma Lemma 1 in the full function domain case,using Propositions 6 and 7 instead of Proposition 2, we have:

    Lemma 3For all〈Γ,t〉∈W,M,〈Γ,t〉?φif and only ifφ∈Γ.

    M,〈Γ,0〉?Γ follows from this truth lemma.This finishes the completeness proof of the intermediate case,so we have:

    Theorem 3Given|G|≥|2Pf(Q)|,F=∪i∈?Lmaxi,LKVF axiomatizesLKVF.

    Table 1:Choice of the function domain inLKVFand corresponding axiomatization

    6 Unifying Logic

    In all the previous settings,our logicLKVFtakes a function domainFas a parameter.This function domain is meant to be the set ofa prioripossible functions for functional dependencies over variables.But if this set ofa prioripossibilities is relative to the agents in discussion,then this set of functions should be variable over models instead of being part of the logic and fixed for all models.After all,an agent might hold different prior knowledge in different worlds.Also,the function domain constructed in the intermediate case is,while notnonsensicalforitsinteresting≤max structure,still somewhat artificial for its large dimension.If this function domain is part of the model,it is at the choice of the agent under discussion.

    Indeed,if we put the function domain inside the definition of a model by setting

    whereF:G→Gsatisfies the soundness condition that it contains all projection functions and is closed under function composition,Wis a set of possible worlds,Uisan assignmentfunction forpropositionalletters,andVisan assignmentfunction for variables,and we leave the semantics untouched,then the soundness and completeness of LKVF follow immediately from the results presented so far.UsingLKVF?to denote the logic induced by the definition of the models above,we have:

    Theorem 4LKVF is sound and complete with respect toLKVF?when|G|≥|2Pf(Q)|.

    ProofBecause for every model ofLKVF?,its function domain satisfies the soundnesscondition Proposition 1,LKVF issound in allthe modelsofLKVF?.Thisshows the soundness.

    For any set Γ maximally consistent with respect to LKVF,take theFand the modelMconstructed in the intermediate function domain case.Then〈F,M〉?Γ and〈F,M〉is a model ofLKVF?.Thus,every maximal consistent set is satisfiable.□

    The proof above is a direct adaptation of the completeness result in the intermediate function domain case.In that case,we built a function domain that works for all maximal consistent sets in the sense that for all maximal consistent sets Γ,this same function domain can be used to refuteK f(C,d)/∈Γ when functionality cannot be used.This is actually the reason why the cardinality requirement forGis very high there.However,in the current setting where function domains are part of the models,the only thing needed is a method to build a function domain for each maximal consistent set Γ so that the functional dependency relation betweenC,dis rejected if?K f(C,d)∈Γ.The difference will be made more clear in the following multiagent case.

    6.1Multiagent Logic with Variable Function Domain

    Given an index setAof agents,to accommodate multiple agents,the language is now expanded to

    withp∈P,i∈A,d∈G,andC?finG.The only difference from the single agent language defined in Definition 1 is that now we have for each agentia separateKvi,K fi,andKi.

    For semantics,a model is now defined as:

    whereFiis intended to assign a collection of functional relationships that agentideems possiblea priorito all possible worlds inW.Thus,for allw∈W,i∈A,Fi(w)is required to include all projection functions and to be closed under function composition.~iis the epistemic accessibility relation of agentiand is required to be an equivalence relation onW,the set of possible worlds(complete epistemic scenarios).Now sinceFiis supposed to be“prior knowledge”,it is also required that ifw~iw′,thenFi(w)=Fi(w′).However,we are not assuming that the prior knowledge of any agent is public to other agents,so it is quite possible thatFj(w)/=Fj(w′) ifj/=i,even whenw~iw′.In a nutshell,Fis are not common knowledge.

    The semantic clauses are defined similarly with agent indices for knowledge sentences:

    When a setC?QsatisfiesC=Cl(C),it is called a closed set.A classical result is that the collection of all closed sets under a closure operator forms a lattice〈L,∧,∨〉with

    for allC?finQandd∈Q.

    Forthe completenessproofto go through,there isagain a cardinality requirement forG:|G|≥|Q×{0,1}|,and without loss of generality,we identifyGwithQ× {0,1}.TheQpartwillbe used to constructthe function domainsand refuteK f(C,d), while the{0,1}part will be used for refutingKv(d).

    Definition 6Given a maximal consistent set Γ and an agent indexi,we can construct the dependency lattice L and the corresponding h.Then defineFi(Γ)to be the collection of all functionsfonGwith any arityn∈? such that:

    where≤is defined in L by a≤b?a∧b=b,or equivalently,a?b.The empty disjunction is the bottom element of L:Cl(?).

    It is straightforward to see thatFi(Γ)is dependent only onKi,Γ.Then we need to verify the soundness conditions immediately:

    Proposition 8For every maximal consistent set Γ andi∈A,Fi(Γ)contains all projection functions onGand is closed under composition.

    ProofTake a projection functionf(x1,...xn)=xk.Then by the definition of join in a lattice,

    since h(xk)∈{h(x1),···,h(xn)}.

    The next proposition shows why we use the dependence lattice to define the function domains for each agent.The proposition says that to makeK fi(C,d)true, we only need to make sure that functionality holds,and to makeK fi(C,d)false,we do not need to pay any special attention as the function domainFi(Γ)has already taken care of everything.

    Proposition 9For everyσ∈2Q,definevσ:Q→G,d■→〈d,σ(d)〉.This means we restrictthe value ofd∈Qto be〈d,0〉or〈d,1〉.Now forevery maximalconsistent set Γ,i∈A,C?finQ,d∈Q,and Σ?2Q:

    ·if Σ satisfies the functionality condition forC,d,namely for allσ1,σ2∈Σ,σ1(C)=σ2(C)impliesσ1(d)=σ2(d),and ifK fi(C,d)∈Γ,then there existsf∈Fi(Γ)such that for allσ∈Σ,vσ(d)=f(vσ(C));

    ·ifK fi(C,d)/∈Γ then for allσ∈Σ and for allf∈Fi(Γ),vσ(d)/=f(vσ(C)).

    ProofFirst notice that in the definition ofFi(Γ),the restriction actually forgets the second coordinate of the inputs and outputs.But it is the second coordinate that allσ∈Σ try to adjust.By definition,the first coordinates ofvσ(c)for allc∈Qare just themselves.So for allc∈Q,σ∈Σ,h(vσ(c))=Cl(c).

    IfK fi(C,d)∈Γ,then(dropping the super and subscripts)d∈Cl(C).This means the same asj5i0abt0b?Cl(C),which,by the fact that Cl is a closure operator,implies Cl(d)?Cl(Cl(C))=Cl(C).Then Cl(d)?Cl(C),which means h(vσ(d))≤Cl(C)in L forallσ∈Σ.Also,Cl(C)=∨{Cl(c1),Cl(c2),...Cl(cn)}=∨h(vσ(C)) for allσ∈Σ.So indeed h(vσ(d))≤∨h(vσ(C))in L.Together with the functionality assumed for Σ,this means mappingvσ(C)tovσ(d)simultaneously for allσ∈Σ is allowed inFi(Γ).Then we can extend this partial map to a map fromGntoGinFi(Γ).An easy solution is to do projection for all other possible inputs.

    IfK fi(C,d)/∈Γ,thend/∈Cl(C)and hence Cl(d)/?Cl(C).If Σ is empty,the statement is trivially true.So assume Σ is not empty.Now take an arbitraryσ∈Σ. Then h(vσ(d))/≤∨h(vσ(C)),which violates the restriction onFi(Γ)ifvσ(C)is to be mapped tovσ(d).Thus,for allf∈Fi(Γ),vσ(d)/=f(vσ(C)).□

    Equipped with the above definitions,the canonical model can now be defined:Definition 8(Canonical Model)Build a modelM=〈W,〈~i〉i∈A,U,V,〈Fi〉i∈A〉as follows:

    ·W={〈Γ,σ〉|Γ a maximal consistent set,σ∈2Q},

    ·〈Γ,σ〉~i〈Γ′,σ′〉iff

    1.Ki,Γ=Ki,?!?which says that two worlds must share the same set of knowledge ofi,and

    ·U(〈Γ,σ〉,p)=[p∈Γ],

    ·V(〈Γ,σ〉,d)=〈d,σ(d)〉,or equivalently using notations introduced above in Proposition 9,V(〈Γ,σ〉)=vσ,

    ·Fi(〈Γ,σ〉)=Fi(Γ).

    ·~iis an equivalence relation for alli∈A,

    ·Fi(〈Γ,σ〉)satisfies the soundness condition,

    ·if〈Γ,σ〉~i〈?!?σ′〉thenFi(〈Γ,σ〉)=Fi(〈?!?σ′〉).

    Because~iis defined using equality,its reflexivity is easy to see.We need the two special properties of MvΓinoted right after the Definition 7 to show symmetry and transitivity.

    Now the truth lemma in this case can be proven:

    ProofUse induction onφ.The propositional letters and boolean combination cases are conventional.We focus on the knowledge cases.

    φ=Kiψ.IfKiψ∈Γ,then by the definition of~i,for all〈?!?σ′〉~i〈Γ,σ〉,Ki,Γ=Ki,Γ′.Thus,ψ∈Ki,?!鋋ndKiψ∈Γ′.By axiom T,ψ∈?!?and using the induction hypothesis,M,〈?!?σ′〉?ψ.Thus,M,〈Γ,σ〉?Kiψby the semantic clause ofKi.

    IfKiψ/∈Γ,then by a standard argument using axioms and the maximality of Γ,Ki,?!葅?ψ}is consistent and expandable to a maximal consistent set Γ′.Then〈?!?σ〉~i〈Γ,σ〉andM,〈Γ,σ〉??ψby the induction hypothesis.SoM,〈Γ,σ〉/?Kiψ.

    φ=K fi(C,d).SupposeK fi(C,d)∈Γ.Then weshould firstshow thatthe functionality condition holds.For any〈Γ1,σ1〉,〈Γ2,σ2〉~i〈Γ,σ〉,ifV(〈Γ1,σ1〉,C)=V(〈Γ2,σ2〉,C),then there are two possibilities

    ·C?Kvi,Γ.Then by axiom VF,d∈Kvi,Γas well,and by the argument in the previous case,V(〈Γ1,σ1〉,d)=V(〈Γ2,σ2〉,d)=〈d,σ(d)〉.

    IfK fi(C,d)/∈Γ,then by Proposition 9 again,for every functionf∈Fi(Γ)=Fi(〈Γ,σ〉),there exists〈?!?σ′〉~i〈Γ,σ〉such thatV(〈?!?σ′〉,d)/=f(V(〈?!?σ′〉,C)). Actually〈Γ,σ〉itself works here.Thus,M,〈Γ,σ〉/?K fi(C,d).□

    7 Discussion and Future Work

    First,we discuss the semantics of theK foperator.Obviously,whileKv(d) means that there is only one value fordto take,in general,the truth ofK f(C,d) does not force the set of possible functional dependency relations ofdonCto be a singleton.

    It could be argued that the agent can nevertheless regard all those candidates as equivalent,because they must have exactly the same behavior over the partial domainP={V(w,C)|w∈W}.And things inG|C|but outside this setPare epistemically impossible.Thus,the behavior of functions onG|C|Pis something that our agent can and will ignore if situations epistemically impossible do not concern the agent. One example,also mentioned in the introduction,iswhen“knowing-value”isthe real objective ofthe agentand“knowing-dependency”only expressesthe agent’spotential to know more values.The semantics proposed in this paper allows adjustments toF, which might be a consequence of an agent’s concern about situations epistemically impossible,butnotnecessarily.And even ifitisthe case,the semanticsdoesnotshow howFis derived from what concerns of the agents.

    It is not uncommon that epistemic possibilities are not the right place to stop when evaluating knowledge of functional dependency.Consider the following example:

    I know the color of my hair.Therefore,I know the color of my hair functionally depends on the number of fingers I have.

    This argument is very hard to swallow intuitively.Yet it is validated by the axiom EXT.Indeed,in the current setting of the semantics ofK f,to validate this,we only need to allow a moderate amount of constant functions in our function domain.The root of the problem is that,in a pure epistemic logic setting,if something is known, the agent has no access to other alternatives as knowledge is the only modality here, whereas in most realistic situations,even when something is known,we have modal access to some possibilities different from the known one.For example,possibilities in the future or past can be used to explain why the color of my hair is not really dependent on the number of fingers I have.And even when I have not and will not change the color of my hair,we can still use metaphysical possibilities:“the color of my haircouldbe different,regardless of how many fingers I have.”

    Thus,it might be of interest to capture knowledge of functional dependency in anothermodality.To do thiswe can add a new modality□interpreted by a relationR. Then“knowing a/the functional dependency”can now be expressed by an operatorK f□with the following semantics:

    where~is the epistemic indistinguishability relation.This definition still says that there exists a function that works for all epistemically indistinguishable worlds.But here“works”meansfcaptures the functional dependency ofduponCwith respect to another modality□which might be different fromK.

    The choice ofRcan be arbitrary,but at least two interesting candidates are immediate:an equivalence relation to capture metaphysical possibilities and a linear or branching time relation used in temporal logics.A simple observation is that,if we still want a new version of VF,namely

    to be valid,we needRto be reflexive.Otherwise,the functionaldependency mightbe only talking about worlds far away from the actual world,though accessible throughR.Since the choice forRcan be flexible,there will be many interesting results to be discovered under this semantics.In particular,for the study of completeness,we might want to add more first order features to facilitate a proof more similar to its first order counterpart,a strategy successfully employed in[1].It might be desirable because,with two modalities,a direct construction of value assignments can be unmanageable.

    Buta demanding readermay stillnotbe satisfied,aseven ifwe add a new modality,the choice of the functions could be nonunique again.This motivates another interpretation of knowledge of functional dependency,emphasizing even more the“knowledge”part:K f(C,d)says that the agent has gathered so much information that there is(almost)exactly one function that can be used to explain the data he/she has seen so far.Thus,knowledge appears only when there is only one possible or a few very plausible explanations.If there is no possible explanation in the sense that no function in the function domainFis applicable,or there are too many explanations,no knowledge is obtained.This sounds natural,but much more technically will be needed to formalize this:either a counting operator,or a probabilistic operator tracking the posterior distribution over the candidate explanations.

    There are also interesting possible extensions of the framework given in this paper.For example,the multiagent case here assumed a no-interaction semantics. But once we require prior knowledge of possible functions to be available to otheragents,interesting interactions will appear.For example,supposeFjis known to agenti,i.e.,ifw~iw′thenFj(w)=Fj(w′).Then the following is valid:

    Intuitively this says that if agentiknows the values ofc,dand knows that agentjknows,then eitheriknowsthatjhasan explanation ofthe value ofc,doriknowsthatjdoesnothave one.The antecedentfixesthe value ofc,din allworldsaccessible first fromiand then fromj.Thus ifjfails or succeeds to explain this particular instance, agentiknows it.Stronger interactions will appear if we require all agents to share a single prior knowledge baseF,i.e.,for alli,w,Fi(w)=F.Then the following is valid:

    This says that ifiknows the value ofc,dand knows thatjknows them,thenibeing able to explain this instance implies thatjcan explain it as well.To axiomatize these two cases,new axioms and techniques will emerge.Further,we can also add an operator that expresses knowledge about other agents’function domain.

    Computationally,we see withouttoo much surprise thatthe finite modelproperty holds.For all the three single agent cases with a finite language,the required size ofGand the size of the model constructed can be explicitly computed.In the multiagent case,a standard filtration method can also be applied quite straightforwardly.Notice that in each of the three cases,the completeness proof requires a minimal size ofG. A natural question is whether we can bring down the size requirement by giving more economic completenessproofs.In particular,the double exponentialsize requirement in the single agent fixed intermediate function domain case seems to be too large, while the number of value assignments seems too small(just 2).We might be able to implement a trade-off here or a smarter lattice construction.

    In summary,introducing knowledge aboutfunctionaldependency relationsbrings us ample new opportunities to extend the border of epistemic logic.There will be a lot more to achieve.

    [1]A.Baltag,2016,“To know is to know the value of a variable”,Advances in Modal Logic,Vol.11,pp.135–155.

    [2]J.van Ejick,M.Gattinger and Y.Wang,2017,“Knowing values and public inspection”,to appear in Proceedings of the Seventh Indian Conference on Logic and Its Applications.

    [3]T.Gu and Y.Wang,2016,“‘Knowing value’logic as a normal modal logic”,Advances in Modal Logic,Vol.11,pp.362–381.

    [4]J.Hintikka,1962,Knowledge and Belief:An Introduction to the Logic of the Two Notions,Ithaca N.Y.:Cornell University Press.

    [5]J.A.Plaza,1989,“Logics of public communications”,in M.L.Emrich,M.S.Pfeifer, M.Hadzikadic and Z.W.Ras(eds.),Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems,pp.201–216.

    [6]J.V??n?nen et al.,2008,“Modal dependence logic”,New Perspectives on Games and Interaction,4:237–254.

    [7]J.A.V??n?nen,2007,DependenceLogic—ANewApproachtoIndependenceFriendly Logic,Cambridge University Press.

    [8]Y.Wang,2016,“Beyond knowing that:A new generation of epistemic logics”,in G.S. Hans van Ditmarsch(ed.),Jaakko Hintikka on Knowledge and Game Theoretical Semantics,to appear,Springer.

    [9]Y.Wang and J.Fan,2013,“Knowing that,knowing what,and public communication: Public announcement logic withKvoperators”,Proceedings of the 23rd International Joint Conferences on Artificial Intelligence,pp.1139–1146.

    [10]Y.Wang and J.Fan,2014,“Conditionally knowing what”,Advances in Modal Logic,Vol.10,pp.569–587.

    [11]A.W.William,1974,“Dependency structures of data base relationships”,Information Processing 74:Proceedings of IFIP Congress 74,pp.580–583.

    關(guān)于函數(shù)依賴關(guān)系的認(rèn)知邏輯

    丁一峰
    加州大學(xué)伯克利分校邏輯與科學(xué)方法論小組yf.ding@berkeley.edu

    對(duì)非經(jīng)典知識(shí),尤其是“知道是什么”的研究幾乎是與對(duì)經(jīng)典的認(rèn)知邏輯的研究同時(shí)開始的,并且近來此類研究又吸引了諸多學(xué)者的注意。此種“知道是什么”算子能用來表達(dá)認(rèn)知主體對(duì)個(gè)別變量的值的知識(shí),但僅靠其自身卻無法表達(dá)主體對(duì)變量之間的關(guān)系的知識(shí)。本文嘗試提出一種K f算子來表達(dá)主體對(duì)變量間的函數(shù)關(guān)系的知識(shí)。不同于相關(guān)研究中類似的用于表達(dá)函數(shù)依賴關(guān)系的其它算子,這種K f算子的語義引入了一個(gè)先驗(yàn)函數(shù)域,用以表達(dá)認(rèn)知主體對(duì)函數(shù)依賴關(guān)系的先驗(yàn)可能性的限制。我們將討論該種語義下由不同的先驗(yàn)函數(shù)域引出的三種單主體邏輯,然后將其統(tǒng)一到一個(gè)邏輯當(dāng)中并擴(kuò)充為多主體邏輯。

    Received2016-06-19

    *The author would like to give special thanks to Malvin Gattinger and Wesley H.Holliday for their unreserved helpful comments.

    猜你喜歡
    先驗(yàn)算子語義
    擬微分算子在Hp(ω)上的有界性
    各向異性次Laplace算子和擬p-次Laplace算子的Picone恒等式及其應(yīng)用
    語言與語義
    基于無噪圖像塊先驗(yàn)的MRI低秩分解去噪算法研究
    一類Markov模算子半群與相應(yīng)的算子值Dirichlet型刻畫
    基于自適應(yīng)塊組割先驗(yàn)的噪聲圖像超分辨率重建
    Roper-Suffridge延拓算子與Loewner鏈
    “上”與“下”語義的不對(duì)稱性及其認(rèn)知闡釋
    基于平滑先驗(yàn)法的被動(dòng)聲信號(hào)趨勢(shì)項(xiàng)消除
    先驗(yàn)的廢話與功能的進(jìn)路
    哪个播放器可以免费观看大片| 超色免费av| 一级毛片黄色毛片免费观看视频| 国产免费现黄频在线看| 亚洲av电影在线进入| 国产午夜精品一二区理论片| 啦啦啦啦在线视频资源| 亚洲国产精品成人久久小说| 人人妻人人添人人爽欧美一区卜| 高清欧美精品videossex| 人妻少妇偷人精品九色| 久久久久国产精品人妻一区二区| 天天躁夜夜躁狠狠躁躁| av视频免费观看在线观看| 黄色配什么色好看| 久久免费观看电影| 久久久久久伊人网av| 亚洲国产精品一区三区| 啦啦啦中文免费视频观看日本| 少妇人妻 视频| www.熟女人妻精品国产 | 老熟女久久久| 97在线人人人人妻| 男人添女人高潮全过程视频| 黑人巨大精品欧美一区二区蜜桃 | 天堂中文最新版在线下载| 欧美+日韩+精品| 欧美日韩综合久久久久久| 久久99一区二区三区| 伦理电影大哥的女人| 免费在线观看完整版高清| 少妇的逼水好多| 日韩欧美一区视频在线观看| 成年女人在线观看亚洲视频| 国产xxxxx性猛交| 精品人妻在线不人妻| 一个人免费看片子| 一个人免费看片子| 国产精品麻豆人妻色哟哟久久| 日韩成人伦理影院| 国产高清不卡午夜福利| 永久网站在线| 午夜福利网站1000一区二区三区| 亚洲精品日韩在线中文字幕| 一区二区av电影网| 亚洲av成人精品一二三区| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美另类精品又又久久亚洲欧美| 国产国拍精品亚洲av在线观看| 啦啦啦在线观看免费高清www| 国产国语露脸激情在线看| av福利片在线| 只有这里有精品99| www.色视频.com| 中文精品一卡2卡3卡4更新| 搡老乐熟女国产| 国产精品欧美亚洲77777| 人人妻人人添人人爽欧美一区卜| 男男h啪啪无遮挡| 综合色丁香网| 日韩成人av中文字幕在线观看| 综合色丁香网| 久久 成人 亚洲| 一区二区三区乱码不卡18| 好男人视频免费观看在线| 王馨瑶露胸无遮挡在线观看| 嫩草影院入口| 又黄又粗又硬又大视频| 丝袜脚勾引网站| 国产日韩欧美视频二区| 18禁观看日本| 99久久人妻综合| 久久久久久久亚洲中文字幕| 色5月婷婷丁香| 永久网站在线| 美女主播在线视频| 中文字幕制服av| 中文字幕精品免费在线观看视频 | 免费看不卡的av| 亚洲成人av在线免费| 亚洲精品乱码久久久久久按摩| 五月伊人婷婷丁香| 色哟哟·www| videossex国产| 久久精品久久久久久久性| 免费黄频网站在线观看国产| 99国产精品免费福利视频| 人成视频在线观看免费观看| 亚洲av成人精品一二三区| 成人18禁高潮啪啪吃奶动态图| 国语对白做爰xxxⅹ性视频网站| 韩国高清视频一区二区三区| 国产日韩欧美在线精品| 国产在线免费精品| 一级片免费观看大全| 欧美bdsm另类| 伦理电影免费视频| 夜夜骑夜夜射夜夜干| 欧美成人精品欧美一级黄| 精品人妻在线不人妻| 国产有黄有色有爽视频| 一区在线观看完整版| 国产片内射在线| 我要看黄色一级片免费的| 如何舔出高潮| 国产不卡av网站在线观看| 免费观看av网站的网址| 久久精品久久久久久噜噜老黄| 国产视频首页在线观看| 欧美人与性动交α欧美软件 | 久久久久精品久久久久真实原创| 欧美精品av麻豆av| 热99国产精品久久久久久7| 男人舔女人的私密视频| 中国美白少妇内射xxxbb| 国产女主播在线喷水免费视频网站| 亚洲国产av新网站| 午夜免费鲁丝| 九色亚洲精品在线播放| 国产精品麻豆人妻色哟哟久久| 成人免费观看视频高清| 在线观看免费日韩欧美大片| 国产精品免费大片| 午夜福利影视在线免费观看| 久久久久久久大尺度免费视频| 成年动漫av网址| 久久毛片免费看一区二区三区| 国产欧美亚洲国产| av.在线天堂| 电影成人av| 欧美日韩成人在线一区二区| 国产成人精品在线电影| 欧美黑人精品巨大| 中文字幕人妻丝袜一区二区| 国内毛片毛片毛片毛片毛片| 满18在线观看网站| 一级,二级,三级黄色视频| 精品熟女少妇八av免费久了| 亚洲精品乱久久久久久| 正在播放国产对白刺激| 精品高清国产在线一区| 老汉色∧v一级毛片| 午夜福利,免费看| 99久久国产精品久久久| 国产乱人伦免费视频| 99热只有精品国产| 亚洲第一欧美日韩一区二区三区| 老汉色∧v一级毛片| 日韩视频一区二区在线观看| 国产精品欧美亚洲77777| 热re99久久精品国产66热6| 国产精品.久久久| 狂野欧美激情性xxxx| 久热爱精品视频在线9| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 老司机亚洲免费影院| 国产不卡av网站在线观看| 国产欧美日韩一区二区精品| 国产精品国产高清国产av | 精品卡一卡二卡四卡免费| 午夜福利欧美成人| 无人区码免费观看不卡| 女性被躁到高潮视频| 在线免费观看的www视频| 18禁黄网站禁片午夜丰满| 热99国产精品久久久久久7| 在线永久观看黄色视频| 国产成人免费观看mmmm| 黄网站色视频无遮挡免费观看| 久久香蕉国产精品| 国产精品永久免费网站| 丝袜在线中文字幕| 欧美在线一区亚洲| 亚洲成人手机| 精品一品国产午夜福利视频| aaaaa片日本免费| 9热在线视频观看99| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 国产精品98久久久久久宅男小说| 亚洲成av片中文字幕在线观看| 中文欧美无线码| 久久草成人影院| 国产精品一区二区免费欧美| 国产精品98久久久久久宅男小说| 国产又爽黄色视频| 日韩三级视频一区二区三区| 国产成人一区二区三区免费视频网站| 国产在视频线精品| 精品亚洲成a人片在线观看| 久久久水蜜桃国产精品网| 久久精品成人免费网站| aaaaa片日本免费| 多毛熟女@视频| 丝袜在线中文字幕| 嫩草影视91久久| 99国产精品免费福利视频| 欧美精品人与动牲交sv欧美| 十分钟在线观看高清视频www| av国产精品久久久久影院| 99精品久久久久人妻精品| 午夜成年电影在线免费观看| 在线观看免费高清a一片| 欧美亚洲日本最大视频资源| 啦啦啦 在线观看视频| 18禁黄网站禁片午夜丰满| 9热在线视频观看99| 亚洲精品国产精品久久久不卡| 99久久综合精品五月天人人| 国产在线一区二区三区精| 亚洲精华国产精华精| 少妇猛男粗大的猛烈进出视频| avwww免费| 18禁黄网站禁片午夜丰满| 欧美精品亚洲一区二区| 中文字幕人妻丝袜制服| 免费观看精品视频网站| 另类亚洲欧美激情| 中文字幕色久视频| 国产深夜福利视频在线观看| 久久午夜亚洲精品久久| a级毛片黄视频| 女性生殖器流出的白浆| 黑人欧美特级aaaaaa片| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片 | 天天影视国产精品| 国产麻豆69| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 免费在线观看日本一区| 国产免费av片在线观看野外av| 老司机午夜十八禁免费视频| 美女视频免费永久观看网站| 日韩大码丰满熟妇| 激情在线观看视频在线高清 | 777久久人妻少妇嫩草av网站| 大香蕉久久网| 黄色怎么调成土黄色| av在线播放免费不卡| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 在线看a的网站| 99国产精品99久久久久| 亚洲熟妇中文字幕五十中出 | 成年版毛片免费区| 亚洲av第一区精品v没综合| 亚洲精品av麻豆狂野| 精品人妻在线不人妻| 性少妇av在线| 午夜精品国产一区二区电影| 午夜精品在线福利| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 国产在视频线精品| 中文字幕人妻丝袜一区二区| 婷婷丁香在线五月| 欧美精品高潮呻吟av久久| 午夜精品久久久久久毛片777| 老熟妇乱子伦视频在线观看| 黄频高清免费视频| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕 | 国产免费现黄频在线看| 窝窝影院91人妻| 丰满的人妻完整版| 两人在一起打扑克的视频| 身体一侧抽搐| 中文欧美无线码| 午夜激情av网站| 欧美激情高清一区二区三区| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三| 黄片大片在线免费观看| 美国免费a级毛片| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 身体一侧抽搐| 香蕉国产在线看| 九色亚洲精品在线播放| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 亚洲中文av在线| 久久人人爽av亚洲精品天堂| 精品乱码久久久久久99久播| 国产高清videossex| 日韩 欧美 亚洲 中文字幕| 日韩一卡2卡3卡4卡2021年| 飞空精品影院首页| 黄片大片在线免费观看| 日韩中文字幕欧美一区二区| 最新的欧美精品一区二区| 不卡av一区二区三区| 91成年电影在线观看| 一级毛片女人18水好多| 老汉色av国产亚洲站长工具| 黄色a级毛片大全视频| 午夜福利一区二区在线看| 久久精品国产99精品国产亚洲性色 | 午夜福利在线免费观看网站| 在线观看免费高清a一片| 天堂动漫精品| 亚洲精品久久午夜乱码| 91精品三级在线观看| 国产人伦9x9x在线观看| 在线观看免费视频网站a站| 在线av久久热| tube8黄色片| 日本vs欧美在线观看视频| 天天躁夜夜躁狠狠躁躁| 无人区码免费观看不卡| 99久久人妻综合| 日韩有码中文字幕| 大型黄色视频在线免费观看| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 国产色视频综合| 亚洲欧美精品综合一区二区三区| 亚洲精华国产精华精| 亚洲一区中文字幕在线| 啪啪无遮挡十八禁网站| 黄色成人免费大全| 这个男人来自地球电影免费观看| 又紧又爽又黄一区二区| 男女免费视频国产| 手机成人av网站| 最近最新中文字幕大全免费视频| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 91九色精品人成在线观看| 91成年电影在线观看| 久久 成人 亚洲| 亚洲熟妇熟女久久| 啦啦啦在线免费观看视频4| 亚洲久久久国产精品| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 亚洲精品久久午夜乱码| 大香蕉久久网| 精品国产国语对白av| 美女高潮喷水抽搐中文字幕| 夜夜夜夜夜久久久久| 国产亚洲精品久久久久久毛片 | 色综合欧美亚洲国产小说| 一边摸一边抽搐一进一出视频| 老司机亚洲免费影院| 国产在线一区二区三区精| 交换朋友夫妻互换小说| xxx96com| 国产在线一区二区三区精| 电影成人av| 亚洲国产欧美网| 久久精品国产清高在天天线| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 一个人免费在线观看的高清视频| 欧洲精品卡2卡3卡4卡5卡区| 老汉色∧v一级毛片| 在线看a的网站| 亚洲精品av麻豆狂野| 久久亚洲精品不卡| 精品久久久久久电影网| 国产视频一区二区在线看| 国产一区二区三区在线臀色熟女 | 国产片内射在线| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 久热这里只有精品99| 熟女少妇亚洲综合色aaa.| 美女午夜性视频免费| 亚洲综合色网址| 一级a爱片免费观看的视频| 久久精品国产99精品国产亚洲性色 | 美女扒开内裤让男人捅视频| 一进一出好大好爽视频| 人人澡人人妻人| 国产精品二区激情视频| 日日摸夜夜添夜夜添小说| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 啪啪无遮挡十八禁网站| 亚洲精品成人av观看孕妇| 99riav亚洲国产免费| 精品国产超薄肉色丝袜足j| 成年人黄色毛片网站| 美女视频免费永久观看网站| 久久这里只有精品19| 自线自在国产av| 操美女的视频在线观看| 亚洲国产看品久久| 久久影院123| 99国产精品免费福利视频| 啦啦啦在线免费观看视频4| 成人免费观看视频高清| 高清欧美精品videossex| 亚洲一码二码三码区别大吗| 在线观看免费视频日本深夜| 成人黄色视频免费在线看| 欧美日韩黄片免| 国产熟女午夜一区二区三区| av天堂在线播放| 少妇的丰满在线观看| 国产淫语在线视频| 欧美大码av| 99国产精品免费福利视频| 国产1区2区3区精品| 亚洲性夜色夜夜综合| 超碰成人久久| 这个男人来自地球电影免费观看| 每晚都被弄得嗷嗷叫到高潮| av片东京热男人的天堂| 欧美在线黄色| 久久热在线av| 久久久久久久午夜电影 | 在线观看一区二区三区激情| 夫妻午夜视频| 中文字幕人妻丝袜一区二区| 亚洲av成人一区二区三| 男女之事视频高清在线观看| av免费在线观看网站| 青草久久国产| 91字幕亚洲| 欧美黄色淫秽网站| 在线永久观看黄色视频| 日日夜夜操网爽| 亚洲性夜色夜夜综合| 色婷婷久久久亚洲欧美| 欧美日韩成人在线一区二区| 亚洲 国产 在线| 亚洲免费av在线视频| 日韩 欧美 亚洲 中文字幕| 伦理电影免费视频| 国产精品九九99| 亚洲色图综合在线观看| 免费观看人在逋| 欧美日韩精品网址| 国产欧美日韩一区二区精品| 午夜影院日韩av| 国产成人啪精品午夜网站| 99热只有精品国产| 99久久99久久久精品蜜桃| 51午夜福利影视在线观看| 一级黄色大片毛片| 国产极品粉嫩免费观看在线| tube8黄色片| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 少妇 在线观看| 免费观看a级毛片全部| 精品人妻1区二区| 大片电影免费在线观看免费| 99精品欧美一区二区三区四区| 国产成人免费无遮挡视频| 欧美日韩乱码在线| 亚洲欧美日韩另类电影网站| 久久久久国产精品人妻aⅴ院 | 女人爽到高潮嗷嗷叫在线视频| 欧美在线一区亚洲| 老汉色∧v一级毛片| 色婷婷av一区二区三区视频| 午夜福利乱码中文字幕| 精品国产乱子伦一区二区三区| 色94色欧美一区二区| 热99国产精品久久久久久7| 最新的欧美精品一区二区| 三上悠亚av全集在线观看| e午夜精品久久久久久久| 精品一品国产午夜福利视频| 免费观看精品视频网站| 黄频高清免费视频| 一区二区三区激情视频| 精品无人区乱码1区二区| 国产不卡一卡二| 久久热在线av| 极品教师在线免费播放| 亚洲专区国产一区二区| 日本一区二区免费在线视频| 色在线成人网| 国产高清videossex| 大香蕉久久网| 欧美不卡视频在线免费观看 | 国产1区2区3区精品| 久久人妻熟女aⅴ| 欧美成人午夜精品| 黄色片一级片一级黄色片| 国产又爽黄色视频| 人人妻人人添人人爽欧美一区卜| 少妇裸体淫交视频免费看高清 | 91成人精品电影| 高清av免费在线| 深夜精品福利| 无限看片的www在线观看| 丝袜人妻中文字幕| 99国产极品粉嫩在线观看| 国产精品 欧美亚洲| 国产午夜精品久久久久久| 国产精品久久久久成人av| 久久精品成人免费网站| 女同久久另类99精品国产91| 一边摸一边抽搐一进一小说 | 亚洲av日韩精品久久久久久密| 日韩人妻精品一区2区三区| 欧美国产精品va在线观看不卡| 丝袜美腿诱惑在线| 怎么达到女性高潮| 国产精品久久久久成人av| 亚洲精品美女久久av网站| 久久人人爽av亚洲精品天堂| 黄片小视频在线播放| 黑人猛操日本美女一级片| 一区福利在线观看| 午夜久久久在线观看| 成年动漫av网址| 午夜久久久在线观看| 久久精品国产亚洲av香蕉五月 | 少妇粗大呻吟视频| 男人操女人黄网站| 麻豆乱淫一区二区| 中亚洲国语对白在线视频| 亚洲欧美精品综合一区二区三区| 亚洲五月天丁香| 少妇 在线观看| 视频在线观看一区二区三区| 麻豆成人av在线观看| 亚洲人成电影观看| 丰满饥渴人妻一区二区三| 美女 人体艺术 gogo| 黄色女人牲交| 王馨瑶露胸无遮挡在线观看| 99riav亚洲国产免费| 精品亚洲成国产av| 黄色a级毛片大全视频| 一夜夜www| 老汉色∧v一级毛片| 人妻久久中文字幕网| 欧美日本中文国产一区发布| 9热在线视频观看99| 99久久国产精品久久久| 国产欧美日韩一区二区三| 天天躁日日躁夜夜躁夜夜| 亚洲五月婷婷丁香| 天天躁狠狠躁夜夜躁狠狠躁| 91老司机精品| 69av精品久久久久久| 大型黄色视频在线免费观看| 伦理电影免费视频| 香蕉丝袜av| 999精品在线视频| 国产亚洲欧美精品永久| 国产午夜精品久久久久久| 国产精品99久久99久久久不卡| 精品无人区乱码1区二区| 国产91精品成人一区二区三区| 国产成+人综合+亚洲专区| 男人操女人黄网站| 午夜福利乱码中文字幕| 精品国产国语对白av| 91国产中文字幕| 久久国产精品男人的天堂亚洲| 国精品久久久久久国模美| 中亚洲国语对白在线视频| 国产男靠女视频免费网站| 精品一区二区三区av网在线观看| 大型av网站在线播放| 男人舔女人的私密视频| 中文字幕最新亚洲高清| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| av一本久久久久| 91av网站免费观看| 国产精品综合久久久久久久免费 | 欧美日韩成人在线一区二区| 丁香欧美五月| 在线观看免费高清a一片| 最新的欧美精品一区二区| 国产成人系列免费观看| 久久国产亚洲av麻豆专区| 又大又爽又粗| 欧美精品高潮呻吟av久久| 免费一级毛片在线播放高清视频 | 91av网站免费观看| 欧美日韩亚洲高清精品| 国产高清videossex| 久久人妻熟女aⅴ| 亚洲全国av大片| 91大片在线观看| 最近最新中文字幕大全免费视频| 自线自在国产av| 国产在线精品亚洲第一网站| 亚洲国产精品一区二区三区在线| 嫩草影视91久久| 精品久久久久久久久久免费视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 黄色女人牲交| 99国产精品一区二区三区| bbb黄色大片| 在线免费观看的www视频| 久久久久国产精品人妻aⅴ院 | 国产精品久久久人人做人人爽| 欧美乱色亚洲激情| 女警被强在线播放| 美女高潮喷水抽搐中文字幕| 欧美日韩av久久| 女人被狂操c到高潮| 成人免费观看视频高清| 精品一区二区三区视频在线观看免费 |