• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photo-Electro-Thermal Theory with Bidirectional Thermal Model

    2016-12-15 05:04:57CHENHuantingLINShuoHUANGJunxinZHOUJinrongHEZhongquanGAOXiqi
    發(fā)光學(xué)報 2016年11期
    關(guān)鍵詞:光通量結(jié)溫熱阻

    CHEN Huan-ting, LIN Shuo, HUANG Jun-xin, ZHOU Jin-rong, HE Zhong-quan, GAO Xi-qi

    (1. College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;2. Fujian State Key Laboratory of LED Display and Lighting, Fushun Optoelectronics Science andTechnology Co., Ltd., Zhangzhou 363000, China;3. School of Information Science and Engineering, Southeast University, Nanjing 210000, China)

    ?

    Photo-Electro-Thermal Theory with Bidirectional Thermal Model

    CHEN Huan-ting1,2,3*, LIN Shuo1, HUANG Jun-xin1, ZHOU Jin-rong1, HE Zhong-quan2, GAO Xi-qi3

    (1.CollegeofPhysicsandInformationEngineering,MinnanNormalUniversity,Zhangzhou363000,China;2.FujianStateKeyLaboratoryofLEDDisplayandLighting,FushunOptoelectronicsScienceandTechnologyCo.,Ltd.,Zhangzhou363000,China;3.SchoolofInformationScienceandEngineering,SoutheastUniversity,Nanjing210000,China)

    An estimation method for the junction temperature of LED devices based on bidirectional thermal model was proposed in this paper. The bidirectional thermal model obtained in thermal measured procedure was applied to the original PET theory to predict the luminous flux. For the junction temperature, the average deviation between the unidirectional model and the measurement is about 11.2% and that between the bidirectional model and the measurement is 5.3%. For luminous flux, the average deviation between the PET theory with bidirectional model and the measurement is 6.3%. The calculated results are in good agreement with the measurements. These results confirm that the PET theory with bidirectional thermal model can provide accurate predictions for luminous flux.

    light-emitting diode; photo-electro-thermal theory; bidirectional thermal model; junction temperature; luminous flux

    1 Introduction

    As the demands for light output increase, the driving power of the LED package increases continuously. The thermal management of LED package, which has great effect on electrical characterization and reliability, has become more and more important for these devices. The accurate prediction of junction temperature is limited by unidirectional thermal model for a variety of boundary conditions. This characterization usually consists of the junction-to-case or junction-to-ambient thermal resistance measured according to JEDEC51-1[1]. The unidirectional thermal model could not accurately describe the practical heat distribution in package[2-3]. Since LED modules can be used in various application situations, the junction temperature will be different for the same LED module if the heatsink is different. The thermal model can use an equivalent convective boundary condition to eliminate the effects of different application situations[4]. It could not accurately obtain the junction temperature. The interactions of photometric, electrical and thermal aspects have been described mathematically in a photo-electro-thermal (PET) theory[5-7]for LED systems. The PET theory can be used to optimize the design of an LED system and determine the operating point of maximum luminous flux per Watt. It can also be used to set criteria for the optimal thermal design for the appropriate heatsink for a given application. In addition, junction temperature is a critical parameter and affects luminous efficacy, maximum light output and reliability[8-14]. For the flat LED package with relatively large surface area, the heat flow from the device junction to the ambient through the silicone cover cannot be ignored[1]. This means that the bidirectional heat flow on both sides of the flat LED package should be considered. In fact, it will be shown that if such bidirectional heat flow is included, the theoretical prediction of the junction temperature and thus the luminous output would be much more accurate.

    In this paper, the PET theory is extended with the use of bidirectional thermal model to determine the accurate junction temperature that is required in the theory. A fast measurement procedure consisting of a simple thermal measurement based on the use of the T3ster system is illustrated. Based on this procedure, bidirectional thermal model can extract the junction temperature that cannot be easily accessed in practice. The parameters obtained in this fast procedure are applied to the original PET theory to accurately predict the luminous flux.

    2 Photo-Electro-Thermal Theory Based on Bidirectional Thermal Model

    2.1 Bidirectional Thermal Model

    The heat generated by the active layer of LED is first conducted to the heat sinkviasapphire, and then to MCPCB. In the end, heat is dissipated out to the ambient air by convection. Strictly speaking, heat flow from the device junction to the ambient through the silicone cover cannot be ignored. Therefore, two heat flow paths can be considered.

    Fig.1(a) shows the heat flow path for unidirectional thermal model. The heat flow from the junction to the heatsink and then heatsink to the ambient can be respectively represented by the junction-to-case thermal resistanceRjcand the heatsink thermal resistanceRhs. Fig.1(b) shows the heat flow paths for bidirectional thermal model. The heat flow from the junction to the silicone cover should be included. For LED, the heat flow path is represented by the thermal resistanceRsiliconeas shown in Fig.1(b).

    Fig.1 Unidirectional thermal model (a) and bidirectional thermal model (b) of LED

    The model in Fig.1(b) will be used to demonstrate the heat trapping effects of the encapsulation layers in the flat LED package.

    Based on the above unidirectional and bidirectional thermal model, the equivalent thermal resistance for LED can be expressed as

    (1)

    (2)

    Where,Rjc,uis equivalent thermal resistance of unidirectional thermal model,Rjc,bis equivalent thermal resistance of bidirectional thermal model.

    2.2 Junction Temperature

    Based on the unidirectional and bidirectional thermal model described above, the thermal model for the LED can be expressed as

    (3)

    (4)

    Where,Ruprefers to the total thermal resistance in the heat flow path from the junction through the surface of the LED package to the ambient, andRdownrefers to the total thermal resistance from the junction through the heatsink to the ambient. Based on Eq. (1) to (4), the junction temperatureTj,uandTj,bfor the unidirectional and bidirectional thermal model can be rewritten as

    (5)

    (6)

    2.3 Photo-Electro-Thermal Theory

    The total luminous fluxφvof a system consisting ofNLED devices can be expressed as

    (7)

    (8)

    Where,Pdis electrical power,Eis luminous efficacy,keis a measure of the droop characteristic of the luminous efficacy with junction temperature,E0is the rated efficacy at the rated temperatureT0(typically 25 ℃ in some LED data sheets)[5-6].

    Based on the junction temperature expression for Eq.(5) and (6), the luminous flux for unidirectional and bidirectional thermal model can be expressed as

    (9)

    (10)

    The heat dissipation coefficientkhrepresents the portion of LED power that is dissipated as heat. It is related to the optical power and wall-plug efficiency that can be measured by combined thermal and radiometric measurement equipment. Therefore, it can be determined that lighting devices will generate more heat than the others by using comparing thekhfactor.

    Several important observations can be made from Eq.(10):

    (ⅰ)Eq.(10) relates the luminous fluxφvto the electrical powerPd, the thermal resistance of the heatsinkRhs, the deviceRjc, and the packageRsilicone. It is a model that integrates the photometric, electrical, thermal and package aspects of the LED system altogether.

    3 Experimental Process

    Luxeon K2 3WLED is mounted on heatsink. The optical measurements of the LED samples are performed under steady-state thermal and electrical conditions using the PMS-50 spectro-photocolorimeter with an integrating sphere (measured after 20 min of operation at different electrical power levels and at an ambient temperature of 20 ℃). The T3ster captures the thermal transient response in real time, records the cooling/heating curve, and then evaluates the cooling/heating curves for plotting the thermal characteristics. The heating current for the samples is 0.4 A and the heating/cooling time is 20 min. The measured current is 5 mA. The thermal resistance of the LED package could be extracted using the thermal structure function, which is based on the distribution RC networks[15-16]. The Peltier-cooled fixture was used to stabilize the LED temperature for the optical and electrical measurements and it also served as an actively temperature-controlled cold-plate.

    4 Experimental Verification

    Using the T3ster LED measurement system, the thermal resistance values of the LED samples (ⅰ) without silicone cover, (ⅱ) with silicone cover are measured. The total equivalent thermal resistance for the two samples (ⅰ) blue LED without silicone coverRjc,b′, (ⅱ) blue LED with silicone coverRjc,bare recorded in Fig.2. It is noted thatRjc,bis smaller thanRjc,b′because there is no silicone coating which generates and traps heat when the diode is in operation. Based on the thermal equivalent circuits in Fig.1 and Eq.(1) to (2), it can be found thatRsiliconeis about 35.4 ℃/W using by the measured results of Fig.2.

    Fig.2 Thermal resistance and capacitance of the two samples (Blue LED without silicone package, blue LED with silicone package).

    The coefficientkedefined in the PET theory is a measure of the droop characteristic of the luminous efficacy with junction temperature and is physically related to the characteristic temperature

    (11)

    Fig.3 shows the measured luminous efficacy of the LED sample with junction temperature. The luminous flux of the LED samples decrease with increasing junction temperature. By fitting the measured curve into the form of (8), thekeof the LED devices is -0.001 88 lm/(W·℃). The characteristic temperatureT1of the LED samples can be calculated by Eq.(11), which is 532 ℃. When projected to 25 ℃, the luminous efficacyEoof the LED sample is 22 lm/W.

    Fig.3 Measured luminous efficacyversusjunction temperature

    According to Fig.1, the bidirectional thermal resistance model is compared with the traditional unidirectional thermal resistance model. The LED samples are tested on two different heatsinks. The theoretical junction temperature of LED samples can be calculated based on unidirectional thermal model and bidirectional thermal model, as shown in Eq.(5) and (6). Fig.4 and Fig.5 show the theoretical values of the junction temperature of the LED sample based on the unidirectional and bidirectional models, respectively. The corresponding practical measurements are also plotted in the figures. While both models give the correct trend of the characteristics, the bidirectional thermal model offers a more accurate prediction than the unidirectional model. It can be seen that the bidirectional thermal model, which includes the heat flow through the surface area of the LED sample, offers a better prediction than the unidirectional model. The average deviation between the unidirectional model and the measurement is about 11.2% and that between the bidirectional model and the measurement is 5.3%. Therefore, the results in Fig.4 and Fig.5 confirm the validity of the bidirectional thermal model.

    Fig.4 Calculated and measured junction temperatureversuselectrical power of LED based on unidirectional thermal model

    Fig.5 Calculated and measured junction temperatureversuselectrical power of LED based on bidirectional thermal model

    Based on Eq.(9) and (10), the calculated luminous flux curves are plotted along with the measured flux as functions of the electrical power in Fig.6. The required parameters of LED system are shown in following. With the electrical power of 0.45-2.26 W,E0is 22 lm/W at the junction temperature of 25 ℃,khandkeare related to the junction temperature and electrical power[6,13],khis from 0.52 to 0.63,keis from -0.001 9 to -0.002 8, N is 3.

    Based on Eq.(9) and (10), the calculated luminous flux curves are plotted along with the measurements in Fig.6 and Fig.7 based on the unidirectional and bidirectional models, respectively. It can be seen that the PET theory with bidirectional thermal model offers a better prediction than the unidirectional model. The average deviation between the PET theory with unidirectional model and the measurement is about 10.8% and that between the bidirectional model and the measurement is 6.3%. The calculated results are in good agreement with the measurements. These results confirm that the PET theory with bidirectional thermal model can provide accurate predictions for luminous flux. The proposed model is a multi-physical one that provides physical insights for researchers and manufacturers. It can be used for analyzing the performance of LED structures in the context of a system, incorporating the interactions of heat, light and power.

    Fig.6 Calculated and measured luminous fluxversuselectrical power of LED based on unidirectional thermal model

    Fig.7 Calculated and measured luminous fluxversuselectrical power of the blue LED based on bidirectional thermal model

    5 Conclusion

    An estimation method for the junction temperature of LED devices based on bidirectional thermal model is proposed in this paper. The bidirectional thermal model obtained in thermal measured procedure is applied to the original PET theory to predict the luminous flux. The estimation method presented in this paper extends the original PET theory to covering luminous fluxφv, the electrical powerPd, the thermal resistance of the heatsinkRhs, the deviceRjc, and the packageRsilicone. It is a model that integrates the photometric, electrical, thermal and package aspects of the LED system altogether. It is envisaged that the extended theory can be used as a design tool for LED system designs.

    [1] CHEN H T, LU Y J, GAO Y L,etal.. The performance of compact thermal models for LED package [J].Thermochim.Acta, 2009, 488(1-2):33-38.

    [2] HUANG W, STAN M R, SKADRON K. Parameterized physical compact thermal modeling [J].IEEETrans.Compon.Packag.Technol., 2005, 28(4):615-621.

    [3] SABRY M N. Compact thermal models for electronic systems [J].IEEETrans.Compon.Packag.Technol., 2003, 26(1):179-185.

    [4] LUO X, MAO Z, YANG J,etal.. Engineering method for predicting junction temperatures of high-power light-emitting diodes [J].IETOptoelectron., 2012, 6(5):230-236.

    [5] HUI S Y, QIN Y X. A general photo-electro-thermal theory for light emitting diode (LED) systems [J].IEEETrans.PowerElectron., 2009, 24(8):1967-1976.

    [6] CHEN H T, TAO X H, HUI S Y R. Estimation of optical power and heat-dissipation coefficient for the photo-electro-thermal theory for LED systems [J].IEEETrans.PowerElectron., 2012, 27(4):2176-2183.

    [7] CHEN H T, HUI S Y. Dynamic prediction of correlated color temperature and color rendering index of phosphor-coated white light-emitting diodes [J].IEEETrans.Ind.Electron., 2014, 61(2):784-797.

    [8] 李艷菲,張方輝,張靜. 大功率LED的電流老化特性分析 [J]. 發(fā)光學(xué)報, 2012, 33(11):1236-1240. LI Y F, ZHANG F H, ZHANG J. The accelerated aging characterization of high power LED [J].Chin.J.Lumin., 2012, 33(11):1236-1240. (in Chinese)

    [9] 黃馬連,陳煥庭,周小方,等. 利用相關(guān)色溫和光通量優(yōu)化白光LED光譜 [J]. 光子學(xué)報, 2015, 44(10):1030001-1-7. HUANG M L, CHEN H T, ZHOU X F,etal.. Optimization spectrum of white light emitting diodes based on correlated color temperature and luminous flux [J].ActaPhoton.Sinica, 2015, 44(10):1030001-1-7. (in Chinese)

    [10] 湯英文,熊傳兵,井曉玉. 量子壘結(jié)構(gòu)對Si襯底GaN基綠光LED光電性能的影響 [J]. 發(fā)光學(xué)報, 2016, 37(3):327-331. TANG Y W, XIONG C B, JING X Y. Effect of quantum barrier structures on photoelectric properties of GaN-based green LED on si substrates [J].Chin.J.Lumin., 2016, 37(3):327-331. (in Chinese)

    [11] CHEN H T, LIN D Y, TAN S C,etal.. Chromatic, photometric and thermal modeling of LED systems with nonidentical LED devices [J].IEEETrans.PowerElectron., 2014, 29(12):6636-6647.

    [12] HAYASHI H, FUKUSHIMA D, NOMA T,etal.. Thermally engineered flip-chip InGaN/GaN well-ordered nanocolumn array LEDs [J].IEEEPhotonicsTechnol.Lett., 2015, 27(22):2343-2346.

    [13] CHEN H T, TAN S C, HUI S Y R. Analysis and modeling of high-power phosphor-coated white light-emitting diodes with a large surface area [J].IEEETrans.PowerElectron., 2015, 30(6):3334-3344.

    [14] 蔡嘉毅,陳煥庭,周小方,等. 三維空間下混合白光LED系統(tǒng)照度模型 [J]. 發(fā)光學(xué)報, 2015, 36(9):1088-1093. CAI J Y, CHEN H T, ZHOU X F,etal.. Illumination model of mixed white light-emitting diode system with three-dimensional conditions [J].Chin.J.Lumin., 2015, 36(9):1088-1093. (in Chinese)

    [15] POPPE A, ZHANG Y, WILSON J,etal.. Thermal measurement and modeling of multi-die packages [J].IEEETrans.Compon.Packag.Technol., 2009, 32(2):484-492.

    [16] SZéKELY V. A new evaluation method of thermal transient measurement results [J].Microelectro.J., 1997, 28(3):277-292.

    陳煥庭(1982-),男,福建漳州人,博士,副教授,2010年于廈門大學(xué)獲得博士學(xué)位,主要從事半導(dǎo)體照明技術(shù)的研究。

    E-mail: htchen23@163.com

    2016-05-19;

    2016-06-21

    國家自然科學(xué)基金(61307059);中國博士后面上基金(2015M592075); 福建省自然科學(xué)基金杰出青年項目(2016J06016); 福建省高校新世紀優(yōu)秀人才支持計劃; 福建省區(qū)域重大項目(2015I1007)資助

    基于雙向熱阻模型的光電熱一體化理論

    陳煥庭1,2,3*, 林 碩1, 黃俊鑫1, 周錦榮1, 何仲全2, 高西奇3

    (1. 閩南師范大學(xué) 物理與信息工程學(xué)院, 福建 漳州 363000;2. 福建省LED顯示屏及LED照明重點實驗室 富順光電科技股份有限公司, 福建 漳州 363000;3. 東南大學(xué) 信息科學(xué)與工程學(xué)院, 江蘇 南京 210000)

    通過雙向熱阻模型描述LED系統(tǒng)內(nèi)部雙向散熱路徑,進而構(gòu)建光電熱一體化模型。基于雙向熱阻模型參數(shù),光電熱一體化模型可高精度預(yù)測LED系統(tǒng)的結(jié)溫以及光通量。實驗驗證結(jié)果表明,基于所提出的雙向熱阻模型的結(jié)溫計算值和實驗值的平均誤差在5.3%之內(nèi),而采用傳統(tǒng)的單向熱阻模型的結(jié)溫計算值和實驗值的平均誤差達到11.2%。基于雙向熱阻模型的光電熱一體化理論,光通量的計算值與實驗值的平均誤差在6.3%之內(nèi)。

    LED; 光電熱一體化理論; 雙向熱阻模型; 結(jié)溫; 光通量

    1000-7032(2016)11-1378-06

    TN312+.8 Document code: A

    10.3788/fgxb20163711.1378

    *CorrespondingAuthor,E-mail:htchen23@163.com

    猜你喜歡
    光通量結(jié)溫熱阻
    豎直單U型地埋管換熱器埋管間負熱阻現(xiàn)象的參數(shù)化研究與分析
    雙通道LED的單占空比調(diào)光調(diào)色方法
    采用RBF神經(jīng)網(wǎng)絡(luò)與光譜參數(shù)的LED結(jié)溫預(yù)測
    基于Simulink的IGBT模塊的結(jié)溫計算
    量產(chǎn)階段的汽車燈LED模組光通量范圍的確定
    界面熱阻對L型鎂合金鑄件凝固過程溫度場的影響
    積分球擋板對光通量測量的影響
    白熾燈光源光通量計的設(shè)計
    基于驅(qū)動電流切變的大電流下LED正向電壓-結(jié)溫關(guān)系檢測方法
    換熱設(shè)備污垢熱阻和腐蝕監(jiān)測技術(shù)綜述
    亚洲性夜色夜夜综合| 国产成年人精品一区二区| 1024视频免费在线观看| 国产成人免费无遮挡视频| 一级a爱片免费观看的视频| a级毛片在线看网站| 精品欧美一区二区三区在线| 国产男靠女视频免费网站| 色尼玛亚洲综合影院| aaaaa片日本免费| 少妇裸体淫交视频免费看高清 | 国产aⅴ精品一区二区三区波| 久久人妻福利社区极品人妻图片| av在线播放免费不卡| 免费在线观看视频国产中文字幕亚洲| 可以免费在线观看a视频的电影网站| 亚洲aⅴ乱码一区二区在线播放 | 老汉色av国产亚洲站长工具| 视频在线观看一区二区三区| 黄色a级毛片大全视频| 高潮久久久久久久久久久不卡| 国产精品精品国产色婷婷| 伊人久久大香线蕉亚洲五| 亚洲精品一卡2卡三卡4卡5卡| netflix在线观看网站| 级片在线观看| 久久午夜亚洲精品久久| 久久精品国产清高在天天线| 少妇 在线观看| 最近最新中文字幕大全电影3 | 制服诱惑二区| 91九色精品人成在线观看| 日本五十路高清| 性色av乱码一区二区三区2| 亚洲美女黄片视频| 一边摸一边抽搐一进一出视频| 99久久精品国产亚洲精品| 免费高清在线观看日韩| 午夜影院日韩av| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全电影3 | 九色国产91popny在线| 日韩av在线大香蕉| 波多野结衣av一区二区av| 国产99久久九九免费精品| 国产单亲对白刺激| 最近最新免费中文字幕在线| 亚洲成av片中文字幕在线观看| 日韩成人在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 一进一出抽搐gif免费好疼| 久久婷婷成人综合色麻豆| 日韩免费av在线播放| 亚洲国产欧美日韩在线播放| 久久香蕉精品热| 成人永久免费在线观看视频| 一级毛片高清免费大全| 一区二区三区精品91| 国产三级黄色录像| 久久欧美精品欧美久久欧美| 精品国产国语对白av| 在线播放国产精品三级| 亚洲av日韩精品久久久久久密| 国产不卡一卡二| 操出白浆在线播放| 一夜夜www| 性色av乱码一区二区三区2| 精品乱码久久久久久99久播| 亚洲国产看品久久| 久久久久国产精品人妻aⅴ院| 亚洲欧洲精品一区二区精品久久久| 在线观看日韩欧美| 精品免费久久久久久久清纯| 亚洲成人免费电影在线观看| 中文字幕最新亚洲高清| 性少妇av在线| 午夜精品久久久久久毛片777| 一级,二级,三级黄色视频| 久久精品人人爽人人爽视色| 黄色视频不卡| 亚洲第一青青草原| avwww免费| 久久国产精品男人的天堂亚洲| 男女午夜视频在线观看| 最好的美女福利视频网| 午夜免费成人在线视频| av天堂在线播放| 亚洲全国av大片| 亚洲电影在线观看av| 手机成人av网站| 久久 成人 亚洲| 欧美一级a爱片免费观看看 | 神马国产精品三级电影在线观看 | 一个人观看的视频www高清免费观看 | 亚洲成av人片免费观看| 满18在线观看网站| 香蕉丝袜av| 久久久久久大精品| 香蕉丝袜av| 夜夜爽天天搞| 亚洲五月天丁香| 69av精品久久久久久| 亚洲av熟女| 国产精华一区二区三区| 亚洲国产欧美一区二区综合| 日韩视频一区二区在线观看| 欧美激情极品国产一区二区三区| 长腿黑丝高跟| АⅤ资源中文在线天堂| 天堂√8在线中文| 51午夜福利影视在线观看| 久久香蕉国产精品| 露出奶头的视频| 一个人免费在线观看的高清视频| 国产成人精品久久二区二区91| 给我免费播放毛片高清在线观看| 国产成人欧美在线观看| 91老司机精品| 日韩欧美在线二视频| 多毛熟女@视频| xxx96com| 超碰成人久久| 男人舔女人的私密视频| 国产精品香港三级国产av潘金莲| avwww免费| 动漫黄色视频在线观看| 嫁个100分男人电影在线观看| 嫁个100分男人电影在线观看| 国产精华一区二区三区| 制服诱惑二区| 欧美日韩一级在线毛片| 性欧美人与动物交配| 女人被狂操c到高潮| 热99re8久久精品国产| 91麻豆av在线| www.熟女人妻精品国产| 久久伊人香网站| 一级毛片精品| 丁香六月欧美| 亚洲在线自拍视频| 男男h啪啪无遮挡| 久久久久久久久免费视频了| 亚洲精品av麻豆狂野| 怎么达到女性高潮| 最近最新中文字幕大全电影3 | 欧美日韩中文字幕国产精品一区二区三区 | 国产又爽黄色视频| 日韩欧美一区二区三区在线观看| 精品一品国产午夜福利视频| 男女做爰动态图高潮gif福利片 | 国产亚洲欧美在线一区二区| 亚洲av美国av| 在线免费观看的www视频| 欧美黑人欧美精品刺激| 亚洲人成77777在线视频| 久久精品国产亚洲av高清一级| 一级片免费观看大全| 欧美色视频一区免费| 午夜老司机福利片| 亚洲欧美激情综合另类| 免费看十八禁软件| 欧美成人一区二区免费高清观看 | 日本免费a在线| 国产av精品麻豆| 欧美在线一区亚洲| 在线观看午夜福利视频| 精品熟女少妇八av免费久了| 成人三级做爰电影| 露出奶头的视频| 日韩精品免费视频一区二区三区| 久久狼人影院| 日本精品一区二区三区蜜桃| 亚洲中文av在线| 欧美在线一区亚洲| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 国产精品久久久久久亚洲av鲁大| 国产成人精品久久二区二区91| 午夜免费激情av| 十分钟在线观看高清视频www| 性少妇av在线| 国产精品久久电影中文字幕| 欧美大码av| 国产99久久九九免费精品| 久久久久久久久中文| 国产精品免费视频内射| 国产精品影院久久| 国产一卡二卡三卡精品| 国产三级黄色录像| a级毛片在线看网站| 精品国产一区二区久久| 国产精品 欧美亚洲| 成人欧美大片| 岛国在线观看网站| 中文亚洲av片在线观看爽| 大型黄色视频在线免费观看| 在线永久观看黄色视频| 丝袜美腿诱惑在线| 成年人黄色毛片网站| 狂野欧美激情性xxxx| 久久久久精品国产欧美久久久| 人人澡人人妻人| 岛国在线观看网站| 变态另类成人亚洲欧美熟女 | 久久久久久大精品| 亚洲五月婷婷丁香| 一级毛片女人18水好多| 日本免费一区二区三区高清不卡 | 一卡2卡三卡四卡精品乱码亚洲| 正在播放国产对白刺激| 成人欧美大片| 麻豆成人av在线观看| 亚洲国产精品999在线| 88av欧美| 午夜福利在线观看吧| 可以在线观看的亚洲视频| 亚洲国产中文字幕在线视频| 亚洲精品av麻豆狂野| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久久毛片| 老熟妇仑乱视频hdxx| 美女午夜性视频免费| 国产成人系列免费观看| 国产精品二区激情视频| 亚洲av熟女| 在线观看免费午夜福利视频| 日本三级黄在线观看| 男男h啪啪无遮挡| 久久精品91蜜桃| 亚洲国产看品久久| 精品久久久久久久毛片微露脸| 少妇裸体淫交视频免费看高清 | 亚洲 欧美 日韩 在线 免费| 12—13女人毛片做爰片一| 精品人妻在线不人妻| 免费高清在线观看日韩| 给我免费播放毛片高清在线观看| 多毛熟女@视频| 亚洲自偷自拍图片 自拍| 久久久久久免费高清国产稀缺| 久久国产精品男人的天堂亚洲| 91精品三级在线观看| 中国美女看黄片| 99久久综合精品五月天人人| 精品第一国产精品| 亚洲色图av天堂| 无遮挡黄片免费观看| 亚洲,欧美精品.| 日韩欧美免费精品| 中亚洲国语对白在线视频| 国产欧美日韩综合在线一区二区| 欧美成人免费av一区二区三区| 在线国产一区二区在线| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久电影中文字幕| 丝袜美足系列| 色哟哟哟哟哟哟| 免费在线观看完整版高清| 91av网站免费观看| 国产欧美日韩综合在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品99久久久久| 国产精品1区2区在线观看.| 亚洲全国av大片| 久久精品国产亚洲av香蕉五月| cao死你这个sao货| 国产区一区二久久| 人妻丰满熟妇av一区二区三区| 欧美精品亚洲一区二区| 精品久久久久久,| 久久久久久国产a免费观看| 69av精品久久久久久| 美女 人体艺术 gogo| 91大片在线观看| 一区二区三区国产精品乱码| 岛国在线观看网站| 无遮挡黄片免费观看| or卡值多少钱| 国产熟女午夜一区二区三区| 伦理电影免费视频| 中文字幕精品免费在线观看视频| 亚洲少妇的诱惑av| 国产三级黄色录像| 嫁个100分男人电影在线观看| 日本在线视频免费播放| 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 这个男人来自地球电影免费观看| 国产精品久久电影中文字幕| 欧美日本视频| 999久久久精品免费观看国产| 国产一区在线观看成人免费| 美女高潮到喷水免费观看| 色精品久久人妻99蜜桃| 十分钟在线观看高清视频www| 日日夜夜操网爽| 午夜两性在线视频| 99re在线观看精品视频| 成在线人永久免费视频| 久久久国产成人免费| 国产高清videossex| 又黄又爽又免费观看的视频| 亚洲精品一区av在线观看| 99在线人妻在线中文字幕| 视频在线观看一区二区三区| 亚洲一区高清亚洲精品| 一级毛片精品| 精品国产超薄肉色丝袜足j| 在线视频色国产色| 久久久国产精品麻豆| 香蕉国产在线看| 国产成人啪精品午夜网站| av电影中文网址| 999久久久国产精品视频| 免费高清在线观看日韩| 日本三级黄在线观看| 老司机深夜福利视频在线观看| 午夜福利一区二区在线看| 天堂动漫精品| 十八禁人妻一区二区| 国产精品永久免费网站| 超碰成人久久| 男女午夜视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产私拍福利视频在线观看| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 人妻丰满熟妇av一区二区三区| 久久国产精品影院| 国产精品香港三级国产av潘金莲| 国产av精品麻豆| bbb黄色大片| 啦啦啦观看免费观看视频高清 | 国产高清有码在线观看视频 | 91精品国产国语对白视频| 日韩中文字幕欧美一区二区| 婷婷六月久久综合丁香| 最近最新中文字幕大全免费视频| 女人精品久久久久毛片| 欧美乱色亚洲激情| 伊人久久大香线蕉亚洲五| 99在线人妻在线中文字幕| 午夜福利视频1000在线观看 | 最好的美女福利视频网| 成人亚洲精品一区在线观看| av福利片在线| 一级毛片女人18水好多| 亚洲少妇的诱惑av| 一个人免费在线观看的高清视频| 国产精品美女特级片免费视频播放器 | 日韩欧美国产在线观看| 亚洲伊人色综图| 少妇裸体淫交视频免费看高清 | 黑人操中国人逼视频| 人人妻,人人澡人人爽秒播| 国内毛片毛片毛片毛片毛片| 中文字幕色久视频| 欧美激情久久久久久爽电影 | 欧美精品亚洲一区二区| 一区二区日韩欧美中文字幕| 最近最新免费中文字幕在线| 在线播放国产精品三级| 欧美成人午夜精品| 久久中文看片网| 嫁个100分男人电影在线观看| 国产高清videossex| 一区二区三区激情视频| videosex国产| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 亚洲片人在线观看| 欧美人与性动交α欧美精品济南到| 看片在线看免费视频| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 亚洲男人的天堂狠狠| 亚洲欧美精品综合一区二区三区| 亚洲激情在线av| 99在线视频只有这里精品首页| 91九色精品人成在线观看| 日韩精品免费视频一区二区三区| 99riav亚洲国产免费| 国产精品电影一区二区三区| 欧美+亚洲+日韩+国产| 黑丝袜美女国产一区| 精品久久久久久成人av| 精品国产超薄肉色丝袜足j| 男女之事视频高清在线观看| 精品第一国产精品| 黄色 视频免费看| 高清黄色对白视频在线免费看| 日韩欧美在线二视频| 亚洲精品在线美女| or卡值多少钱| 亚洲国产中文字幕在线视频| 国产高清视频在线播放一区| 久久精品影院6| 中出人妻视频一区二区| 老汉色∧v一级毛片| 搡老妇女老女人老熟妇| 最近最新中文字幕大全电影3 | 麻豆成人av在线观看| 欧美老熟妇乱子伦牲交| 无人区码免费观看不卡| 9热在线视频观看99| 十八禁网站免费在线| 无人区码免费观看不卡| 激情在线观看视频在线高清| 91精品三级在线观看| 黄色片一级片一级黄色片| 老司机在亚洲福利影院| 天堂√8在线中文| 老司机福利观看| 久久久久久免费高清国产稀缺| 欧美日韩亚洲综合一区二区三区_| 久久久久精品国产欧美久久久| av天堂在线播放| 国产成人av教育| 9热在线视频观看99| av有码第一页| 大码成人一级视频| 亚洲国产欧美日韩在线播放| 久久久精品欧美日韩精品| 大码成人一级视频| 精品不卡国产一区二区三区| 成人亚洲精品一区在线观看| 久久精品国产99精品国产亚洲性色 | 国产99久久九九免费精品| 人人妻人人澡欧美一区二区 | 国产免费男女视频| 少妇被粗大的猛进出69影院| 亚洲一卡2卡3卡4卡5卡精品中文| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看十八禁软件| 午夜福利影视在线免费观看| АⅤ资源中文在线天堂| 国内久久婷婷六月综合欲色啪| 女人被躁到高潮嗷嗷叫费观| 日本免费a在线| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 国产成人影院久久av| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 精品久久蜜臀av无| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 亚洲情色 制服丝袜| 18禁黄网站禁片午夜丰满| 曰老女人黄片| 淫秽高清视频在线观看| 精品久久久久久成人av| 成人av一区二区三区在线看| 精品久久久久久久毛片微露脸| 久久人妻av系列| 涩涩av久久男人的天堂| 大香蕉久久成人网| 亚洲国产精品合色在线| 人人妻人人爽人人添夜夜欢视频| 色综合欧美亚洲国产小说| 精品国产超薄肉色丝袜足j| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频| 亚洲国产精品sss在线观看| 久久久国产成人免费| 亚洲专区国产一区二区| 日韩欧美免费精品| 啦啦啦韩国在线观看视频| 美女午夜性视频免费| 精品欧美国产一区二区三| 搞女人的毛片| 免费高清在线观看日韩| 亚洲情色 制服丝袜| 国产三级在线视频| 国产亚洲av嫩草精品影院| 又黄又粗又硬又大视频| 天堂动漫精品| 欧美中文日本在线观看视频| 精品一区二区三区视频在线观看免费| 国产高清有码在线观看视频 | 欧美不卡视频在线免费观看 | 色播在线永久视频| 国产免费av片在线观看野外av| 热99re8久久精品国产| 亚洲人成网站在线播放欧美日韩| 国产精品自产拍在线观看55亚洲| 国产片内射在线| 亚洲第一av免费看| 国产国语露脸激情在线看| 国产精品1区2区在线观看.| 亚洲av电影在线进入| 欧美大码av| 成人三级黄色视频| 日本一区二区免费在线视频| 精品福利观看| 黄频高清免费视频| 中文字幕av电影在线播放| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 成人特级黄色片久久久久久久| 精品免费久久久久久久清纯| 脱女人内裤的视频| avwww免费| 欧美色欧美亚洲另类二区 | 国产精品久久久久久人妻精品电影| 精品久久久久久久人妻蜜臀av | 母亲3免费完整高清在线观看| 看免费av毛片| 国产精品免费一区二区三区在线| 非洲黑人性xxxx精品又粗又长| 欧美亚洲日本最大视频资源| 啪啪无遮挡十八禁网站| 亚洲一区二区三区不卡视频| 啦啦啦 在线观看视频| 成人18禁高潮啪啪吃奶动态图| 在线视频色国产色| 亚洲一卡2卡3卡4卡5卡精品中文| 激情在线观看视频在线高清| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 国产高清激情床上av| www.熟女人妻精品国产| 久久精品国产亚洲av香蕉五月| 身体一侧抽搐| 亚洲精品中文字幕一二三四区| 亚洲午夜理论影院| 亚洲熟妇熟女久久| 久久热在线av| 国产精品,欧美在线| 两人在一起打扑克的视频| 999久久久国产精品视频| 在线观看日韩欧美| 精品不卡国产一区二区三区| 国产精品 国内视频| 在线观看舔阴道视频| av在线天堂中文字幕| 国产精品野战在线观看| 中文字幕人妻丝袜一区二区| 九色国产91popny在线| 国产av一区二区精品久久| 中出人妻视频一区二区| 国产av在哪里看| 免费在线观看亚洲国产| 男人舔女人的私密视频| 好男人在线观看高清免费视频 | 韩国av一区二区三区四区| 亚洲中文av在线| 中文字幕久久专区| 男女床上黄色一级片免费看| 制服人妻中文乱码| 美女高潮喷水抽搐中文字幕| 欧美另类亚洲清纯唯美| 日韩 欧美 亚洲 中文字幕| 亚洲av电影不卡..在线观看| 日本欧美视频一区| bbb黄色大片| 乱人伦中国视频| 日本黄色视频三级网站网址| 国产av精品麻豆| 午夜福利影视在线免费观看| 视频区欧美日本亚洲| 亚洲在线自拍视频| 欧美老熟妇乱子伦牲交| 黄色a级毛片大全视频| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 人人妻人人爽人人添夜夜欢视频| 制服人妻中文乱码| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| 丰满的人妻完整版| 伦理电影免费视频| 黄色女人牲交| 天堂影院成人在线观看| 男女做爰动态图高潮gif福利片 | 成人欧美大片| 日韩三级视频一区二区三区| 久久青草综合色| 老汉色av国产亚洲站长工具| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| xxx96com| 深夜精品福利| 亚洲欧美日韩高清在线视频| 美女高潮喷水抽搐中文字幕| 91老司机精品| 国产欧美日韩精品亚洲av| 脱女人内裤的视频| 在线天堂中文资源库| 一级毛片女人18水好多| 亚洲精品美女久久av网站| 中文字幕久久专区| 久久精品影院6| 日日夜夜操网爽| 国产三级黄色录像| 一区二区三区国产精品乱码| 亚洲性夜色夜夜综合| www日本在线高清视频| 日韩高清综合在线| 少妇粗大呻吟视频| 无人区码免费观看不卡| 日韩成人在线观看一区二区三区| 日韩欧美在线二视频| 精品乱码久久久久久99久播| 久久青草综合色| 国产精品日韩av在线免费观看 | 精品人妻在线不人妻| 久久久久精品国产欧美久久久| 99热只有精品国产| 看免费av毛片| 亚洲无线在线观看| 欧美 亚洲 国产 日韩一| 国产精品久久久久久人妻精品电影|