柳 莉,李秀璋,陳振江,郭長輝,呂 卉,李春杰
(蘭州大學草地農(nóng)業(yè)科技學院,草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室,甘肅 蘭州 730020)
外源激素與內生真菌互作對醉馬草低溫脅迫下種子萌發(fā)的影響
柳 莉,李秀璋,陳振江,郭長輝,呂 卉,李春杰
(蘭州大學草地農(nóng)業(yè)科技學院,草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室,甘肅 蘭州 730020)
低溫是限制種子萌發(fā)的一個關鍵因子,而外源激素和內生真菌分別通過外部介導和內部調控的途徑來提高低溫環(huán)境下種子的萌發(fā)能力.本研究以感染內生真菌(E+)和未感染內生真菌(E-)醉馬草(Achnatherum inebrians)種子為材料,利用不同濃度的水楊酸(SA)或脫落酸(ABA)溶液浸泡種子,測定10℃條件下醉馬草種子的發(fā)芽率、發(fā)芽指數(shù)、胚芽長、胚根長和幼苗含水量,探討外源激素與內生真菌互作對醉馬草種子低溫條件下萌發(fā)的影響.結果發(fā)現(xiàn),SA 或ABA處理能促進醉馬草E+、E-種子的萌發(fā);高濃度SA或ABA處理下則表現(xiàn)出抑制作用,其中高濃度(0.2 mmol/ L)ABA對種子發(fā)芽抑制作用顯著(P<0.05);SA與內生真菌互作對種子發(fā)芽率、發(fā)芽指數(shù)和胚根長有顯著(P<0.05)促進作用;ABA與內生真菌互作對種子發(fā)芽指數(shù)、胚芽長、胚根長和幼苗含水量有顯著(P<0.05)的促進作用.表明一定濃度范圍的SA或ABA與內生真菌互作,能夠促進醉馬草種子在低溫脅迫條件下的萌發(fā)力.
醉馬草;內生真菌;低溫;外源激素;種子發(fā)芽
醉馬草(Achnatherum inebrians)是一種多年生草本植物,能產(chǎn)生劇毒物質,家畜誤食會引起中毒癥狀,主要分布在我國的新疆、青海、甘肅等西北地區(qū)[1].能與禾草共生各取所需,但這種寄生關系又不會影響宿主植物的生長,也不會造成宿主外部損傷的一大類真菌統(tǒng)稱為禾草內生真菌[2],這類內生真菌主要包括有性態(tài)Epichlo?屬及其無性態(tài)Neotyohodium屬內生真菌,根據(jù)最新國際真菌命名規(guī)則,現(xiàn)統(tǒng)一稱為Epichlo?內生真菌[3].大量研究表明[4-9],內生真菌的存在能顯著提高醉馬草的生物及非生物脅迫,如提高醉馬草的抗蟲、抗病、耐旱、耐鹽堿、耐寒、耐重金屬毒害、耐澇等抗逆性,其中,也有學者報道過內生真菌能夠提高宿主植物種子萌發(fā)和生長,主要集中在多年生黑麥草(Lolium perenne)[10]、高羊茅 (Festuca arundinacea)[11]、多花黑麥草(Lolium multiflorum)[12]、中華羊茅(Festuca sinensis)[13]和野大麥(Hordeum brevisubulatum)[14].有關在低溫脅迫下內生真菌提高禾草種子萌發(fā)的報道較少,國內陳娜[9]2008年報道了內生真菌的存在能夠提高醉馬草種子低溫萌發(fā)能力.
種子發(fā)芽與否與內源激素的平衡有關[15].研究發(fā)現(xiàn),環(huán)境因素如鹽脅迫、酸脅迫、溫度和光照等能夠影響種子內源激素的平衡進而影響種子的萌發(fā)[16-17].脫落酸(ABA)是植物體內一種重要的內源激素,ABA含量的高低對種子萌發(fā)有重要的作用,種子解除休眠的重要誘導因子之一就是ABA[18].水楊酸(SA)是植物的一種內生性的生長調節(jié)劑,在植物體內能夠完成一系列的新陳代謝變化和生理響應,從而影響植物的生長和發(fā)育[19].研究表明,外源水楊酸能提高植物的非生物抗性,如重金屬脅迫[20-23]、鹽脅迫[24-29]、高溫脅迫[30-32]、低溫脅迫[33-39]、紫外輻射脅迫[40-43]和水分脅迫[35,44-47].而有關低溫條件下內生真菌和激素互作對種子萌發(fā)的影響尚未見報道.
本文以E+、E-醉馬草種子為供試材料,研究在低溫(10℃)條件下,用不同濃度外源激素浸泡種子24h后,醉馬草種子發(fā)芽率及其他發(fā)芽指標的變化,旨在探索在低溫脅迫下內生真菌和激素互作對醉馬草種子萌發(fā)的影響,為醉馬草在低溫條件下的萌發(fā)提供理論基礎.
1.1 材料
醉馬草E+、E-種子均采集于蘭州大學榆中校區(qū)田間實驗田(E104°08′,N35°56′,H1514 m).ABA由上海中秦化學試劑有限公司提供,SA由天津光復精細化工研究所提供.
1.2 方法
1)種帶內生真菌檢測將收集的E+、E-醉馬草種子,參照李春杰[48]的方法進行檢測,驗證種子攜帶內生真菌情況.
2)浸種處理將E+、E-醉馬草種子分別浸在不同濃度的ABA和SA中24h,以無菌水為對照(CK),浸種后用無菌水沖洗3次.ABA的濃度分別為0.05mmol/L(ABA1)、0.1 mmol/L(ABA2)、0.15 mmol/L(ABA3)和0.2 mmol/L(ABA4);SA的濃度分別為 0.5 mmol/L(SA1)、1.0 mmol/L(SA2)、1.5 mmol/L(SA3)、2.0 mmol/L(SA4).
3)發(fā)芽試驗參照衛(wèi)東等[49]的方法,采用紙上(TP)發(fā)芽法發(fā)芽,在10℃培養(yǎng)箱中黑暗發(fā)芽,發(fā)芽過程一直保持濾紙濕潤;將浸泡過的種子放于滅過菌的培養(yǎng)皿(直徑9cm)上,每皿50粒,每處理設4個重復.每天統(tǒng)計發(fā)芽數(shù),發(fā)芽結束后計算發(fā)芽率(GR)、發(fā)芽指數(shù)(GI),測量胚芽長、胚根長(每皿隨機選取5粒進行測量,取平均值),幼苗含水量:
注:GT-T時間內的醉馬草種子發(fā)芽總數(shù),DT-相應的發(fā)芽天數(shù).
4)數(shù)據(jù)處理與作圖所有數(shù)據(jù)均采用Microsof Excle 2013錄入并作圖,采用SPSS17.0對CK及不同濃度SA和ABA處理下發(fā)芽率(GR)、發(fā)芽指數(shù)(GI)、胚芽長(SL)、胚根長(RL)和幼苗含水量(WC)分別進行雙因素方差分析(ANOVA),對不同處理下各發(fā)芽指標進行單因素方差分析.
2.1 不同濃度外源激素處理對E+、E-發(fā)芽率的影響
一定濃度的SA或ABA處理對醉馬草E+、E-種子萌發(fā)有不同程度的影響(圖1).
SA處理下,隨著濃度的增大,醉馬草種子的發(fā)芽率呈先上升后降低的趨勢.其中,1.0 mmol/L和1.5mmol/L處理下,種子發(fā)芽率顯著(P<0.05)高于其他處理,且二者之間差異顯著(P<0.05).在此5種處理下,E+種子發(fā)芽率顯著(P<0.05)高于E-(圖1a).
ABA處理下,隨著濃度的增大,醉馬草E-種子的發(fā)芽率呈先升后降的趨勢.其中,在0.1 mmol/L時種子發(fā)芽率達到最大;隨著濃度的繼續(xù)增大,ABA對種子發(fā)芽率表現(xiàn)出一定程度的抑制作用.在0.2 mmol/L時,E-的發(fā)芽率顯著(P<0.05)低于CK;而不同濃度的處理對E+種子發(fā)芽率的影響不顯著(P>0.05).除0.1 mmol/L處理下E+、E-發(fā)芽率差異不顯著(P>0.05)外,其余均達到顯著水平(P<0.05)(圖1b).
圖1 不同濃度外源激素對醉馬草種子發(fā)芽率的影響注:不同字母表示各處理間發(fā)芽指標差異顯著(P<0.05),下同F(xiàn)ig.1 Effects of exogenous hormone concentrations on germination rate of drunken horse grassNote:Different letters indicate significant(P<0.05)difference of the germination vitality among different treatments,the same below
2.2 不同濃度外源激素處理對E+、E-發(fā)芽指數(shù)的影響
一定濃度的SA或ABA處理對醉馬草E+、E-種子發(fā)芽指數(shù)有不同程度的影響(圖2).
SA處理下,隨著濃度的增大,種子發(fā)芽指數(shù)呈先升高后降低的趨勢.其中,1.0 mmol/L和1.5 mmol/L處理下,種子發(fā)芽指數(shù)顯著(P<0.05)高于其他處理,且二者之間差異顯著(P<0.05).在此5種處理下,E+種子發(fā)芽指數(shù)均顯著(P<0.05)高于E-(圖2a).
ABA處理下,隨著濃度的增大,種子發(fā)芽指數(shù)呈先升后降的趨勢.其中,0.1 mmol/L處理下,種子發(fā)芽指數(shù)顯著(P<0.05)高于其他處理,0.15 mmol/L 和0.2 mmol/L處理下,種子發(fā)芽指數(shù)顯著(P<0.05)低于其他處理.在這5種處理下,E+種子發(fā)芽指數(shù)均顯著(P<0.05)高于E-(圖2b).
圖2 不同濃度外源激素對醉馬草種子發(fā)芽指數(shù)的影響Fig.2 Effects of exogenous hormone concentrations on germination index of drunken horse grass
內生真菌單獨作用,對醉馬草種子的發(fā)芽率、發(fā)芽指數(shù)、幼苗含水量、胚芽長及胚根長均有顯著性(P <0.05)的影響;不同濃度的SA和ABA單獨作用也對上述指標有顯著性(P<0.05)影響;SA和內生真菌互作對醉馬草種子幼苗含水量和胚芽長無顯著(P>0.05)影響;ABA和內生真菌互作對醉馬草種子發(fā)芽率無顯著(P>0.05)作用,但對其他各發(fā)芽指標均有顯著(P<0.05)影響(表1).
表1 內生真菌(E)與SA濃度(C)、ABA濃度(C)對醉馬草種子10℃條件下的發(fā)芽率、發(fā)芽指數(shù)、幼苗含水量、胚芽長和胚根長的影響的雙因素分析結果Table 1 Results of two-way ANOVA for the effects of endophyte(E),SA concentrations(C)and ABA concentrations(C) on germination rate,germination index,water content of seedling,shoot length and root length ofA.inebrians seed at 10℃
2.3 不同濃度外源激素處理對E+、E-胚芽長的影響
一定濃度的SA或ABA處理對醉馬草E+、E-種子胚芽長有不同程度的影響(圖3).
SA處理下,隨著濃度的增大,種子胚芽長呈先升高后降低的趨勢.其中,1.0 mmol/L和1.5 mmol/L處理下,種子胚芽長顯著(P<0.05)高于其他處理,且二者之間差異不顯著(P>0.05).在這5種處理下,E+種子胚芽長均顯著(P<0.05)高于E-(圖3a).
ABA處理下,隨著濃度的增大,種子胚芽長呈先升后降的趨勢.其中,0.05 mmol/L和0.1 mmol/L處理下,種子胚芽長顯著(P<0.05)高于其他處理,且二者之間差異不顯著(P>0.05).0.2 mmol/L處理下,種子胚芽長顯著(P<0.05)低于其他處理.在這5種處理下,E+種子胚芽長均顯著(P<0.05)高于E-(圖3b).
圖3 不同濃度外源激素對醉馬草種子胚芽長的影響Fig.3 Effects of exogenous hormone concentrations on shoot length of drunken horse grass
2.4 不同濃度外源激素處理對E+、E-胚根長的影響
一定濃度的SA或ABA處理對醉馬草E+、E-種子胚根長有不同程度的影響(圖4).
SA處理下,隨著濃度的增大,種子胚根長呈先升高后降低的趨勢.其中,1.0 mmol/L和1.5 mmol/L處理下,種子胚根長顯著(P<0.05)高于其他處理,且二者之間差異不顯著(P>0.05).在此5種處理下,E+種子胚根長均顯著(P<0.05)高于E-(圖4a).
ABA處理下,隨著濃度的增大,種子胚根長呈逐漸降低趨勢.其中,0.15 mmol/L和0.2 mmol/L處理下,種子胚根長顯著(P<0.05)低于其他處理,且二者之間差異顯著(P<0.05).0.05 mmol/L處理下,E+種子胚根長與CK差異不顯著(P>0.05).在此5種處理下,E+種子胚根長均顯著(P<0.05)高于E-(圖4b).
圖4 不同濃度外源激素對醉馬草胚根長的影響Fig.4 Effects of exogenous hormone concentrations on radical length of drunken horse grass
2.5 不同濃度外源激素處理對E+、E-幼苗含水量的影響
一定濃度的SA或ABA處理對醉馬草E+、E-種子幼苗含水量有不同程度的影響(圖5).
SA處理下,隨著濃度的增大,種子幼苗含水量呈先升高后降低的趨勢.其中,1.0 mmol/L和 1.5 mmol/L處理下,種子幼苗含水量顯著(P<0.05)高于其他處理,且二者之間差異不顯著(P>0.05).在此5種處理下,E+種子幼苗含水量均顯著(P<0.05)高于E-(圖5a).
ABA處理下,隨著濃度的增大,種子幼苗含水量呈先升后降的趨勢.其中,0.05 mmol/L和0.1 mmol/ L處理下,種子幼苗含水量顯著(P<0.05)高于其他處理,且二者之間差異不顯著(P>0.05).0.2 mmol/L處理下,種子幼苗含水量顯著(P<0.05)低于其他處理.在此5種處理下,E+種子幼苗含水量均顯著(P<0.05)高于E-(圖5b).
圖5 不同濃度外源激素對醉馬草幼苗含水量的影響Fig.5 Effects of exogenous hormone concentrations on water content of seedlings of drunken horse grass
種子萌發(fā)和幼苗生長是植物建群的關鍵階段,種子的萌發(fā)除了與種子自身的遺傳因素有關外,還受外界環(huán)境,如溫度、水分、光照、滲透脅迫等的影響[50-53].本研究中,SA濃度增大,醉馬草種子的發(fā)芽率和發(fā)芽指數(shù)均呈現(xiàn)先上升后下降的趨勢,除了0.5 mmol/L 和2 mmol/L的SA處理下的發(fā)芽率和發(fā)芽指數(shù)與對照無顯著性差異外,其他濃度下的發(fā)芽率和發(fā)芽指數(shù)均大于對照,并且在1.5 mmol/L時的發(fā)芽率和發(fā)芽指數(shù)最大,表明1.5 mmol/L是促進醉馬草種子低溫萌發(fā)的最適濃度.不過物種不同,低溫脅迫下SA促進種子萌發(fā)的最適濃度也不同,17℃脅迫下提高黑麥草種子萌發(fā)的最適 SA濃度為 1.5 mmol/L[54].0.5 mmol/L的SA能夠提高水稻種子的發(fā)芽率[55].研究表明,低濃度ABA促進種子萌發(fā),高濃度ABA抑制種子的萌發(fā)[56-58].本研究中發(fā)現(xiàn),無論是低濃度的ABA還是高濃度的ABA對醉馬草E+種子的發(fā)芽率都沒有起到顯著性的促進作用,但是低濃度的ABA對醉馬草E+、E-種子的發(fā)芽指數(shù)均有促進作用.原因一方面可能是E+醉馬草本身含有生物堿,生物堿的存在抑制了低濃度的ABA對醉馬草種子萌發(fā)的促進作用,也有可能是因為內生真菌和外源ABA互作對醉馬草種子內源ABA含量有影響,因為內源ABA越低越利于種子打破休眠[59],但是具體原因還需進一步驗證.而發(fā)芽指數(shù)是一個反映種子發(fā)芽快慢的指標,低濃度的ABA對E+、E-種子發(fā)芽指數(shù)均有促進作用,說明種子在初期發(fā)芽過程中低濃度ABA促進作用明顯,這與前人研究結果一致[60-61].
低溫脅迫對植物萌發(fā)的影響,除了發(fā)芽率和發(fā)芽指數(shù)外,還有胚芽長、胚根長和幼苗含水量.本研究中,隨著ABA濃度的升高,醉馬草E+種子的胚芽長、胚根長和幼苗含水量均呈現(xiàn)先上升后下降的趨勢,與發(fā)芽率一樣,1.5 mmol/L的SA對這3個指標的影響最明顯.說明適宜濃度的SA對植物種子在逆境下的萌發(fā)有促進作用,王玉萍等[62]對鹽脅迫下SA對花椰菜(Brassica oleracea)種子的萌發(fā)中得到了相似的結果.張鳳銀等[63]在研究低溫脅迫下SA對藜豆(Stizolobium capitaum)種子萌發(fā)中也得到了同樣的結果.對E-種子而言,胚芽長和幼苗含水量也是隨著SA濃度的增大呈現(xiàn)先升高后降低的趨勢.值得一提的是,不同濃度SA處理下E-種子的胚根長隨著SA濃度的升高逐漸降低,除了2.0 mmol/L時,其他濃度SA處理下的E+胚根長都大于(P<0.05)E-.原因可能是較低濃度的SA對未攜帶內生真菌的醉馬草種子胚根的生長更適宜.不同濃度的ABA對醉馬草E+、E-種子的胚芽長、胚根長和幼苗含水量的影響均表現(xiàn)為低濃度促進,高濃度抑制,這與前人的研究結果一致[60-61].
眾多研究表明,Epichlo?內生真菌能夠提高禾草種子逆境條件下的萌發(fā)[13,64-65].本研究中,10℃條件下,未經(jīng)激素處理的醉馬草E+種子的發(fā)芽率為49.5%,顯著高于(P<0.05)E-的28%,說明內生真菌的存在能夠促進種子低溫條件下的萌發(fā),這與陳娜[9]10℃條件下醉馬草種子萌發(fā)的結果一致.宋梅玲[14]對野大麥種子的發(fā)芽試驗也表明,內生真菌顯著提高了10℃,15℃低溫脅迫和30℃高溫脅迫下的野大麥種子發(fā)芽率、發(fā)芽指數(shù)等.
[1]LU H,WANG S S,ZHOU Q W,et al.Damage and control of major poisonous plants in the western grasslands of China-a review[J].The Rangeland Journal,2013,34(4):329-339.
[2]SIEGEL M,LATCH G,JOHNSON M.Fungal endophytes of grasses [J].Annual Review of Phytopathology,1987,25(1):293-315.
[3]LEUCHTMANN A,BACON C W,SCHARDL C L,et al.Nomenclatural realignment of Neotyphodium species with genus Epichlo?[J].Mycologia,2014,106(2):202-215.
[4]BACON C W,RICHARDSON M,WHITE J F.Modification and uses of endophyte-enhanced turfgrasses:a role for molecular technology[J]. Crop Science,1997,37(5):1415-1425.
[5]LI C J,ZHANG X X,LI F,et al.Disease and pests resistance of endophyte infected and non-infected drunken horse grass[C]//Popay A,Thom E R.Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses.New Zealand Grassland Association,Dunedin,2007:111-114.
[6]MOY M,BELANGER F,DUNCAN R,et al.Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes[J].Symbiosis,2000,28(4):291-302.
[7]WEST C P,GWINN K D.Role of Acremonium in drought,pest,and disease tolerances of grasses[C]//Proceedings of the Second International Symposium on Acremonium/Grass Interactions,Agresearch,Palmerston North,New Zealand,1993:131-140.
[8]ZHANG X X,LI C J,NAN Z B.Effects of cadmium stress on seed germination and seedling growth ofElymus dahuricus infected with the Neotyphodium endophyte[J].Science China Life Sciences,2012,55(9): 793-799.
[9]陳娜.醉馬草遺傳多樣性及內生真菌對其抗寒性影響[D]:蘭州:蘭州大學,2008.
[10]CLAY K.Effects of fungal endophytes on the seed and seedling biology ofLolium perenne and Festuca arundinacea[J].Oecologia,1987,73 (3):358-362.
[11]RAHMAN M,SAIGA S.Endophytic fungi(Neotyphodiumcoenophialum)affect the growth and mineral uptake,transport and efficiency ratios in tall fescue(Festuca arundinacea)[J].Plant and Soil,2005,272 (1-2):163-171.
[12]GUNDEL P,MASEDA P,VILA-AIUB M,et al.Effects of Neotyphodium fungi on Loliummultiflorum seed germination in relation to water availability[J].Annals of Botany,2006,97(4):571-577.
[13]彭清青,李春杰,宋梅玲,等.不同酸堿條件下內生真菌對三種禾草種子萌發(fā)的影響[J].草業(yè)學報,2011,20(5):72-78.
[14]宋梅玲,李春杰,彭清青,等.溫度和水分脅迫下內生真菌對野大麥種子發(fā)芽的影響[J].草地學報,2010,18(6):833-837.
[15]MIRANSARI M,SMITH D.Plant hormones and seed germination[J]. Environmental and Experimental Botany,2014,99(110-121.
[16]ALBORESI A,GESTIN C,LEYDECKER M T,et al.Nitrate,a signal relieving seed dormancy in Arabidopsis[J].Plant,Cell&Environment,2005,28(4):500-512.
[17]ALI-RAVHEDI S,BOUINOT D,WAGNER M H,et al.Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds:studies with the Cape Verde Islands ecotype,the dormant model of Arabidopsis thaliana[J].Planta,2004,219(3):479-488.
[18]BRADY S M,MCCOURT P.Hormone cross-talk in seed dormancy [J].Journal of Plant Growth Regulation,2003,22(1):25-31.
[19]HAYAT Q,HAYAT S,IRFAN M,et al.Effect of exogenous salicylic acid under changing environment:a review[J].Environmental and Experimental Botany,2010,68(1):14-25.
[20]MISHRA A,CHOUDHURI M.Effects of salicylic acid on heavy metalinduced membrane deterioration mediated by lipoxygenase in rice[J]. Biologia Plantarum,1999,42(3):409-415.
[21]METWALLY A,F(xiàn)INKEMEIER I,GEORGI M,et al.Salicylic acid alleviates the cadmium toxicity in barley seedlings[J].Plant Physiology,2003,132(1):272-281.
[22]PáL M,SZALAI G,HORVáTH E,et al.Effect of salicylic acid during heavy metal stress[J].Acta Biologica Szegediensis,2002,46(3-4): 119-120.
[23]YANG Z M,WANG J,WANG S H,et al.Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L [J].Planta,2003,217(1):168-174.
[24]SAKHABUTDINOVA A,F(xiàn)ATKHUTDIOVA D,SHAKIROVA F.Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination[J].Applied Biochemistry and Microbiology,2004,40(5):501-505.
[25]SHAKIROVA F M,SAKHABUTDINOVA A R,BEZRUKOVA M V,et al.Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity[J].Plant Science,2003,164(3):317-322.
[26]EL-TAYEB M.Response of barley grains to the interactive e.ect of salinity and salicylic acid[J].Plant Growth Regulation,2005,45(3): 215-224.
[27]BORSANI O,VALPUESTA V,BOTELLA M A.Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings[J].Plant Physiology,2001,126(3): 1024-1030.
[28]KAYDAN D,YAGMUR M,OKUT N.Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat(Triticum aestivum L.)[J].Tarim Bilimleri Dergisi,2007,13(2):114-119.
[29]YUSUF M,HASAN S A,ALI B,et al.Effect of Salicylic Acid on Salinity‐induced Changes in Brassica juncea[J].Journal of Integrative Plant Biology,2008,50(9):1096-1102.
[30]LARKINDALE J,HUANG B.Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid,abscisic acid,calcium,hydrogen peroxide,and ethylene[J].Journal of Plant Physiology,2004,161(4):405-413.
[31]HE Y,LIU Y,CAO W,et al.Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass[J].Crop Science,2005,45(3):988-995.
[32]CHAKRABORTY U,TONGDEN C E.Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L[J].Current Science,2005,89(2):384.
[33]SZALAI G,TARI I,JANDA T,et al.Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling[J].Biologia Plantarum,2000,43(4):637-640.
[34]TASGíN E,ATíCí ?,NALBANTOGLU B.Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves[J].Plant Growth Regulation,2003,41(3):231-236.
[35]SENARATNA T,TOUCHELL D,BUNN E,et al.Acetyl salicylic acid (Aspirin)and salicylic acid induce multiple stress tolerance in bean and tomato plants[J].Plant Growth Regulation,2000,30(2):157-161.
[36]JANDA T,SZALAI G,TARI I,et al.Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize(Zea mays L.)plants[J].Planta,1999,208(2):175-180.
[37]JANDA T,SZALAI G,ANTUNOVICS Z,et al.Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants[J].Maydica,2000,45(1):29-33.
[38]KANG G,WANG Z,SUN G.Participation of H2O2in enhancement of cold chilling by salicylic acid in banana seedlings[J].Acta Botanica Sinica,2003,45(5):567-573.
[39]RAJASEKARAN L R,CLAUDE A S,CALDWELL D.Stand establishment in processing carrots-Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures[J].Canadian Journal of Plant Science,2002,82(2):443-450.
[40]YALPANI N,ENYEDI A J,LEóN J,et al.Ultraviolet light and ozone stimulate accumulation of salicylic acid,pathogenesis-related proteins and virus resistance in tobacco[J].Planta,1994,193(3):372-376.
[41]SHARMA Y K,LEON J,RASKIN I,et al.Ozone-induced responses in Arabidopsis thaliana:the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance[J].Proceedings of the National Academy of Sciences,1996,93(10):5099-5104.
[42]RAO M V,DAVIS K R.Ozone‐induced cell death occurs via two distinct mechanisms in Arabidopsis:the role of salicylic acid[J].The Plant Journal,1999,17(6):603-614.
[43]ERVIN E H,ZHANG X,F(xiàn)IKE J H.Ultraviolet-B radiation damage onKentucky Bluegrass II:Hormone supplement effects[J].HortScience,2004,39(6):1471-1474.
[44]HAAT S,HASAN S A,F(xiàn)ARIDUDDIN Q,et al.Growth of tomato(Lycopersicon esculentum)in response to salicylic acid under water stress [J].Journal of Plant Interactions,2008,3(4):297-304.
[45]HAMADA A.Effects of exogenously added ascorbic acid,thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants[J].Photosynthesis:Mechanisms and Effects,1998,4: 2581-2584.
[46]HAMADA A.Salicylic acid versus salinity-drought-induced stress on wheat seedlings[J].Rostlinna Vyroba,2001,47:444-450.
[47]ABREU M E,MUNNé-BOSCH S.Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials:a case study in field-grown Salvia officinalis L.plants[J].Environmental andExperimental Botany,2008,64(2):105-112.
[48]李春杰,南志標,劉勇.醉馬草內生真菌檢測方法的研究[J].中國食用菌,2008,27(suppl.):16-19.
[49]衛(wèi)東,王彥榮.芨芨草種子發(fā)芽檢驗方法的研究[J].草業(yè)科學,1998,15(4):29-32.
[50]BEWLEY J D.Seed germination and dormancy[J].Plant Cell,1997a,9(7):1055-1066.
[51]LOPEZ M L,MONGRAND S,CHUA N H.A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor inArabidopsis[J].Proceedings of the National Academy of Sciences,2001,98(8):4782-4787.
[52]LOPEZ M L,MONGRAND S,MCLACHLIN D T,et al.ABI5 acts downstream of ABI3 to execute an ABA‐dependent growth arrest during germination[J].The Plant Journal,2002,32(3):317-328.
[53]PENFIELD S,GRAHAM S,GRAHAM I.Storage reserve mobilization in germinating oilseeds:Arabidopsis as a model system[J].Biochemical Society Transactions,2005,33(2):380-383.
[54]張鳳銀,張萍,彭琳.外源水楊酸對低溫脅迫下黑麥草種子萌發(fā)的影響[J].安徽農(nóng)業(yè)科學,2011,39(35):21614-21615.
[55]張蕊,呂俊,米青山,等.低溫下外源水楊酸對水稻幼苗抗氧化酶系的影響[J].西南農(nóng)業(yè)大學學報,2006,28(1):29-32.
[56]丁君輝,李耀國,童建華.脫落酸對水稻種子萌發(fā)的影響[J].作物研究,2012,26(4):328-330.
[57]王熹,陶龍興,黃效林,等.外源ABA抑制水稻種子發(fā)芽的生理機制[J].作物學報,2004,30(12):1250-1253.
[58]黃益洪,湯日圣,葉曉青,等.脫落酸(ABA)對白粒小麥種子萌發(fā)及幼苗生長的影響[J].麥類作物學報,2009,29(3):503-507.
[59]GUAN C M,WANG X C,F(xiàn)ENG J,et al.Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive 5 protein in Arabidopsis[J]. Plant Physiology,2014,164(3):1515-1526.
[60]黃杏,陳明輝,楊麗濤,等.低溫脅迫下外源ABA對甘蔗幼苗抗寒性及內源激素的影響[J].華中農(nóng)業(yè)大學學報,2013,32(4):6-11.
[61]張笑,趙純欽,黃靜,等.外源脫落酸,水楊酸對小麥種子萌發(fā)及生理特性的影響[J].應用與環(huán)境生物學報,2014,20(001):139-143.
[62]王玉萍,董雯,張鑫,等.水楊酸對鹽脅迫下花椰菜種子萌發(fā)及幼苗生理特性的影響[J].草業(yè)學報,2012,21(1):213-219.
[63]張鳳銀,雷剛,張萍,等.水楊酸對低溫脅迫下藜豆種子萌發(fā)和幼苗生理特性的影響[J].西北農(nóng)林科技大學學報(自然科學版),2012,40(4):205-209.
[64]李飛.內生真菌對禾草類植物抗旱性的影響[J].草業(yè)科學,2006,23(3):57-62.
[65]任安芝,高玉葆,李俠.內生真菌感染對黑麥草若干抗旱生理特征的影響[J].應用與環(huán)境生物學報,2002,8(5):535-539.
(責任編輯:李建忠,付強,張陽,羅敏;英文編輯:周序林,鄭玉才)
Effects of interaction between exogenous hormones and Epichlo? on germination of drunken horse grass(Achnatherum inebrians)under low temperature stress
LIU Li,LI Xiu-zhang,CHEN Zhen-jiang,GUO Chang-hui,Lv Hui,LI Chun-jie
(State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University,Lanzhou 730020,P.R.C.)
Temperature is a crucial abiotic factor impacting the germination of plant seeds.However,accumulating evidences suggest exogenous hormones and endophyte as important regulators to alleviate the damage of seed germination and seedling growth in low temperature environment.In this study,endophyte-infected(E+)and endophyte-free(E-)seeds of A.inebrians were tested under cold stress.Under 10℃,seed germination,seedling growth,embryo length,radical length and seeding moisture content of E+and E-A.inebrians were examined when salicylic acid(SA)or abscisic acid(ABA)were applied,to explore the effects of endophytic fungi and exogenous hormones interaction on the germination of A.inebrians at low temperature.The results showed that SA or ABA treatment could promote the germination of E+and E-A.inebrians,however,higher concentrations of SA or ABA showed inhibition(P<0.05),and the highest concentrations of ABA showed the strongest(P<0.05)inhibition.The interactions between SA and Epichlo? endophyte had significant(P<0.05)effects on germination rate,germination index and root length.The interactions between ABA and Epichlo? endophyte had significant(P<0.05)effects on germination index,seedling water content,shoot and root lengths.In conclusion,the interactions between a certain concentrations of SA or ABA and Epichlo? endophyte could promote the germination of A.inebrians under cold stress.
drunken horse grass(Achnatherum inebrians);Epichlo?;low temperature;exogenous hormone;seed germination
Q948;S812
A
2095-4271(2016)04-0373-10
10.11920/xnmdzk.2016.04.003
2016-05-13
柳莉(1987-),女,漢族,甘肅白銀市人,碩士研究生,研究方向:禾草內生真菌共生體研究.E-mail:lliu13@lzu.edu.cn
李春杰(1968-),男,甘肅鎮(zhèn)原人,教授,博士,研究方向:禾草內生真菌共生體研究.E-mail:chunjie@lzu.edu.cn
國家973計劃課題(2014CB138702);國家自然科學基金項目(31372366);教育部創(chuàng)新團隊發(fā)展計劃項目(IRT13019)