• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Residual stress modeling of mitigated fused silica damage sites with CO2 laser annealing

    2024-03-25 09:30:34ChuanchaoZhang張傳超WeiLiao廖威LijuanZhang張麗娟XiaolongJiang蔣曉龍ZhenhuaFang方振華andXiaodongJiang蔣曉東
    Chinese Physics B 2024年3期
    關(guān)鍵詞:振華

    Chuanchao Zhang(張傳超), Wei Liao(廖威), Lijuan Zhang(張麗娟),Xiaolong Jiang(蔣曉龍), Zhenhua Fang(方振華), and Xiaodong Jiang(蔣曉東)

    Laser Fusion Research Center,China Academy of Engineering Physics,Mianyang 621900,China

    Keywords: fused silica,damage mitigation,residual stress,laser annealing

    1.Introduction

    High-quality fused silica can be produced at large scales and is widely used for the manufacture of large and expensive optical components such as windows,lenses and gratings suitable for high-power laser systems.Over the past decades,despite significant progress having been made in increasing the damage resistance of fused silica optics operating at UV wavelengths,laser-induced surface damage of fused silica optics is still a major issue for high-power laser systems.[1-3]Although the surface damage sites initially have a diameter of the order of tens of microns,the size of such sites increases exponentially with subsequent high-fluence nanosecond UV laser shots, which limits the durability of optical components for high-power laser systems.[4,5]To avoid growth of the damage site,localized CO2laser melting of fused silica has been used to mitigate surface damage sites on fused silica optics.[6-9]However, thermal quenching following the melting of damage sites can accumulate a significant amount of residual stress due to the finite relaxation times near the glass transition of fused silica,which may cause critical fracture to relieve stress throughout the heat-treated region.[10]CO2laser annealing by a linear ramp-down of laser power after damage mitigation has been demonstrated and applied to avoid rapid cooling down,which minimizes the residual stress to an acceptable level,avoiding critical fracture.[11-13]

    Accurate description of residual stress of mitigated fused silica damage sites for quenched and laser-annealed cases is of major interest for optimization of the damage mitigation process.The nondestructive photoelastic method is generally used to characterize stress in transparent materials.The measured retardance value is associated with the stress level to be evaluated.But the residual stress of mitigated damage sites is nonuniform, and there is no direct proportionality between the retardance and the stress level of a mitigated damage site.Thus, the stress distribution and quantitative values of stress levels of a mitigated fused silica damage site cannot be directly evaluated by the photoelastic method.[14]In order to assess the residual stress distribution of mitigated fused silica damage sites, various numerical models of CO2laser interaction with fused silica, which take into account multiphysics processes and temperature-dependent physical properties in the whole thermal history during localized CO2laser treatment of fused silica, have been developed to quantify the residual stress of mitigated damage sites.Gallaiset al.regarded the residual stress of mitigated damage sites as the imprinted thermal stress induced by temperatures below a limit between 1100°C and 1600°C after heating.[14]Matthewset al.indicated that the magnitude of the final residual tensile stress of mitigated damage sites is nearly equal to the maximum compressive stress prior to cool-down.[12]Vigneset alpresented a multiphysics finite-element model to analyze the residual stress of mitigated damage sites considering viscous flowing,quenching of the material and structural relaxation.[15]These reported numerical models have been successfully used to evaluate the residual stress distribution of quench-cooled mitigated damage sites.For CO2laser annealing, however, the mitigated damage site shows a more complex thermal history, meaning that the reported numerical models inaccurately predict the residual stress distribution of laser-annealed mitigated damage sites.Matthewset al.reported that the calculated value for the maximum hoop stress of mitigated damage sites with CO2laser annealing is 41%larger than the value from critical fracture experiments, while the deviation between the calculated and experimental values for the maximum hoop stress of quench-cooled mitigated damage sites is only 6%.[12]Hence,the ability to accurately assess the residual stresses of laserannealed mitigated damage sites is still a challenge.

    In this study, a numerical model based on the measured fictive temperature distribution of the mitigated damage sites is explored to evaluate the distribution and quantitative values of the residual stress of CO2laser-annealed mitigated fused silica damage sites.The fictive temperature of a glass,which is defined as the temperature of the equilibrium melt whose structure is equivalent to that of the cooled glass, is a convenient tool in describing glass structural relaxation phenomena.[16]The proposed model assumes that the initial frozen-in state of fused silica is the zero-point of residual stresses in the melt zone, and the generation of residual stresses results from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperature to ambient temperature, and has succeeded in evaluating the nonuniform residual stress fields of quench-cooled mitigated damage sites.[17]Spatially resolved fictive temperatures of mitigated damage sites for quenched and CO2laserannealed cases have been widely characterized using confocal Raman microscopy.[12,18]Based on the reported fictive temperature distribution,the residual stress fields of the CO2laserannealed mitigated damage sites were systematically analyzed by the proposed model in this study, and the calculated maximum hoop stress agrees well with the reported experimental result,demonstrating the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites for CO2laser annealing.

    2.Residual stress model based on fictive temperature

    During the localized CO2laser melting of a fused silica damage site the melted fused silica is soft, and thermally induced stresses are released by structural relaxation.The melt zone persists in a zero-stress state until the laser is shut off,and rapid thermal quenching ensues.Due to the high cooling rate for the quenched case,the melt zone of the mitigated site is frozen-in at higher fictive temperatures with greater density.After collective cooling of fused silica, the melt zone undergoes intense residual tensile stresses,while CO2laser annealing by a linear ramp-down of laser power following damage mitigation can effectively suppress rapid cool-down and allow the melt zone to more fully relax.Thus, the mitigated damage site for the CO2laser-annealed case is frozen-in at a lower fictive temperature than for the quenched case, and therefore the residual stress is effectively minimized.[11-13]The axial fictive temperature distributions of mitigated damage sites for quenched and CO2laser-annealed cases have both been widely characterized.[12,18]

    According to the reported data for mitigated damage sites quench-cooled at a peak temperature of 2300 K and mitigated damage sites laser-annealed by linear ramp from a maximum of 2300 K to ambient 300 K,[12]depth profiles of fictive temperatures on the axis of mitigated damage sites can be fitted as logistic curves

    whereTfquenched(z)on-axis(in K) is the depth profile of on-axis fictive temperatures of mitigated damage sites quench-cooled at 2300 K peak temperature,Tfannealed(z)on-axis(in K) is the depth profile of on-axis fictive temperatures of mitigated damage sites laser-annealed by linear ramping from a maximum of 2300 K to ambient 300 K;zis measured in microns.

    The two-dimensional (2D) axisymmetric fictive temperature distributions of mitigated damage sites result from isotropic thermal diffusion of the thermodynamic temperature field, and show an axisymmetric characteristic of a spherical cap.[17]Thus, the fictive temperature distributions can be mapped by the fictive temperature profiles along the axial depth.According to Eqs.(1) and (2) and the distribution characteristics of fictive temperatures for the mitigated damage sites in Ref.[17],the 2D axisymmetric fictive temperature distributions of mitigated damage sites can be described as

    whereTfquenched(r,z) is the 2D axisymmetric fictive temperature distribution of mitigated damage sites quench-cooled at 2300 K peak temperature,Tfannealed(r,z) is the 2D axisymmetric fictive temperature distributions of mitigated damage sites laser-annealed by linear ramping from a maximum of 2300 K to ambient 300 K.The typical fictive temperature distributions of mitigated damage sites for both quenched and laser-annealed cases were artificially reconstructed according to Eqs.(3) and (4), and are shown in Fig.1, where it can be seen that CO2laser annealing can effectively abate the local fictive temperature modification of mitigated damage sites.

    Before damage mitigation, the fictive temperature of the fused silica substrate is uniform with a value of 1315 K.After damage mitigation, the fictive temperature of the local melt zone increases, as shown in Fig.1, resulting in local densification and induction of tensile stresses on the surface of mitigated damage sites.The key of the proposed model for evaluating the residual stress of mitigated damage sites is that the relationship between residual strain and fictive temperature can be determined.According to the proposed model of residual stress fields analyzed from fictive temperature distributions for quench-cooled mitigated damage sites,[17]the difference between specific volume changes of fictive temperatureincreased fused silica and the substrate from the initial frozenin temperatures to the ambient temperature can be regarded as the residual thermal volume displacement as the body collectively cools.Therefore the residual thermal volume strain of fused silica with fictive temperatureTfis expressed as

    Fig.1.The artificial reconstruction of typical fictive temperature distributions of mitigated damage sites in Ref.[12] for mitigated damage sites quench-cooled at a peak temperature of 2300 K(a)and mitigated damage sites laser-annealed by linear ramping from a maximum of 2300 K to ambient 300 K(b).

    According to the symmetry of this study, a 2D axisymmetric geometry is used to describe the residual stress as a function of the residual thermal strain of fictive temperatureincreased fused silica.Making use of the cylindrical coordinate system (r,θ,z) for axially symmetric problems,[19]the constitutive equations for the axisymmetric fictive temperature modification zone of mitigated damage sites are as follows:

    where theεvalues are components of the strain,Eis Young’s modulus,Gis shear modulus andνis Poisson’s ratio.

    Combining the equilibrium equations and constitutive equations, the residual stresses of mitigated damage sites for laser annealing can be obtained by commercial finite element analysis(FEA)software.The physical properties of fused silica used in the model are summarized in Table 1.

    Table 1.Physical properties of fused silica used in the calculations.

    3.Results and discussion

    From Eqs.(3)-(6) and the equations of equilibrium for axially symmetric problems

    where theσare components of the stress, the residual stress field of a mitigated damage site can be obtained by solving elastic equilibrium conditions and stress-strain relations.

    The calculated hoop stress fields of mitigated damage sites for quenched and CO2laser-annealed cases based on fictive temperature distributions are shown in Fig.2,which indicates that the local fictive temperature modification zones of mitigated damage sites suffer intensive tensile stress.For the mitigated damage sites quench-cooled at a peak temperature of 2300 K, the hoop stresses remain almost constant on the melt surface.The hoop stress at the surface centerr=0 is 21.8 MPa and increases slowly to a maximum of 23.7 MPa atr=335 μm; with the radius further increasing, the hoop stress decreases rapidly and reaches a minimum of-2.4 MPa atr=660μm.For the mitigated damage sites laser-annealed by linear ramping from a maximum of 2300 K to ambient 300 K, the hoop stresses are almost constant at the melt surface center, and the hoop stress at the surface centerr=0 is 16.8 MPa and just slowly increases to a maximum of 17.2 MPa atr=150 μm; with the radius further increasing, the hoop stress gradually decreases to 0 atr=650μm.In comparison with the calculated hoop stresses at the melt surface center for quenched and CO2laser-annealed cases,CO2laser annealing can effectively suppress the maximum surface hoop stress.

    On the axis, the tensile hoop stresses of quench-cooled mitigated damage sites dramatically increase from 21.8 MPa atz=0 to a maximum of 28.4 MPa atz=110μm,and then rapidly decrease to-4.5 MPa atz=330 μm.The axial tensile hoop stresses of laser-annealed mitigated damage sites increase from 16.8 MPa atz=0 to a maximum of 18.1 MPa atz=35 μm, and then gradually decrease to 0 atz=280 μm.It is interesting to note that the maximum hoop stresses of quench-cooled mitigated damage sites do not occur atz=0 on-axis, but in fact reside in regions below the surface atz=110μm,which is consistent with the results in Ref.[12].The maximum hoop stress of quench-cooled mitigated damage sites is 57% larger than that of laser-annealed mitigated damage sites.

    The depth profiles of fictive temperatures and calculated hoop stresses on the axis of mitigated damage sites for quenched and CO2laser-annealed cases are plotted in Fig.3 for comparison.The quenched and laser-annealed cases both display a characteristic sigmoidal shape with nearly constantTfat the surface, and a mostly monotonic decrease into the bulk toTfini.It is obvious that the hoop stresses increase to the maximum value with depth of constantTfincreasing,and then decrease with the decrease of fictive temperatures.The slopes of hoop stresses are consistent with those of the corresponding fictive temperatures for quenched and CO2laser-annealed cases.According to the reported depth profiles of fictive temperatures for thermally quenched silica sites at peak temperatures of 1700 K and 2300 K in Ref.[12],the maximum hoop stresses for the mitigated damage sites quench-cooled at peak temperatures of 1700 K and 2300 K are also calculated by the proposed model.The calculated maximum hoop stresses in this study and the calculated and measured maximum hoop stresses in Ref.[12] are summarized in Table 2.The second column indicates maximum hoop stresses estimated from critical fracture experiments in Ref.[12].The third column indicates maximum hoop stresses simulated by the finite element analysis of the model in Ref.[12].The fourth column indicates calculated maximum hoop stresses using the proposed model in this work.

    For the quenched case at a peak temperature of 1700 K,the maximum hoop stress 16.8 MPa calculated by the proposed model in this study is consistent with the experimental result of<18.7 MPa in Ref.[12], while the calculated maximum hoop stress of 26.7 MPa in Ref.[12]is much larger than the experimental result.For the quenched case at a peak temperature of 2300 K, both the simulated maximum hoop stresses in Ref.[12] and in this work are close to the experimental results, which indicates that the models used in Ref.[12] and in this work can both effectively evaluate the residual stress fields of mitigated damage sites quench-cooled at a peak temperature of 2300 K.Compared with the maximum hoop stresses for thermally quenched mitigated damage sites at 1700 K,2300 K and 3000 K calculated using the proposed model, it is obvious that the maximum hoop stresses increase with increasing quenched peak temperature, which agrees with the general experimental results.

    For the laser-annealed case, the calculated maximum hoop stress in Ref.[12] is 41% larger than the experimental result,while the calculated maximum hoop stress in this study is just 5% less than the experimental result.Thus, the proposed model in this study can accurately evaluate the residual stress fields of mitigated damage sites for the laser-annealed case.The residual stress generation of mitigated damage sites is a multiphysics process involving viscous flowing, quenching of the material and structural relaxation.In addition, the physical properties of fused silica are temperature dependent.Thus, it is extremely difficult to precisely assess the residual stress directly from the thermal history of the localized CO2laser treatment of fused silica.The proposed model is just dependent on the measured fictive temperature distribution,and avoids complex thermodynamic processes.Therefore,the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a more complex thermal history.

    The calculated radial stress fields of mitigated damage sites for quenched and CO2laser-annealed cases based on fictive temperature distributions are shown in Fig.4.The distributions of radial stresses are significantly different from those of hoop stresses.The tensile radial stresses on the surface extend far beyond the local fictive temperature modification zone.For the mitigated damage sites quench-cooled at a peak temperature of 2300 K, the surface radial stresses rapidly increase from 21.8 MPa atr=0 to a maximum of 35.8 MPa atr=335μm,and then gradually decrease to zero at radii larger than 2 mm.For the mitigated damage sites laser-annealed by linear ramping from a maximum of 2300 K to ambient 300 K,the radial stresses just slowly increase from 16.8 MPa atr=0 to a maximum of 19.5 MPa atr=245μm,and then gradually decrease to zero at radii larger than 2 mm.Compared with the fictive temperature distributions in Fig.1,the maximum residual radial stresses reside in the border regions of local fictive temperature modification zones,where the slope of the fictive temperature profiles is larger.The maximum radial stress of quench-cooled mitigated damage sites is 84%larger than that of laser-annealed mitigated damage sites, which shows that CO2laser annealing can effectively suppress the maximum radial stress.

    Fig.4.Calculated radial stresses σrr of mitigated damage sites for mitigated damage sites quench-cooled at a peak temperature of 2300 K(a) and mitigated damage sites laser-annealed by linear ramping from a maximum of 2300 K to ambient 300 K (b).A positive value for the stress indicates tension.

    According to the residual radial and hoop stress fields,it is convenient to assess the optical retardance caused by stressinduced birefringence.The calculated residual radial and hoop stress fields have an azimuthal symmetry.The directions of principal stresses are parallel or orthogonal to the radius.The relative optical retardation between waves polarized in the radial direction and in the tangential direction can be obtained by the integrated principal stress difference along thezdirection in this study,and can be calculated by[17,22]

    whereKis the stress-optic coefficient of fused silica and is equal to 35 nm·cm-1·MPa-1, anddis the thickness of fused silica sample.

    Figure 5 shows the radial profiles of optical retardance for a light beam traveling through the thickness of mitigated damage sites for quenched and laser annealed cases,which are calculated from the simulated residual hoop and radial stress fields in Figs.2 and 4.The radial characteristic shape of the optical retardance for quench-cooled mitigated damage sites is in agreement with the reported measurement.[23]CO2laser annealing can effectively reduce the optical retardance of mitigated damage sites.The slope of the radial optical retardance profile of the laser-annealed mitigated damage sites dramatically decreases compared with that of quench-cooled mitigated damage sites.

    Fig.5.The calculated radial profiles of optical retardance for a light beam traveling through the thickness of mitigated damage sites induced by the simulated residual radial and hoop stress fields for quenched and laser-annealed cases.

    4.Conclusion

    A numerical model based on the measured fictive temperature distribution of mitigated damage sites is explored to evaluate the quantitative values of the residual stress fields of CO2laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from initial frozen-in temperatures to the ambient temperature,and the residual stress fields of mitigated damage sites for the quenched and CO2laser-annealed cases are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a more complex thermal history.The calculated maximum hoop stress is in good agreement with reported experimental results.The maximum hoop stress of quench-cooled mitigated damage sites is 57%larger than that of laser-annealed mitigated damage sites.The maximum radial stress of quench-cooled mitigated damage sites is 84%larger than that of laser-annealed mitigated damage sites.CO2laser annealing can effectively suppress the maximum residual stresses.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model to describe the residual stresses of mitigated fused silica damage sites for CO2laser annealing.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.62275235).

    猜你喜歡
    振華
    Real-time dynamics in strongly correlated quantum-dot systems
    家住西安
    PDCPD材料在商用車(chē)上的應(yīng)用
    “三農(nóng)”政策需要體現(xiàn)利益包容——對(duì)龔春明和梁振華商榷文的思考與回應(yīng)
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM?
    WSN Node Applied to Large-Scale Unattended Monitoring
    “杯”慘
    獻(xiàn)身民族教育事業(yè)的胡振華教授——祝賀胡振華教授從教60周年
    國(guó)醫(yī)大師李振華教授治呃逆驗(yàn)案1則
    国模一区二区三区四区视频| 丝袜美腿在线中文| 亚洲国产日韩欧美精品在线观看| 亚洲国产色片| 97在线视频观看| 人人妻人人澡人人爽人人夜夜 | 在线播放无遮挡| 黄色日韩在线| 午夜精品一区二区三区免费看| 国产亚洲精品久久久com| 九九久久精品国产亚洲av麻豆| 欧美+日韩+精品| 久久人人爽人人片av| 乱人视频在线观看| 村上凉子中文字幕在线| 国产又色又爽无遮挡免| 精品人妻熟女av久视频| 色综合站精品国产| 午夜日本视频在线| 欧美区成人在线视频| 看黄色毛片网站| 人妻系列 视频| 男女国产视频网站| 午夜日本视频在线| 国产精品一区二区三区四区免费观看| 99久久成人亚洲精品观看| 亚洲av一区综合| eeuss影院久久| 免费观看在线日韩| 成人午夜精彩视频在线观看| 欧美极品一区二区三区四区| 九九热线精品视视频播放| 国产一级毛片七仙女欲春2| 免费观看精品视频网站| 美女内射精品一级片tv| 国产极品天堂在线| 成人美女网站在线观看视频| 国产精品女同一区二区软件| 午夜日本视频在线| 黄色欧美视频在线观看| 中文字幕精品亚洲无线码一区| 亚洲av电影在线观看一区二区三区 | 国产又黄又爽又无遮挡在线| 日产精品乱码卡一卡2卡三| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 国产成人freesex在线| 午夜久久久久精精品| 天天躁夜夜躁狠狠久久av| 国产亚洲一区二区精品| 97人妻精品一区二区三区麻豆| 国产成人freesex在线| 18禁动态无遮挡网站| 国产精品精品国产色婷婷| 精品人妻偷拍中文字幕| 99热这里只有是精品50| 三级毛片av免费| 亚洲高清免费不卡视频| 在线观看美女被高潮喷水网站| 纵有疾风起免费观看全集完整版 | 国产在线男女| 久久精品国产鲁丝片午夜精品| 婷婷色av中文字幕| 一区二区三区乱码不卡18| 我要看日韩黄色一级片| 黑人高潮一二区| 国产爱豆传媒在线观看| 国产在线男女| 免费看av在线观看网站| 一边摸一边抽搐一进一小说| 久久人人爽人人爽人人片va| 亚洲美女视频黄频| 亚洲乱码一区二区免费版| 国产精品99久久久久久久久| 成人亚洲精品av一区二区| 女人十人毛片免费观看3o分钟| 色吧在线观看| 亚洲欧洲国产日韩| 蜜臀久久99精品久久宅男| 夫妻性生交免费视频一级片| 国产成人精品一,二区| 成人av在线播放网站| 一边亲一边摸免费视频| 欧美精品一区二区大全| 欧美高清成人免费视频www| 99热全是精品| 乱人视频在线观看| 村上凉子中文字幕在线| 三级经典国产精品| 天堂影院成人在线观看| 亚洲精品国产av成人精品| 五月玫瑰六月丁香| 22中文网久久字幕| 国产精品人妻久久久久久| 久热久热在线精品观看| 观看美女的网站| 精华霜和精华液先用哪个| 99久久九九国产精品国产免费| 国产欧美日韩精品一区二区| 免费看日本二区| 最近中文字幕高清免费大全6| 亚洲伊人久久精品综合 | 亚洲无线观看免费| 日韩一区二区三区影片| 精品无人区乱码1区二区| 国产精品美女特级片免费视频播放器| 床上黄色一级片| 亚洲av中文av极速乱| 不卡视频在线观看欧美| 亚洲美女搞黄在线观看| 一区二区三区乱码不卡18| 亚洲综合色惰| 一区二区三区高清视频在线| 国产免费男女视频| 精品99又大又爽又粗少妇毛片| 男人的好看免费观看在线视频| 久久久久久大精品| 亚洲精品成人久久久久久| 国产老妇女一区| 看黄色毛片网站| 国产精品久久电影中文字幕| 99久国产av精品国产电影| 精品一区二区三区人妻视频| a级一级毛片免费在线观看| 麻豆乱淫一区二区| 亚洲五月天丁香| 国产国拍精品亚洲av在线观看| 久久久午夜欧美精品| 中文资源天堂在线| 韩国av在线不卡| 精品久久久久久久末码| 99九九线精品视频在线观看视频| 久久精品久久久久久噜噜老黄 | 日产精品乱码卡一卡2卡三| 国产精品.久久久| 久久久精品大字幕| 三级国产精品片| 女人十人毛片免费观看3o分钟| 我的女老师完整版在线观看| 中文字幕av成人在线电影| 内射极品少妇av片p| videos熟女内射| 久久精品国产亚洲网站| 亚洲av熟女| 国产精品女同一区二区软件| 久久精品综合一区二区三区| 婷婷六月久久综合丁香| 日韩av在线免费看完整版不卡| 少妇熟女aⅴ在线视频| 又黄又爽又刺激的免费视频.| 亚洲一区高清亚洲精品| 午夜老司机福利剧场| 亚洲精品国产成人久久av| 99久久中文字幕三级久久日本| 亚洲av中文av极速乱| 99视频精品全部免费 在线| 人人妻人人看人人澡| 亚洲av中文字字幕乱码综合| 亚洲国产精品久久男人天堂| 免费黄色在线免费观看| 久久久久九九精品影院| 好男人视频免费观看在线| 综合色av麻豆| 亚洲av男天堂| 美女国产视频在线观看| 国产真实伦视频高清在线观看| 亚洲欧美精品专区久久| 国产成人一区二区在线| 国产精品人妻久久久久久| 天堂影院成人在线观看| 中文字幕免费在线视频6| 免费看日本二区| 国产精品久久久久久久久免| 欧美xxxx性猛交bbbb| 日韩高清综合在线| 欧美zozozo另类| 国产av不卡久久| 亚洲欧洲国产日韩| av国产免费在线观看| 亚洲一级一片aⅴ在线观看| 少妇的逼好多水| 久久综合国产亚洲精品| 一个人免费在线观看电影| 成人特级av手机在线观看| 偷拍熟女少妇极品色| 六月丁香七月| 精品一区二区三区视频在线| 午夜爱爱视频在线播放| 久久精品夜色国产| 三级国产精品片| 国产精品永久免费网站| 亚洲国产精品久久男人天堂| 九九爱精品视频在线观看| 久久久久久久国产电影| 亚洲国产精品久久男人天堂| 99热6这里只有精品| 国产在视频线精品| 亚洲精品国产成人久久av| 亚洲av电影在线观看一区二区三区 | 免费观看精品视频网站| 女的被弄到高潮叫床怎么办| 麻豆av噜噜一区二区三区| 男人和女人高潮做爰伦理| 97热精品久久久久久| 狠狠狠狠99中文字幕| 国国产精品蜜臀av免费| 亚洲国产欧美在线一区| 久久久久久伊人网av| 国产精品国产三级专区第一集| 免费看a级黄色片| 身体一侧抽搐| 最近中文字幕2019免费版| 九草在线视频观看| 欧美激情国产日韩精品一区| 国产色爽女视频免费观看| 亚洲国产色片| 国产黄色小视频在线观看| 嫩草影院入口| 亚洲天堂国产精品一区在线| 精品人妻熟女av久视频| 久99久视频精品免费| 国产真实乱freesex| 精品人妻熟女av久视频| 人妻系列 视频| a级毛色黄片| 18禁动态无遮挡网站| 亚洲国产精品国产精品| videos熟女内射| 天堂影院成人在线观看| 联通29元200g的流量卡| 99久久成人亚洲精品观看| 免费在线观看成人毛片| 亚洲欧美日韩高清专用| 性插视频无遮挡在线免费观看| 超碰av人人做人人爽久久| 国产亚洲精品久久久com| 建设人人有责人人尽责人人享有的 | 国产精品一及| 久久婷婷人人爽人人干人人爱| 亚洲一级一片aⅴ在线观看| 国产精品无大码| 自拍偷自拍亚洲精品老妇| 男女下面进入的视频免费午夜| 97人妻精品一区二区三区麻豆| 亚洲精品日韩在线中文字幕| 亚洲精品aⅴ在线观看| 日韩av不卡免费在线播放| 国产精品国产三级专区第一集| 成人毛片a级毛片在线播放| 欧美日本亚洲视频在线播放| 97人妻精品一区二区三区麻豆| 亚洲精品成人久久久久久| 在线观看一区二区三区| 麻豆国产97在线/欧美| 欧美精品国产亚洲| 国产黄色小视频在线观看| 免费搜索国产男女视频| 国产精品美女特级片免费视频播放器| 久久精品夜色国产| 能在线免费观看的黄片| 非洲黑人性xxxx精品又粗又长| 久久精品综合一区二区三区| 一夜夜www| 久久国内精品自在自线图片| 亚洲va在线va天堂va国产| av卡一久久| 天天躁日日操中文字幕| 国产精品女同一区二区软件| 国产国拍精品亚洲av在线观看| 日韩欧美三级三区| АⅤ资源中文在线天堂| 免费看a级黄色片| 蜜臀久久99精品久久宅男| 国产精品一区二区性色av| 人妻夜夜爽99麻豆av| 一区二区三区高清视频在线| 精品一区二区三区人妻视频| 熟女电影av网| 全区人妻精品视频| 一级黄色大片毛片| 高清午夜精品一区二区三区| 精品熟女少妇av免费看| 波多野结衣高清无吗| av免费在线看不卡| 综合色丁香网| 18禁在线播放成人免费| 日韩强制内射视频| 日韩强制内射视频| 18禁在线播放成人免费| 国产黄片视频在线免费观看| 国产一区二区在线av高清观看| 亚洲精品色激情综合| 亚洲国产欧美在线一区| 长腿黑丝高跟| a级毛片免费高清观看在线播放| 亚洲熟妇中文字幕五十中出| 少妇的逼好多水| 有码 亚洲区| 久久久久久大精品| 欧美性猛交╳xxx乱大交人| 欧美zozozo另类| 建设人人有责人人尽责人人享有的 | 好男人在线观看高清免费视频| 国产精品嫩草影院av在线观看| 久久久色成人| 日本欧美国产在线视频| 成人av在线播放网站| 国产成人精品一,二区| 嫩草影院精品99| 99久久九九国产精品国产免费| av.在线天堂| 美女国产视频在线观看| av在线播放精品| 青春草国产在线视频| 18+在线观看网站| 麻豆久久精品国产亚洲av| 久久久成人免费电影| 国产高清有码在线观看视频| 青春草国产在线视频| a级一级毛片免费在线观看| 午夜福利网站1000一区二区三区| 国产精品,欧美在线| 18禁在线无遮挡免费观看视频| 国产v大片淫在线免费观看| 特级一级黄色大片| 只有这里有精品99| 成人特级av手机在线观看| 久久久久网色| 国产一区有黄有色的免费视频 | 99久久精品国产国产毛片| 久久久久久久久久久丰满| www.av在线官网国产| 91av网一区二区| 我要看日韩黄色一级片| 最近2019中文字幕mv第一页| 午夜精品一区二区三区免费看| 在线观看66精品国产| 3wmmmm亚洲av在线观看| 国产黄色小视频在线观看| 亚洲一区高清亚洲精品| 日韩,欧美,国产一区二区三区 | 亚洲国产精品成人久久小说| 国产欧美日韩精品一区二区| 国产女主播在线喷水免费视频网站 | 亚洲成av人片在线播放无| 身体一侧抽搐| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品成人久久小说| 美女被艹到高潮喷水动态| 精品熟女少妇av免费看| 美女国产视频在线观看| 日韩av在线大香蕉| 女的被弄到高潮叫床怎么办| 麻豆成人av视频| 自拍偷自拍亚洲精品老妇| 国产亚洲最大av| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 波多野结衣高清无吗| 综合色av麻豆| 三级毛片av免费| a级一级毛片免费在线观看| 亚洲精品aⅴ在线观看| 有码 亚洲区| 久99久视频精品免费| 国产激情偷乱视频一区二区| 26uuu在线亚洲综合色| 久99久视频精品免费| 亚洲经典国产精华液单| 国产精品爽爽va在线观看网站| 九九爱精品视频在线观看| 日韩人妻高清精品专区| 又粗又硬又长又爽又黄的视频| 国产老妇伦熟女老妇高清| 成人欧美大片| 中文天堂在线官网| 麻豆国产97在线/欧美| 午夜爱爱视频在线播放| 国产伦在线观看视频一区| 亚洲欧美成人综合另类久久久 | 国产欧美日韩精品一区二区| 永久免费av网站大全| 高清av免费在线| 国产麻豆成人av免费视频| 亚洲无线观看免费| 日本色播在线视频| 久久久久九九精品影院| 久久精品熟女亚洲av麻豆精品 | 国产又黄又爽又无遮挡在线| 熟女电影av网| 亚洲av福利一区| 国产麻豆成人av免费视频| 久久久欧美国产精品| 国产精品国产三级专区第一集| 激情 狠狠 欧美| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看| 久久精品夜夜夜夜夜久久蜜豆| 日韩av在线大香蕉| 国产精品永久免费网站| 精品不卡国产一区二区三区| 亚洲av免费在线观看| 秋霞在线观看毛片| 麻豆成人av视频| 日韩精品有码人妻一区| 欧美成人一区二区免费高清观看| videos熟女内射| 国产高清不卡午夜福利| 美女国产视频在线观看| 国产精品嫩草影院av在线观看| 啦啦啦韩国在线观看视频| 久久精品人妻少妇| 欧美性猛交╳xxx乱大交人| 色视频www国产| 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| 精品免费久久久久久久清纯| 超碰97精品在线观看| 两个人的视频大全免费| 国产成人a∨麻豆精品| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 久久精品国产亚洲网站| 国产探花极品一区二区| 搡女人真爽免费视频火全软件| 亚洲四区av| 亚洲无线观看免费| 美女大奶头视频| 亚洲四区av| 色综合色国产| 国国产精品蜜臀av免费| 欧美极品一区二区三区四区| 精品人妻偷拍中文字幕| 欧美成人a在线观看| 国产亚洲精品av在线| 免费电影在线观看免费观看| 国产中年淑女户外野战色| 色网站视频免费| 嫩草影院精品99| 午夜久久久久精精品| 久久国产乱子免费精品| 亚洲国产色片| 亚洲经典国产精华液单| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 村上凉子中文字幕在线| 男插女下体视频免费在线播放| 国产成人午夜福利电影在线观看| 精品免费久久久久久久清纯| 色播亚洲综合网| 久久久久久久亚洲中文字幕| 国产三级中文精品| 日日摸夜夜添夜夜爱| 可以在线观看毛片的网站| 免费观看a级毛片全部| 欧美xxxx黑人xx丫x性爽| 国产午夜精品一二区理论片| 97人妻精品一区二区三区麻豆| 久久久久九九精品影院| 久久久久久久久中文| 亚洲怡红院男人天堂| 成年免费大片在线观看| 最近中文字幕2019免费版| 久久久精品94久久精品| 女的被弄到高潮叫床怎么办| 日本黄大片高清| 久久6这里有精品| 免费观看精品视频网站| 精品人妻视频免费看| 麻豆成人午夜福利视频| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 日本三级黄在线观看| 国产高潮美女av| 欧美zozozo另类| 精品久久久久久久人妻蜜臀av| 成人三级黄色视频| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 亚洲国产欧洲综合997久久,| 美女高潮的动态| 两个人的视频大全免费| 99在线人妻在线中文字幕| 秋霞在线观看毛片| 插逼视频在线观看| 成人漫画全彩无遮挡| 成人美女网站在线观看视频| 精品一区二区三区人妻视频| 最近视频中文字幕2019在线8| 国产精品永久免费网站| av在线蜜桃| 久久精品影院6| 国产精品国产三级国产专区5o | 久久久久久国产a免费观看| 尤物成人国产欧美一区二区三区| 久久99精品国语久久久| 国产亚洲精品久久久com| 国产成人freesex在线| 长腿黑丝高跟| 精品久久久久久成人av| 哪个播放器可以免费观看大片| 欧美3d第一页| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 91狼人影院| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 美女被艹到高潮喷水动态| 亚洲av男天堂| 欧美成人午夜免费资源| 国产三级中文精品| 99久久精品国产国产毛片| 国产精品国产高清国产av| 综合色av麻豆| 真实男女啪啪啪动态图| 五月伊人婷婷丁香| 午夜激情欧美在线| 欧美三级亚洲精品| 免费观看性生交大片5| 中文字幕av在线有码专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 啦啦啦韩国在线观看视频| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| 日本熟妇午夜| АⅤ资源中文在线天堂| 亚洲国产精品国产精品| 欧美日韩在线观看h| 51国产日韩欧美| 国产免费一级a男人的天堂| 亚洲国产最新在线播放| 精品酒店卫生间| 亚洲av一区综合| kizo精华| 国产亚洲91精品色在线| 国产久久久一区二区三区| 婷婷色av中文字幕| 久久久久久久久中文| 99在线人妻在线中文字幕| 国产淫语在线视频| 精品久久久久久电影网 | 永久免费av网站大全| 亚洲va在线va天堂va国产| 少妇高潮的动态图| 免费看美女性在线毛片视频| 中文字幕av在线有码专区| 久久人人爽人人爽人人片va| 国产精品麻豆人妻色哟哟久久 | 久久精品久久久久久噜噜老黄 | av国产免费在线观看| 久久精品国产鲁丝片午夜精品| 亚洲av免费在线观看| 青春草视频在线免费观看| 亚洲av福利一区| 青春草视频在线免费观看| 最近最新中文字幕免费大全7| 久久久久久久久久久丰满| 男人舔女人下体高潮全视频| 99久国产av精品| 国产女主播在线喷水免费视频网站 | 2021天堂中文幕一二区在线观| 国产精品一区www在线观看| 国产一级毛片七仙女欲春2| 六月丁香七月| 久久久久久久久久久免费av| 亚洲婷婷狠狠爱综合网| 欧美区成人在线视频| 狠狠狠狠99中文字幕| 真实男女啪啪啪动态图| 黄片wwwwww| 久久久久久久国产电影| 免费播放大片免费观看视频在线观看 | 少妇的逼好多水| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 国产麻豆成人av免费视频| 人体艺术视频欧美日本| videossex国产| 亚洲经典国产精华液单| 国产成人a∨麻豆精品| 伦理电影大哥的女人| 国产精品久久久久久av不卡| 国产毛片a区久久久久| av在线播放精品| 国产毛片a区久久久久| 91久久精品国产一区二区成人| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 中文字幕av在线有码专区| 变态另类丝袜制服| 真实男女啪啪啪动态图| 久久久久久伊人网av| 久久精品国产亚洲av天美| 久久精品夜夜夜夜夜久久蜜豆| 亚洲美女搞黄在线观看| 热99在线观看视频| 日韩欧美国产在线观看| 99久久中文字幕三级久久日本| 国产 一区 欧美 日韩| 五月玫瑰六月丁香| 看片在线看免费视频| 乱人视频在线观看| 91精品一卡2卡3卡4卡| 久久综合国产亚洲精品| 欧美激情国产日韩精品一区| 最近中文字幕高清免费大全6| 日韩,欧美,国产一区二区三区 | 久久精品熟女亚洲av麻豆精品 | 亚洲中文字幕日韩|