王春輝,李智軍,陳 竺
(陸軍軍醫(yī)大學(xué)邊防衛(wèi)勤訓(xùn)練大隊(duì)內(nèi)外科教研室,新疆呼圖壁831200)
冷誘導(dǎo)蛋白CIRP和RBM3生物學(xué)功能研究進(jìn)展
王春輝,李智軍,陳 竺
(陸軍軍醫(yī)大學(xué)邊防衛(wèi)勤訓(xùn)練大隊(duì)內(nèi)外科教研室,新疆呼圖壁831200)
在自然界中,當(dāng)環(huán)境溫度降低時動植物的代謝速率減慢,相應(yīng)的蛋白質(zhì)的合成速度也會降低.研究[1]最早發(fā)現(xiàn)擬南芥植物適應(yīng)寒冷與干旱時體內(nèi)AtGRP7(arabidopsis thaliana glycine-rich RNA binding protein 7)和 AtGRP8 (arabidopsis thaliana glycine-rich RNA binding protein 8)的表達(dá)會隨著溫度降低而升高.在哺乳動物以及兩棲動物中,AtGRP7和AtGRP8的同源類似物 CIRP(cold-inducible RNA-binding protein)和 RBM3(RNA-binding motif protein 3)在寒冷刺激下同樣表達(dá)上調(diào),并能夠調(diào)節(jié)轉(zhuǎn)錄和翻譯,抵御寒冷與食物匱乏等外界刺激[2].冷血動物如魚等,在面臨嚴(yán)重的冷刺激(8℃)時,CIRP類似物的表達(dá)也會升高,但是處于正常的環(huán)境溫度(20℃~25℃)時CIRP類似物表達(dá)不會改變[3-5].目前臨床上已經(jīng)證實(shí)低溫療法(32℃~34℃)有利于緩解嬰幼兒缺血缺氧性腦病和成人的急性腦損傷引起的神經(jīng)功能損傷[6-7].雖然臨床上在心臟或者移植手術(shù)中可能采用中度低溫療法(28℃ ~31.9℃)或者深度低溫療法(11℃~28℃)來降低代謝和循環(huán),但是在術(shù)后恢復(fù)期仍建議使用CIRP和RBM3分泌高峰的32℃~34℃進(jìn)行低體溫療法[8-9].同時由于臨床低體溫治療會引起許多致命的并發(fā)癥,因此,CIRP和RBM3作為一種新的治療方法在臨床應(yīng)用方面仍有許多問題有待解決[9-10].研究[11]證實(shí),CIRP 與 RBM3 除了在低溫條件下發(fā)揮保護(hù)作用外,在常溫下當(dāng)機(jī)體面臨內(nèi)源性或者外源性應(yīng)激刺激時也同樣發(fā)揮著重要的細(xì)胞保護(hù)功能.本文將結(jié)合目前發(fā)表的文獻(xiàn),綜合性、系統(tǒng)性地闡述CIRP與RBM3的生物學(xué)功能.
CIRP由172個氨基酸組成,定位于19號染色體長臂 13.3 位點(diǎn)[12], RBM3由 157個氨基酸組成,它的基因定位于 X染色體長臂 11.2位點(diǎn)[13].CIRP和RBM3均包含一個保守的RNA結(jié)合域(RNA recognition motif,RRM),該結(jié)合域的氨基酸序列高度相似,且包含兩個位于蛋白氨基末端的核糖核蛋白RNP1[(K/R)G(F/Y)(G/A)FVX(F/Y)]和 RNP2[(L/I)(F/Y)(V/I)(G/K)(N/G)-L][14].無論是 CIRP 還是RBM3,其RNP1與RNP2在結(jié)構(gòu)與功能上都與冷休克蛋白(cold shock proteins,CSPs)相似,而原核細(xì)胞的CSPs會在溫度驟降時發(fā)揮重要的保護(hù)作用.CIRP與RBM3因羧基端均包含一個較為保守的RGG(arginine-glycine-glycine)區(qū)域而歸于富甘氨酸蛋白(glycine-rich proteins, GRPs)類[15].
一般來講,RNA結(jié)合蛋白在轉(zhuǎn)錄后的交互作用涉及到與目的片段的非編碼區(qū)(3’-UTR)的結(jié)合,它跨越了從結(jié)束密碼子到聚腺苷酸尾的核苷酸序列[16].在紫外線的照射下,CIRP的RRM和RGG結(jié)合域結(jié)合到兩個應(yīng)激反應(yīng)應(yīng)答蛋白A(replication protein A,RPA)和硫氧還蛋白(thioredoxin,TRX)的非編碼區(qū)(3’-UTR)后可以穩(wěn)定mRNA以促進(jìn)它們的翻譯[17-18].Chappell等[19-20]在 RBM3 的 5’端發(fā)現(xiàn)了目前用于病毒研究的一種生物技術(shù)工具IRES(internal ribosome entry site).這個 RBM3的 IRES被證實(shí)是一個與RBM3的cDNA重組的位于18號染色體的THoc 1基因的cDNA克隆物.
不同的物種CIRP/RBM3在重要組織中的分布不同.在人類中,RBM3在甲狀腺以及心臟中幾乎沒有表達(dá),但是CIRP在這些組織中含量卻十分豐富[21-22].在黑熊這類冬眠動物中,RBM3 在肌肉、肝臟和心臟中都有表達(dá),并且在松鼠冬眠晚期的心臟、肝臟、腦組織中均高表達(dá)[23-24].間歇性低溫暴露不會促進(jìn)大鼠肌肉和肝臟組織表達(dá)CIRP,但在腦和心臟中表達(dá)升高[25].在同一組織內(nèi),CIRP和RBM3的分布與細(xì)胞類型有關(guān),在哺乳動物的睪丸組織中,CIRP主要在胚芽細(xì)胞中,而RBM3主要在支持細(xì)胞中[26-27].
因?yàn)镃IRP和RBM3在其羧基端都有預(yù)示核位置信號以及核質(zhì)交換相關(guān)的RGG域,所以CIRP和RBM3主要存在于細(xì)胞核里面.在核里面他們主要調(diào)控基因的轉(zhuǎn)錄或者結(jié)合在mRNA用于轉(zhuǎn)錄后的調(diào)控.但是,CIRP和RBM3的位置并非固定的,在生理或者應(yīng)激情況下,這兩種蛋白質(zhì)會通過傳遞從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì)[28].同時在亞細(xì)胞水平,CIRP和RBM3的位置也受發(fā)育階段和細(xì)胞類型的影響.如在出生后一周,RBM3主要存在于細(xì)胞核,然而在第二周則更多的傳遞到細(xì)胞質(zhì)當(dāng)中[29].目前已經(jīng)證實(shí)在青蛙的卵母細(xì)胞中xCIRP2主要作為細(xì)胞質(zhì)蛋白來發(fā)揮作用[29].同樣的處于第一到第三階段的小鼠精細(xì)胞CIRP在細(xì)胞質(zhì)而不是在細(xì)胞核中表達(dá),這也預(yù)示在單倍體細(xì)胞中,CIRP在細(xì)胞質(zhì)發(fā)揮調(diào)控作用.在青蛙的xCIRP2的RGG區(qū)域已經(jīng)確定了一個細(xì)胞核-質(zhì)交換的通路(RG4),這一通路可以通過xPRMT1(精氨酸甲基轉(zhuǎn)移酶)來達(dá)到甲基化以提高xCIRP2在細(xì)胞質(zhì)中的聚集[30].在哺乳動物中,由于細(xì)胞質(zhì)應(yīng)激以及內(nèi)質(zhì)網(wǎng)應(yīng)激,CIRP的RGG區(qū)域的賴氨酸殘基甲基化導(dǎo)致CIRP聚集在細(xì)胞質(zhì)應(yīng)激顆粒上,這一機(jī)制有別于應(yīng)激顆粒介質(zhì) TIA-1的形成[31-32].同時由于內(nèi)質(zhì)網(wǎng)應(yīng)激,RBM3傳遞到內(nèi)質(zhì)網(wǎng)并調(diào)控蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(protein kinase R-like ER kinase,PERK).總的來說,這些研究揭示了在CIRP和RBM3進(jìn)行細(xì)胞質(zhì)與核之間傳遞時RGG區(qū)域的賴氨酸殘基發(fā)揮著重要的作用.
2.1 CIRP和RBM3的生理表達(dá) 在發(fā)育的早期,CIRP/RBM3是很重要的細(xì)胞因子.在兩棲動物中,非洲爪蟾同源xCIRP-1在發(fā)育的腎和腦中會短暫的表達(dá),并且在腎胚形成時xCIRP-1的表達(dá)也是必須的[33].對哺乳動物而言,RBM3在出生后不久達(dá)到峰值,但在青年以及成人的腦中除了一些增殖活躍的區(qū)域,大部分區(qū)域 RBM3 的水平會較低[29,34].這說明RBM3在維持神經(jīng)干細(xì)胞的增殖和干細(xì)胞特性上發(fā)揮著重要作用.
CIRP和RBM3的表達(dá)是受晝夜調(diào)控的.CIRP表達(dá)的波峰在下午6點(diǎn)鐘,凌晨3點(diǎn)鐘表達(dá)量最小,其表達(dá)量的大小隨著光線的明暗改變.這種波動只存在于幼鼠和成鼠,在新生鼠中沒有這樣的波動[35].2012年,CIRP被認(rèn)為是哺乳動物后轉(zhuǎn)錄模式中的晝夜交替節(jié)律基因以及CLOCK基因的調(diào)控子.研究[36]表明CIRP在睡眠階段表達(dá)上調(diào).在哺乳動物中,位于視交叉上核的中樞調(diào)控以及位于肝臟或者胰腺等組織的周圍調(diào)控將晝夜交替與體溫變化密切聯(lián)系起來[37].最近的研究[38]表明,在小鼠的肝臟細(xì)胞中,CIRP有利于溫度敏感變化,這表明哺乳動物輕微的體溫變化與外周組織的晝夜節(jié)律變化密切相關(guān).由于肝臟和胰腺是基本的新陳代謝組織,營養(yǎng)必然會影響到這些組織的外周生物鐘.禁食以及生酮飲食會破壞外周生物鐘,誘導(dǎo)CIRP在肝臟中表達(dá).在胰腺癌患者中,進(jìn)食的時間會大大提高CIRP的生理表達(dá),證明了CIRP表達(dá)的生理節(jié)律與腫瘤的治療相關(guān)[39].因此,目前認(rèn)為,CIRP是調(diào)控哺乳動物晝夜節(jié)律的一部分,它不僅受體溫的調(diào)節(jié),也會對諸如光線等環(huán)境的變化進(jìn)行精細(xì)的調(diào)控,同時還會控制晝夜節(jié)律變化的下游基因的表達(dá).RBM3調(diào)節(jié)晝夜節(jié)律的機(jī)制主要是通過控制可變的聚腺苷酸化來完成.在遭受如躁郁癥以及偏頭痛等睡眠周期失調(diào)困擾的神經(jīng)病患者中,外周淋巴細(xì)胞中RBM3是變化最為顯著的因素[40].
2.2 應(yīng)激調(diào)控表達(dá)
2.2.1 低體溫與高體溫癥 CIRP和RBM3是應(yīng)激應(yīng)答因子,多種應(yīng)激條件都會使得它們的表達(dá)上調(diào),特別是在寒冷應(yīng)激時CIRP和RBM3的上調(diào)最為明顯[21].研究[26]早期,在哺乳動物的睪丸中發(fā)現(xiàn)了CIRP和RBM3的高表達(dá).CIRP和RBM3的表達(dá)在試驗(yàn)性高溫或者患隱睪癥時會降低,在低體溫情況下CIRP 的應(yīng)答速度(6 h)明顯高于 RBM3(12 h)[27].
在哺乳動物細(xì)胞中,CIRP和RBM3在輕和中度低體溫(28℃ ~34℃)時達(dá)到峰值,但是在高溫下(39℃~42℃)表達(dá)則迅速下降.相反,在體外培養(yǎng)的細(xì)胞中高溫(39℃~42℃)會導(dǎo)致CIRP和RBM3的嚴(yán)重降低.至少在神經(jīng)細(xì)胞中,RBM3對溫度的變化尤其敏感,即使是從37℃降低到36℃也足以誘導(dǎo)RBM3 的表達(dá).大量的研究[28,32]結(jié)果證明,CIRP 和RBM3通過多種應(yīng)激反應(yīng)機(jī)制對小范圍的溫度變化作出應(yīng)答.
在培養(yǎng)的組織或者細(xì)胞中,在中度低體溫的早期CIRP上調(diào)的速度明顯高于RBM3,但是在隨后的復(fù)溫過程中下降的也最快,這表明CIRP在應(yīng)對冷刺激時的動態(tài)變化也較為迅速.當(dāng)細(xì)胞暴露于寒冷的環(huán)境時,CIRP在暴露后3 h開始表達(dá),在寒冷暴露12 h后達(dá)到峰值,但是在連續(xù)復(fù)溫8 h后表達(dá)量降低為峰值的50%.相反地,RBM3在寒冷刺激3 h后表達(dá)上調(diào),在24 h左右表達(dá)達(dá)到峰值,但是在連續(xù)復(fù)溫8 h后,RBM3的表達(dá)量沒有改變.但是CIRP和RBM3劑量應(yīng)答的動力學(xué)機(jī)制還需要系統(tǒng)的生物學(xué)研究[9,41].
2.2.2 缺氧 自然環(huán)境下,在海平面呼吸的空氣含有21%的氧氣,氧氣在人體不同組織的富集差異較大.通過實(shí)驗(yàn),人為降低氧分壓(低氧血癥)同各種急性和慢性損傷或者疾病導(dǎo)致的生理性低壓一樣,輕度(8%)或重度(1%)缺氧均可誘導(dǎo)CIRP和RBM3相同水平的表達(dá),這種表達(dá)與體內(nèi)的線粒體和缺氧誘導(dǎo)因子(hypoxia-inducible factor, HIF)無關(guān)[42].在一個應(yīng)用培養(yǎng)的神經(jīng)干細(xì)胞(neural stem cells,NSCs)的體外模型中進(jìn)行嚴(yán)重的缺氧以模仿局部的缺血實(shí)驗(yàn)中,缺氧會抑制CIRP的表達(dá),導(dǎo)致細(xì)胞周期停滯.由于過氧化氫治療可以抑制低體溫誘導(dǎo)的CIRP的表達(dá),并且輕微量的活性氧(reactive oxygen species,ROS)有利于NSCs的增殖,但是較大劑量對NSCs的增殖有害,有假說認(rèn)為輕度的缺氧會導(dǎo)致ROS輕微的升高,從而促進(jìn)CIRP的表達(dá),但是嚴(yán)重的低氧或者缺血導(dǎo)致ROS表達(dá)過多而抑制CIRP的表達(dá)[43].將懷孕晚期的小鼠暴露在嚴(yán)重的低氧環(huán)境中會導(dǎo)致胎盤和發(fā)育的大腦中HIF因子相關(guān)基因過表達(dá),從而導(dǎo)致RBM3的表達(dá)下調(diào)[44].總的來說,氧氣調(diào)控的CIRP與RBM3的表達(dá)與氧含量有關(guān),并且受到細(xì)胞易損性以及其他如缺血缺氧、腫瘤和感染等與發(fā)育以及病理有關(guān)因素的影響.
2.2.3 射線 依據(jù) 1997 年 Nishiyama 等[45]研究的CIRP的第一個特性,Sheikh等確定了紫外線誘導(dǎo)核不均一核糖核蛋白A18(heterogeneous nuclear ribonucleoprotein A18,hnRNP A18),其很快被證實(shí)是倉鼠體內(nèi)CIRP的同族物,并且與DNA損傷修復(fù)有關(guān).相同的,具有電離效應(yīng)的射線可以刺激一些hnRNP,包括可以促進(jìn)射線導(dǎo)致的DNA損傷修復(fù)的CIRP.另外,由于宇宙中存在射線,故宇宙飛行也可以促進(jìn)CIRP 和 RBM3 的表達(dá)[46].
2.2.4 其他方式 毒素以及藥物也可以促進(jìn)CIRP和RBM3的表達(dá).例如在大鼠的腦組織中具有神經(jīng)毒性的軟骨藻酸就可以提高CIRP和RBM3的mRNA的表達(dá)[47].在小鼠白細(xì)胞細(xì)胞系中類胰島素生長因子1(insulin-like growth factor, IGF-1)以及成纖維細(xì)胞生長因子 21(fibroblast growth factor 21, FGF21)等也可以促進(jìn)CIRP和RBM3的表達(dá)[34].在輕度的低溫情況下,內(nèi)源性或者外源性的褪黑素可以促進(jìn)新生神經(jīng)元RBM3的表達(dá),而對成熟的神經(jīng)元則沒有此效應(yīng).最近已經(jīng)證實(shí)二甲雙胍和腺嘌呤核糖核苷酸(adenosine monophosphate, AMP)類似物 5-氨基-4-甲酰胺咪唑核糖核苷酸(5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside, AICAR)可以通過干擾新陳代謝以及活化AMPK抑制RBM3的表達(dá)[34].這些研究表明應(yīng)激不僅是一個誘導(dǎo)劑,而且也可以成為冷誘導(dǎo)蛋白的抑制劑.
3.1 對腦細(xì)胞的功能 治療性低溫不僅能夠有效減少原發(fā)性損傷,還可以保護(hù)急性局部缺血和脊髓損傷(spinal cord injury,SCI)導(dǎo)致的繼發(fā)性損傷,并減緩慢行神經(jīng)變性疾病的進(jìn)程.在體外培養(yǎng)的原代神經(jīng)元細(xì)胞或者類神經(jīng)元細(xì)胞PC12中,這兩種冷相關(guān)蛋白的功能都與抗凋亡有關(guān)[48].
在腦局部缺血損失機(jī)制研究中,CIRP的作用仍存在爭議.大鼠的海馬區(qū)短暫的缺血后3~6 h通過RNA印記實(shí)驗(yàn)測量的CIRP的mRNA水平是降低的,但是在大腦皮層中連續(xù)48 h監(jiān)測CIRP的mRNA水平是沒有改變的[49].但是,同樣在大鼠的大腦皮層進(jìn)行缺血模型的實(shí)驗(yàn)中,實(shí)時RT-PCR結(jié)果表明在缺血24 h后CIRP的mRNA水平平緩的增加5倍.與缺血相比,24 h內(nèi)低溫可以誘導(dǎo)CIRP的表達(dá)量達(dá)到原來的30倍,但是即使低溫與缺血同時作用于大鼠,CIRP的表達(dá)量也不會超過原來的30倍[50].研究[51]已證實(shí)誘導(dǎo)大腦的缺血再灌注損傷氧化應(yīng)激的重要因素是ROS的水平升高.在PC12細(xì)胞中,已經(jīng)有實(shí)驗(yàn)證明利用能夠產(chǎn)生ROS的H2O2的處理可以下調(diào)CIRP的表達(dá).當(dāng)內(nèi)源性或者人為增加CIRP的表達(dá),在培養(yǎng)的神經(jīng)元細(xì)胞中H2O2誘導(dǎo)的細(xì)胞凋亡受到顯著抑制,這表明CIRP具有神經(jīng)保護(hù)作用.與CIRP在細(xì)胞內(nèi)的保護(hù)作用相比,將CIRP釋放到血液中會激發(fā)有害的免疫反應(yīng)[49-50].有研究[52]表明無論在體內(nèi)還是體外,短暫缺血后小神經(jīng)膠質(zhì)細(xì)胞釋放的CIRP以及與隨后CIRP介導(dǎo)的TNF-α的表達(dá)導(dǎo)致神經(jīng)炎癥和神經(jīng)損傷.研究[52]表明細(xì)胞外的CIRP能夠通過上調(diào)TNF-α和IL-1β的表達(dá)介導(dǎo)神經(jīng)炎癥反應(yīng).總之,在大腦缺血再灌注損傷中CIRP只要一直停留在細(xì)胞內(nèi)就會保護(hù)神經(jīng)細(xì)胞免于凋亡,但是一旦小神經(jīng)膠質(zhì)細(xì)胞等釋放出CIRP,那么它就會在細(xì)胞水平介導(dǎo)嚴(yán)重的神經(jīng)炎癥反應(yīng).
最近的研究[53]表明,在埃爾茨海默以及朊病毒腦病模型中RBM3具有重要的神經(jīng)保護(hù)作用.尤其是在小鼠受到冷刺激后明顯分泌的RBM3能夠預(yù)防神經(jīng)元的損傷以及恢復(fù)突觸連接.雖然其中的機(jī)制仍不清楚,但是有一種假說認(rèn)為RBM3抑制了eIF2α激酶PERK,目前冷刺激已成為治療埃爾茨海默疾病的潛在措施[54].最近的研究[53]將 RBM3 與 PERK 的活性聯(lián)系在一起,但是相關(guān)的分子學(xué)機(jī)制仍不清楚.
直到現(xiàn)在,研究普遍支持RBM3是常規(guī)的神經(jīng)保護(hù)因子,但是CIRP既可以保護(hù)神經(jīng)元細(xì)胞,也可以在釋放后通過介導(dǎo)神經(jīng)元炎癥反應(yīng)來誘導(dǎo)大量的神經(jīng)元死亡.
3.2 對免疫系統(tǒng)的影響 從植物到哺乳動物,識別病原相關(guān)分子模式與損傷相關(guān)分子模式最原始最關(guān)鍵的部分是模式識別受體(pattern recognition receptors,PRRs).2007年,最初發(fā)現(xiàn)植物的冷誘導(dǎo)蛋白AtGRP7與植物的免疫有關(guān).AtGRP7會通過轉(zhuǎn)錄以及與PRRs的兩種蛋白FLS2和EFR結(jié)合以顯著提高PAMP引發(fā)的免疫應(yīng)答[55].同樣地,哺乳動物的冷誘導(dǎo)蛋白也參與了先天免疫.2013年,在失血性休克和膿毒癥模型中,CIRP被證實(shí)可以作為一個從心臟和肝臟釋放到循環(huán)系統(tǒng)中的新的炎癥介質(zhì).分泌出來的CIRP通過與TLR4-MD2復(fù)合體(一種哺乳動物的PRRs)結(jié)合發(fā)揮損傷相關(guān)分子的作用,通過刺激TNF-α和高遷移率族蛋白1(high mobility group box 1 protein,HMGB1)的分泌誘發(fā)炎癥反應(yīng).同時,CIRP的分泌會受到TNF-α和HMGB1的抑制,這是一種負(fù)反饋調(diào)節(jié).同之前討論的在腦中CIRP發(fā)揮雙重作用相同.最近的研究[56-57]表明,低體溫能夠誘導(dǎo)肝臟中的CIRP表達(dá),并通過減少ROS的產(chǎn)生保護(hù)肝細(xì)胞,當(dāng)用抗CIRP處理后會中和分泌到血清中的CIRP,從而顯著減少免疫反應(yīng)以及保護(hù)肝臟細(xì)胞避免缺血再灌注損傷.在腹主動脈瘤等動物實(shí)驗(yàn)中證實(shí)其他的抗CIRP療法也能夠治療免疫相關(guān)的功能混亂.現(xiàn)如今,用ELISA試劑盒定量檢測外周血中CIRP的分泌水平是可行的,這提供了一種新的診斷膿毒癥的標(biāo)準(zhǔn).另外,CIRP的缺陷是加快炎癥反應(yīng)階段以及傷口愈合的進(jìn)程.總的來說,釋放到細(xì)胞外的CIRP通過引發(fā)炎癥反應(yīng)誘導(dǎo)對細(xì)胞的損傷.但是,在炎癥的后期階段,這些損傷的細(xì)胞會被炎癥反應(yīng)清除到體外,新生的細(xì)胞會代替原先的細(xì)胞發(fā)揮功能.這表明,CIRP介導(dǎo)的炎癥反應(yīng)也有其有利的一面.
3.3 對腫瘤細(xì)胞的影響 從上述總結(jié)可以推斷出,CIRP以及RBM3均參與細(xì)胞周期和細(xì)胞增殖的調(diào)控,并且在增殖的細(xì)胞以及惡性腫瘤細(xì)胞中都有表達(dá).因此它們被認(rèn)為是原癌基因,在體內(nèi)能夠促進(jìn)腫瘤細(xì)胞的增殖和轉(zhuǎn)移,且與正常的組織相比在不同癌癥中的表達(dá)也不相同[22],另外它們在臨床腫瘤的發(fā)展過程中也發(fā)揮相反的作用.RBM3的表達(dá)往往預(yù)示著良好的預(yù)后以及較低的復(fù)發(fā)率,但是CIRP與腫瘤細(xì)胞較差的化療敏感性息息相關(guān),是預(yù)后較差的標(biāo)識物.
乳腺癌是女性發(fā)病率最高的癌癥,RBM3在這類腫瘤細(xì)胞中表達(dá)水平的高低與臨床的預(yù)后直接相關(guān).在女性的生殖器官中,RBM3與順鉑敏感性相關(guān),并且預(yù)示著卵巢內(nèi)膜癌(epithelial ovarian cancer,EOC)較好的預(yù)后,其分子學(xué)機(jī)制可能是RBM3通過抑制較差預(yù)后的標(biāo)識物MCM3、Chk1,Chk2等的表達(dá)改善EOC的預(yù)后[58].前列腺癌與乳腺癌、EOC相似,RBM3是最為獨(dú)立的一個前列腺癌生物標(biāo)識物,其高表達(dá)預(yù)示著疾病進(jìn)展以及復(fù)發(fā)的風(fēng)險較小[59].另一項(xiàng)研究[60]表明,RBM3通過抑制CD44的變異剪接來減弱前列腺癌細(xì)胞的干細(xì)胞特性和腫瘤特性.此外,在睪丸非精原細(xì)胞腫瘤中RBM3的表達(dá)越低,治療失敗的可能性越大.膀胱癌中減少RBM3的表達(dá)量會加劇腫瘤進(jìn)程以及表示較差的預(yù)后,但是RBM3的高表達(dá)會減少并發(fā)淋巴管轉(zhuǎn)移的風(fēng)險[61].高表達(dá)的RBM3能夠改善結(jié)直腸癌的預(yù)后.因此,特別是在年輕的患者中,RBM3被認(rèn)為是潛在的具有預(yù)警作用的生物標(biāo)識物[62].
在不同的腫瘤細(xì)胞中CIRP的表達(dá)是不相同的.在肝癌(hepatocellular carcinoma,HCC)中,曾有文獻(xiàn)[63]報道CIRP通過控制ROS累積提高致癌性以及癌祖細(xì)胞的擴(kuò)散,此外,HCC的復(fù)發(fā)也與肝臟中CIRP的表達(dá)呈正相關(guān).在結(jié)腸直腸癌中,CIRP通過刺激細(xì)胞因子如TNF-α和IL-23等使其與腫瘤的發(fā)生以及慢行炎癥相關(guān).另外,至少在HCC中抑制CIRP可以起到治療腫瘤的作用[63].在垂體腺瘤中,有文獻(xiàn)[64]報道CIRP的高表達(dá)會通過激活ERK1/2通路提高垂體腺瘤細(xì)胞的增殖侵襲性以及腫瘤的復(fù)發(fā)率.在口腔鱗狀細(xì)胞癌中,CIRP通過與TLR4聯(lián)合分泌影響短期生存率[65].另外,目前認(rèn)為CIRP可能通過增加一種重要的細(xì)胞周期的調(diào)節(jié)因子CyclinE1的表達(dá)參與導(dǎo)管癌轉(zhuǎn)化為有侵襲性的乳腺癌的過程,因此在乳腺癌的轉(zhuǎn)移過程中也會促進(jìn)增殖以及腫瘤的進(jìn)程[65].
總之,盡管在細(xì)胞的原癌基因水平 CIRP和RBM3表現(xiàn)的特征相似,但是其在臨床上的表現(xiàn)不同,CIRP是腫瘤預(yù)后較差的標(biāo)識物,RBM3則是腫瘤預(yù)后較好的標(biāo)識物.
作為調(diào)控蛋白,CIRP和RBM3涉及關(guān)于細(xì)胞生長、衰老以及凋亡等不同細(xì)胞生理過程中復(fù)雜的信號通路.
4.1 干細(xì)胞特性 青蛙的xCIRP是非洲爪蟾蜍轉(zhuǎn)錄因子3(xenopus transcription factor 3, XTcf-3)的靶點(diǎn),XTcf-3同時又是Wnt/β-連環(huán)蛋白通路上一個關(guān)鍵的介質(zhì),同時Wnt/β-連環(huán)蛋白通路也是調(diào)控干細(xì)胞以及祖細(xì)胞自我更新的主要通路.使用內(nèi)源性β-連環(huán)蛋白的抑制劑GSK-3β可以上調(diào)CIRP的轉(zhuǎn)錄,磷酸化CIRP蛋白以及促進(jìn)其向細(xì)胞質(zhì)的傳遞.此外,CIRP也是發(fā)育期間胚胎細(xì)胞移動所必需的細(xì)胞因子,同時還可以維持 β-連環(huán)蛋白等粘附分子的分泌[18].RBM3 同樣涉及到 Wnt/β-連環(huán)蛋白通路.在結(jié)直腸癌細(xì)胞中,RBM3通過表達(dá)GSK3β活化激酶這一分子表達(dá)機(jī)制誘導(dǎo)干細(xì)胞化,同時也增強(qiáng)了β 連環(huán)蛋白通路[66].
4.2 細(xì)胞周期 低溫是已知的能夠降低細(xì)胞增殖以及引起細(xì)胞周期阻滯的因素之一.目前更多系列的分子機(jī)制研究已經(jīng)證實(shí),在低溫條件下CIRP可能通過調(diào)控細(xì)胞周期的不同階段在細(xì)胞生長中發(fā)揮抑制作用.CIRP與人抗原 R基因(human antigen R,HuR)相互作用并且能夠促進(jìn)HuK表達(dá).升高的HuR與CIRP協(xié)同作用會進(jìn)一步促進(jìn)調(diào)控G1/S期的細(xì)胞周期蛋白E1的分泌,促進(jìn)有絲分裂.此外,CIRP通過Dyrk1b/Mirk激酶來抑制細(xì)胞周期蛋白D1和p27的磷酸化,從而加快G0/G1期到G1/S期的轉(zhuǎn)換.另外,CIRP可以促進(jìn)細(xì)胞周期從S期過渡到G2/M期.因此,研究[65]表明CIRP可以促進(jìn)細(xì)胞的增殖.最近的研究[67]確認(rèn)RBM3也能夠有效促進(jìn)細(xì)胞周期.不同于CIRP調(diào)控的G0/G1以及G1/S期,RBM3調(diào)控細(xì)胞周期G2/M期的轉(zhuǎn)變.特別是在腫瘤細(xì)胞中敲除RBM3后會增加細(xì)胞凋亡蛋白酶介導(dǎo)的細(xì)胞凋亡以及與核細(xì)胞周期蛋白的耦合,磷酸化Cdc25c、Chk1和Chk2激酶,這意味著RBM3表達(dá)下調(diào)時會出現(xiàn)有絲分裂障礙,細(xì)胞將經(jīng)歷有絲分裂失?。畯腞BM3缺陷的小鼠中得到的小鼠胚胎成纖維細(xì)胞G2期的細(xì)胞明顯增加,這意味著在有絲分裂時RBM3是必不可少的.這也能夠解釋為什么具有高表達(dá)RBM3的腫瘤細(xì)胞對化療比較敏感,RBM3低表達(dá)以及不表達(dá)的腫瘤細(xì)胞相比高表達(dá)RBM3的腫瘤細(xì)胞預(yù)后較好[68].
4.3 細(xì)胞凋亡 許多疾病中都存在凋亡現(xiàn)象,而且細(xì)胞凋亡可由許多內(nèi)源性或者外源性的信號誘導(dǎo),這表明調(diào)控它的信號通路很多.RNA結(jié)合蛋白家族也參與了調(diào)控凋亡的信號通路.有研究[69-70]揭示了至少部分CIRP參與保護(hù)低溫細(xì)胞免于細(xì)胞凋亡.特別是CIRP可能通過線粒體途徑抑制神經(jīng)干細(xì)胞和皮質(zhì)神經(jīng)的凋亡,這一作用解釋了治療性低體溫的保護(hù)作用.抑制p53、Fas以及細(xì)胞凋亡蛋白酶-3通路也有利于CIRP介導(dǎo)的抗細(xì)胞凋亡作用[71].RBM3則通過抑制PARP分裂來抑制類神經(jīng)元細(xì)胞PC12通過十字孢堿介導(dǎo)的細(xì)胞凋亡.RBM3相關(guān)的生存率或許與控制Bcl-2以及細(xì)胞凋亡蛋白的分泌有關(guān)[48].
4.4 衰老 CIRP可以通過增加ERK1/2的磷酸化激活ERK1/2通路,這會促進(jìn)細(xì)胞分裂并且避免復(fù)制型衰老.CIRP激活ERK1/2有利于垂體促腎上腺皮質(zhì)激素細(xì)胞腺瘤的生長.另外,在HeLa細(xì)胞的端粒上也發(fā)現(xiàn)了CIRP.最近的研究發(fā)現(xiàn),在正常以及低溫的情況下CIRP能夠維持端粒酶的活性.這些研究共同證明 CIRP 具有抗衰老的作用[64,72].
4.5 內(nèi)質(zhì)網(wǎng)應(yīng)激 當(dāng)存在內(nèi)質(zhì)網(wǎng)應(yīng)激時,非折疊蛋白在內(nèi)質(zhì)網(wǎng)內(nèi)腔中聚集并且激活非折疊蛋白應(yīng)答(unfolded protein response,UPR)來調(diào)控細(xì)胞.如果內(nèi)質(zhì)網(wǎng)應(yīng)激持續(xù)存在,那么UPR將會啟動凋亡程序.PERK-eIF2α-CHOP通路是UPR三條主要分支中的一條,并在UPR介導(dǎo)的細(xì)胞凋亡中發(fā)揮重要的作用.在持續(xù)的內(nèi)質(zhì)網(wǎng)應(yīng)激下,RBM3抑制PERK和eIF2α的磷酸化,這會導(dǎo)致CHOP的表達(dá)減少,從而阻止細(xì)胞通過UPR途徑誘導(dǎo)細(xì)胞凋亡.雖然RBM3是通過低溫誘導(dǎo)的,但是低溫本身可以激活UPR而不誘導(dǎo)細(xì)胞凋亡.在缺血誘導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激中,低溫通過抑制UPR來阻止凋亡以起到積極的保護(hù)作用[28,73].
本研究全面概括了CIRP以及RBM3的分子結(jié)構(gòu)、表達(dá)規(guī)律、調(diào)節(jié)機(jī)制以及生物活性,并強(qiáng)調(diào)了其與體內(nèi)多種生理和病理進(jìn)程之間的關(guān)系.CIRP和RBM3蛋白在進(jìn)化保守性、序列同源性、表達(dá)可誘導(dǎo)性方面具有相同的特性,但其生物功能完全不同.與正常的組織相比,腫瘤細(xì)胞中這兩種蛋白都會表達(dá)上調(diào),RBM3被一致認(rèn)為是預(yù)后較好的生物標(biāo)識物,CIRP則是預(yù)后較差的標(biāo)識物.其中一種原因可能是RBM3可以促進(jìn)有絲分裂,并且增加腫瘤細(xì)胞化療的敏感性.另一個原因則是CIRP曾被認(rèn)為是嚴(yán)重感染或者缺血損傷的重要有害介質(zhì),其分泌到細(xì)胞外會加重細(xì)胞損傷,而RBM3目前尚未在細(xì)胞外檢測到.
回顧植物中CIRP和RBM3的同源基因AtGRP7和AtGRP8的功能有利于在哺乳動物中更深入的研究CIRP和RBM3.未來CIRP和RBM3應(yīng)用于治療的關(guān)鍵是將已知的關(guān)于CIRP和RBM3作用的知識轉(zhuǎn)化為特殊的針對任意一種蛋白或者其通路的治療方法,尤其是根據(jù)CIRP和RBM3在腫瘤細(xì)胞中的不同功能為臨床診治提供參考.
[1]Schmal C,Reimann P,Staiger D.A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana[J].PLoS Comput Biol,2013,9(3):e1002986.
[2]Lleonart ME.A new generation of proto-oncogenes: cold-inducible RNA binding proteins[J].Biochim Biophys Acta,2010,1805(1):43-52.
[3]Pan F, Zarate J, Choudhury A, et al.Osmotic stress of salmon stimulates upregulation of a cold inducible RNA binding protein(CIRP)similar to that of mammals and amphibians[J].Biochimie,2004,86(7):451-461.
[4]Jonsson B, Jonsson N.Early environment influences later performance in fishes[J].J Fish Biol,2014,85(2):151-188.
[5]Hsu CY, Chiu YC.Ambient temperature influences aging in an annual fish (Nothobranchius rachovii)[J].Aging Cell,2009,8(6):726-737.
[6]Natarajan G,Pappas A,Shankaran S.Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE)[J].Semin Perinatol,2016,40(8):549-555.
[7]Chen A, Xiong LJ, Tong Y, et al.The neuroprotective roles of BDNF in hypoxic ischemic brain injury[J].Biomed Rep,2013,1(2):167-176.
[8]Varon J, Marik PE, Einav S.Therapeutic hypothermia: a state-ofthe-art emergency medicine perspective[J].Am J Emerg Med,2012,30(5):800-810.
[9]Tong G, Endersfelder S, Rosenthal LM, et al.Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices[J].Brain Res,2013,1504:74-84.
[10]Dunkley S, McLeod A.Therapeutic hypothermia in patients following traumatic brain injury: a systematic review[J].Nurs Crit Care,2017,22(3):150-160.
[11]Zhu X, Bührer C, Wellmann S.Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold[J].Cell Mol Life Sci,2016,73(20):3839-3859.
[12]Saito T, Sugimoto K, Adachi Y, et al.Cloning and characterization of amphibian cold inducible RNA-binding protein[J].Comp Biochem Physiol B Biochem Mol Biol,2000,125(2):237-245.
[13]Derry JM, Kerns JA, Francke U.RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain[J].Hum Mol Genet,1995,4(12):2307-2311.
[14]Ciuzan O, Hancock J, Pamfil D, et al.The evolutionarily conserved multifunctional glycine-rich RNA-binding proteins play key roles in development and stress adaptation [ J].Physiol Plant, 2015,153(1):1-11.
[15]Sawyer AL, Landsberg MJ, Ross IL, et al.Solution structure of the RNA-binding cold-shock domain of the Chlamydomonas reinhardtii NAB1 protein and insights into RNA recognition[J].Biochem J,2015,469(1):97-106.
[16]Schwerk J, Savan R.Translating the Untranslated Region[J].J Immunol,2015,195(7):2963-2971.
[17]Sheikh MS, Carrier F, Papathanasiou MA, et al.Identification of several human homologs of hamster DNA damage-inducible transcripts.Cloning and characterization of a novel UV-inducible cDNA that codes for a putative RNA-binding protein[J].J Biol Chem,1997,272(42):26720-26726.
[18]Yang R, Weber DJ, Carrier F.Post-transcriptional regulation of thioredoxin by the stress inducible heterogenous ribonucleoprotein A18[J].Nucleic Acids Res,2006,34(4):1224-1236.
[19]Chappell SA, Mauro VP.The internal ribosome entry site (IRES)contained within the RNA-binding motif protein 3(Rbm3) mRNA is composed of functionally distinct elements[J].J Biol Chem,2003,278(36):33793-33800.
[20]Chappell SA, Owens GC, Mauro VP.A 5’ leader of Rbm3, a cold stress-induced mRNA,mediates internal initiation of translation with increased efficiency under conditions of mild hypothermia[J].J Biol Chem,2001,276(40):36917-36922.
[21]Danno S, Nishiyama H, Higashitsuji H, et al.Increased transcript level of RBM3,a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress[J].Biochem Biophys Res Commun,1997,236(3):804-807.
[22]Al-Astal HI, Massad M, AlMatar M, et al.Cellular functions of RNA-binding motif protein 3 (RBM3): clues in hypothermia, cancer biology and apoptosis[J].Protein Pept Lett,2016,23(9):828-835.
[23]Fedorov VB, Goropashnaya AV, T?ien O, et al.Modulation of gene expression in heart and liver of hibernating black bears(Ursus americanus)[J].BMC Genomics,2011,12:171.
[24]Fedorov VB, Goropashnaya AV, T?ien O, et al.Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears(Ursus americanus)[J].Physiol Genomics,2009,37(2):108-118.
[25]Wang X,Che H,Zhang W, et al.Effects of mild chronic intermittent cold exposure on rat organs[J].Int J Biol Sci,2015,11(10):1171-1180.
[26]Nishiyama H, Danno S, Kaneko Y, et al.Decreased expression of cold-inducible RNA-binding protein(CIRP) in male germ cells at elevated temperature[J].Am J Pathol,1998,152(1):289-296.
[27]Danno S, Itoh K, Matsuda T, et al.Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis[J].Am J Pathol,2000,156(5):1685-1692.
[28]Rzechorzek NM, Connick P, Livesey MR, et al.Hypothermic preconditioning reverses tau ontogenesis in human cortical neurons and is mimicked by protein phosphatase 2A inhibition[J].EBioMedicine,2016,3:141-154.
[29]Pilotte J, Cunningham BA, Edelman GM, et al.Developmentally regulated expression of the cold-inducible RNA-binding motif protein 3 in euthermic rat brain[J].Brain Res,2009,1258:12-24.
[30]Aoki K, Ishii Y, Matsumoto K, et al.Methylation of Xenopus CIRP2 regulates its arginine-and glycine-rich region-mediated nucleocytoplasmic distribution[J].Nucleic Acids Res,2002,30(23):5182-5192.
[31]De Leeuw F, Zhang T, Wauquier C, et al.The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor[J].Exp Cell Res,2007,313(20):4130-4144.
[32]Smart F, Aschrafi A, Atkins A, et al.Two isoforms of the cold-inducible mRNA-binding protein RBM3 localize to dendrites and promote translation[J].J Neurochem,2007,101(5):1367-1379.
[33]Peng Y, Yang PH, Tanner JA, et al.Cold-inducible RNA binding protein is required for the expression of adhesion molecules and embryonic cell movement in Xenopus laevis[J].Biochem Biophys Res Commun,2006,344(1):416-424.
[34]Jackson TC,Manole MD,Kotermanski SE,et al.Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons[J].Neuroscience,2015,305:268-278.
[35]Nishiyama H, Xue JH,Sato T,et al.Diurnal change of the cold-inducible RNA-binding protein (Cirp) expression in mouse brain[J].Biochem Biophys Res Commun,1998,245(2):534-538.
[36]Bellesi M,de Vivo L,Tononi G,et al.Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies[J].BMC Biol,2015,13:66.
[37]Gotic I, Omidi S, Fleury-Olela F, et al.Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp[J].Genes Dev,2016,30(17):2005-2017.
[38]Gerber A, Saini C, Curie T, et al.The systemic control of circadian gene expression[J].Diabetes Obes Metab,2015,17 Suppl 1:23-32.
[39]Johnston JD.Physiological links between circadian rhythms, metabolism and nutrition[J].Exp Physiol,2014,99(9):11331-1137.
[40]Costa M, Squassina A, Piras IS, et al.Preliminary transcriptome analysis in lymphoblasts from cluster headache and bipolar disorder patients implicates dysregulation of circadian and serotonergic genes[J].J Mol Neurosci,2015,56(3):688-695.
[41]Neutelings T, Lambert CA, Nusgens BV, et al.Effects of mild cold shock(25 degrees C) followed by warming up at 37 degrees C on the cellular stress response[J].PLoS One,2013,8(7):e69687.
[42]Wellmann S, Bührer C, Moderegger E, et al.Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism[J].J Cell Sci,2004,117(Pt 9):1785-1794.
[43]Zhang Q,Wang YZ,Zhang W,et al.Involvement of cold inducible RNA-vinding protein in severe hypoxia-induced growth arrest of neural stem cells in vitro[J].Mol Neurobiol,2017,54(3):2143-2153.
[44]Trollmann R, Rehrauer H, Schneider C, et al.Late-gestational systemichypoxia leads to a similar early gene response in mouse placenta and developing brain[J].Am J Physiol Regul Integr Comp Physiol,2010,299(6):R1489-R1499.
[45]Nishiyama H, Higashitsuji H, Yokoi H, et al.Cloning and characterization of human CIRP (cold-inducible RNA-binding protein)cDNA and chromosomal assignment of the gene[J].Gene,1997,204(1-2):115-120.
[46]Rishi AK, Sun RJ, Gao Y, et al.Post-transcriptional regulation of the DNA damage-inducible gadd45 gene in human breast carcinoma cells exposed to a novel retinoid CD437[J].Nucleic Acids Res,1999,27(15):3111-3119.
[47]Hatta-Kobayashi Y, Toyama-Shirai M, Yamanaka T, et al.Acute phase response in amputated tail stumps and neural tissue-preferential expression in tail bud embryos of the Xenopus neuronal pentraxin I gene[J].Dev Growth Differ,2016,58(9):688-701.
[48]Chip S, Zelmer A, Ogunshola OO, et al.The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection [J].Neurobiol Dis,2011,43(2):388-396.
[49]Xue JH,Nonoguchi K,F(xiàn)ukumoto M, et al.Effects of ischemia and H2O2on the cold stress protein CIRP expression in rat neuronal cells[J].Free Radic Biol Med,1999,27(11-12):1238-1244.
[50]Liu A, Zhang Z, Li A, et al.Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain[J].Brain Res,2010,1347:104-110.
[51]Sanderson TH,Reynolds CA,Kumar R,et al.Molecular mechanisms of ischemia-reperfusion injury in brain:pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J].Mol Neurobiol,2013,47(1):9-23.
[52]Zhou M, Yang W L, Ji Y, et al.Cold-inducible RNA-binding protein mediates neuroinflammation in cerebral Ischemia[J].BBAGeneral Subjects, 2014, 1840(7):2253-2261.
[53]Peretti D, Bastide A, Radford H, et al.RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration [J].Nature,2015,518(7538):236-239.
[54]Ma T, Trinh MA, Wexler AJ, et al.Suppression of eIF2[alpha]kinases alleviates Alzheimer's disease-related plasticity and memory deficits[J].Nat Neurosci,2013,16(9):1299-1305.
[55]Zschiesche W, Barth O, Daniel K, et al.The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana[J].New Phytol,2015,207(4):1084-1096.
[56]Qiang X, Yang WL, Wu R,et al.Cold-inducible RNA-binding protein(CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis [J].Nat Med,2013,19(11):1489-1495.
[57]Wang M, Zhang H, Heng X, et al.Expression of cold-inducible RNA-binding protein(CIRP)in pituitary adenoma and its relationships with tumor recurrence[J].Med Sci Monit,2015,21:1256-1260.
[58]Martínez-Arribas F, Agudo D, Pollán M, et al.Positive correlation between the expression of X-chromosome RBM genes (RBMX,RBM3, RBM10) and the proapoptotic Bax gene in human breast cancer[J].J Cell Biochem,2006,97(6):1275-1282.
[59]Grupp K, Wilking J, Prien K, et al.High RNA-binding motif protein 3 expression is an independent prognostic marker in operated prostate cancer and tightly linked to ERG activation and PTEN deletions[J].Eur J Cancer,2014,50(4):852-861.
[60]Zeng Y, Wodzenski D, Gao D, et al.Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing[J].Cancer Res,2013,73(13):4123-4133.
[61]Florianova L, Xu B, Traboulsi S, et al.Evaluation of RNA-binding motif protein 3 expression in urothelial carcinoma of the bladder:an immunohistochemical study[J].World J Surg Oncol,2015,13(1):317.
[62]Hjelm B, Brennan DJ, Zendehrokh N, et al.High nuclear RBM3 expression is associated with an improved prognosis in colorectal cancer[J].Proteomics Clin Appl,2011,5(11-12):624-635.
[63]Sakurai T, Yada N, Watanabe T, et al.Cold-inducible RNA-binding protein promotes the development of liver cancer [J].Cancer Sci,2015,106(4):352-358.
[64]Jian F, Chen Y, Ning G, et al.Cold inducible RNA binding protein upregulation in pituitary corticotroph adenoma induces corticotroph cell proliferation via Erk signaling pathway [J].Oncotarget, 2016,7(8):9175-9187.
[65]Guo X, Wu Y, Hartley RS.Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer[J].Mol Carcinog,2010,49(2):130-140.
[66]Venugopal A, Subramaniam D, Balmaceda J, et al.RNA binding protein RBM3 increases β-catenin signaling to increase stem cell characteristics in colorectal cancer cells [J].Mol Carcinog,2016,55(11):1503-1516.
[67]Matsuda A, Ogawa M,Yanai H,et al.Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth[J].Biochem Biophys Res Commun,2011,411(1):7-13.
[68]Wellmann S, Truss M, Bruder E, et al.The RNA-binding protein RBM3 is required for cell proliferation and protects against serum deprivation-induced cell death [J].Pediatr Res,2010,67(1):35-41.
[69]Saito K, Fukuda N, Matsumoto T, et al.Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein[J].Brain Res,2010,1358:20-29.
[70]Zhang HT,Xue JH,Zhang ZW,et al.Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis[J].Brain Res,2015,1622:474-483.
[71]Li S, Zhang Z, Xue J, et al.Cold-inducible RNA binding protein inhibits H2O2-induced apoptosis in rat cortical neurons[J].Brain Res,2012,1441:47-52.
[72]Artero-Castro A, Callejas FB, Castellvi J, et al.Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation[J].Mol Cell Biol,2009,29(7):1855-1868.
[73]Zhu X, Zelmer A, Kapfhammer JP, et al.Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress[J].FASEB J,2016,30(2):624-634.
Research progresses in biological functions of cold-inducible proteins CIRP and RBM3
WANG Chun-Hui, LI Zhi-Jun, CHEN Zhu
Department of Internal Medicine and Surgery,Military Frontier Defence Medical Service Training Group, Army Medical University,Hutubi 831200,China
The transcription of cold-inducible RNA-binding protein(CIRP) and RNA-binding motif protein 3 (RBM3) are upregulated under the low temperature.These two kinds of proteins have many similarities in the role of molecular and cellular levels, but each has its uniqueness.If CIRP was within the cells,it has a protective effect,but once released into the extracellular environment and enter into blood circulation,it will induce severe inflammation reaction,and then increase the symptoms and affect prognosis of patients with sepsis.However, RBM3 always has a protective effect both within and outsides of cells.Nowadays,quantitative detection of CIRP secretion level in peripheral blood is feasible by using ELISA kit,which has created a feasible new standard diagnosis of sepsis.In addition, high levels of CIRP and RBM3 expression have been analyzed in varies of human tumor.Studies indicated that the expression of RBM3 in the tumor tissues was positively associated with the survival of tumor patients,while CIRP expression was inversely linked to the survival of tumor patients.In this review, the molecular structure, expression features of CIRP and RBM3 and functions and regulatory mechanisms of CIRP and RBM3 in the physiological and pathological processes of inflammation and cancer development were summarized.
CIRP; RBM3; function; cancer; inflammation
在低溫刺激下,CIRP和RBM3兩種RNA結(jié)合蛋白表達(dá)上調(diào).這兩種蛋白在分子和細(xì)胞水平發(fā)揮的作用有其相似點(diǎn)但又各有其獨(dú)特性.CIRP在細(xì)胞內(nèi)對機(jī)體具有保護(hù)作用,可是一旦釋放到細(xì)胞外進(jìn)入血液循環(huán)便會誘發(fā)機(jī)體嚴(yán)重的炎癥反應(yīng),加重膿毒癥患者的癥狀并影響預(yù)后.而RBM3無論是在細(xì)胞內(nèi)還是釋放到細(xì)胞外始終對機(jī)體具有保護(hù)作用.現(xiàn)如今,用ELISA試劑盒定量檢測外周血中CIRP的分泌水平是可行的,這提供了一種新的診斷膿毒癥的標(biāo)準(zhǔn).另外,在多種腫瘤細(xì)胞中均能檢測到CIRP以及RBM3的高表達(dá).研究發(fā)現(xiàn),在化療患者的腫瘤組織中,RBM3的高表達(dá)有利于提高化療患者的生存率,而CIRP的高表達(dá)則會降低患者的生存率.本文主要對CIRP以及RBM3的分子結(jié)構(gòu)、表達(dá)特點(diǎn)以及其在感染、腫瘤等病理生理狀態(tài)下的功能及相關(guān)的調(diào)節(jié)機(jī)制進(jìn)行綜述.
CIRP;RBM3;功能;腫瘤;炎癥
Q513
A
2095-6894(2017)12-45-08
2017-04-12;接受日期:2017-04-27
國家自然科學(xué)基金(81270400)
王春輝.博士.研究方向:休克.E-mail:wanghui7540@ 126.com
陳 竺.博士,教授.研究方向:休克.Tel:0994-4964067 E-mail:584121010@ qq.com