李微哲,婁平
(1.中南大學 土木工程學院 長沙 410012;2.中煤科工集團 重慶設計研究院有限公司,重慶400016)
?
李微哲1,2,婁平1
(1.中南大學 土木工程學院 長沙 410012;2.中煤科工集團 重慶設計研究院有限公司,重慶400016)
假定單元節(jié)點的彎矩逆時針方向為正,順時針方向為負;節(jié)點剪力、軸力方向與坐標軸方向相為正。則根據(jù)材料力學原理,單元節(jié)點i、j的彎矩與節(jié)點位移關系如下:
(1)
式中:Mi、vi、Mj、vj分別為節(jié)點i的彎矩、位移和節(jié)點j的彎矩和位移;z為單元長度方向坐標;E為計算彈性模量。
對節(jié)點i進行平衡彎矩分析,其彎矩平衡方程為
(Mi+Mj)+FQj(zj-zi)-FNj(vj-vi)=0
(2)
對節(jié)點j進行平衡彎矩分析,其彎矩平衡方程為
(Mi+Mj)-FQi(zj-zi)+FNi(vj-vi)=0
(3)
將式(1)代入式(2)得
FNj(vj-vi)=0
(4)
將式(1)代入式(3)得
FNi(vj-vi)=0
(5)
(6)
(7)
1.2 剪切變形和彎曲變形位移模式
假定考慮剪切變形的桿單元水平位移模式為
v=vb+vs
(8)
vb(z)=a0+a1z+a2z2+a3z3
(9)
vs=vsL+vsV=a4+a5z
(10)
式中:v為單元總水平位移;vb彎曲變形引起的水平位移;vs為剪切變形引起的水平位移;vsL為水平力剪切變形產(chǎn)生的水平位移;vsV為豎向力徑向剪切分力剪切變形產(chǎn)生的水平位移。
則僅考慮彎曲變形時,單元i節(jié)點(Z=0)和單元j節(jié)點(z=l)的水平位移和轉角如下:
(11)
式中:l為單元長度;a0、a1、a2、a3為待定系數(shù);vib、vjb、φib、φjb為僅考慮彎曲變形時單元節(jié)點i和j的水平位移和轉角。
根據(jù)式(11),可將a0、a1、a2、a3待定系數(shù)表達成vib、φib、vjb、φjb的表達式為
(12)
將式(12)代入式(9),可得單元彎曲變形水平位移函數(shù)為
(13)
則僅考慮剪切變形時,單元i節(jié)點(Z=0)和單元j節(jié)點(z=l)的水平位移和轉角為
(14)
將式(14)代入式(10),則單元剪切變形水平位移函數(shù)為
(15)
依材料力學和圖1假定,水平剪力、豎向力徑向剪切分力產(chǎn)生的剪切變形計算為
(16)
(17)
(18)
式中:FQ為單元剪力;k為形狀剪切系數(shù),對矩形截面取1.2,對圓形截面取10/9,G為計算剪切模量;visL、vjsL、φisL、φjsL分別為水平力剪切變形在單元i、j節(jié)點產(chǎn)生的水平位移和轉角;visV、vjsV、φisV、φjsV分別為豎向力徑向剪切分力剪切變形在單元i、j節(jié)點產(chǎn)生的水平位移和轉角。
1.3 單元剛度矩陣方程
因剪切變形引起的轉角在節(jié)點不連續(xù),則
(19)
根據(jù)式(5)、式(8)和式(10)可得
(20)
則聯(lián)合式(1)、(4)和式(13),可得單元剪力為
(21)
(22)
將式(13)代入式(22)可得單元節(jié)點剪力為
(23)
(24)
將式(13)、(19)代入式(1)可得單元節(jié)點彎矩為
(25)
(26)
將式(16)代入式(23)可得計入剪切變形后單元節(jié)點位移關系為
(27)
或
(28)
將式(17)代入式(23)可得僅計入水平力剪切變形而忽略豎向力徑向剪切分力剪切變形時的單元節(jié)點位移關系如下:
(29)
由式(18)可得僅計入豎向力徑向剪切分力剪切變形而忽略水平力剪切變形時的單元節(jié)點位移關系如下:
(30)
將式(27)代入式(23)可得同時計入水平力剪切變形和豎向力徑向剪切分力剪切變形時,單元節(jié)點剪力、彎矩與節(jié)點總水平位移、彎曲變形引起的轉角之間關系為
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
1.5 考慮剪切變形時單元節(jié)點轉角的計算
(40)
(41)
(42)
式中:φi為節(jié)點i轉角;vi-1vi、vi+1分別為i-1節(jié)點、i節(jié)點和i+1節(jié)點的位移,式(40)應用于一般節(jié)點,式(41)或式(42)適用于端節(jié)點。
1.6 單元內力求解
在小變形情況下,當已知節(jié)點位移時,可按式(35)~(37)計算單元節(jié)點內力時,剪力結果未計入豎向力徑向剪切分力結果。如需在小變形情況下計入豎向力徑向剪切分力影響,在計入剪切變形影響、僅計入水平力剪切變形影響、僅計入豎向力徑向剪切分力剪切變形影響時應分別按式(26)、 (27) 、(28)計算單元節(jié)點內力。
(43)
(44)
(45)
式(43)~(45)分別由式(35)~(37)演化而來,主要是在反算單元節(jié)點剪力時已計入了小變形情況下豎向力因傾角而產(chǎn)生的徑向剪切分力。式(43)~(45)的剪力項分別減去式(35)~(37)對應的剪力項即可得豎向力因傾角而產(chǎn)生的徑向剪切分力。
某支座高h=0.3 m,直徑d=850 mm,剪切模量G=2 MPa,抗壓彈性模量E=5 000 MPa,豎向力FN= 15 000 kN,水平力FH=180 kN。
支座受力如圖2,支座頂水平位移由剪切變形Vs和彎曲變形Vm組成,但剪切變形遠大于彎曲變形,且與支座高度h同數(shù)量級,為典型的大剪切變形構件;支座底部總彎矩由豎向力偏心彎矩和水平力矩組成,豎向力偏心彎矩往往極顯著,且遠大于水平力矩。支座偏心受壓后其豎向抗壓剛度會隨之變化,其彎曲變形會出現(xiàn)一定的非線性,本文暫時忽略此影響,并假定其抗壓彈模不變。
圖2 支座受力示意圖Fig.
表1 支座位移內力結果
Table1 Deformation and moment of bearing element
計算點距支座頂面距離/mm節(jié)點水平位移/mm彎曲轉角/(10-3)總彎矩/(kN·m)水平力產(chǎn)生的彎矩/(kN·m)053.07-0.9960.0003047.75-0.986-85.155.46042.43-0.956-170.2910.89037.12-0.906-255.4116.212031.81-0.837-340.5121.615026.50-0.747-425.562718021.19-0.637-510.5832.421015.88-0.508-595.5437.824010.58-0.358-680.4443.22705.29-0.189-765.2648.63000.000.000850.0154
某橋梁基樁[1,7,9],沖刷線以上樁長30.212 m,其中l(wèi)1=8.012 m,d1=1.8 m,E1=1.933 3×104MPa;l2=22.2 m,d2=2.2 m,E2=1.8×104MPa;在沖刷線以下樁長l3=42.8 m,d3=2.2 m,E3=1.8×104MPa;地基比例系數(shù)m=10 000 kN/m3,豎向荷載Fz=9 102.2 kN,水平荷載Fx=165 kN。設墩頂支座同算例一,且基樁剪切模型G=0.4E。
支座基樁受力如圖3,支座頂水平位移由基樁水平位移Vp和支座自身水平變形Vb組成;且二者同數(shù)量級?;鶚俄敽奢d除了上部結構傳遞的豎向力FN和水平力FQ外,還有豎向力因支座自身變形而產(chǎn)生的偏心彎矩FN·Vb,因豎向力和支座變形均很大,因此偏心彎矩不能忽略。
圖3 支座基樁受力示意圖Fig.
將支座劃分了2個桿單元,其單元剛度矩陣方程采用式(36);基樁劃分了731個桿單元,在忽略和計入樁身剪切變性影響情況下其單元剛度矩陣方程分別采用 (38)和式(35);并用自編MATLAB有限元程序計算,結果如表2和圖4。
項目文獻[1]文獻[9]本文1本文2本文3不計PΔ效應考慮PΔ效應和樁自重xp/mm134.019133.96133.956x0/mm6.4266.4196.419xz/mm257.931259.742xp/mm182.17182.15182.159206.581208.376φp(10-3)-7.784-7.7846-9.222-9.273x0/mm8.4348.4188.41839.2469.331ф0(10-3)-2.324-2.319-2.3193-2.558-2.596Mmax/(kN.m)6918.16915.76914.87663.07680.7Qmax/kN-923.3-918.9-1016.2-1006.4Qp/kN235.86248.95249.55σmax(kPa)91.3599.9499.84
圖4 支座和基樁PΔ效應的內力位移分布圖(忽略樁身剪切變形影響)Fig.4 Distribution of internal force, displacement and soil pressure for pile and bearing while shear
[1] 趙明華.軸向和橫向荷載同時作用下的樁的計算[J].湖南大學學報,1987,14(2):68-81. ZHAO M H. The calculation of piles under simultaneous axial and lateral loading [J]. Journal of Hunan University, 1987, 14(2):68-81.
[2] 橫山興滿.樁結構物的計算方法和計算實例[M]. 唐業(yè)清,吳慶蓀.譯.北京:人民交通出版社,1981. YOKOYAMA.Calculation method and cases of pile foundation [M]. Translated by Tang Yeqing & Wu Yisun. Beijing . China communication press, 1981. (in Chinese)
[3] 李微哲,趙明華,單遠銘,等. 傾斜偏心荷載下基樁內力位移分析[J].中南公路工程,2005, 30(3) : 53-57. LI W Z, ZHAO M H, SHAN Y M, et al. Analysis of single pile under eccentric and inclined loading [J]. General South Highway Engineering, 2005, 30(3): 53-56.
[4] 趙明華,徐卓君,馬繽輝,等.傾斜荷載下基樁C法的冪級數(shù)解[J]. 湖南大學學報(自然科學版),2012,39(3):1-5. ZHAO M H, XU Z J, MA B H,et al.Power series solution for pile based on C-method under inclined loads [J].Journal of Hunan University(Naturnal Science), 2012, 39(3):1-5.
[5] 欒魯寶,丁選民,周仕禮,等.考慮豎向荷載的樁基水平振動響應的解析解[J].建筑結構, 2015, 45(19):80-86. LUAN L B, DING X M, ZHOU S L,et al. Analytical solution of lateral vibration of a axial loaded pile [J]. Building Structure, 2015, 45(19):80-86.
[7] 王用中,張河水. 彈性地基梁的壓彎計算及其應用[J].橋梁建設,1985,14(4):30-52. WANG Y Z, ZHANG H S. Bending calculation of elastic foundation beam and its application [J]. Bridge Construction ,1985,14(4):30~52.(in Chinese)
[8] 趙明華,李微哲,曹文貴. 復雜荷載及邊界條件下基樁有限桿單元方法研究[J]. 巖土工程學報,2006,28(9):1059-1064. ZHAO M H, LI W Z, CAO W G. Study on applying finite pole element method to analysis of piles under complex loads with different boundary restraints [J]. Chinese Journal of Geotechnical Engineering, 2006,28(9): 1059-1064.
[9] 夏擁軍,陸念力.梁桿結構二階效應分析的一種新型梁單元[J]. 工程力學,2007,24(7):39-43. XIA Y J, LU N N. A new beam element for second-order effect analysis of beam structures [J]. Engineering Mechanics, 2007,24(7):39-43.
[10] 趙明華,李微哲,單遠銘,等.成層地基中傾斜荷載樁改進有限桿單元法研究[J].工程力學,2008,25(5):79-85. ZHAO M H, LI W Z, SHAN Y M, et al. Behavior analysis of piles in layered clays under eccentric and inclined loads by improved finite pole element method[J]. Engineering Mechanics,2008, 28(5): 79-85.
[13] 耿江瑋,朱東生,向中富,等.非規(guī)則連續(xù)梁橋非線性地震反應分析[J].重慶交通大學學報(自然科學版), 2011, 30(2):185-189, 281. GENG J W, ZHU D S, XIANG Z F,et al. Nonlinear seismic response analysis of irregular continuous bridge [J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(2):185-189, 281.
[14] 魏標,崔睿博,戴公連,等.橡膠支座對非規(guī)則連續(xù)梁橋地震反應的影響[J].中國公路學報, 2013,26(6): 110-117. WEI B, CUI R B, DAI G L, et al. Impact of laminated rubber bearings on seismic response of irregular continuous bridges [J]. China Journal of Highway and Transport, 2013,26(6): 110-117.
[15] 張志俊,李小珍,張迅,等. 彈性支座對橋梁車致振動的隔振效果研究[J].工程力學, 2015, 32(4):103-111. ZHANG Z J, LI X Z, ZHANG X, et al. Study on the vibration-isolation effects of elastic bearings on train-induced vibration of railway bridge [J]. Engineering Mechanics, 2015, 32(4):103-111.
(編輯 胡玲)
LiWeizhe1,2,LouPing2
(1.School of Civil Engineering, Central South University, Changsha 410000,P.R. China;2. China Coal Technology &Engineering Group, Chongqing Design & Research Institute Co. Ltd. Chongqing 400016,P.R. China)
Finite pole element method is presented forP-Δeffect analysis of pile and bearing while shear deformation is well considered. It is assumed that horizontal displacement of the pole element has a longitudinally cubic power function and the shear displacement has a longitudinally linear function, theP-Δeffect pole element rigid equation considering the shear deformation produced by lateral load and the radial component of vertical load, is derived. TheP-Δeffect pole element rigid equation considering the shear deformation only produced by lateral load is derived in the paper. TheP-Δeffect pole element rigid equation considering the shear deformation only produced by the radial component of vertical load, is derived in the paper. And theP-Δeffect pole element considering the shear deformation only produced by lateral load can simulate the bearing working eccentrically well in real-time. Matlab process of finite pole element method forP-Δeffect analysis of pile and bearing is edited, and case analysis is done, and the theory and the method is proved good. Finally conclusions are drawn as follows: (i) theP-Δeffect analysis result of pile will increase obviously while the eccentric bending moment of the bearing is well considered; (ii) the deformation has little effect on theP-Δeffect analysis result of the pile and bearing.
pile; bearing; lateral shear deformation; radial component of vertical load;P-Δeffect; finite pole element method
2016-03-07
李微哲(1981-),男,主要從事樁基礎及路基研究,(E-mail)46414461@qq.com。
10.11835/j.issn.1674-4764.2016.06.009
TU470
A
1674-4764(2016)06-0062-10
Received:2016-03-07
Author brief:Li Weizhe(1981-),main research interests: pile foundation and subgrade engineering, (E-mail)46414461@qq.com.